

FCC PART 15 SUBPART C TEST REPORT					
	FCC PART 15.247				
Report Reference No FCC ID					
Compiled by (position+printed name+signature):	1 1/1/10				
Supervised by (position+printed name+signature):	Test Engineer Aaron Tan				
Approved by (position+printed name+signature):	Manager Jason Hu				
Date of issue	May 18, 2021				
Representative Laboratory Name .:	Shenzhen Global Test Service Co., Ltd.				
Address:	No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong				
Applicant's name	Comson (Shenzhen) Electronic Technology Co.,Ltd.				
Address	3rd Floor, Building 22#, No. 6 Xingye 1st road, Fenghuang Community, Fuyong, Bao'an District, Shenzhen, 518103, China				
Test specification:					
Standard	FCC Part 15.247				
TRF Originator	Shenzhen Global Test Service Co.,Ltd.				
Master TRF	Dated 2014-12				
Shenzhen Global Test Service Co.,Lt	td. All rights reserved.				
This publication may be reproduced in Shenzhen Global Test Service Co.,Ltd. Shenzhen Global Test Service Co.,Ltd.	whole or in part for non-commercial purposes as long as the is acknowledged as copyright owner and source of the material. takes no responsibility for and will not assume liability for damages n of the reproduced material due to its placement and context.				
Test item description	PORTABLE BLUETOOTH SPEAKER				
Trade Mark	coumson®				
Manufacturer	Comson (Shenzhen) Electronic Technology Co.,Ltd.				
Model/Type reference	S08				
Listed Models	S08X, BT-508, BT-506, BT08, BT08X, S06, S06X				
Ratings	5V 2A				
Modulation	GFSK, II/4DQPSK, 8DPSK				
Hardware version	REV:0.1				
Software version	V1.0				
Frequency	From 2402MHz to 2480MHz				
Result:	PASS				

TEST REPORT

Test Report No. :		GTS20210517016-1-1	May 18, 2021 Date of issue				
Equipment under Test		: PORTABLE BLUETOOTH SPEA	KER				
Model /Type		: S08	S08				
Listed Models		: S08X, BT-508, BT-506, BT08, BT	S08X, BT-508, BT-506, BT08, BT08X, S06, S06X				
Applicant		: Comson (Shenzhen) Electronic	Comson (Shenzhen) Electronic Technology Co.,Ltd.				
Address		3rd Floor, Building 22#, No. 6 Xin Community, Fuyong, Bao'an Dist					
Manufacturer		Comson (Shenzhen) Electronic Technology Co.,Ltd.					
Address		3rd Floor, Building 22#, No. 6 Xingye 1st road, Fenghuang Community, Fuyong, Bao'an District, Shenzhen, 518103, China					

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Contents

<u>1</u>	TEST STANDARDS	
<u>2</u>	SUMMARY	5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Test Sample	5
2.4	Equipment Under Test	5
2.5	Short description of the Equipment under Test (EUT)	5
2.6	EUT operation mode	6
2.7	Block Diagram of Test Setup	6
2.8	Special Accessories	6
2.9	Related Submittal(s) / Grant (s)	6
2.10	Modifications	6
<u>3</u>	TEST ENVIRONMENT	
~ /		_
3.1	Address of the test laboratory	7
3.2	Test Facility	7
3.3	Environmental conditions	7
3.4	Summary of measurement results Statement of the measurement uncertainty	8 8
3.5 3.6	Equipments Used during the Test	о 9
3.0	Equipments used during the rest	9
<u>4</u>	TEST CONDITIONS AND RESULTS	10
4.1	AC Power Conducted Emission	10
4.2	Radiated Emission	13
4.3	Maximum Peak Output Power	19
4.4	20dB Bandwidth	20
4.5	Frequency Separation	24
4.6	Number of hopping frequency	26
4.7	Time of Occupancy (Dwell Time)	28
4.8	Out-of-band Emissions	32
4.9	Pseudorandom Frequency Hopping Sequence	40
4.10	Antenna Requirement	41
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	42
6	PHOTOS OF THE EUT	43

1 <u>TEST STANDARDS</u>

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

2 <u>SUMMARY</u>

2.1 General Remarks

Date of receipt of test sample	:	Apr. 27, 2021
Testing commenced on	:	Apr. 28, 2021
Testing concluded on	:	May 15, 2021

2.2 Product Description

Product Description:	PORTABLE BLUETOOTH SPEAKER
Model/Type reference:	S08
Power supply:	DC 3.7V from battery
Sample ID:	GTS20210517016-1-1#/ GTS20210517016-1-2#
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	0 dBi

2.3 Test Sample

The application provides 2 samples to meet requirement.

Sample Number	Description
GTS20210517016-1-1#	Engineer sample – continuous transmit
GTS20210517016-1-2#	Normal sample – Intermittent transmit

2.4 Equipment Under Test

Power supply system utilised

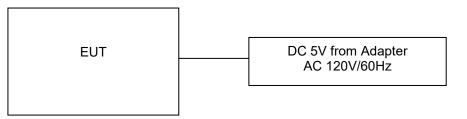
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		\bigcirc	12 V DC	0	24 V DC
			Other (specified in blank bel	ow)

DC 3.7V from battery

2.5 Short description of the Equipment under Test (EUT)

This is a PORTABLE BLUETOOTH SPEAKER.

For more details, refer to the user's manual of the EUT.


2.6 EUT operation mode

The Applicant provides communication tools software(FrequencyTool_v0.3.0.exe) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to the EUT and Channel 00/39/78 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	2402
01	2403
:	:
38	2440
39	2441
40	2442
:	:
77	2479
78	2480

2.7 Block Diagram of Test Setup

2.8 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

1	Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by	
	AC-DC Adapter	MOSO	EP-TA10CBC	Input:AC100-240V-50/60Hz, 0.5A Output:DC 5V,1A	FCC	Laboratory	
	/	/	/	/	/	/	
	/	/	/	/	/	/	
	/	/	/	/	/	/	

2.9 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.10 Modifications

No modifications were implemented to meet testing criteria.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen Global Test Service Co.,Ltd.

No.7-101 and 8A-104, Building 7 and 8, DCC Cultural and Creative Garden, No.98, Pingxin North Road, Shangmugu Community, Pinghu Street, Longgang District, Shenzhen, Guangdong

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR requirement for radiated emission above 1GHz.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 165725

Shenzhen Global Test Service Co.,Ltd EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

A2LA-Lab Cert. No.: 4758.01

Shenzhen Global Test Service Co.,Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

CNAS-Lab Code: L8169

Shenzhen Global Test Service Co.,Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories. Date of Registration: Dec. 11, 2015. Valid time is until Dec. 10, 2024.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

Test Specification clause	Test case	Test Sample	Test Mode	Test Channel		Recorded In Report	
§15.247(a)(1)	Carrier Frequency separation	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🛛 Middle	Compliant
§15.247(a)(1)	Number of Hopping channels	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	🛛 Full	GFSK 8DPSK	🛛 Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	🛛 Middle	Compliant
§15.247(a)(1)	Spectrumba ndwidth of aFHSS system20dB bandwidth	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(b)(1)	Maximum outputpower	GTS20210517 016-1-1#	GFSK N/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	Band edgecomplia nce conducted	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	Compliant
§15.205	Band edgecomplia nce radiated	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Highest	GFSK	⊠ Lowest ⊠ Highest	Compliant
§15.247(d)	TX spuriousemi ssions conducted	GTS20210517 016-1-1#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.247(d)	TX spuriousemi ssions radiated	GTS20210517 016-1-1#	GFSK ∏/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	⊠ Lowest ⊠ Middle ⊠ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GTS20210517 016-1-2#	GFSK Π/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GTS20210517 016-1-2#	GFSK П/4DQPSK 8DPSK	⊠ Lowest ⊠ Middle ⊠ Highest	GFSK	🛛 Middle	Compliant

Remark:

1. The measurement uncertainty is not included in the test result.

2. We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

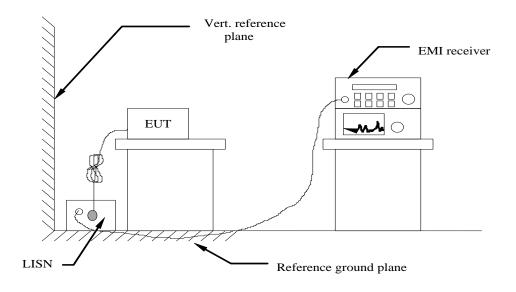
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Global Test Service Co.,Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen GTS laboratory is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.10 dB	(1)
Radiated Emission	1~18GHz	4.32 dB	(1)
Radiated Emission	18-40GHz	5.54 dB	(1)
Conducted Disturbance	0.15~30MHz	3.12 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test


LISN R&S ENV216 3560.6550.08 2020/09/19 2021/09/18 LISN R&S ESH2-25 893606/005 2020/09/19 2021/09/18 EMI Test Receiver R&S ESCI7 101102 2020/09/19 2021/09/18 Spectrum Analyzer Agilent N9020A MY48010425 2020/09/19 2021/09/18 Spectrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Vector Signal generator Agilent EM5181A MY49060502 2020/09/19 2021/09/18 Controller EM Electoncics Controller EM 0000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Schwarzbeck BBHA 9170 791 2020/05/26 2021/09/18 Amplifier Schwarzbeck BBHA 9170 791 2020/05/26 2021/09/18 Amplifier Schwarzbeck BBV9179 9719-025 2020/09/19 2021/09/18 Amplifier <th>Test Equipment</th> <th>Manufacturer</th> <th>Model No.</th> <th>Serial No.</th> <th>Calibration Date</th> <th>Calibration Due Date</th>	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
EMI Test Receiver R&S ESPI3 101841-cd 2020/09/19 2021/09/18 Spectrum Analyzer Aglient N9020A MY48010425 2020/09/19 2021/09/18 Spectrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Spectrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Spectrum Analyzer Aglient E4421B 3610A01069 2020/09/19 2021/09/18 Spectrum Analyzer Aglient E4421B 3610A01069 2020/09/19 2021/09/18 Controller ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller FM 1000 N/A N/A N/A Active Loop Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Schwarzbeck BBV973 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier </td <td>LISN</td> <td>R&S</td> <td>ENV216</td> <td>3560.6550.08</td> <td>2020/09/19</td> <td>2021/09/18</td>	LISN	R&S	ENV216	3560.6550.08	2020/09/19	2021/09/18
EMI Test Receiver R&S ESCI7 101102 2020/09/19 2021/09/18 Spectrum Analyzer Agilent N9020A MY48010425 2020/09/19 2021/09/18 Spectrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Vector Signal generator Agilent K481 MY49060502 2020/09/19 2021/09/18 Spectrum Analyzer Agilent E4421B 3610A01069 2020/09/19 2021/09/18 Climate Chamber ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller EM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Schwarzbeck BV173 791 2020/05/26 2021/09/18 Amplifier Schwarzbeck BV9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BV9743 #202 2020/09/19 2021/09/18 Amplifier	LISN	R&S	ESH2-Z5	893606/008	2020/09/19	2021/09/18
Spectrum Analyzer Agilent N9020A MY48010425 2020/09/19 2021/09/18 Spectrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Vector Signal generator Agilent N5181A MY49060502 2020/09/19 2021/09/18 Spectrum Analyzer Agilent E4421B 3610A01069 2020/09/19 2021/09/18 Cilmate Chamber ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller EM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Schwarzbeck VULB9163 000976 2020/09/19 2021/09/18 Broadband Horn Antenna Schwarzbeck BBH 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9759 9719-025 2020/09/19 2021/09/18	EMI Test Receiver	R&S	ESPI3	101841-cd	2020/09/19	2021/09/18
Depertrum Analyzer R&S FSV40 100019 2020/09/19 2021/09/18 Vector Signal generator Agilent N5181A MY49060502 2020/09/19 2021/09/18 Spectrum Analyzer Agilent E4421B 3610A01069 2020/09/19 2021/09/18 Controller EM Electronics Controller FM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Beijing Da Ze Technology ZN30900C 15006 2020/10/11 2021/10/10 Bilog Antenna Schwarzbeck VULB9163 000976 2020/05/26 2021/09/18 Artenna Schwarzbeck BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9179 9719-025 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18	EMI Test Receiver	R&S	ESCI7	101102	2020/09/19	2021/09/18
Vector Signal generator Agilent N5181A MY49060502 2020/09/19 2021/09/18 Spectrum Analyzer Agilent E4421B 3610AO1069 2020/09/19 2021/09/18 Climate Chamber ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller EM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Schwarzbeck VULB9163 000976 2020/05/26 2021/05/25 Broadband Horn Antenna ScHwARZBECK BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 973 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9179 9719-025 2020/09/19 2021/09/18 Amplifier EMCI EMCO51845B 980355 2020/09/19 2021/09/18 High-Pass Filter K&L 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18	Spectrum Analyzer	Agilent	N9020A	MY48010425	2020/09/19	2021/09/18
generator Aglient INSTA INSTA INSTANDUSCI 2020/09/19 2021/09/18 Spectrum Analyzer Aglient E4421B 3610AO1069 2020/09/19 2021/09/18 Climate Chamber ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller EM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C 15006 2020/05/26 2021/05/25 Broadband Horn Antenna Schwarzbeck BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 9719-025 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 980355 2020/09/19 2021/09/1	Spectrum Analyzer	R&S	FSV40	100019	2020/09/19	2021/09/18
Climate Chamber ESPEC EL-10KA A20120523 2020/09/19 2021/09/18 Controller EM Electronics Controller EM 1000 N/A N/A N/A N/A Hom Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C 15006 2020/05/26 2021/05/25 Broadband Horn Antenna Schwarzbeck VULB9163 000976 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9754 #202 2020/09/19 2021/09/18 Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 2700/X12750- 0/O KL142031 2020/09/19 2021/0	-	Agilent	N5181A	MY49060502	2020/09/19	2021/09/18
Controller EM Electronics Controller EM 1000 N/A N/A N/A Horn Antenna Schwarzbeck BBHA 9120D 01622 2020/09/19 2021/09/18 Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C 15006 2020/10/11 2021/05/25 Broadband Horn Antenna Schwarzbeck VULB9163 000976 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9179 9719-025 2020/09/19 2021/09/18 Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U12750- 0/0 KL142031 2020/09/19 2021/09/18	Spectrum Analyzer	Agilent	E4421B	3610AO1069	2020/09/19	2021/09/18
ControllerEM Electronics1000N/AN/AN/AHorn AntennaSchwarzbeckBBHA 9120D016222020/09/192021/09/18Active Loop AntennaBeijing Da Ze Technology Co.,Ltd.ZN30900C150062020/10/112021/10/10Bilog AntennaSchwarzbeckVULB91630009762020/05/262021/05/25Broadband Horn AntennaSchwarzbeckBBHA 91707912020/09/192021/09/18AmplifierSchwarzbeckBBV 9743#2022020/09/192021/09/18AmplifierSchwarzbeckBBV91799719-0252020/09/192021/09/18AmplifierEMCIEMC051845B9803552020/09/192021/09/18Temperature/Humidi ty MeterGangxingCTH-608022020/09/192021/09/18High-Pass FilterK&L2700/X12750- 0/OKL1420312020/09/192021/09/18RF Cable(below 1GHz)HUBER+SUHNE RRG214RE012020/09/192021/09/18RF Cable(below 1GHz)HUBER+SUHNE RRG214RE022020/09/192021/09/18Data acquisition cardAgilentU2031XAMY53650042020/09/192021/09/18Power SensorAgilentU2021XAMY53650042020/09/192021/09/18Automated filter bankTonscendJS0806-F19F80601772020/06/192021/06/18Automated filter bankTonscendJS1120-1Ver 2.6.8.0518//EMI Test Software <t< td=""><td>Climate Chamber</td><td>ESPEC</td><td>EL-10KA</td><td>A20120523</td><td>2020/09/19</td><td>2021/09/18</td></t<>	Climate Chamber	ESPEC	EL-10KA	A20120523	2020/09/19	2021/09/18
Active Loop Antenna Beijing Da Ze Technology Co.,Ltd. ZN30900C 15006 2020/10/11 2021/10/10 Bilog Antenna Schwarzbeck VULB9163 000976 2020/05/26 2021/05/25 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- O/O KL142031 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2031A TW53323507 2020/09/19 <	Controller	EM Electronics		N/A	N/A	N/A
Active Loop Antenna Technology Co.,Ltd. ZN30900C 15006 2020/10/11 2021/10/10 Bilog Antenna Schwarzbeck VULB9163 000976 2020/05/26 2021/05/25 Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Gangxing CTH-608 02 2020/09/19 2021/09/18 Temperature/Humidi ty Meter K&L 2020/09/19 2021/09/18 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/0 KL142031 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data	Horn Antenna	Schwarzbeck	BBHA 9120D	01622	2020/09/19	2021/09/18
Broadband Horn Antenna SCHWARZBECK BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9179 9719-025 2020/09/19 2021/09/18 Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U2750- 0/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2031A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18	Active Loop Antenna	Technology	ZN30900C	15006	2020/10/11	2021/10/10
Antenna SCHWAR2BECK BBHA 9170 791 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV 9743 #202 2020/09/19 2021/09/18 Amplifier Schwarzbeck BBV9179 9719-025 2020/09/19 2021/09/18 Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 <tr< td=""><td>Bilog Antenna</td><td>Schwarzbeck</td><td>VULB9163</td><td>000976</td><td>2020/05/26</td><td>2021/05/25</td></tr<>	Bilog Antenna	Schwarzbeck	VULB9163	000976	2020/05/26	2021/05/25
Amplifier Schwarzbeck BBV9179 9719-025 2020/09/19 2021/09/18 Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U12750- 0/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Automated filter bank Tonscend JS0806-1 178060077 2020/06/19 2021/09/18 EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS3120-2 Ver 2.5 / /		SCHWARZBECK	BBHA 9170	791	2020/09/19	2021/09/18
Amplifier EMCI EMC051845B 980355 2020/09/19 2021/09/18 Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U12750- 0/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Test Control Unit Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 Automated filter bank Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / / /	Amplifier	Schwarzbeck	BBV 9743	#202	2020/09/19	2021/09/18
Temperature/Humidi ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U12750- 0/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	Amplifier	Schwarzbeck	BBV9179	9719-025	2020/09/19	2021/09/18
ty Meter Gangxing CTH-608 02 2020/09/19 2021/09/18 High-Pass Filter K&L 9SH10- 2700/X12750- 0/O KL142031 2020/09/19 2021/09/18 High-Pass Filter K&L 41H10- 1375/U12750- 0/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	Amplifier	EMCI	EMC051845B	980355	2020/09/19	2021/09/18
High-Pass FilterK&L2700/X12750- O/OKL1420312020/09/192021/09/18High-Pass FilterK&L41H10- 1375/U12750- O/OKL1420322020/09/192021/09/18RF Cable(below 1GHz)HUBER+SUHNE RRG214RE012020/09/192021/09/18RF Cable(above 1GHz)HUBER+SUHNE RRG214RE022020/09/192021/09/18Data acquisition cardAgilentU2531ATW533235072020/09/192021/09/18Power SensorAgilentU2021XAMY53650042020/09/192021/09/18Test Control UnitTonscendJS0806-11780600672020/06/192021/06/18Automated filter bankTonscendJS1120-1Ver 2.6.8.0518//EMI Test SoftwareTonscendJS32-CEVer 2.5//		Gangxing	CTH-608	02	2020/09/19	2021/09/18
High-Pass Filter K&L 1375/U12750- O/O KL142032 2020/09/19 2021/09/18 RF Cable(below 1GHz) HUBER+SUHNE R RG214 RE01 2020/09/19 2021/09/18 RF Cable(above 1GHz) HUBER+SUHNE R RG214 RE02 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Test Control Unit Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 Automated filter bank Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	High-Pass Filter	K&L	2700/X12750-	KL142031	2020/09/19	2021/09/18
1GHz) R RG214 RE01 2020/09/19 2021/09/18 RF Cable(above 1GHz) HUBER+SUHNE R RG214 RE02 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Test Control Unit Tonscend JS0806-1 178060067 2020/06/19 2021/06/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	High-Pass Filter	K&L	1375/U12750-	KL142032	2020/09/19	2021/09/18
1GHz) R RG214 RE02 2020/09/19 2021/09/18 Data acquisition card Agilent U2531A TW53323507 2020/09/19 2021/09/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Test Control Unit Tonscend JS0806-1 178060067 2020/06/19 2021/06/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /			RG214	RE01	2020/09/19	2021/09/18
card Agilent 02551A 1W93322507 2020/09/19 2021709/18 Power Sensor Agilent U2021XA MY5365004 2020/09/19 2021/09/18 Test Control Unit Tonscend JS0806-1 178060067 2020/06/19 2021/06/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /			RG214	RE02	2020/09/19	2021/09/18
Test Control Unit Tonscend JS0806-1 178060067 2020/06/19 2021/06/18 Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	-	Agilent	U2531A	TW53323507	2020/09/19	2021/09/18
Automated filter bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	Power Sensor	Agilent	U2021XA	MY5365004	2020/09/19	2021/09/18
bank Tonscend JS0806-F 19F8060177 2020/06/19 2021/06/18 EMI Test Software Tonscend JS1120-1 Ver 2.6.8.0518 / / EMI Test Software Tonscend JS1120-3 Ver 2.5.77.0418 / / EMI Test Software Tonscend JS32-CE Ver 2.5 / /	Test Control Unit	Tonscend	JS0806-1	178060067	2020/06/19	2021/06/18
EMI Test SoftwareTonscendJS1120-3Ver 2.5.77.0418//EMI Test SoftwareTonscendJS32-CEVer 2.5//		Tonscend	JS0806-F	19F8060177	2020/06/19	2021/06/18
EMI Test SoftwareTonscendJS1120-32.5.77.0418//EMI Test SoftwareTonscendJS32-CEVer 2.5//	EMI Test Software	Tonscend	JS1120-1	Ver 2.6.8.0518	1	1
	EMI Test Software	Tonscend	JS1120-3		/	/
EMI Test Software Tonscend JS32-RE Ver 2.5.1.8 /	EMI Test Software	Tonscend	JS32-CE	Ver 2.5	/	1
	EMI Test Software	Tonscend	JS32-RE	Ver 2.5.1.8	1	/

Note: The Cal.Interval was one year.

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received DC 12V power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

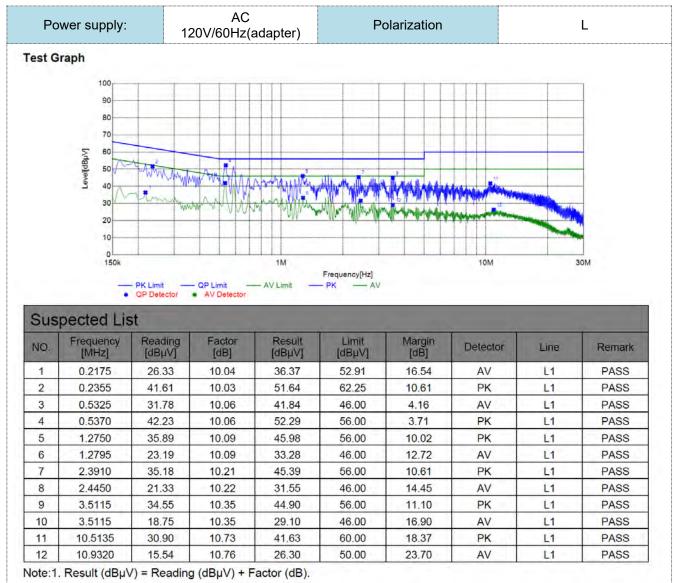
6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

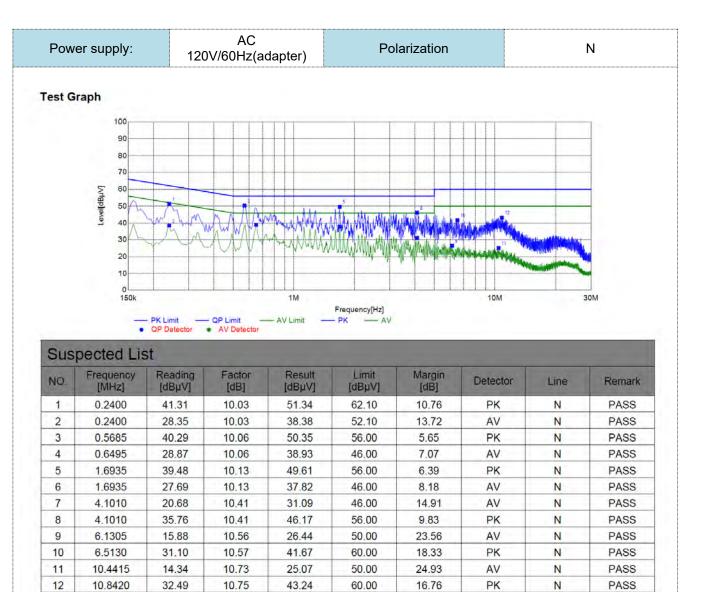
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :


Frequency range (MHz)	Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		
* Decreases with the logarithm of the frequency.				

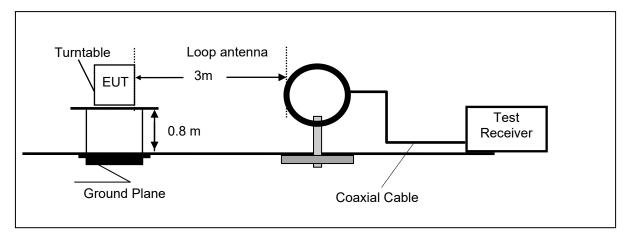
TEST RESULTS


Temperature	22.8 ℃	Humidity	56%	
Test Engineer	Fest Engineer Moon Tan		ВТ	

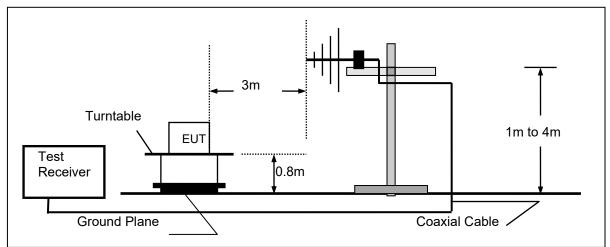
Remark:

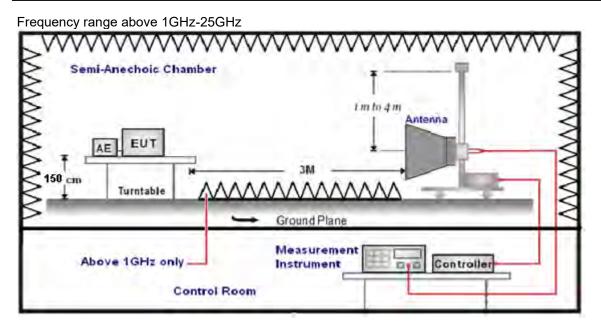
- 1. All modes of GFSK, Pi/4 DQPSK, and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


Note:1. Result (dB μ V) = Reading (dB μ V) + Factor (dB).

2. Factor (dB) = Cable loss (dB) + LISN Factor (dB).


4.2 Radiated Emission


TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range 30MHz – 1000MHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP			
150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=/		QP			
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP			
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

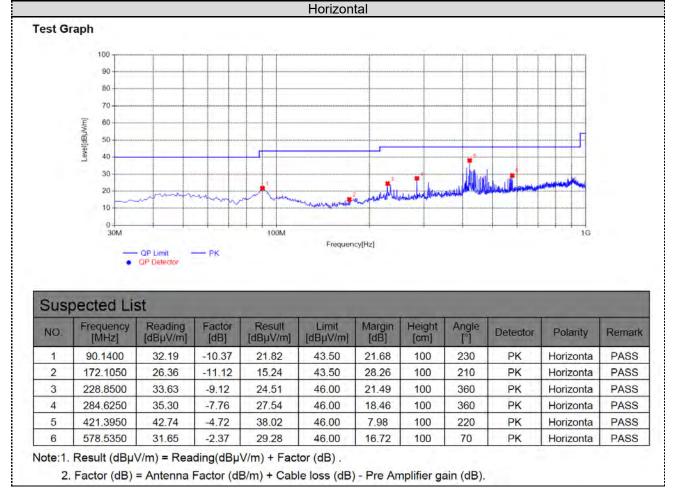
Transd=AF +CL-AG

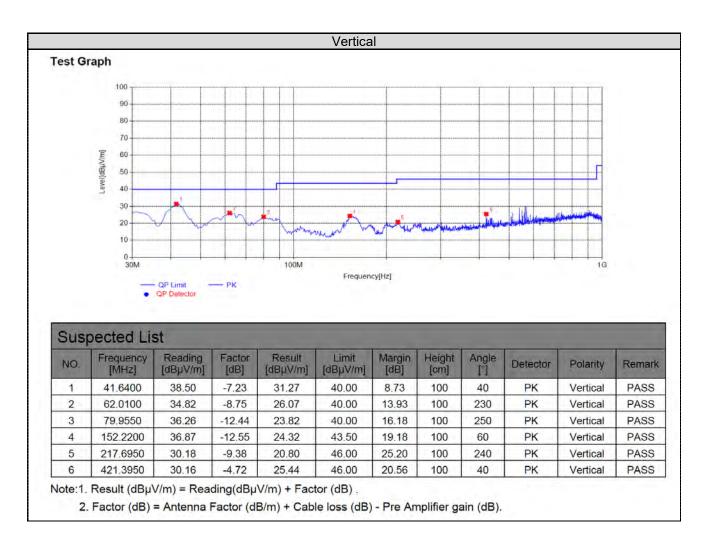
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS


Temperature	22.8 ℃	Humidity	56%	
Test Engineer	Test Engineer Moon Tan		ВТ	

Remark:

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. We measured Radiated Emission at GFSK, $\pi/4$ DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- 4. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

For 1GHz to 25GHz

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

GFSK (above 19nz)									
Frequency(MHz):		:	2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	48.11	PK	74	25.89	46.21	31.42	6.98	36.50	1.90
4804.00		AV	54						
7206.00	46.15	PK	74	27.85	35.55	37.03	8.87	35.30	10.60
7206.00		AV	54						

Frequency(MHz):		2402		Polarity:		VERTICAL			
Frequency (MHz)		ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	49.01	PK	74	24.99	47.11	31.42	6.98	36.50	1.90
4804.00		AV	54						
7206.00	47.35	PK	74	26.65	36.75	37.03	8.87	35.30	10.60
7206.00		AV	54						

Frequency(MHz):		2441		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	48.35	PK	74	25.65	46.29	30.98	7.58	36.50	2.06
4882.00		AV	54						
7323.00	46.43	PK	74	27.57	35.51	37.66	8.56	35.30	10.92
7323.00		AV	54						

Frequency(MHz):		2441		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	49.85	PK	74	24.15	47.79	30.98	7.58	36.50	2.06
4882.00		AV	54						
7323.00	47.93	PK	74	26.07	37.01	37.66	8.56	35.30	10.92
7323.00		AV	54						

Frequency(MHz):		2480		Polarity:		HORIZONTAL		NL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	48.51	PK	74	25.49	45.44	31.47	7.80	36.20	3.07
4960.00		AV	54						
7440.00	47.78	PK	74	26.22	36.04	38.32	8.72	35.30	11.74
7440.00		AV	54						

Frequency(MHz):		2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	49.71	PK	74	24.29	46.64	31.47	7.80	36.20	3.07
4960.00		AV	54						
7440.00	48.28	PK	74	25.72	36.54	38.32	8.72	35.30	11.74
7440.00		AV	54						

REMARKS:

1. 2.

Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier

Report No.: GTS20210517016-1-1

- 3.
- Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit. 4.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GESK

				GFS	ĸ				
Freque	ncy(MHz)	:	24	02	Pola	arity:	н	IORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	48.98	PK	74.00	25.02	54.39	27.49	3.32	36.22	-5.41
2390.00		AV	54.00						
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	51.06	PK	74.00	22.94	56.47	27.49	3.32	36.22	-5.41
2390.00		AV	54.00						
Freque	ncy(MHz)	:	24	80	Polarity:		HORIZONTAL		L
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	47.36	PK	74.00	26.64	52.87	27.45	3.38	36.34	-5.51
2483.50		AV	54.00						
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [.] (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	48.84	PK	74.00	25.16	54.35	27.45	3.38	36.34	-5.51
2483.50		AV	54.00						

REMARKS:

1.

Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m) Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier Margin value = Limit value- Emission level. -- Mean the PK detector measured value is below average limit.

2. 3. 4.

4.3 Maximum Peak Output Power

<u>Limit</u>

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

EUT	Power Sensor	
	i ower Sensor	

Test Results

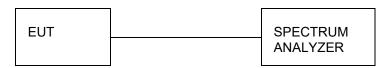
Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	ВТ

Туре	Channel	Output power (dBm)	Limit (dBm)	Result
	00	-0.81		
GFSK	39	-1.56	20.97	Pass
	78	-3.22		
	00	-0.84		
π/4DQPSK	39	-1.61	20.97	Pass
	78	-3.33		
	00	-0.87		
8DPSK	39	-1.74	20.97	Pass
	78	-3.29		

Note: 1.The test results including the cable lose.

4.4 20dB Bandwidth

<u>Limit</u>

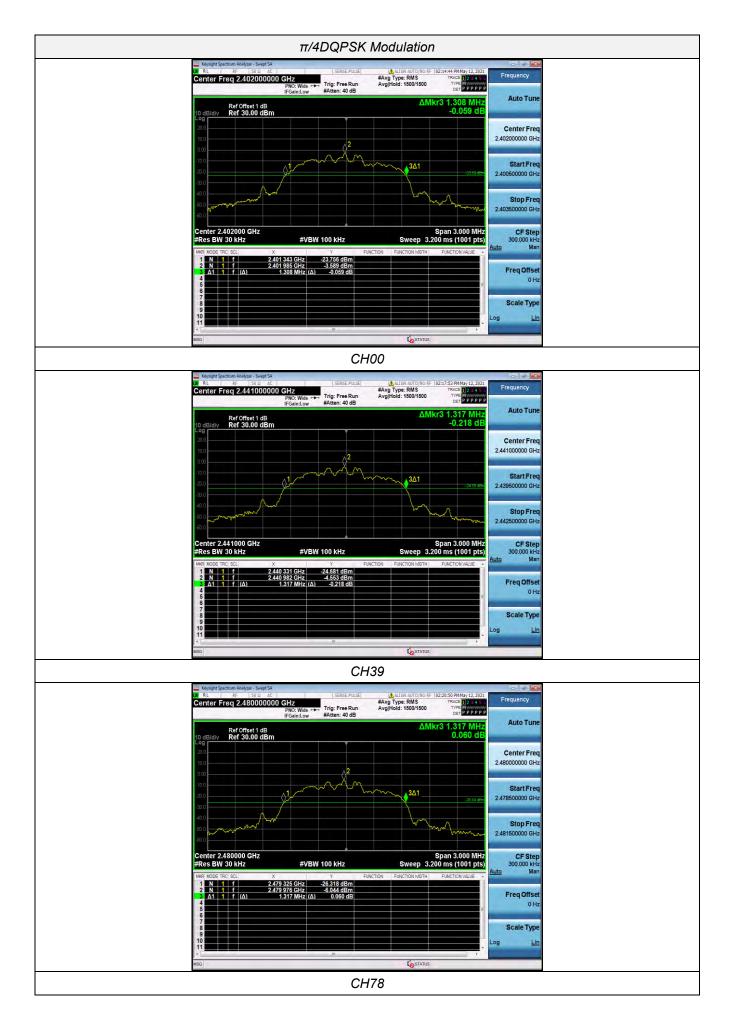

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

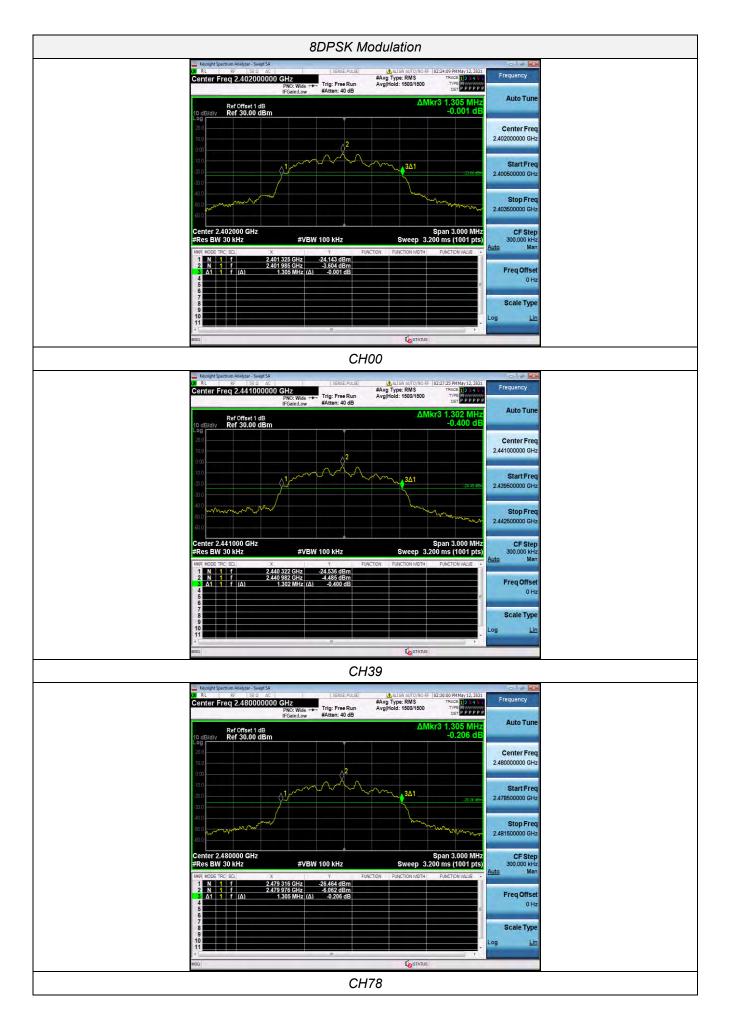
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.


Test Configuration




Test Results

Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	BT

Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.987	
GFSK	CH39	0.984	
	CH78	0.987	
	CH00	1.308	
π/4DQPSK	CH39	1.317	Pass
	CH78	1.317	
	CH00	1.305	
8DPSK	CH39	1.302	
	CH78	1.305	

4.5 Frequency Separation

<u>LIMIT</u>

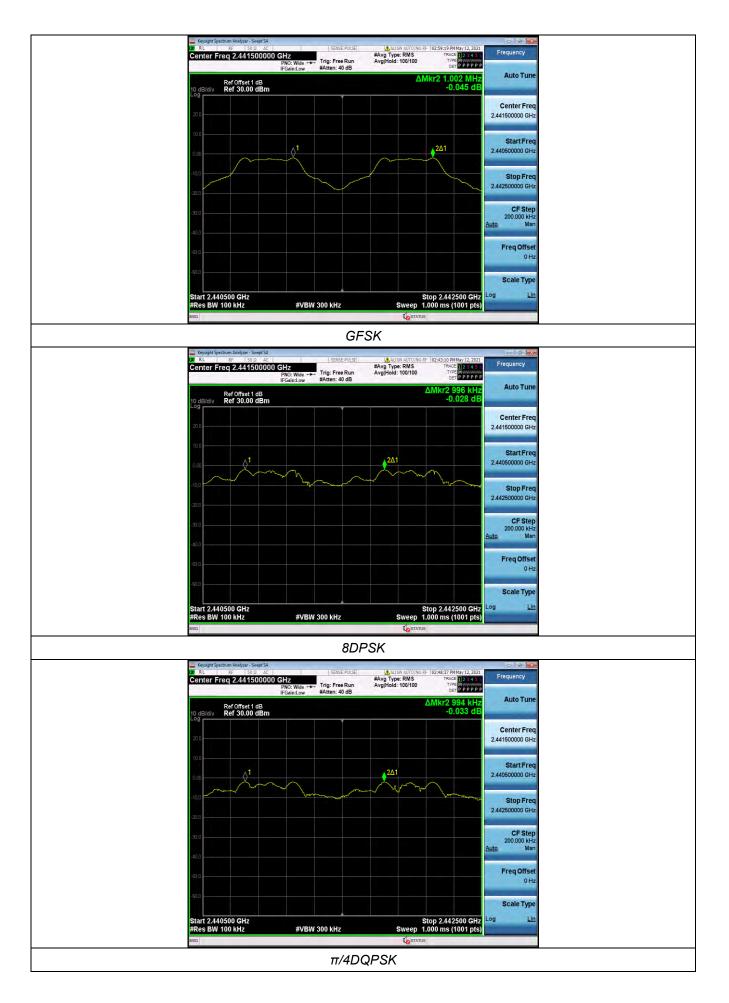
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

	SPECTRUM
LUI	ANALYZER


TEST RESULTS

Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	ВТ

Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result	
GFSK	CH39	1.002	25KHz or 2/3*20dB	Pass	
GFSK	CH40	1.002	bandwidth	F 455	
π/4DQPSK	CH39	0.996	25KHz or 2/3*20dB	Pass	
II/4DQF3K	CH40	0.990	bandwidth	F 055	
8DPSK	CH39	0.994	25KHz or 2/3*20dB	Pass	
ODFSK	CH40	0.994	bandwidth	Pass	

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

4.6 Number of hopping frequency

<u>Limit</u>

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration

<u>Test Results</u>

Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	BT

Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

4.7 Time of Occupancy (Dwell Time)

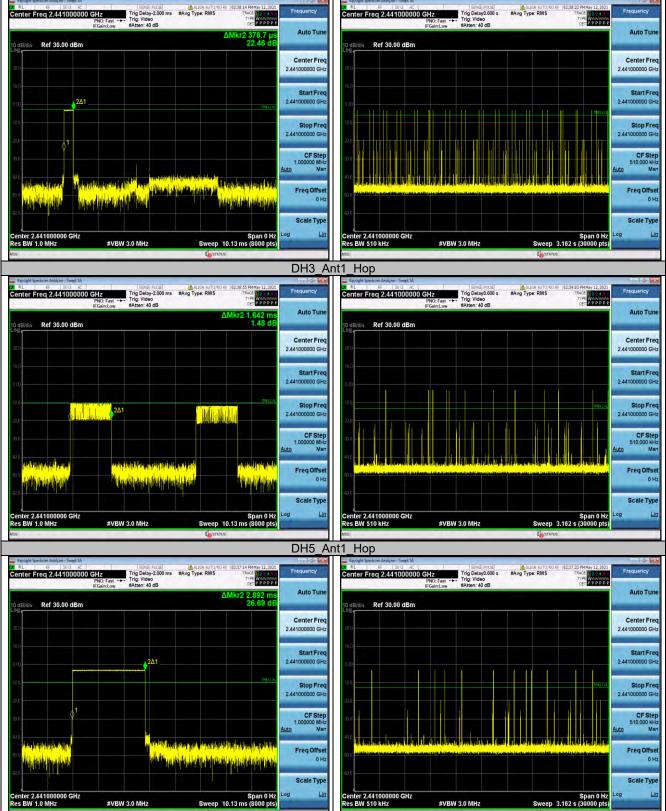
<u>Limit</u>

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

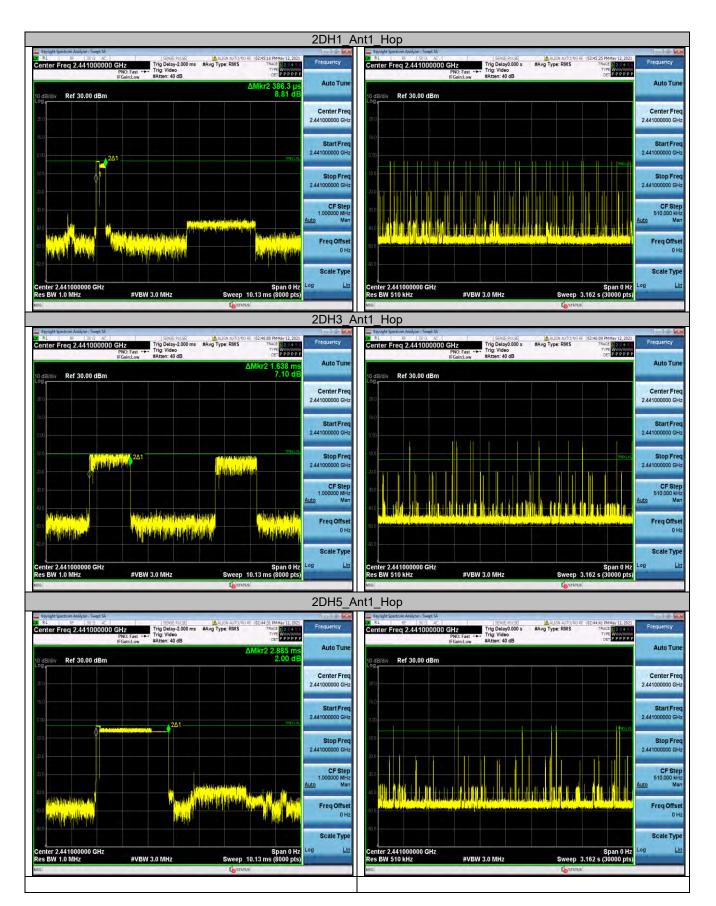
Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

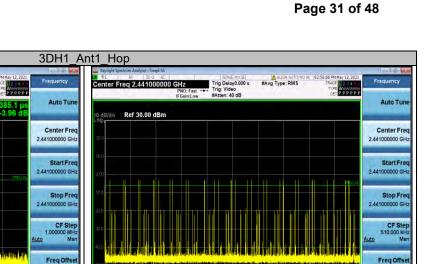
Test Configuration

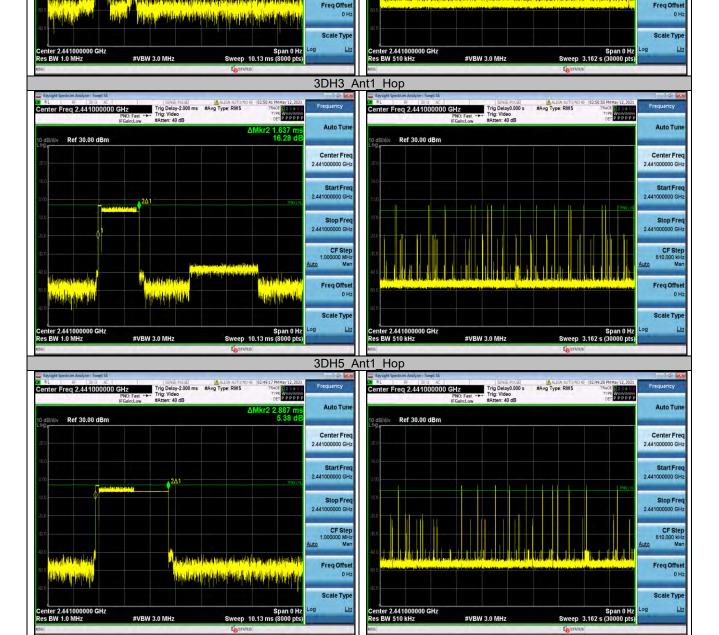

FUT	SPECTRUM
LUI	ANALYZER

Test Results


Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	BT

Modulation	Packet	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit (s)	Result
	DH1	0.38	330	0.125		
GFSK	DH3	1.64	130	0.213	0.40	Pass
	DH5	2.89	130	0.376		
	2-DH1	0.39	330	0.127		
π/4DQPSK	2-DH3	1.64	130	0.213	0.40	Pass
	2-DH5	2.89	80	0.231		
	3-DH1	0.39	320	0.123		
8DPSK	3-DH3	1.64	200	0.327	0.40	Pass
	3-DH5	2.89	130	0.375		


DH1 Ant1 Hop

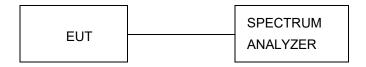


Ref 30.00 dBm

261

40 dB

4.8 Out-of-band Emissions

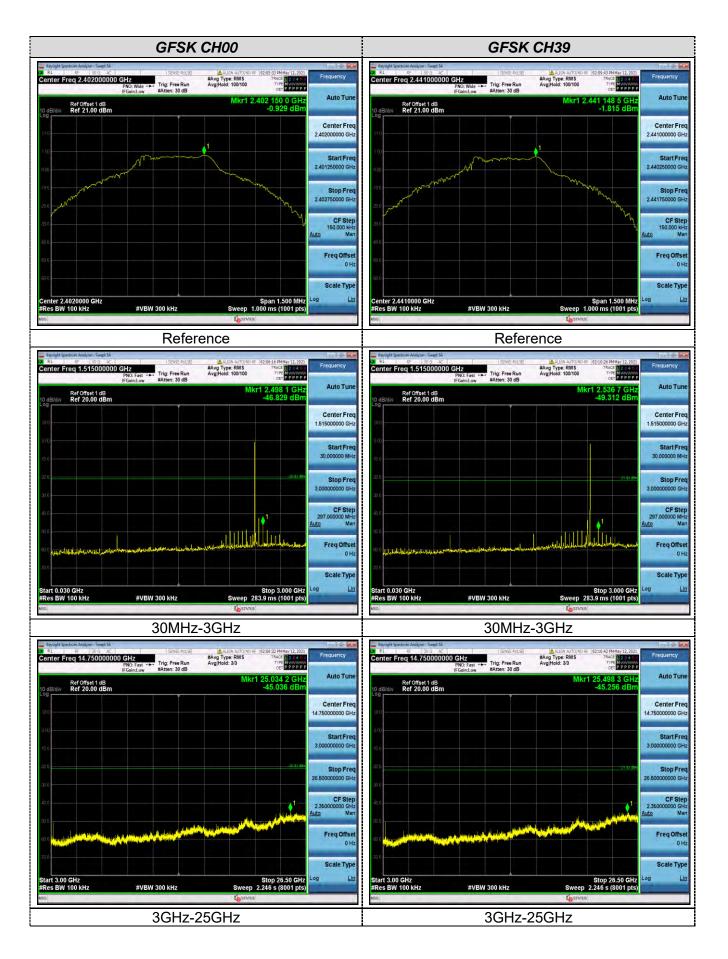

<u>Limit</u>

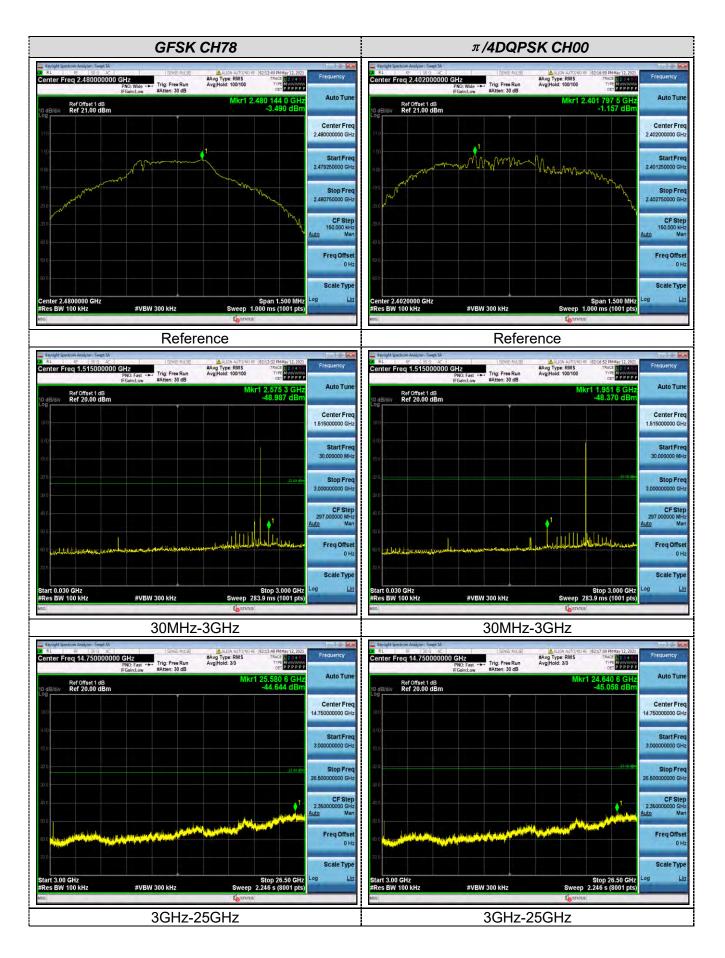
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

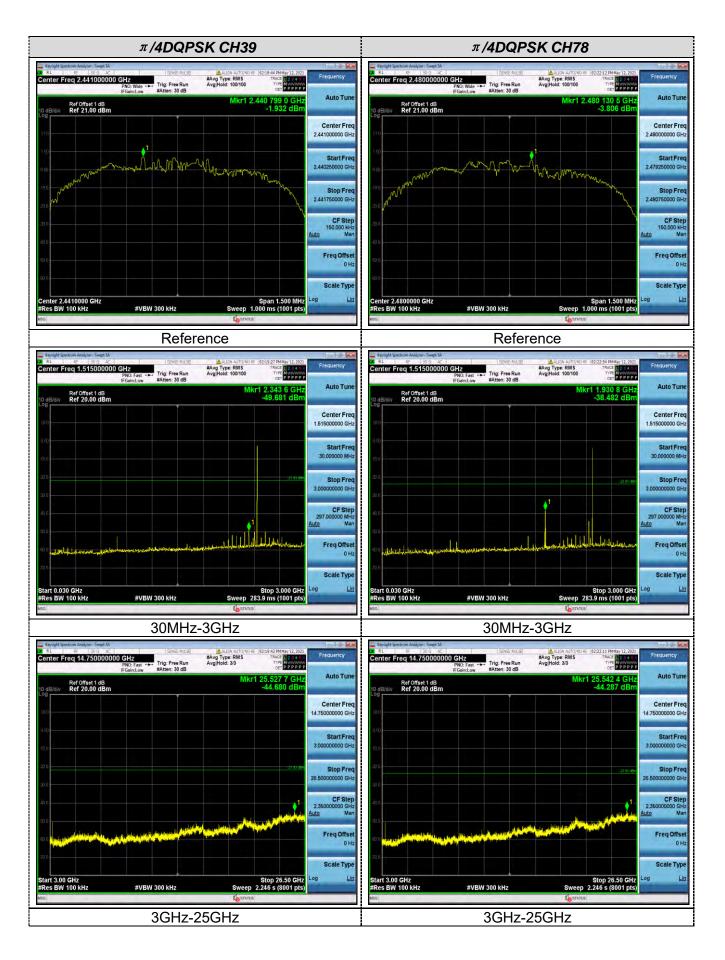
Test Procedure

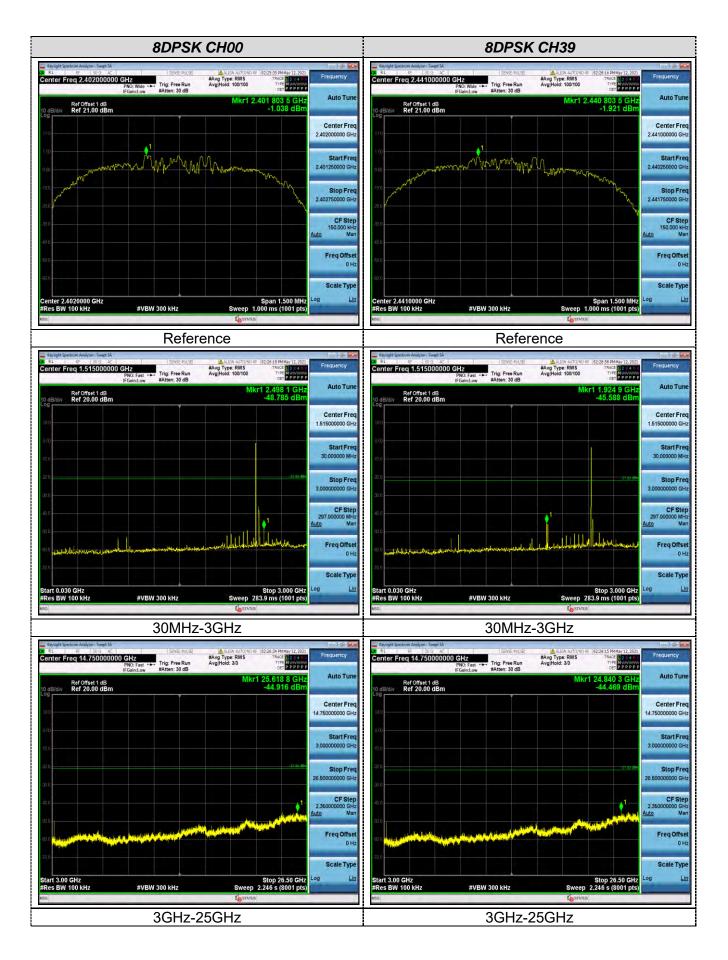
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

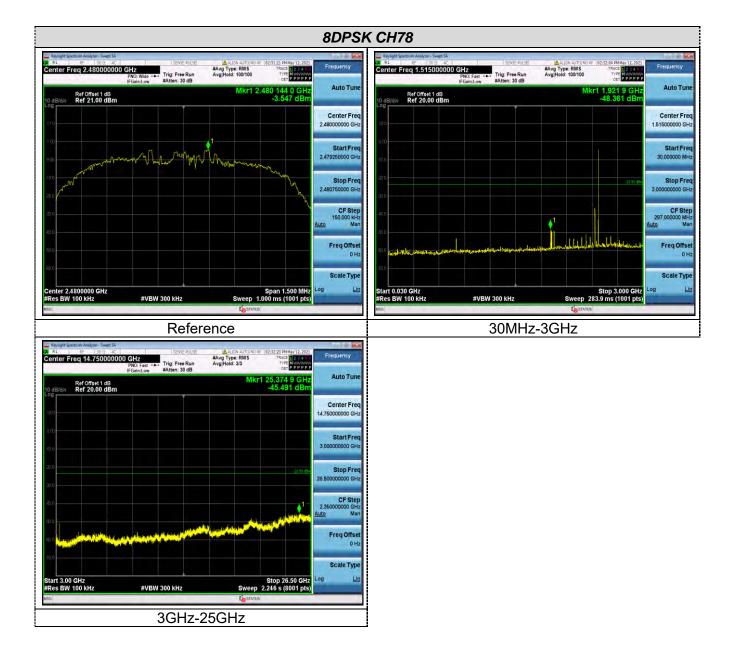


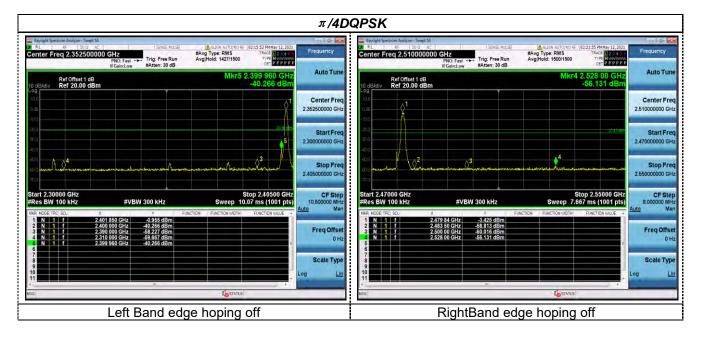

Test Results

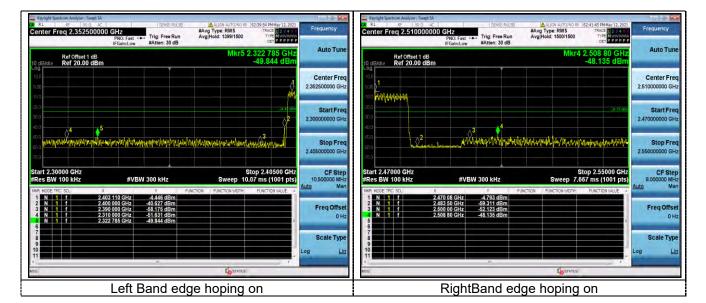

Temperature	22.8 ℃	Humidity	56%
Test Engineer	Moon Tan	Configurations	BT

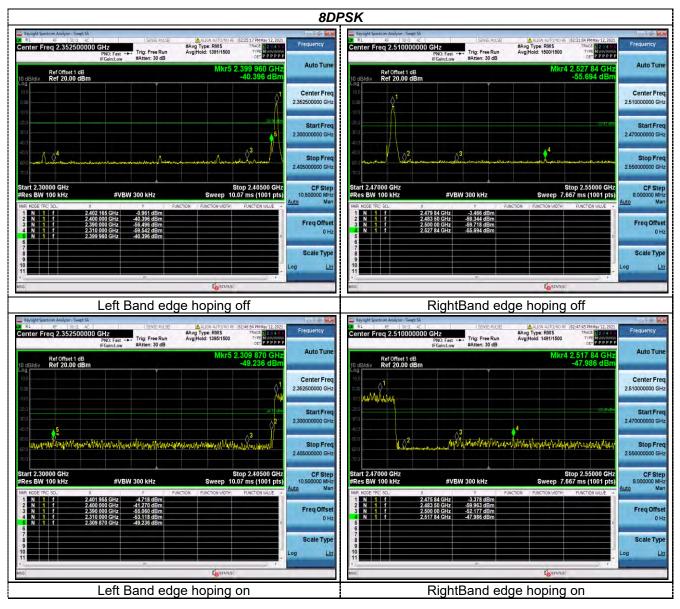

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5






Band-edge Measurements for RF Conducted Emissions:

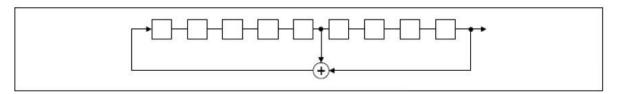

	GFSK
Revent Section Analyze: Section 3.00/2011	Event Event <th< th=""></th<>
Ref Offset 1 dB Mkr5 2.399 960 GHz Auto 10 dBIdly Ref 20.00 dBm -40.104 dBm Auto	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20	Imp Imp S5.0 Start Freq 37.0 2.47000000 GHz 37.0 2.47000000 GHz
	Freq
2.4050000 Start 2.30000 GHz Stop 2.40500 GHz CF	
The BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 hz) Mer Actor State St	Step Stop 2.5500 GHz Stop 2.5500 GHz C 562 GHz #Res BW Mitz #VBW 300 kHz Sweep 7.667 mc (1001 Hs) B.000 MHz Man Mer HOE FR SL X Y Function Function WLE Auto
1 N 1 7 2402 155 GHz -0.839 dBm Participation Partindididing for thetaidididing for thetaidididing for the	1 N 1 f 2480 16 GHz -3355 dBm 0/f5et 3 N 1 f 2453 60 dBm Freq Offset 0 Hz 3 N 1 f 2500 00 GHz 594 46 dBm GHz
7 8 9 10 11	Type 8 Scale Type 9 Scale Type Lin 10 Log Lin
no Contra de Con	r r r Misi
Left Band edge hoping off	RightBand edge hoping off
Specific Spectrum Analyzer: Inset 34 Control (Specific Spectrum Analyzer: Inset 34) Control (Specific Specific Analyzer: Inset 34) Control (Specific	PNC: Fast → Trig: Free Run Avg(Hold: 1500/1500 Tree PPPPP P IFGeint.tow #Atter: 30 dB DET PPPPP P
Ref Offset 1 dB Mkr5 2.308 190 GHz Auto	Tune Ref Offset 1 dB Mkr4 2.503 84 GHz Auto Tune 10 dB/div Ref 20.00 dBm -47.500 dBm
100 Center 2.35250000	
300 300 300 300 300 300 300 300 300 300	Freq 300
-2010 500 พฤษณ์ที่เป็นที่กันหายพฤษณ์ที่เป็นที่มีพฤษณ์ที่มีการแก่งการแก่งการแก่งการแก่งการแก่งการแก่งการแก่งการแก่งการ 500 500 500 500 500 500 500 50	600 031 44 600 0.02 0.03 0.04 </td
#Res BW 100 kHz #VBW 300 kHz Sweep 10.07 ms (1001 pts) 10 50000	Man Auto Man
INE NOCE TRC Sci. X Y FUNCTION FUNCTION NOTH FUNCTION NUCH FU	INR HOSE TRG SUL X Y FUNCTION FUNCTION WORTH FUNCT
7 8 9 10 11 11 10 10 10 10 10 10 10 10 10 10	Type 7 Scale Type 9 Scale Type Lin Log Lin
uso Costante	ma Canna
Left Band edge hoping on	RightBand edge hoping on

Report No.: GTS20210517016-1-1

Page 39 of 48

4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

75 77

Each frequency used equally one the average by each transmitter.

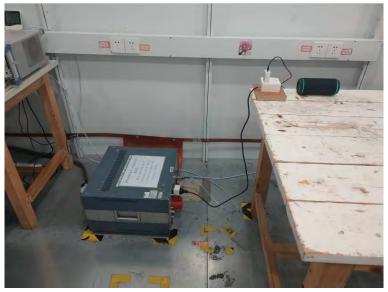
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

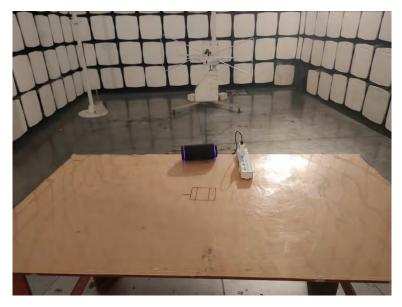
4.10 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

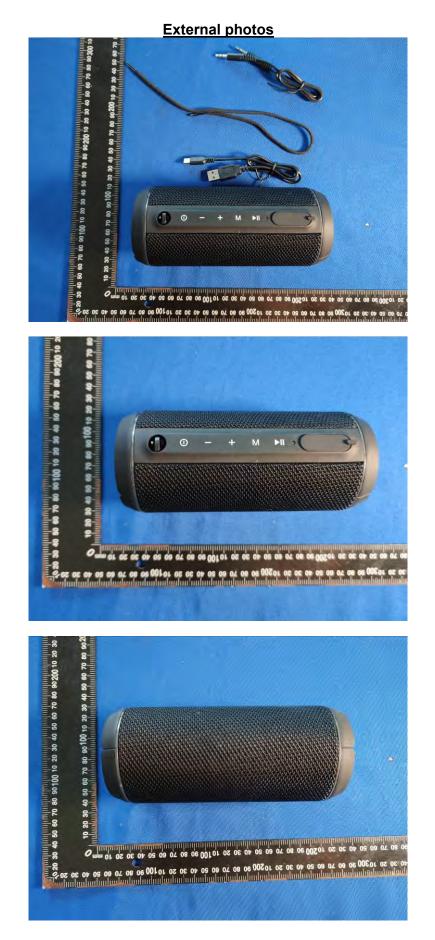
And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

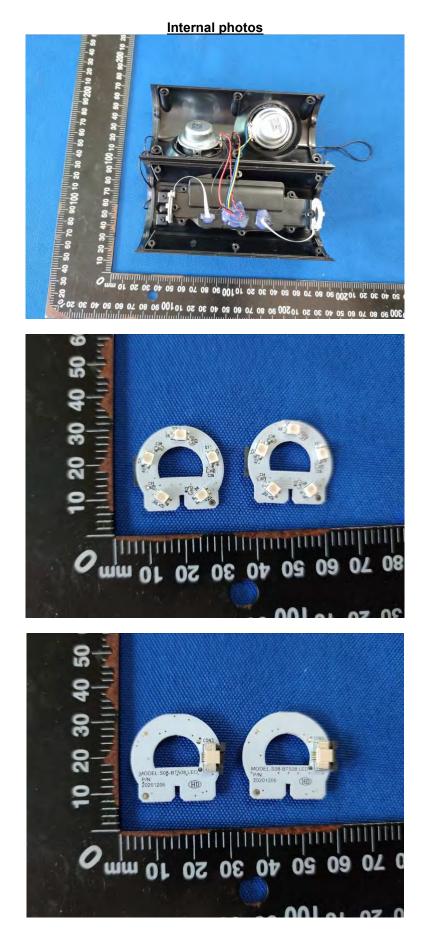

Refer to statement below for compliance


The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 0dBi.


5 Test Setup Photos of the EUT


6 <u>Photos of the EUT</u>

