

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-7043_23-01-12_A

Testing laboratory

cetecom advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://cetecomadvanced.com
e-mail: mail@cetecomadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in

the accreditation certificate with the registration number:

D-PL-12047-01-00.

ISED Testing Laboratory Recognized Listing Number: DE0001

FCC designation number: DE0002

Applicant

Elektroniksystem i Umeå AB

Tvistevägen 48

90736 Umeå / SWEDEN
Phone: +46 901 00500
Contact: Fanny Adamson
e-mail: fanny@elsys.se

Manufacturer

Elektroniksystem i Umeå AB

Tvistevägen 48

90736 Umeå / SWEDEN

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 3 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence-Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: LoRa device

Model name: ECO, ECO CO2

FCC ID: 2ANX3-EC001

ISED certification number: 26904-EC001

Frequency: 902.0 MHz - 928.0 MHz

Technology tested: LoRa

Antenna: Integrated antenna

Power supply: 2.7 V to 3.6 V DC by solar module

Temperature range: +5°C to +35°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

i est report authorized:	i est pertormea:	
Christoph Schneider	Hans-Joachim Wolsdorfer	
Lab Manager	Lab Manager	
Radio Labs	Radio Labs	

1 Table of contents

1	Table o	f contents	2
2	General	information	3
	2.1 N	Notes and disclaimer	3
	2.2 A	Application details	3
	2.3 1	est laboratories sub-contracted	3
3	Test sta	andard/s, references and accreditations	4
4	Reporti	ng statements of conformity – decision rule	5
5	Test en	vironment	б
6	Test ite	m	(
		General description	
		Additional information	
_			
7	Descrip	tion of the test setup	1
		Shielded semi anechoic chamber	
		Shielded fully anechoic chamber	
	7.3 C	Conducted measurements	11
8	Sequen	ce of testing	12
	8.1	Sequence of testing radiated spurious 9 kHz to 30 MHz	12
	8.2	Sequence of testing radiated spurious 30 MHz to 1 GHz	13
	8.3	Sequence of testing radiated spurious 1 GHz to 12 GHz	14
9	Measur	ement uncertainty	15
10	Add	ditional commentsditional comments	16
11	Sur	nmary of measurement results	17
		asurement results	
12	ivie		
	12.1	Antenna gain	
	12.2	Carrier Frequency Separation	
	12.3	Number of Hopping Channels	
	12.4	Average Time of Occupancy (dwell time)	
	12.5	Spectrum bandwidth of a FHSS system	
	12.6 12.7	Maximum Output Power	
	12.7	Detailed spurious emissions @ the band edge - conducted and radiated	J2
	12.8	Spurious Emissions Conducted	
	12.9	Spurious Emissions Radiated > 30 MHz	
	12.10	·	
	12.10.1		
13		ssary	
14		cument history	
		vallivite liivevi t	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. cetecom advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of cetecom advanced GmbH.

The testing service provided by cetecom advanced GmbH has been rendered under the current "General Terms and Conditions for cetecom advanced GmbH".

cetecom advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the cetecom advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the cetecom advanced GmbH test report include or imply any product or service warranties from cetecom advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by cetecom advanced GmbH.

All rights and remedies regarding vendor's products and services for which cetecom advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by cetecom advanced GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-7043_23-01-12 and dated 2024-02-27.

2.2 Application details

Date of receipt of order: 2023-11-10
Date of receipt of test item: 2024-01-26
Start of test:* 2024-01-29
End of test:* 2024-07-03

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

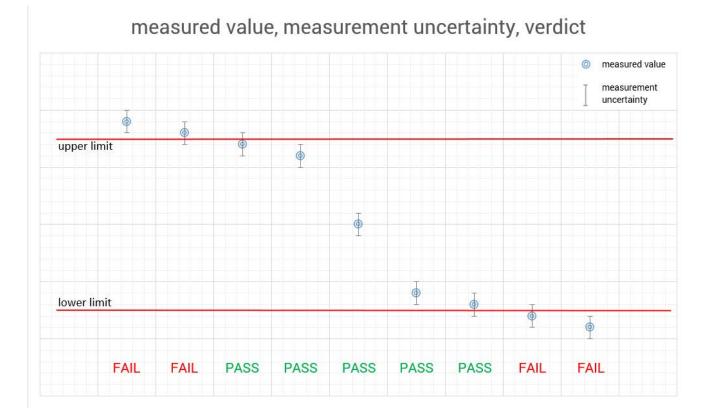
None

© cetecom advanced GmbH Page 3 of 51

^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 3	August 2023	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE- LAN) Devices
Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices


© cetecom advanced GmbH Page 4 of 51

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© cetecom advanced GmbH Page 5 of 51

5 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +35 °C No tests under extreme environmental conditions required. +5 °C No tests under extreme environmental conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1017 hpa
Power supply	:	$egin{array}{c} V_{nom} \ V_{max} \ V_{min} \end{array}$	3.3 V DC by solar module No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.

6 Test item

6.1 General description

Kind of test item :	LoRa device
Model name :	ECO, ECO CO2
HMN :	-/-
PMN :	ECO series
HVIN :	ECO, ECO CO2
FVIN :	-/-
S/N serial number :	Rad. prototype Cond. prototype
Hardware status :	4
Software status :	3
Firmware status :	3
Frequency band :	902.0 MHz – 928.0 MHz
Type of radio transmission: Use of frequency spectrum:	FHSS
Type of modulation :	FSK, CSS (LoRa)
Number of channels :	64
Antenna :	Integrated antenna
Power supply :	2.7 V to 3.6 V DC by solar module
Temperature range :	+5°C to +35°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

Annex A101 - Photographs - 1-7043_23-01-01_TR1-A101-R1 Annex A102 - Photographs - 1-7043_23-01-01_TR1-A102-R1 Annex A103 - Photographs - 1-7043_23-01-01_TR1-A103-R1

© cetecom advanced GmbH Page 6 of 51

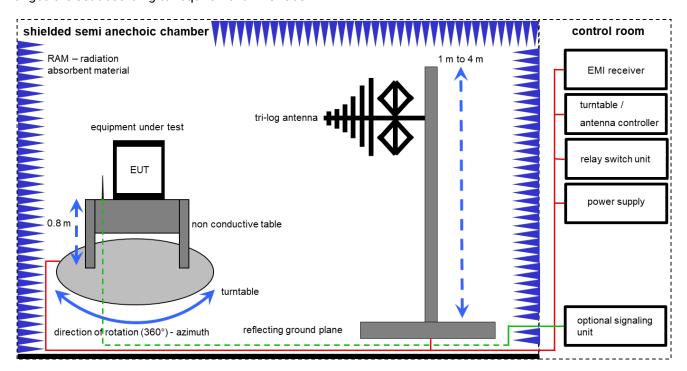
7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© cetecom advanced GmbH Page 7 of 51

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

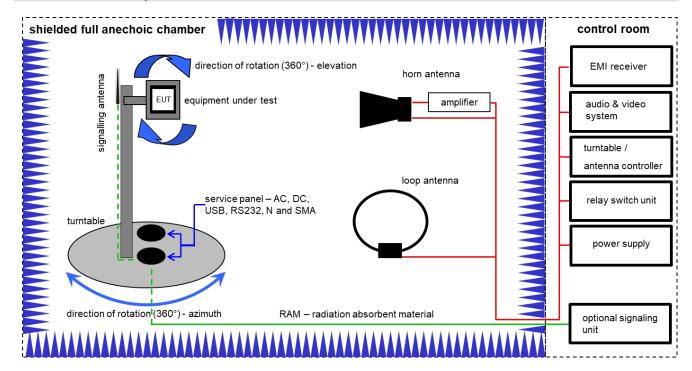
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

© cetecom advanced GmbH Page 8 of 51


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	23.05.2023	31.05.2025
7	Α	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W		300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	06.12.2023	31.12.2024

© cetecom advanced GmbH Page 9 of 51

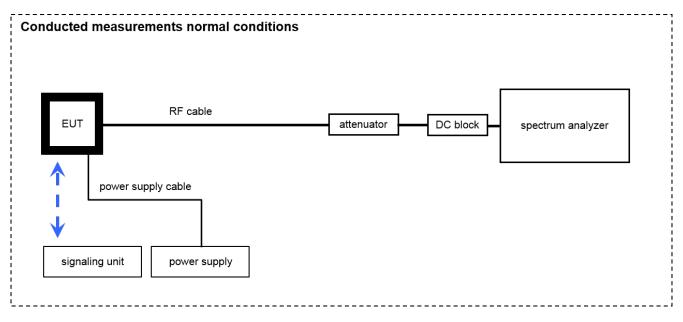
7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	С	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vIKI!	10.10.2023	31.10.2025
2	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2023	31.12.2024
4	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
5	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	01029	300005379	vIKI!	09.10.2023	31.10.2025
6	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	02.08.2023	31.08.2025
7	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A,B,C	NEXIO EMV- Software	BAT EMC V2022.0.22.0	Nexio		300004682	ne	-/-	-/-

© cetecom advanced GmbH Page 10 of 51

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal analyzer	FSV30	Rohde&Schwarz	104365	300005923	k	13.12.2023	31.12.2024
2	Α	Power Supply	HMP2020	Rohde & Schwarz	102219	300006192	k	15.12.2022	31.12.2024

© cetecom advanced GmbH Page 11 of 51

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all
 emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© cetecom advanced GmbH Page 12 of 51

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 13 of 51

8.3 Sequence of testing radiated spurious 1 GHz to 12 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© cetecom advanced GmbH Page 14 of 51

9 Measurement uncertainty

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				

© cetecom advanced GmbH Page 15 of 51

10 Additional comments

Reference documents: Customer Questionnaire ECO FCC

Special test descriptions: the EUT has been powered by a 3.6 Li battery during the tests

(see photo Annex)

Configuration descriptions: radiated spurious emissions have been partially tested on a device

without CO2 sensor (see page 49)

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

© cetecom advanced GmbH Page 16 of 51

11 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2024-07-03	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	CW	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	tx mod	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	tx mod	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	tx mod	×				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	tx mod	×				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	tx mod	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	tx mod	×				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	tx mod	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	tx mod	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	tx mod	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	tx mod / RX mode	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	tx mod / RX mode	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-				\boxtimes	battery powered

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© cetecom advanced GmbH Page 17 of 51

12 Measurement results

12.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	1 MHz		
Video bandwidth	3 MHz		
Span	5 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.2 A (radiated) See sub clause 7.3 A (conducted)		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Antenna gain				

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Results:

	Low channel	Middle channel	High channel
Conducted power / dBm	12.36	12.45	13.20
Radiated power (e.r.p.) / dBm	7.47	8.67	9.26
Gain / dBi (calculated)	-2.74	-1.63	-1.79

© cetecom advanced GmbH Page 18 of 51

12.2 Carrier Frequency Separation

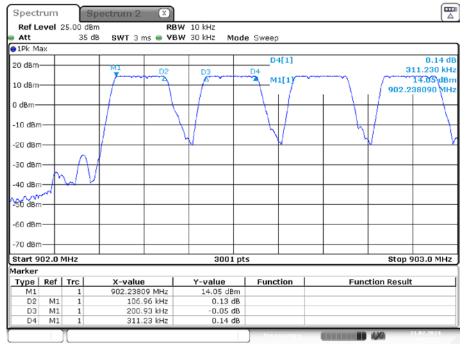
Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use DBPSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	10 kHz		
Video bandwidth	30 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 8.3 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Carrier frequency separation				
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 – 2483.5 MHz.				


Result: The channel separation is 200 kHz

© cetecom advanced GmbH Page 19 of 51

Plots:

Plot 1: channel separation

Date: 21.FEB.2024 08:25:13

Result: The channel separation is 200 kHz.

© cetecom advanced GmbH Page 20 of 51

12.3 Number of Hopping Channels

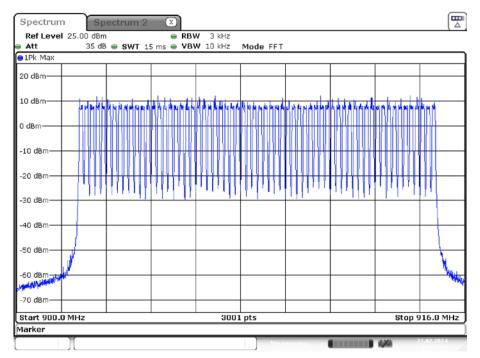
Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use DBPSK -modulation to show compliance. EUT in hopping mode.

Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	See plots		
Video bandwidth	See plots		
Span	See plots		
Trace mode	Max hold		
Test setup	See sub clause 8.3 A		
Measurement uncertainty	See sub clause 9		

Limits:

FCC	IC			
Number of hopping channels				
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.				


 $\underline{\textit{Result:}}$ in summary the EUT uses 64 channels.

© cetecom advanced GmbH Page 21 of 51

Plots:

Plot 1: Number of channels

Date: 21.FEB.2024 09:05:31

© cetecom advanced GmbH Page 22 of 51

12.4 Average Time of Occupancy (dwell time)

Description:

The measurement is performed in zero span mode to show that none of the 64 used channels is allocated more than 0.4 seconds within a 10 seconds interval (64 channels times 0.4s).

Limits:

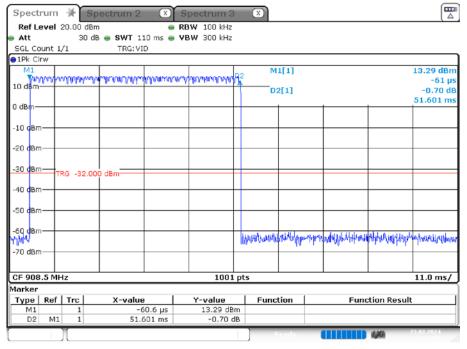
FCC	IC			
Average time of occupancy				

For frequency hopping systems operating in the 902-928 MHz band: If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within 10 second period.

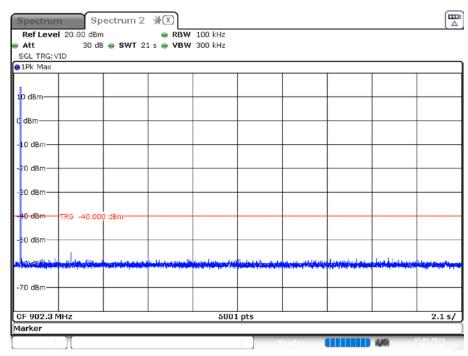
Result: The time slot length is = 52 ms

Number of hops / channel @ 20s = 1

Within 20 s period, the average time of occupancy in 20 s: 52 ms


→ The average time of occupancy = 52 ms

© cetecom advanced GmbH Page 23 of 51


Plots:

Plot 1: Time slot length = 52 ms

Date: 23.FEB.2024 11:13:54

Plot 2: hops / channel @ 20s = 1

Date: 22.FEB.2024 08:59:43

© cetecom advanced GmbH Page 24 of 51

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

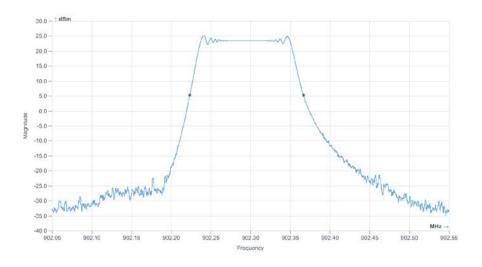
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	300 Hz		
Video bandwidth	1 kHz		
Span	See plots		
Trace mode	Max hold		
Test setup See sub clause 8.3 A			
Measurement uncertainty	See sub clause 9		

Limits:

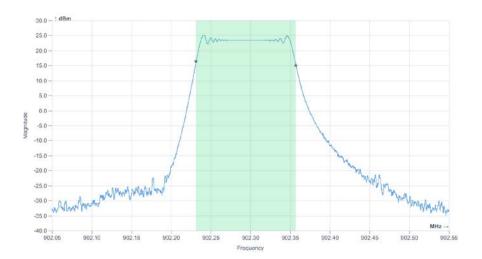
FCC	IC			
Spectrum bandwidth of a FHSS system				
DBPSK < 1500 kHz				

Result:

Test Co	nditions	20dB BANDWIDTH			
		low channel	middle channel	high channel	
T _{nom}	V_{nom}	143.000 kHz	144.000 kHz	143.000 kHz	

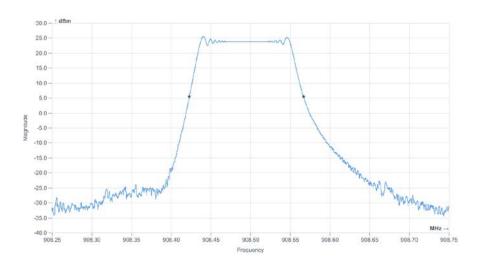

Test Conditions		99% BANDWIDTH		
		low channel	middle channel	high channel
T _{nom}	V_{nom}	125.737 kHz	125.837 kHz	125.787 kHz

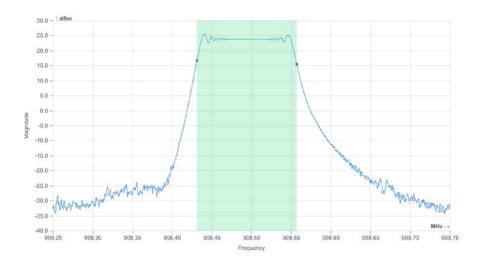
© cetecom advanced GmbH Page 25 of 51



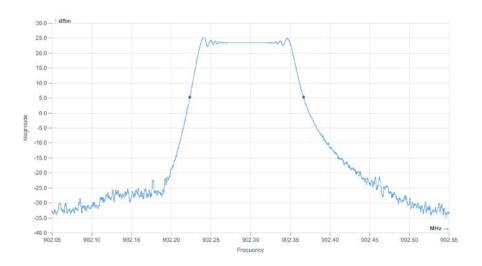
Plots:

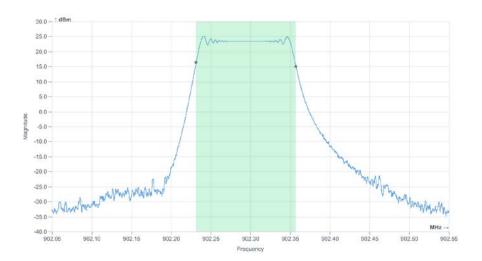
Plot 1: low channel, 20 dB-BW


Plot 2: low channel, 99%OBW


© cetecom advanced GmbH Page 26 of 51

Plot 3: middle channel, 20 dB-BW


Plot 4: middle channel, 99%OBW


© cetecom advanced GmbH Page 27 of 51

Plot 5: high channel, 20 dB-BW

Plot 6: high channel, 99%OBW

© cetecom advanced GmbH Page 28 of 51

12.6 Maximum Output Power

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	5 MHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.3 A		
Measurement uncertainty:	See chapter 9		

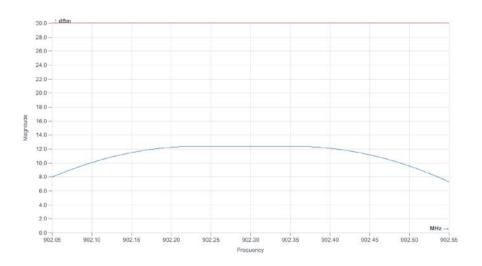
Limits:

FCC	IC			
Maximum Output Power Conducted				

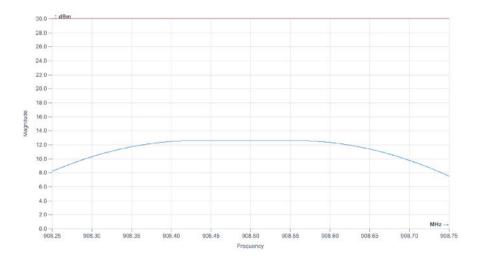
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Result:

Test Conditions		Maximum Output Power Conducted		
		low channel	middle channel	high channel
T _{nom}	V_{nom}	12.36 dBm	12.45 dBm	13.20 dBm

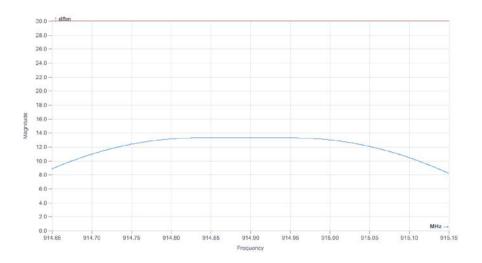

Test Conditions		ERP		
		low channel	middle channel	high channel
T_nom	V _{nom}	8.19 dBm	6.88 dBm	7.36 dBm

© cetecom advanced GmbH Page 29 of 51



Plots:

Plot 1: low channel


Plot 2: middle channel

© cetecom advanced GmbH Page 30 of 51

Plot 3: high channel

© cetecom advanced GmbH Page 31 of 51

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

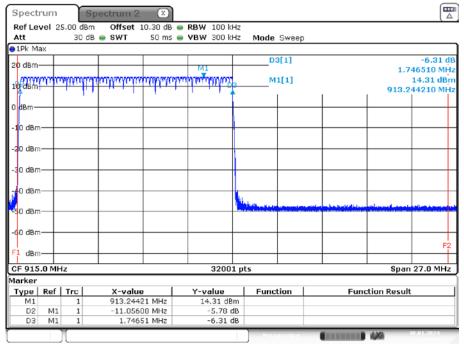
Measurement parameters			
Detector	Peak		
Sweep time	Auto		
Resolution bandwidth	100 kHz		
Video bandwidth	300 kHz / 500 kHz		
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz		
Trace mode	Max hold		
Test setup	See sub clause 7.3 A		
Measurement uncertainty	See sub clause 9		

Limits:

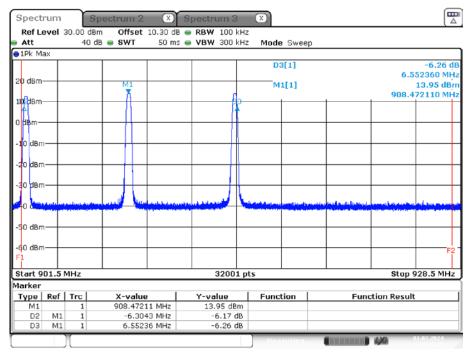
|--|

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results conducted:


Scenario	Spurious band edge conducted			
Modulation	lowest channel	middle channel	highest channel	
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB	
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB	

© cetecom advanced GmbH Page 32 of 51


Plots:

Plot 1: 20 dB - hopping on

Date: 30.JAN.2024 10:04:11

Plot 2: 20 dB - hopping off

Date: 1.FEB.2024 11:25:25

© cetecom advanced GmbH Page 33 of 51

Results radiated:

No restricted band in the range \pm 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz - 614 MHz and 960 MHz - 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			

© cetecom advanced GmbH Page 34 of 51

12.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

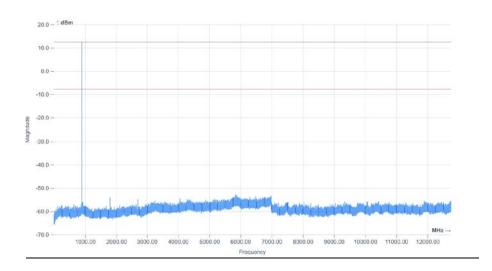
Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 8.3A		
Measurement uncertainty:	See chapter 9		

Limits:

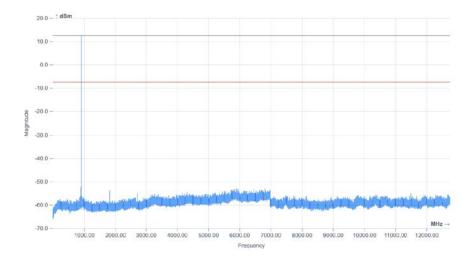
FCC	IC		
TX spurious emissions conducted			

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

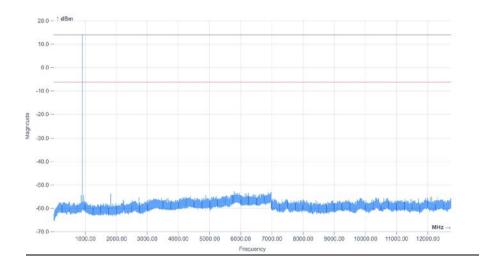
Result:


Emission Limitation					
Frequency / MHz	Amplitude of emission / dBm	Limit max. allowed emission power	actual attenuation below frequency of operation / dB	Results	
903.0	-/-	24 dBm		Operating frequency	
		-20 dBc	No emissions detected!		
909.4	-/-	24 dBm		Operating frequency	
		-20 dBc	No emissions detected!		
914.2	-/-	24 dBm		Operating frequency	
		-20 dBc	No emissions detected!		

Plots:


Plot 1: low channel, 9 kHz - 12.75 GHz

© cetecom advanced GmbH Page 35 of 51


Plot 2: middle channel, 9 kHz - 12.75 GHz

© cetecom advanced GmbH Page 36 of 51

Plot 3: high channel, 9 kHz - 1 GHz

© cetecom advanced GmbH Page 37 of 51

12.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

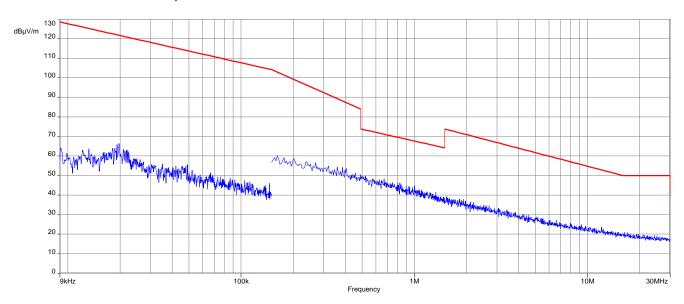
Measurement:

Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 7.2 B					
Measurement uncertainty:	See chapter 9					

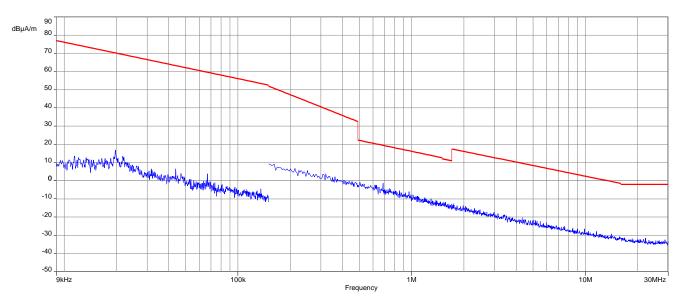
Limits:

FCC			IC		
TX spurious emissions radiated < 30 MHz					
Frequency (MHz)	Field strengt	:h (dBμV/m)	Measurement distance		
0.009 - 0.490	2400/F(kHz)		300		
0.490 - 1.705	24000/F(kHz)		30		
1.705 - 30.0	3	0	30		

Result:

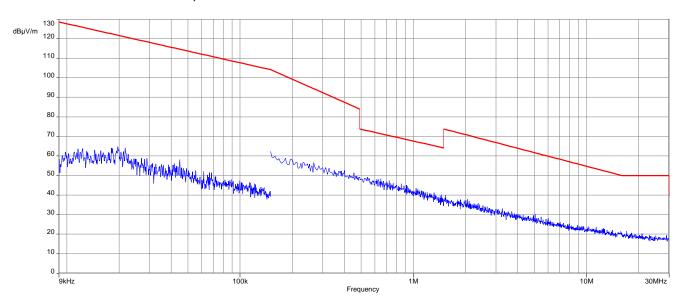

SPURIOUS EMISSIONS LEVEL [dBµV/m]								
Lowest channel Middle channel Highest channel						el		
Frequency	Detector	Level	Frequency	Detector	Level	Frequency	Detector	Level
All emissions were more than 10 dB below the limit.								

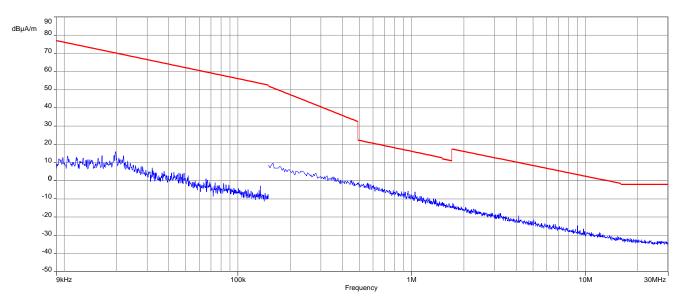
© cetecom advanced GmbH Page 38 of 51



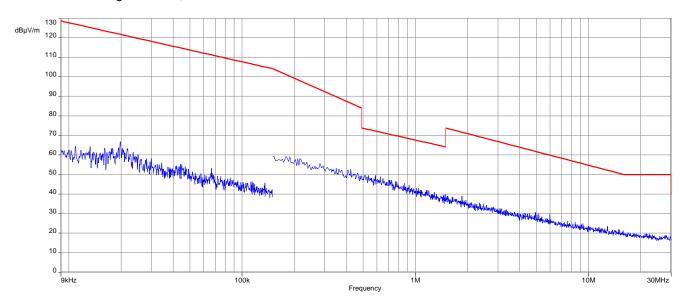
Plots:

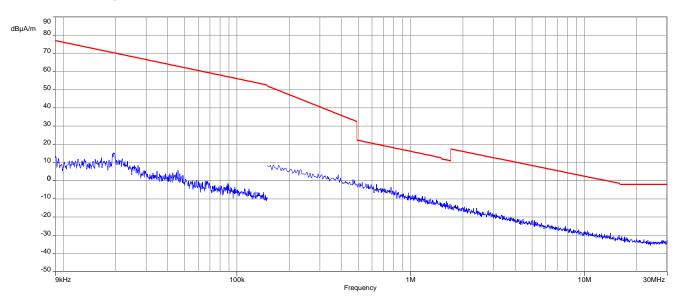
Plot 1: tx-mode low channel, FCC


Plot 2: tx-mode low channel, IC


© cetecom advanced GmbH Page 39 of 51

Plot 3: tx-mode middle channel, FCC


Plot 4: tx-mode middle channel, IC


© cetecom advanced GmbH Page 40 of 51

Plot 5: tx-mode high channel, FCC

Plot 6: tx-mode high channel, IC

© cetecom advanced GmbH Page 41 of 51

12.10 Spurious Emissions Radiated > 30 MHz

12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters				
Detector	Peak / Quasi Peak			
Sweep time	Auto			
Resolution bandwidth	3 x VBW			
Video bandwidth	120 kHz			
Span	30 MHz to 1 GHz			
Trace mode	Max hold			
Measured modulation	DBPSK			
Test setup	See sub clause 7.1 A			
Measurement uncertainty	See sub clause 9			

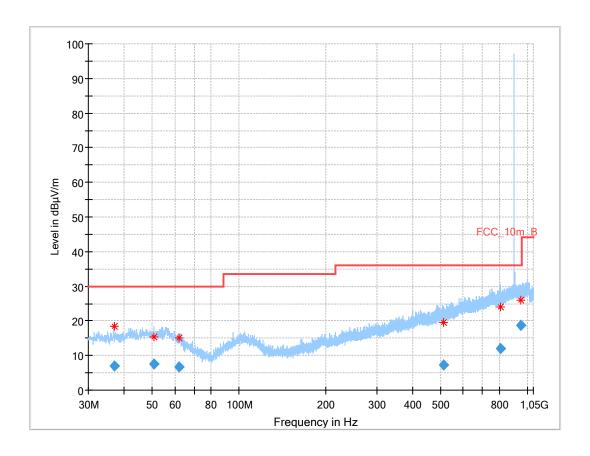
Limits:

FCC	IC			
Band-edge Compliance of conducted and radiated emissions				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

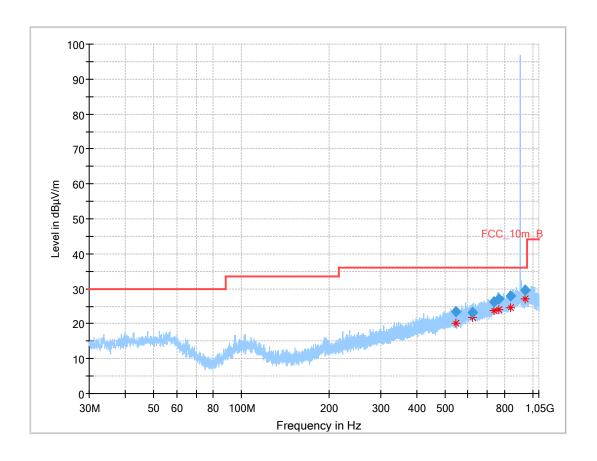
Result:


See result table below the plots.

© cetecom advanced GmbH Page 42 of 51

Plots:

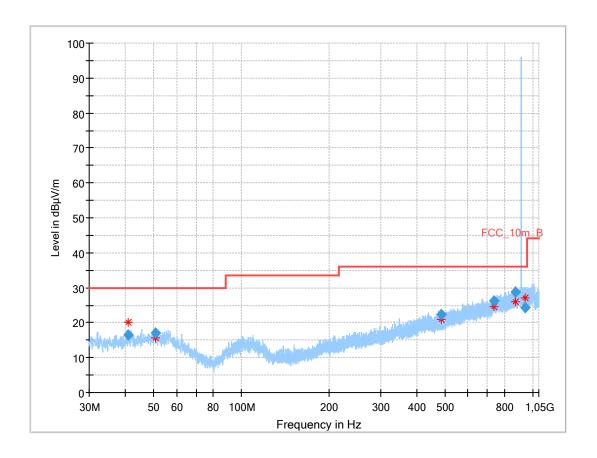
Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)


Final Result

	-								
Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
36.984	7.05	30.0	23.0	1000	120.0	186.0	٧	167	14
50.733	7.45	30.0	22.6	1000	120.0	281.0	Ξ	45	15
62.045	6.63	30.0	23.4	1000	120.0	127.0	٧	286	13
510.658	7.36	36.0	28.6	1000	120.0	213.0	H	123	20
804.945	11.97	36.0	24.0	1000	120.0	400.0	٧	135	24
951.325	18.65	36.0	17.4	1000	120.0	162.0	Н	225	25

© cetecom advanced GmbH Page 43 of 51

Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation (middle channel)


Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
544.630	23.33	36.0	12.7	1000	120.0	195.0	٧	307	20
623.184	23.32	36.0	12.7	1000	120.0	128.0	Н	142	22
734.288	26.19	36.0	9.8	1000	120.0	195.0	٧	-37	23
763.762	27.04	36.0	9.0	1000	120.0	144.0	٧	-37	24
836.818	27.88	36.0	8.1	1000	120.0	195.0	Н	3	24
940.482	29.48	36.0	6.5	1000	120.0	130.0	Н	142	25

© cetecom advanced GmbH Page 44 of 51

Plot 3: 30 MHz – 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
40.798	16.36	30.0	13.6	1000	120.0	118.0	Н	257	14
50.585	17.08	30.0	12.9	1000	120.0	145.0	٧	62	15
487.007	22.45	36.0	13.6	1000	120.0	195.0	٧	-1	19
734.049	26.24	36.0	9.8	1000	120.0	110.0	Η	-37	23
869.671	28.67	36.0	7.3	1000	120.0	105.0	H	232	25
941.522	24.42	36.0	11.6	1000	120.0	195.0	Η	232	25

© cetecom advanced GmbH Page 45 of 51

12.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters				
Detector	Peak / RMS			
Sweep time	Auto			
Resolution bandwidth	1 MHz			
Video bandwidth	3 x RBW			
Span	1 GHz to 10 GHz			
Trace mode	Max hold			
Measured modulation	DBPSK			
Test setup	See sub clause 7.2 B (1 GHz – 10 GHz)			
Measurement uncertainty	See sub clause 9			

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: F = $20 \log \text{ (dwell time/} 100 \text{ ms)}$

FCC	IC			
TX spurious emissions radiated				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

§15.209					
Frequency	Field strength	Measurement distance			
Above 960 MHz	54.0 dBμV/m	3 m			

© cetecom advanced GmbH Page 46 of 51

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

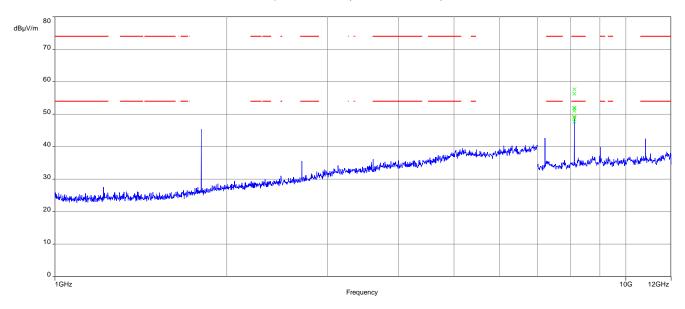
F = 20*log (dwell time/100 ms)

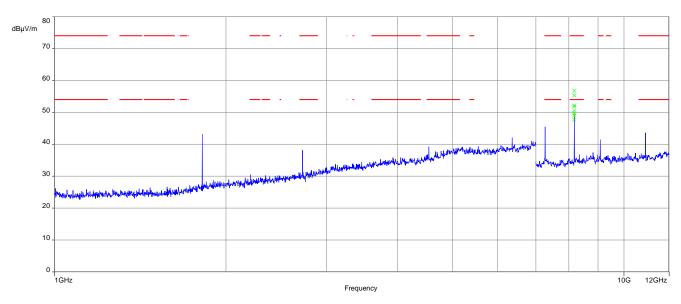
F=20*log (52/100) = -5.6

TX spurious emissions radiated [dBμV/m]								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
0121.0	Peak	57.72	0176 F	Peak	56.73	7319.5	Peak	55.22
8121.0	AVG	52.12*	8176.5	AVG*	51.13*	7319.3	AVG	53.18
-/-	Peak	-/-	-/-	Peak		8233.5 Peak AVG	Peak	53.63
-/-	AVG	-/-	-/-	AVG			AVG	49.80
-/-	Peak		-/-	Peak	-/-	9149.0	Peak	54.32
-/-	AVG			AVG	-/-		AVG	51.11

^{*} duty cycle correction factor -5.6 dB applied

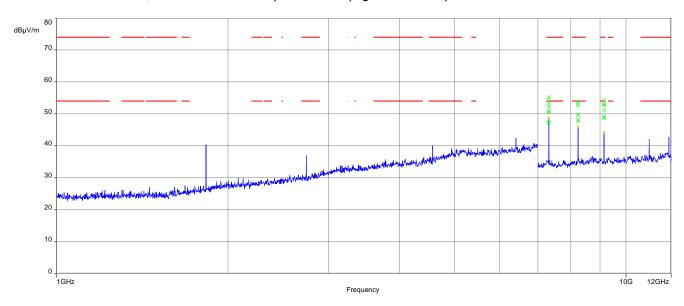
TX spurious emissions radiated [dBµV/m] (without CO2 sensor)								
Lowest channel			Middle channel			Highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
8120.8	Peak	52.74	,	-/-	-/-	-/-	-/-	-/-
0120.0	AVG	50.49	-/-	-/-	-/-		-/-	-/-
-/-	Peak	-/-	,	-/-	-/-	-/-	-/-	-/-
-/-	AVG	-/-	-/-	-/-	-/-		-/-	-/-
-/-	Peak		-/-	-/-	-/-	-/-	-/-	-/-
	AVG			-/-	-/-		-/-	-/-


© cetecom advanced GmbH Page 47 of 51

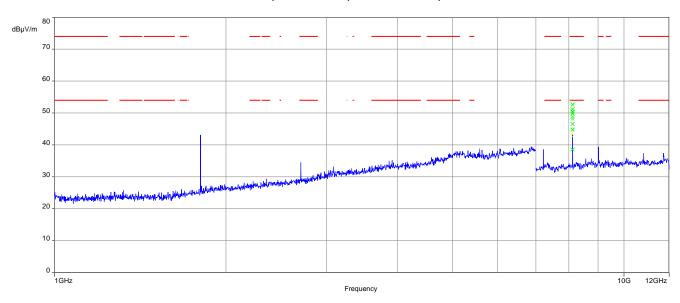

Plots:

• device with CO2 sensor

Plot 1: 1 GHz - 12 GHz, horizontal & vertical polarisation (lowest channel)


Plot 2: 1 GHz – 12 GHz, horizontal & vertical polarisation (middle channel)

© cetecom advanced GmbH Page 48 of 51



Plot 3: 1 GHz - 12 GHz, horizontal & vertical polarisation (highest channel)

device without CO2 sensor

Plot 1: 1 GHz - 12 GHz, horizontal & vertical polarisation (lowest channel)

© cetecom advanced GmbH Page 49 of 51

13 Glossary

AVG	Average
С	Compliant
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz
CAC	Channel availability check
CW	Clean wave
DC	Duty cycle
DFS	Dynamic frequency selection
DSSS	Dynamic sequence spread spectrum
DUT	Device under test
EN	European Standard
ETSI	European Telecommunications Standards Institute
EMC	Electromagnetic Compatibility
EUT	Equipment under test
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
FHSS	Frequency hopping spread spectrum
FVIN	Firmware version identification number
GNSS	Global Navigation Satellite System
GUE	GNSS User Equipment
HMN	Host marketing name
HVIN	Hardware version identification number
HW	Hardware
IC	Industry Canada
Inv. No.	Inventory number
MC	Modulated carrier
NA	Not applicable
NC	Not compliant
NOP	Non occupancy period
NP	Not performed
OBW	Occupied bandwidth
00	Operating channel
OCW	Operating channel bandwidth
OFDM	Orthogonal frequency division multiplexing
ООВ	Out of band
OP	Occupancy period
PER	Packet error rate
PMN	Product marketing name
PP	Positive peak
QP	Quasi peak
RLAN	Radio local area network
S/N or SN	Serial number
SW	Software
UUT	Unit under test
WLAN	Wireless local area network

© cetecom advanced GmbH Page 50 of 51

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2024-02-27
А	FCC / IC ID changed, radiated spurious emission results added	2024-07-03

© cetecom advanced GmbH Page 51 of 51