

TEST REPORT No.: 17-1-0099901T08a

According to: **FCC Regulations** Part 15.247

IC-Regulations RSS-Gen, Issue 4 RSS-247, Issue 2

for

Renesas Electronics Europe GmbH

Evaluation Board Y-Charge-IT

FCC: 2ANWT-CHARGE-IT ISED: 23343-YCHARGEIT PMN: CHARGE-IT **HVIN: Y-CHARGE-IT FVIN: FW-Y-CHARGE-IT**

accredited according to DIN EN ISO/IEC 17025

CETECOM GmbH

Laboratory Radio Communications & Electromagnetic Compatibility Im Teelbruch 116 • 45219 Essen • Germany Registered in Essen, Germany, Reg. No.: HRB Essen 8984 Tel.: + 49 (0) 20 54 / 95 19-954 • Fax: + 49 (0) 20 54 / 95 19-964 E-mail: info@cetecom.com • Internet: www.cetecom.com

Laboratory Accreditation and Listings

Table of contents

1. SUMMARY OF TEST RESULTS	3
1.1. Tests measurement overview according of US CFR Title 47, Subpart 15C and Canada RSS-Stan 1.2. Attestation:	
2. ADMINISTRATIVE DATA	5
2.1. Identification of the testing laboratory	5
2.2. Test location	
2.3. Organizational items 2.4. Applicant's details 2.4.	
2.5. Manufacturer's details	
3. EQUIPMENT UNDER TEST (EUT)	6
3.1. TECHNICAL DATA OF MAIN EUT DECLARED BY APPLICANT	
3.2. EUT: Type, S/N etc. and short descriptions used in this test report	
3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions	
3.5. EUT operating modes	
3.6. Configuration of cables used for testing	
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	8
4.1. Test system set-up for conducted RF-measurement at antenna port	8
4.2. Test system set-up for radiated magnetic field measurements below 30 MHz	10
4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz	
4.4. Test system set-up for radiated electric field measurement above 1 GHz	
5. MEASUREMENTS	
5.1. General Limit - Radiated field strength emissions below 30 MHz	
5.2. General Limit - Radiated field strength emissions, 30 MHz - 1 GHz	
5.3. General Limit – Radiated field strength emissions, above 1 GHz	
5.5. Duty-Cycle	
5.6. Maximum peak conducted output power	
5.7. RF-Parameter - Power Spectral Density	24
5.8. RF-Parameter - 6 dB Bandwidth and 99% occupied Bandwith	
5.9. 20 dBc power specification	
6. INSTRUMENTS AND ANCILLARY	
6.1. Used equiment "CTC"	
7. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	
, verticing of the orth (change his tort)	
Table of annex	otal pages
Annex 2: Measurement diagrams (separate document) TR17_1_0099901T08a_A1	34
Annex 2: External photographs of EUT (separate document) TR17_1_0099901T06a_A2	5
Annex 3: Test set-up photographs (separate document) TR17_1_0099901T06a_A3	6

The listed attachments are an integral part of this report.

1. Summary of test results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The presented Equipment Under Test (in this report, hereinafter referred as EUT) supports radiofrequency technologies with Bluetooth Low Energy Vers.4.0 technology and operating frequency range at 2.402 to 2.480 GHz according. Other implemented wireless technologies were not considered within this test report.

Following test cases have been performed to show compliance with valid Part 15.209/15.247 of the FCC CFR Title 47 Rules, Edition 4th November 2016 and ISED RSS-247 Issue 2/RSS-Gen Issue 4 standards.

1.1. Tests measurement overview according of US CFR Title 47, Subpart 15C and Canada RSS-Standards:

	References		References & Lin	nits		EUT	
Test cases	Port	FCC Standard	RSS Section	Test Limit	EUT set-up	opera- ting mode	Result
			TX-Mode				
Timing of transmitter (pulsed operation)	Antenna Terminal or enclosure	§15.35	RSS-Gen, Issue		1	1	
6 dB bandwidth	Antenna terminal (conducted)	§15.247(a)(2)	RSS-247, Chapter 5.2(a) RSS-Gen Issue 4: Chapter 4.6.2	≥ 500 kHz for DTS systems	1	1	passed
99% occupied bandwidth	Antenna terminal (conducted)	2.1049(h)	RSS-Gen Issue 4: Chapter 6.6	99% Power bandwidth	1	1	for Information only
Transmitter Peak output power	Antenna terminal (conducted)	§15.247(b)(3)	RSS-247, Chapter 5.4(d)	1 Watt Peak	1	1	passed
Transmitter Peak output power radiated	Enclosure + Inter- connecting cables (radiated)	§15.247(b)(4)	RSS-247, Chapter 5.4(d	< 4 Watt (EIRP) for antenna with directional gain less 6dBi	1	1	Pass (calculated)
Out-Of-Band RF- emissions Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	RSS-247, Chapter 5.5	20 dBc	1	1	passed
Power spectral density	Antenna terminal (conducted)	§15.247(e)	RSS-247, Chapter 5.2(b)	8dBm in any 3 kHz band	1	1	passed

General field strength emissions + restricted bands	Enclosure + Inter- connecting cables (radiated)	§15.247 (d) §15.205 §15.209	RSS-247 Issue 2, Chapter 3.3 RSS-Gen: Issue 4: §8.9 Table 4+5+6	Emissions in restricted bands must meet the general field- strength radiated limits	2	1	passed
AC-Power Lines Conducted Emissions	AC-Power lines	§15.207	RSS-Gen, Issue 4: Chapter 8.8, Table 3	FCC §15.107 class B limits §15.207 limits IC: Table 3, Chapter 8.8	1		Not applicable

RF-Exposure Evaluation (separation distance user to RF-radiating element greater 20cm)							
			References & Limits	EUT	EUT opera-		
Test cases	Port	FCC Standard	RSS Section	Test Limit	set-up	ting mode	Result
Radio frequency radiation exposure requirements	Cabinet + Inter- connecting cables (radiated)	§1.1310(b) §2.1091 §2.1093	RSS-102 Issue 5	RF-Field Strength Limits: FCC: "general population/ uncontrolled" environment Table 1 IC: Table 4			See separate test report no. 17-1- 0099901T09

Remark: --

1.2. Attestation:

I declare that all measurements were performed by me or under my supervision and that all measurements have been performed and are correct to my best knowledge and belief to Industry Canada standards. All requirements as shown in above table are met in accordance with enumerated standards.

DiplIng. Rachid Acharkaoui Responsible for test section	DiplIng. Ninovic Perez Responsible for test report

2. Administrative Data

2.1. Identification of the testing laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Rachid Acharkaoui

Deputy: Dipl.-Ing. Niels Jeß

2.2. Test location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the testing laboratory

2.3. Organizational items

Responsible for test report/project leader Dipl.-Ing. N. Perez

 Receipt of EUT:
 2017-08-06

 Date(s) of test:
 2017-08-22

 Date of report:
 2017-11-13

Version of template: 13.02

2.4. Applicant's details

Applicant's name: Renesas Electronics Europe GmbH

Address: Arcadiastr. 10 40472 Düsseldorf

Germany

Contact person: Mr. Dirk Naurath

2.5. Manufacturer's details

Manufacturer's name: please see Applicant's details

Address: please see Applicant's details

3. Equipment under test (EUT)

3.1. TECHNICAL DATA OF MAIN EUT DECLARED BY APPLICANT

Number of channels	37 (2402MHz) to 39 (2480MHz	<u>z</u>)			
(USA/Canada -bands)	, , , , , , , , , , , , , , , , , , ,	,			
Antenna Type	▼ Integrated				
	☐ External, no RF- connector				
	☐ External, separate RF-connec	ctor			
Antenna Gain	Max. 0 dBi gain according applicants information in 2.4 GHz band				
MAX Field strength (radiated):	84.73 dBµV/m@3m distance or	n nominal 2480 MHz			
Installed options	■ wireless charger functionality	y on 125kHz (not tested	within this test		
	report)				
Power supply	☑ DC power only: 3 Volt (CR1254A)				
Special EMI components					
EUT sample type	☐ Production	➤ Pre-Production	☐ Engineering		
FCC label attached	□ yes	≥ no			

3.2. EUT: Type, S/N etc. and short descriptions used in this test report

Short description*)	EUT	Туре	S/N serial number	HW hardware status	SW software status
EUT A	Evaluation Board	Y-Charge-IT	#6	V1.30	V1.0.137
EUT B	Evaluation Board	Y-Charge-IT	#4	V1.30	V1.0.137

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.3. Auxiliary Equipment (AE): Type, S/N etc. and short descriptions

AE short description *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1					

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.4. EUT set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A	Used for conducted RF-measurements – battery powered
set. 2	EUT B	Used for radiated RF-tests – battery powered

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.5. EUT operating modes

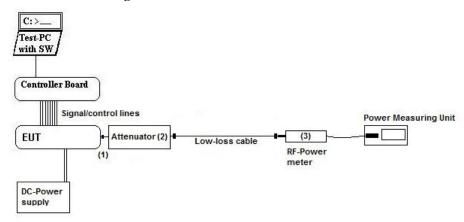
EUT operating mode no.*)	Description of operating modes	Additional information
op. 1	Continuous TX-Mode	The EUT was put to continuous transmissions mode with help of a special firmware software. Duty-Cycle > 98%

^{*)} EUT operating mode no. is used to simplify the test report.

3.6. Configuration of cables used for testing

Cable number	Item	Туре	S/N serial number	HW hardware status	Cable length
Cable 1	1				

4. Description of test system set-up's


4.1. Test system set-up for conducted RF-measurement at antenna port

Conducted RF-Setup 1 (W1 Set-up)

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to the power meter (3) for conducted power measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method: ANSI C63.10:2013, KDB 558074 D01 DTS Meas.Guidance v03r05

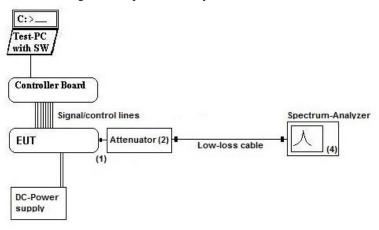
Used Equipment Passive Elements Test Equipment Remark:

 See List of equipment under each test case and chapter 6.1 for calibration info

cables

■ Spectrum-Analyser

Measurement uncertainty See chapter 5.10



RF-Setup 2 (W2 Set-up)

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method: ANSI C63.10:2013, KDB 558074 D01 v04 (April 2017)

Passive Elements Test Equipment **Used Equipment** Remark:

> **≥** 20 dB Attenuator **☒** Power Meter

> > **☑** DC-Power Supply

See List of equipment under each test case and chapter 6.1 for calibration info

■ Low loss RFcables

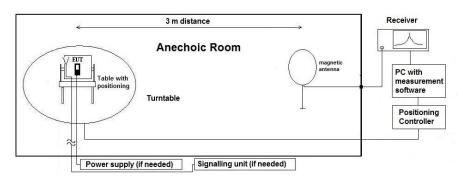
■ Spectrum-Analyser

See chapter 5.10 Measurement uncertainty

4.2. Test system set-up for radiated magnetic field measurements below 30 MHz

Specification: ANSI C63.4-2014 §5.3, §8.2.1, §8.3.1.1+§8.3.2.1, ANSI C63.10-2013 chapter

6.4 (§6.4.4.2)


General Description: Evaluating the radiated field emissions are done first by an exploratory emission

measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed

in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step $90^\circ,$ range $0^\circ to~360^\circ)$ and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

G_A= Gain of pre-amplifier (if used)

 $L_T = Limit$

M = Margin

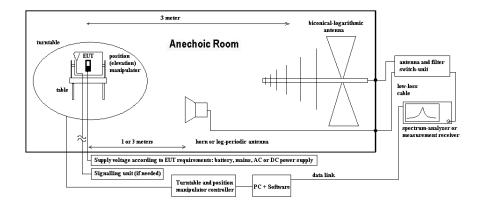
All units are dB-units, positive margin means value is below limit.

Distance correction: Reference for applied correction (extrapolating) factors due to reduced

measurement distance:

ANSI C63.10:2013, $\S6.4.4.2$ - Equations (2) + (3) + (4)

4.3. Test system set-up for radiated electric field measurement 30 MHz to 1 GHz


Specification: ANSI C63.4-2014 chapter 8.2.3, ANSI C63.10-2013 chapter 6.5

General Description: Evaluating the field emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the

regulatory commissions.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360° , step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $E_C = Electrical field - corrected value$

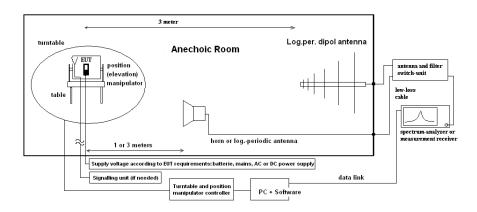
 E_R = Receiver reading

 $G_A = Gain of pre-amplifier (if used)$

 $L_T = Limit \\$

M = Margin

All units are dB-units, positive margin means value is below limit.


4.4. Test system set-up for radiated electric field measurement above 1 GHz

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4

General Description:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 E_C = Electrical field – corrected value

 E_R = Receiver reading

M = Margin

 $L_T = Limit$

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 G_A = Gain of pre-amplifier (if used)

All units are dB-units, positive margin means value is below limit.

5. Measurements

5.1. General Limit - Radiated field strength emissions below 30 MHz

5.1.1. Test location and equipment

2.1.1. Test location and equipment						
CETECOM Essen	(Chapter. 2.2.1)	☐ Please see Chapte	r. 2.2.2	☐ Please see Chapt	er. 2.2.3	
¥ 441 EMI SAR	□ 487 SAR NSA	☐ 347 Radio.lab.				
□ 377 ESCS30	■ 001 ESS					
□ 584 FSU	□ 120 FSEM	□ 264 FSEK				
□ 574 BTA-L	□ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	■ 030 HFH-Z2	□ 477 GPS	
□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW			
☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	☐ 482 Filter Matrix	☐ 378 RadiSense		
□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40	
□ 230 V 50 Hz via public mains □ 060 120 V 60 Hz via PAS 5000						
	E 441 EMI SAR 377 ESCS30 584 FSU 574 BTA-L 392 MT8820A 400 FTC40x15E 456 EA 3013A	■ 441 EMI SAR □ 487 SAR NSA □ 377 ESCS30 ■ 001 ESS □ 584 FSU □ 120 FSEM □ 574 BTA-L □ 133 EMCO3115 □ 392 MT8820A □ 371 CBT32 □ 400 FTC40x15E □ 401 FTC40x15E □ 456 EA 3013A □ 457 EA 3013A	■ 441 EMI SAR □ 487 SAR NSA □ 347 Radio.lab. □ 377 ESCS30 ■ 001 ESS □ □ 584 FSU □ 120 FSEM □ 264 FSEK □ 574 BTA-L □ 133 EMCO3115 □ 302 BBHA9170 □ 392 MT8820A □ 371 CBT32 □ 547 CMU □ 400 FTC40x15E □ 401 FTC40x15E □ 110 USB LWL □ 456 EA 3013A □ 457 EA 3013A □ 459 EA 2032-50	■ 441 EMI SAR □ 487 SAR NSA □ 347 Radio.lab. □ □ 377 ESCS30 ■ 001 ESS □ □ □ □ 584 FSU □ 120 FSEM □ 264 FSEK □ □ 574 BTA-L □ 133 EMCO3115 □ 302 BBHA9170 □ 289 CBL 6141 □ 392 MT8820A □ 371 CBT32 □ 547 CMU □ 594 CMW □ 400 FTC40x15E □ 401 FTC40x15E □ 110 USB LWL □ 482 Filter Matrix □ 456 EA 3013A □ 457 EA 3013A □ 459 EA 2032-50 □ 268 EA- 3050	■ 441 EMI SAR □ 487 SAR NSA □ 347 Radio.lab. □ □ □ 377 ESCS30 ■ 001 ESS □ □ □ □ 584 FSU □ 120 FSEM □ 264 FSEK □ □ □ 574 BTA-L □ 133 EMC03115 □ 302 BBHA9170 □ 289 CBL 6141 ■ 030 HFH-Z2 □ 392 MT8820A □ 371 CBT32 □ 547 CMU □ 594 CMW □ 400 FTC40x15E □ 401 FTC40x15E □ 110 USB LWL □ 482 Filter Matrix □ 378 RadiSense □ 456 EA 3013A □ 457 EA 3013A □ 459 EA 2032-50 □ 268 EA- 3050 □ 494 AG6632A	

5.1.2. Requirements

FCC	Part 15, Subpart 0	Part 15, Subpart C, §15.205 & §15.209						
IC	RSS-Gen: Issue 4	RSS-Gen: Issue 4: §8.9 Table 5						
ANSI	C63.10-2013							
Frequency [MHz]	Field [[µV/m]	strength limit [dBµV/m]	Distance [m]	Remarks				
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m				
0.490 - 1.705	24000/f (kHz)	87.6 – 20Log(f) (kHz)	30	Correction factor used due to measurement distance of 3 m				
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m				

5.1.3. Test condition and test set-up

	mon and test set a	☐ air link				
Signal link to test s	Signal link to test system (if used):		□ cable connection	x none		
EUT-grounding		≥ none	☐ with power supply	□ additional connection		
Equipment set up		■ table top		☐ floor standing		
Climatic conditions	3	Temperature:	(22±3°C)	Rel. humidity: (40±20)%		
	Scan data	■ 9 – 150 kHz ■ 150 kHz – 3 □ other:				
EMI-Receiver or	Scan-Mode	ĭ 6 dB EMI-F	Receiver Mode 🗆 3dB Sp	pectrum analyser Mode		
Analyzer Settings	Detector	Peak (pre-mea	surement) and Quasi-PK/	Average (final if applicable)		
	Mode:	Repetitive-Sca	ın, max-hold			
	Sweep-Time	Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual				
transmission duty-cycle						
General measureme	nt procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"				

5.1.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

The EUT is put on operation on middle channel only. If critical peaks are found (Margin <10 dB) the lowest and highest channels will be performed too. For more information please see the diagrams.

Table of measurement results:

Diagram No.	Carı Char		Frequency range	Set- up no.	OP- mode no.	Remark	Use	ed dete	ector	Result
	Range	No.		110.	no.		PK	AV	QP	
2.01	Low	37	9 kHz-30 MHz	2	1	PWR=+3dBm	×			passed
2.04	Middle	17	9 kHz-30 MHz	2	1	PWR=+3dBm	×			passed
2.03	High	39	9 kHz-30 MHz	2	1	PWR=+3dBm	×			passed

5.1.5. Correction factors due to reduced meas. distance (f< 30 MHz)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]	1st Condition (dmeas< D _{near-field})	2'te Condition (Limit distance bigger d_{near-field})	Distance Correction accord. Formula
	9,00E+03 1,00E+04 2,00E+04 3,00E+04	33333,33 30000,00 15000,00 10000,00	5305,17 4774,65 2387,33 1591,55		fullfilled fullfilled fullfilled fullfilled	not fullfilled not fullfilled not fullfilled not fullfilled	-80,00 -80,00 -80,00 -80,00
	4,00E+04 5,00E+04 6,00E+04 7,00E+04 8.00E+04	7500,00 6000,00 5000,00 4285,71 3750,00	1193,66 954,93 795,78 682,09 596,83	300	fulfilled fulfilled fulfilled fulfilled fulfilled	not fulfilled not fulfilled not fulfilled not fulfilled not fulfilled	-80,00 -80,00 -80,00 -80,00 -80,00
kHz	9,00E+04 1,00E+05 1,25E+05 2,00E+05	3333,33 3000,00 2400,00 1500,00	530, 52 477, 47 381, 97 238, 73		fulfilled fulfilled fulfilled fulfilled	not fullfilled not fullfilled not fullfilled fullfilled	-80, 00 -80, 00 -80, 00 -78, 02
	3,00E+05 4,00E+05 4,90E+05 5,00E+05 6,00E+05	1000,00 750,00 612,24 600,00 500,00	159, 16 119, 37 97, 44 95, 49 79, 58		fulfilled fulfilled fulfilled fulfilled fulfilled	fulfilled fulfilled fulfilled not fulfilled not fulfilled	-74, 49 -72, 00 -70, 23 -40, 00 -40, 00
	7,00E+05 8,00E+05 9,00E+05	428,57 375,00 333,33 300,00	68,21 59,68 53,05 47,75		fulfilled fulfilled fulfilled fulfilled	not fullfilled not fullfilled not fullfilled not fullfilled	-40,00 -40,00 -40,00 -40,00
	1,59 2,00 3,00 4,00	188,50 150,00 100,00 75,00	30,00 23,87 15,92 11,94		fulfilled fulfilled fulfilled fulfilled	not fullfilled fullfilled fullfilled fullfilled	-40,00 -38,02 -34,49 -32,00
	5,00 6,00 7,00 8,00	60,00 50,00 42,86 37,50	9,55 7,96 6,82 5,97		fulfilled fulfilled fulfilled fulfilled	fulfilled fulfilled fulfilled fulfilled	-30,06 -28,47 -27,13 -25,97
MHz	9,00 10,00 10,60 11,00 12,00	33, 33 30, 00 28, 30 27, 27 25, 00	5,31 4,77 4,50 4,34 3,98	30	fulfilled fulfilled fulfilled fulfilled fulfilled	fulfilled fulfilled fulfilled fulfilled fulfilled	-24,95 -24,04 -23,53 -23,21 -22,45
	13,56 15,00 15,92 17,00	22, 12 20, 00 18, 85 17, 65	3,52 3,18 3,00 2,81		fullfilled fullfilled fullfilled not fullfilled	fullfilled fullfilled fullfilled fullfilled	-22, 40 -21,39 -20,51 -20,00 -20,00
	18,00 20,00 21,00 23,00	16, 67 15, 00 14, 29 13, 04	2,65 2,39 2,27 2,08		not fulfilled not fulfilled not fulfilled not fulfilled	fullfilled fullfilled fullfilled fullfilled	-20,00 -20,00 -20,00 -20,00
	25,00 27,00 29,00 30,00	12,00 11,11 10,34 10,00	1,91 1,77 1,65 1,59		not fulfilled not fulfilled not fulfilled not fulfilled	fulfilled fulfilled fulfilled fulfilled	-20,00 -20,00 -20,00 -20,00

5.2. General Limit - Radiated field strength emissions, 30 MHz - 1 GHz

5.2.1. Test location and equipment

test location	☑ CETECOM Essen (Chapter. 2.2.1)		☐ Please see Chapte	er. 2.2.2	☐ Please see Chapter. 2.2.3		
test site	■ 441 EMI SAR	¥ 487 SAR NSA					
receiver	□ 377 ESCS30	■ 001 ESS	□ 489 ESU 40	□ 620 ESU 26			
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK				
antenna	区 574 BTA-L	☐ 133 EMCO3115	□ 302 BBHA9170	□ 289 CBL 6141	□ 030 HFH-Z2	☐ 477 GPS	
signalling	□ 392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW			
otherwise	☐ 400 FTC40x15E	□ 401 FTC40x15E	□ 110 USB LWL	■ 482 Filter Matrix			
DC power	□ 456 EA 3013A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE	
line voltage	□ 230 V 50 Hz via p	oublic mains	□ 060 120 V 60 Hz via PAS 5000				

5.2.2. Requirements/Limits

	Tements/Emmts						
	FCC	☐ Part 15 Subpart B, §15.109, class B ☑ Part 15 Subpart C, §15.209 @ frequencies of	defined in §15.205				
	ISED (IC)						
ANSI		☐ C63.4-2014 ☑ C63.10-2013					
	Engage (MIII-)	Radiated emissions limits, 3 meters					
	Frequency [MHz]	QUASI Peak [μV/m]	QUASI-Peak [dBµV/m]				
Limit	30 - 88	100	40.0				
Lillit	88 - 216	150	43.5				
	216 - 960	200 46.0					
above 960		500 54.0					

5.2.3. Restricted bands of operation (FCC §15.205/ RSS-Gen, Issue 4 Chapter 8.9, Table 4)

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5
6.215-6.218	73-74.6	1660-1710	10.6-12.7
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5
8.291-8.294	123-138	2310-2390	15.35-16.2
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5
12.57675-12.57725	240-285	3600-4400	
13.36-13.41	322-335.4		
Remark: only spurious emission	s are allowed within these frequen	cy bands not exceeding the limits p	per §15.209

5.2.4. Test condition and measurement test set-up

Signal link to test sy	vstem (if used):	□ air link	☐ cable connection	x none				
EUT-grounding		⋈ none	☐ with power supply	☐ additional connection				
Equipment set up		■ table top 0.8	8m height	☐ floor standing				
Climatic conditions		Temperature:	(22±3°C)	Rel. humidity: (40±20)%				
EMI-Receiver	Scan frequency range:	≥ 30 − 1000 M	IHz □ other:					
(Analyzer) Settings	Scan-Mode	I 6 dB EMI-Receiver Mode □ 3 dB spectrum analyser mode						
	Detector	Peak / Quasi-p	eak					
	RBW/VBW	100 kHz/300 k	00 kHz/300 kHz					
	Mode:	Repetitive-Scan, max-hold						
	Scan step	80 kHz						
	Sweep-Time	Coupled – cali	ibrated display if continu	ous tx-signal otherwise adapted to EUT's individual duty-				
		cycle						
General measurement procedures		Please see chapter "Test system set-up for electric field measurement in the range 30 MHz						
		to 1 GHz"						

5.2.5. MEASUREMENT RESULTS

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Table of measurement results:

Dia- gram	Carrier (Channel	Frequency range	Set- up	up mode Remark		Result			
no.	Range	No.	8-	no.	no.		PK	AV	QP	
3.01	Low	37		2	1	+3dBm	×		×	passed
3.02	Middle	17	30 MHz – 1 GHz	2	1	+3dBm	×		×	passed
3.03	High	39		2	1	+3dBm	×			passed

Remark:

5.3. General Limit – Radiated field strength emissions, above 1 GHz

5.3.1. Test location and equipment FAR

44-:4-	D 441 EMICAD	□ 348 EMI cond.	M 442 EMIEAD	☐ 347 Radio.lab.	□337 OATS	
test site	□441 EMI SAR	☐ 348 EMI cond.	■ 443 EMI FAR	□ 347 Radio.lab.	L33/ UAIS	
spectr. analys.	□584 FSU	☐ 120 FSEM	□ 264 FSEK	■ 489 ESU 40		
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	≥ 549 HL025	≥ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2	■ 376 BBHA9120E	1	
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112				С	
signalling	□392 MT8820A	□ 371 CBT32	□ 547 CMU	□ 594 CMW		
DC power	□086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	□350 Car battery	
line voltage	□ 230 V 50 Hz via	public mains	□ 060 120 V 60 Hz	via PAS 5000	•	

5.3.2. Requirements/Limits

5.5.2. Requirements/Limits								
FCC	☑ Part 15 Subpart C, §15.2	☐ Part 15 Subpart B, §15.109 class B ☑ Part 15 Subpart C, §15.209 for frequencies defined in §15.205 ☐ Part 15 Subpart C, §15.407(b)(1)(2)(3)(4)						
ISED	 ■ RSS-Gen., Issue 4, Chapter 8.9, Table 4+6 (transmitter licence excempt) □ RSS-Gen., Issue 4, Chapter 8.9, Table 2 (receiver) □ ICES-003, Issue 6, Chapter 6.2.2, Table 7 (class B) ■ RSS-247, Issue 2, Chapter 6 							
ANSI	☐ C63.4-2014 ☑ C63.10-2013							
Emaguamay		Limi	ts					
Frequency [MHz]	AV	AV	Peak	Peak				
[WIIIZ]	[µV/m]	$[dB\mu V/m]$	$[\mu V/m]$	[dBµV/m] or [dBm/MHz]				
above 1 GHz for frequencies as defined in §15.205 or RSS-Gen., Issue 4, §8.10 - Table 6 RSS-247, Issue 2	500	54.0	5000	74.0 dBμV/m				

5.3.3. Test condition and measurement test set-up

	eter rest condition and measurement test set up					
Signal link t	o test system (if used):	□ air link □ cable connection		⋈ none		
EUT-ground	ling	≥ none	☐ with power supply	☐ additional connection		
Equipment s	set up	table top 1.5 ■	5m height	☐ floor standing		
Climatic con	nditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
Spectrum-	Scan frequency range:	I 1 − 18 GHz □ 18 − 25 GHz □ 18 − 40 GHz □ other:				
Analyzer	Scan-Mode	■ 6 dB EMI-Receiver Mode □ 3 dB Spectrum analyser Mode				
settings	Detector	Peak and Aver	age			
	RBW/VBW	1 MHz / 3 MH	Íz			
	Mode:	Repetitive-Sca	n, max-hold			
	Scan step	400 kHz				
	Sweep-Time Coupled – calibrated display if CW signal otherwise adapted to EUT's individual du			nal otherwise adapted to EUT's individual duty-cycle		
General mea	surement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"				

5.3.4. Measurement Results

The results are presented below in summary form only. For more information please consult the diagrams included in annex 1.

Table of measurement results:

Dia- gram no.	Carrier (Channel	Frequency range	Set- up no.	OP- mode Remark no.		Use	d detec	etor	Result
no.	Range	No.	[GHz]	no.	no.		PK	AV	QP	
4.01	Low	37	1-18	2	1	+3dBm	×	×		passed
4.01a	Low	37	18-25	2	1	+3dBm	×	×		passed
4.02	Middle	17	1-18	2	1	+3dBm	×	×		passed
4.02a	Middle	17	18-25	2	1	+3dBm	×	×		passed
4.03	High	39	1-18	2	1	+3dBm	×	×		passed
4.03a	High	39	18-25	2	1	+3dBm	×	×		passed

Remark: see diagrams in annex 1 for more details

5.4. Radiated Band-Edge compliance, field strength measurements accord. §15.205

5.4.1. Test location and equipment FAR

test site	□441 EMI SAR	□ 348 EMI cond.	■ 443 EMI FAR	☐ 347 Radio.lab.	□ 337 OATS	
spectr. analys.	□584 FSU	☐ 120 FSEM	□ 264 FSEK	■ 489 ESU 40		
antenna meas	□574 BTA-L	□ 289 CBL 6141	□ 608 HL 562	≥ 549 HL025	□ 302 BBHA9170	□ 477 GPS
antenna meas	□123 HUF-Z2	□ 132 HUF-Z3	□ 030 HFH-Z2			
antenna subst	□071 HUF-Z2	□ 020 EMCO3115	□ 063 LP 3146	□ 303 BBHA9170		
multimeter	□341 Fluke 112					
signaling	□371 CBT32	□ 298 CMU 200				
DCpower	□086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	
line voltage	□ 230 V 50 Hz via	public mains	□ 060 120 V 60 Hz	via PAS 5000		

5.4.2. Requirements/Limits

FCC	☐ Part 15 Subpart B, §15.109 class B E Part 15 subpart C, §15.209 @ frequencies defined in §15.205						
IC	☑ RSS-247 Issue 2, Chapter 5.5, RSS-Gen: Issue 4: §8.9 Table 4+5+6						
ANSI	☐ C63.4-2009 ☑ C63.10-2013						
Fraguanay]	Right Band-Edge Limits begin	ning on 2483.5MHz@3 met	ters			
Frequency [MHz]	AV [μV/m]	AV [dBμV/m]	Peak [μV/m]	Peak [dBµV/m]			
above 1 GHz	500	54.0	5000	74.0			

5.4.3. MEASUREMENT METHOD FOR BAND-EDGE:

<u>For uncritical results</u> where a measurement bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed only.

<u>For critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands according §15.205. The method is according ANSI 63.10:2013 "Marker-Delta method", §6.9.3. The method consists of three independent steps:

- 1. <u>Step</u>: Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- 2. <u>Step</u>: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- 3. <u>Step</u>: The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in §15.205 with the general limits of §15.209.

5.4.4. RESULTS – LEFT BAND-EDGE

	Set-up: 1, Op. Mode: 1										
T _{NOM} = 21°C, V _{NOM} =	Fundamental field strength	Value at Low Band-Edge	Limit for field strength at the band edge	Margin	Remark	Verdict					
3.7V	[dBµV/m]	[dB]	[dBc]	[dB]							
Channel 37	80.90 (PK)	28.9 dBc	> 20	8.9	Nominal modulation	Pass					

5.4.5. RESULTS – RIGHT BAND-EDGE

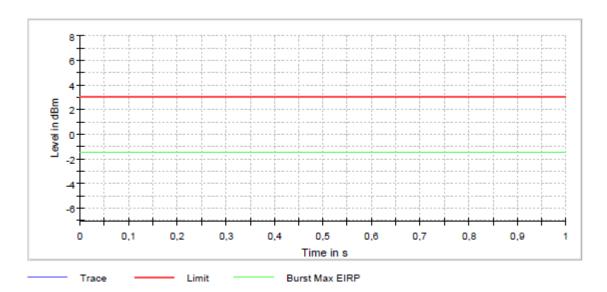
Set-up: 1, Op. Mode: 1									
TNOM = 21°C VNOM = 3.7V	Fundamental field strength value	Value at High Band-Edge	Limit for field strength-at the band- edge	Margin	Remark	Verdict			
	$[dB\mu V/m]$	$[dB\mu V/m]$	$[dB\mu V/m]$	[dB]					
Channel	84.63 (Peak)	57.83 (Peak)	74 (Peak)	16.17	nominal modulation	Pass			
39	83.49 (AV)	46.80 (AV)	54 (AV)	7.2	nonina modulation	r a88			

Remarks: see plots in Annex 1

5.4.6. VERDICT: PASS

5.5. Duty-Cycle

5.5.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')


Ambient Clima	tic conditions	Temperatu	re: (22±2)°C	Rel. humidity: (45±1	5)%	
test site	☐ 441 EMI SAR	□ 348 EMI cond.	□ 443 EMI FAR	■ 347 Radio.lab.	□ 337 OATS	
equipment	□ 331 HC 4055					
spectr. analys.	■ 683 FSU26	☐ 120 FSEM	□ 264 FSEK			
power meter	☐ 262 NRV-S	□ 266 NRV-Z31	☐ 265 NRV-Z33	□ 261 NRV-Z55	□ 356 NRV-Z1	
multimeter	☐ 341 Fluke 112					
DC power	□ 086 LNG50-10	□ 087 EA3013	☐ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	■ 463 HP3245A
line voltage	□ 230 V 50 Hz via p	oublic mains	□060 120 V 60 H	Hz via PAS 5000		
otherwise	≥ 530 Attenuator 10dB	E K4 Cable				

Method of measurement: \blacksquare conducted \square radiated

A special firmware program is used for test purposes. In opposite to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on one channel in each operable frequency-band. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

Results:

Calculated with following formulas:

Duty cycle: $x = \frac{Tx_{on}}{Tx_{on} + Tx_{off}}$	Duty cycle factor [dB]: $10\log\left(\frac{1}{x}\right)$	
--	--	--

☐ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar

☑ No correction necessary: Duty-Cycle > 98%

5.6. Maximum peak conducted output power

5.6.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Esser	(Chapter. 2.2.1)	☐ 443 Sys	stem CTC-	FAR-EN	MI-	□ Plea	se see Chapt	er. 2.2.3	
test site	☐ 441 EMI SAR	□ 487 SAR NSA	⊠ 347 Ra	idio.lab.						
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ES	SU 40						
spectr. analys.	□ 584 FSU	☐ 120 FSEM	□ 264 FS	SEK	□ 489]	ESU 40	≥ 683	FSU26		
antenna	□ 574 BTA-L	☐ 133 EMCO3115	□ 302 BE	BHA9170	□ 289 (CBL 6141	□ 030	HFH-Z2	□ 477	GPS
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CN	MU						
otherwise	■ 266 NRV-Z31	≥ 600 NRVD	□ 110 US	SB LWL	□ 482 I	Filter Matrix	□ 378	RadiSense	□ 693	TS8997
DC power	□ 456 EA 3013A			A 2032-50	□ 268 I	EA- 3050	□ 494	AG6632A	□ 498	NGPE 40
otherwise	□ 331 HC 4055	□ 248 6 dB Attenuator	□ 529 Po	ower vider	X - (cable OTA20				
	■ 513 20dB Attenuator		☐ K 4 Cable kit					·		
line voltage	☐ 230 V 50 Hz via public mains		□ 060 110 V 60 Hz via PAS 5000							

5.6.2. Reference

FCC	☑ §15.247(b) (3) + KDB 558074 D01 V04
ISED	☑ RSS-247, Chapter 5.4(4)
ANSI	☑ ANSI 63.10:2013
Specification	For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

5.6.3. EUT settings:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.6.4. Test condition and measurement test set-up

Signal link to test system (if used):	□ air link	☐ cable connection	⊠ none	
EUT-grounding	⋈ none	☐ with power supply	□ additional connection	
Equipment set up	■ table top 1.5m height		☐ floor standing	
Climatic conditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%	
General measurement procedures	Please see cha	oter "Test system set-up	for conducted RF-measurement at antenna Port" (W1	
	Set-up)			

5.6.5. Measurement method and analyzer settings:

The measurement was performed in non-hopping transmission mode with the carrier set to lowest/middle and highest channel. The power was also checked for different data rates, modulation scheme or packet types if applicable.

MEASUREMENT METHOD/ SPECTRUM-ANALYZER SETTINGS:

THE POST OF THE PARTY OF THE PA	HOD/ DI LC	TROM-AMALIZER SETTINGS.
Measurement Method 1.)	§15.247(b)	1.) E PK1-Method (§5.2.1.1): RBW > 6dB-bandwidth of the signal, Chapter 9.1.1
	(3)	2.) \square PK2-Method (§5.2.1.2): Channel integration method (ANSI 63.10:2009)
	Maximum	3.) □ PK1-Method (§9.1.2 KDB): Peak Power Meter Method
	Peak	,
	§15.247(b)	4.) □ AVG1 - power averaging over EBW + integrated band power
	(3)	measurement
	Maximum	5.) □ AVG2 - trace averaging over EBW + integrated band power
	Average	
	Č	measurement
		6.) □ RMS power meter method
	MIMO	7.) Method as described in Chapter 3.8 was used for measurements on two
		available RF-Antenna ports.
Center Frequency		Nominal channel frequency
Span		30% higher then the EBW measured before
Resolution Bandwidth (RI	3W)	1MHz
Video Bandwidth (VBW)		3MHz
Sweep time		coupled
Detector		Peak, Max hold mode for method PK1/PK2 or RMS and trace average for method
		AVG1/AVG2
Sweep Mode		Repetitive mode, allow trace to stabilize
Analyzer-Mode		
1.1000		□ activated channel integration method with limits set to the EBW of the signal
		activated channel integration method with mints set to the EDW of the signal

Remark 1: guidance 558074 D01 measurement DTS guidance v04

5.6.6. RESULTS

APLICANT'S DECLARED ANTENNA CHARACTERISTICS:

☑ Directional Gain < 6 dBi (measured: difference between measured conducted and radiated eirp. power) ☐ Directional Gain > 6 dBi (measured / applicant's declaration) -> conducted power reduction necessary

Maximum declared antenna gain [isotropic]: 0 dBi

Different modulation types and data rates were tested in order to find the maximum peak conducted output power. **Enclosed are only the maximum values for each modulation format**, pls. compare separate document A1 for all results.

Max. Peak power (conducted) [dBm]								
	[dB]	mj						
Set-up no: 1 Low channel = 37 Middle channel = 17 High channel = 39								
Op-Mode: 1	(2402 MHz)	(2440 MHz)	(2480 MHz)					
Measured Level -0.45		-0.75	-1.16					
Limit		1 Watt (30dBm) Peak						

Remark:

- 1.) External Path Loss -> set as either as correction factor in spectrum-analyzer or activated as transducer table
- 2.) pls. compare separate annex 1 for more details

VERDICT: Maximum value of -0.45 dBm Peak (0.90 mW) -> passed

5.7. RF-Parameter - Power Spectral Density

5.7.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Essen (Chapter. 2.2.1)		☐ Please see Chapter. 2.2.2		☐ Please see Chapter. 2.2.3	
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU	№ 683 FSU26		
spectr. analys.	□ 489 ESU	□ 120 FSEM	□ 264 FSEK			
power supply	¥ 463 HP3245A	□ 457 EA 3013A	□ 463	□ 268 EA- 3050	□ 494 AG6632A	☐ 498 NGPE 40
otherwise	≥ 530 10dB Attenuator			☑ cable K4		

5.7.2. REFERENCES: §15.247(e), RSS-247, Chapter 5.2(2)

(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.7.3. TEST CONDITION AND MEASUREMENT TEST SET-UP

Signal ink to test system (if used):	□ air link □ cable connection		☑ none	
EUT-grounding	■ none □ with power supply		□ additional connection	
Equipment set up	ĭ table top		☐ floor standing	
Climatic conditions	Temperature: (22±3°C)		Rel. humidity: (40±20)%	
	Please see char Set-up)	pter "Test system set-up	for conducted RF-measurement at antenna Port" (W2	

5.7.4. EUT SETTINGS:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.7.5. MEASUREMENT METHOD/ SPECTRUM-ANALYZER SETTINGS

Measurement Method	□ ANSI 63.10:2009	☑ PKPSD-Method☐ AVGPSD Method		
	☑ guidance 558074 D01 measurement DTS guidance v04			
Center Frequency	Nominal channel frequency			
Span	530% higher then the EBW measured before			
Resolution Bandwidth (RBW)	> 3 kHz (at least 3 times RB	W) - pls. see diagram		
Video Bandwidth (VBW)	> 10 kHz - pls. see diagram			
Sweep time	coupled			
Detector	Peak, Max hold mode for method PKPSD or RMS method AVGPSD			
Sweep Mode	Repetitive mode, allow trace to stabilize (PKPSD) or single (AVGPSD)			
Addition of correction factors	external measuring set-up path-loss			

Remarks:--

5.7.6. RESULTS

Set-up no.: 1	POWER SPECTRAL DENSITY [dBm/3 kHz]					
Op. Mode: 1	Low channel = 1 (2402 MHz)	Middle channel = 17 (2440 MHz)	High channel = 11 (2480 MHz)			
Measured Level	-18.92	-19.44	-19.68			
Limit	< 8dBm/3 kHz					

Remark: see diagrams for details on frequency in separate annex 1

5.7.7. VERDICT: PASSED

5.8. RF-Parameter - 6 dB Bandwidth and 99% occupied Bandwith

5.8.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

test site	☐ 441 EMI SAR	□ 348 EMI cond.	□ 443 EMI FAR	■ 347 Radio.lab.	□ 337 OATS		
spectr. analys.	□ 584 FSU	□ 120 FSEM	□ 264 FSEK	□ 489 ESU	≥ 683 FSU26		
attenuator	≥ 530 10 dB						
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU				
DC power	■ 463 HP3245A	□ 087 EA3013	□ 354 NGPE 40	□ 086 LNG50-10			
Power supply voltage	■ 3V DC via battery		□060 110 V 60 Hz via PAS 5000				
Others	☐ 613 20dB Attenua	ntor	☑ cable K5				

5.8.2. References of occupied and emission bandwidth

§15.247(a)(2), RSS-247, Chapter 5.2(1); RSS-Gen Issue 4: Chapter 4.6.2

- (1) <u>Frequency hopping systems</u> shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
- (2) DSSS Systems using <u>digital modulation techniques</u> may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.8.3. Test condition and measurement test set-up

Signal ink to test system (if used):	□ air link □ cable connection □		☑ none	
EUT-grounding	■ none □ with power supply □		□ additional connection	
Equipment set up	☑ table top		☐ floor standing	
Climatic conditions	Temperature: (22±3°C)		Rel. humidity: (40±20)%	
General measurement procedures	Please see cha	pter "Test system set-up	for conducted RF-measurement at antenna Port" (W2	
_	Set-up)			

5.8.4. EUT Settings:

The EUT was instructed to send with maximum power (if adjustable) according applicants instructions. Different modulation characteristics have been checked, e.g. data rates which EUT can operate.

5.8.5. Measurement method:

Three carrier frequencies (low/middle/high) were used for showing the compliance with this requirement. A DELTA Marker method was set to measure the bandwidth compared to the highest In-Band power. The operating modes have been varied (e.g. data rate, modulation scheme, etc.). If applicable the hopping-mode is switched off.

Also the **99% emission bandwidth** was measured. Two markers are placed on frequency points such that left to lower f-marker and right to higher f-marker only 1% of the TX-power is contained. Between the markers, 99% of the power is laying. The RBW value is readjusted and the measurement repeated until the RBW/EBW ratio is around 1%.

5.8.6. Spectrum-Analyzer settings:

.o.o. Spectrum-Amaryzer settings.				
Span	Set as to fully display the emissions + 30%			
Scale y display	approximate 30dB below the maximum PEAK level			
Resolution Bandwidth	ANSI 63.10:2009 Set to initial value approx 1% to 5% of the emission bandwidth, re-			
(RBW)	adjust and proof that RBW/EBW is between 1% and 5%			
	⊠ KDB558074 D01v04			
Video Bandwidth (VBW)	Minimum 3 times the resolution bandwidth			
Sweep time	Auto -coupled			
Detector	Peak detector			
Sweep mode	Repetitive Mode, MAX-HOLD, trace stabilization			

5.8.7. Results:

6dB BANDWIDTH:

Set-up no.: 1	6dB BANDWIDTH						
Op. Mode: 1	[MHz]						
$T_{NOM}=21^{\circ}C$	Low channel = 37	Middle channel = 17	High channel = 39				
$V_{NOM} = 24V$	(2402 MHz)	(2440 MHz)	(2480 MHz)				
Measured Level	0.753246	0.753246	0.766233				

Remark: For graphical results pls. see annex 1 to this test report.

99% OCCUPIED BANDWIDTH:

Set-up no.: 1	99% Bandwidth				
Op. Mode: 1	[MHz]				
$T_{NOM} = 21^{\circ}C$ $V_{NOM} = 24V$	Low channel = 37	Middle channel = 17	High channel = 39		
	(2402 MHz)	(2440 MHz)	(2480 MHz)		
Measured Level	1.053334	1.066667	1.053334		

Remark: For graphical results pls. see annex 1 to this test report.

VERDICT: DTS system requirements for 6dB-bandwidth according §15.247 (BW > 500kHz) passed

5.9. 20 dBc power specification

5.9.1. TEST LOCATION AND EQUIPMENT (for reference numbers please see chapter 'List of test equipment')

test location	☑ CETECOM Esser	n (Chapter. 2.2.1)	¥ 443 System CTC-FA	AR-EMI-	☐ Please see Chapt	er. 2.2.3
test site	☐ 441 EMI SAR	□ 487 SAR NSA	□ 337 OATS	■ 347 Radio.lab.		
receiver	□ 377 ESCS30	□ 001 ESS	□ 489 ESU	■ 683 FSU26		
spectr. analys.	□ 489 ESU	□ 120 FSEM	□ 264 FSEK			
power supply	¥ 463 HP3245A	□ 457 EA 3013A	□ 459 EA 2032-50	□ 268 EA- 3050	☐ 494 AG6632A	☐ 498 NGPE 40
otherwise	∑ 530 10 dB Attenuator			cable K4		

5.9.2. REFERENCE: §15.247, §15.205 / RSS-247, CHAPTER 5.5

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

5.9.3. Test condition and measurement test set-up

Signal ink t	o test system (if used):	□ air link	☐ cable connection	☑ none		
EUT-grounding		≥ none	☐ with power supply	☐ additional connection		
Equipment	set up	table top 1.5	5m height	☐ floor standing		
Climatic co	nditions	Temperature: ((22±3°C)	Rel. humidity: (40±20)%		
Spectrum-	Scan frequency range:	□ 1 – 18 GHz	□ 18 – 25 GHz □ 18	- 40 GHz other: see diagrams		
Analyzer	Scan-Mode	■ 6 dB EMI-Receiver Mode □ 3 dB Spectrum analyser Mode				
settings	Detector	Peak and Aver	age			
	RBW/VBW	100kHz/300kH	łz			
	Mode:	Repetitive-Scan, max-hold				
	Scan step	40kHz				
	Sweep-Time	Coupled – calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle				
General mea	surement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"				
		for general measurements procedures in anechoic chamber.				

5.9.4. EUT SETTINGS

The EUT was instructed to send with maximum power (if adjustable) according to applicants instructions.

5.9.5. MEASUREMENT METHOD

According guidance 558074 D01 measurement DTS guidance V04: the frequency spectrum was investigated for conducted spurious emissions values lower than 20dB related to the RF-carrier power value. Three carrier frequencies (low/middle/high channel) were used for showing the compliance with this requirement. First a In-Band Reference level measurement of the carrier was performed. The video bandwidth (VBW) was chosen 10 times the resolution bandwidth (RBW). The frequency scan was up to 10 times the highest channel frequency within the operational mode. The spectrum-analyzer was set to MAX-PEAK Detector, MAX-Hold Mode, trace stabilization mode.

5.9.6. TABLE OF MEASUREMENT RESULTS:

Set-up no.: 1 Op-Mode: 1	RF-Conducted test: 20 dBc spurious emissions						
	Low chann	el =37	Middle cha	nnel = 17	High chan	mel = 39	
	(2402 M	Hz)	(2440)	MHz)	(2480]	MHz)	
Frequency	Level Refe	erence	Level Re	eference	Level Re	ference	
Range	(In-Band) = -		(In-Band) =		(In-Band) =		
Kange	Limit = -21.87 dBm		Limit = -22.21 dBm		Limit = -22.59 dBm		
	Frequency	Value	Frequency	Value	Frequency	Value	
	[MHz]	[dBc]	[MHz]	[dBc]	[MHz]	[dBc]	
150kHz to	Peaks from set-up (AE-	> 40	Peaks from set-up (AE-	> 40	Peaks from set-up (AE-	> 40	
30MHz	equipment)	/ 4 0	equipment)	<i>></i> 40	equipment)	<i>></i> 40	
30MHz to 2.8 GHz		> 40		> 40		>40	
2.8 to 25 GHz		> 30		> 30		> 40	
Band-Edge		> 40				> 40	

Remark: see diagrams in separate document Annex 1

The limit on the diagrams is 20dB under the reference level measured In-Band for each channel

5.9.7. TEST RESULT: PASSED

5.10. Measurement uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Ca	Calculated uncertainty based on a confidence level of 95%			Remarks					
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz		4.0 dB 3.6 dB					-			
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz		4.2 dB 5.1 dB								E-Field
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-			
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	В					Substitution method			
December 1		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2					
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		-			
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A					
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not			
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable			
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77		_			
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79					
			0.1272	2 ppm (Delta N	Marker))		Frequency			
Occupied bandwidth	-	9 kHz - 4 GHz							error			
			1.0 dE						Power			
	-		0.1272	2 ppm (Delta N	Marker))		Frequency			
Emission bandwidth		9 kHz - 4 GHz	G 1		70 ID				error			
	-		See above: 0.70 dB				Power					
Frequency stability	-	9 kHz - 20 GHz	0.0636 ppm				-					
D 11 . 1 . 1		150 kHz - 30 MHz	5.0 dB			Magnetic						
Radiated emissions	-	30 MHz - 1 GHz	4.2 dB				field					
Enclosure		1 GHz - 20 GHz	3.17 dB			E-field Substitution						

Table: measurement uncertainties. valid for conducted/radiated measurements

6. Instruments and Ancillary

6.1. Used equiment "CTC"

The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

6.1.1. Test software and firmware of equipment

RefNo.	Equipment	Туре	Serial-No.	Version of Firmware or Software during the test
001	EMI Test Receiver	ESS	825132/017	Firm.= 1.21, OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.)	NRVD	839111/003	Firm.= V 1.51
017	Digital Radiocommunication Tester	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	Firm.= V 3.1DHG
140	Signal Generator	SMHU	831314/006	Firm.= 3.21
261	Thermal Power Sensor	NRV-Z55	825083/0008	EPROM-Datum 02.12.04, SE EE 1 B
262	Power Meter	NRV-S	825770/0010	Firm.= 2.6
263	Signal Generator	SMP 04	826190/0007	Firm.=3.21
295	Racal Digital Radio Test Set	6103	1572	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04, SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter	Keithley 2000	0583926	Firm. = A13 (Mainboard) A02 (Display)
392	Radio Communication Tester	MT8820A	6K00000788	Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
460	Univ. Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82_SP3
597	Univ. Radio Communication Tester	CMU 200	100347	R&S Test Firmware Base=5.01, GSM=5.02 WCDMA= not installed, Mainboard= μP1=V.850
598	Spectrum Analyzer	FSEM 30	831259/013	Firmware Bios 3.40 , Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μP1 =V8.50, Firmware = V.20
689	Vector Signal Generator	SMU200	100970	02.20.360.142
692	Bluetooth Tester	CBT 32	100236	CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)

6.1.2. Single instruments and test systems

				1			
No.					on	놥	
RefNo.	Equipment	Type	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal
Re					nter	ž	due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2018
005	AC - LISN (50 Ohm/50μH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	15.05.2018
007	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	17.05.2018
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
016	Line Impedance Simulating Network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	30.05.2019
021	Loop Antenna (H-Field) Loop Antenna (H-field)	6502 HFH-Z2	9206-2770 879604/026	EMCO Rohde & Schwarz	36 M 36 M	-	30.04.2018 30.04.2018
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	15.05.2019
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre-m	1a	15.05.2017
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	_	Elektro Automatik	pre-m	2	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.04.2018
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.04.2018
110	USB-LWL-Converter	OLS-1	-	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	-	30.05.2019
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36 M	1c	10.03.2020
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	36 M	-	10.03.2020
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	36 M	-	30.04.2018
140	Signal Generator	SMHU	831314/006	Rohde & Schwarz	24 M	-	30.05.2018
248	attenuator	SMA 6dB 2W	-	Radiall	pre-m	2	
249	attenuator	SMA 10dB 10W	-	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	-	Radiall	pre-m	2	
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m	2	
257	hybrid	4031C	04491	Narda	pre-m	2	
260	hybrid coupler	4032C	11342	Narda	pre-m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2018
262	Power Meter	NRV-S	825770/0010	Rohde & Schwarz	24 M	-	30.05.2018
263	Signal Generator	SMP 04 NPV 722 Model 04	826190/0007	Rohde & Schwarz	36 M	-	30.05.2019
265 266	peak power sensor Peak Power Sensor	NRV-Z33, Model 04 NRV-Z31, Model 04	840414/009 843383/016	Rohde & Schwarz	24 M 24 M	-	30.05.2018 30.05.2018
267	notch filter GSM 850	WRCA 800/960-6EEK	9	Rohde & Schwarz Wainwright GmbH	pre-m	2	30.03.2018
270	termination	1418 N	BB6935	Weinschel	pre-m pre-m	2	
271	termination	1418 N	BE6384	Weinschel	-	2	
271				Weinschel	pre-m	2	
	attenuator (20 dB) 50 W	Model 47	BF6239		pre-m		
273	attenuator (10 dB) 100 W	Model 48	BF9229	Weinschel	pre-m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m		
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre-m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre-m	2	
279	power divider	1515 (SMA)	LH855	Weinschel	pre-m	2	
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre-m	3	17.05.2010
300	AC LISN (50 Ohm/50μH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2018
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-m	2	14.02.2020
302	horn antenna 40 GHz (Meas 1) horn antenna 40 GHz (Subst 1)	BBHA9170 BBHA9170	155 156	Schwarzbeck Schwarzbeck	36 M 36 M	-	14.03.2020 20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2018
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.10.2018
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	17.05.2019
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	-	-	-	5	
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre-m	2	
355	Power Meter	URV 5	891310/027	Rohde & Schwarz	24 M	-	30.05.2018
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371	Bluetooth Tester	CBT32	100153	R&S	36 M	-	30.05.2019
373	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	100535	Rohde & Schwarz	12 M	-	17.05.2018
377	EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	15.05.2018
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	18.05.2018
405	Thermo-/Hygrometer	OPUS 10 THI	126.0604.0003.3.3.3.2	LUFFT Mess u.	24 M	-	30.03.2019
431	Model 7405	Near-Field Probe Set	9305-2457	Regeltechnik EMCO	_	4	
431	Univ. Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	24.05.2018
439	UltraLog-Antenna	HL 562	100248	Ronde & Schwarz Rohde & Schwarz	36 M	-	10.03.2020
		System CTC-FAR-EMI-	100270	ETS-Lindgren /			
443	CTC-FAR-EMI-RSE	RSE	-	CETECOM	12 M	5	30.10.2017
454	Oscilloscope	HM 205-3	9210 P 29661	Hameg	-	4	
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	pre-m	2	
459	DC -Power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre-m	2	
460	Univ. Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	16.06.2018
463	Universal source	HP3245A	2831A03472	Agilent	-	4	
466	Digital Multimeter	Fluke 112	89210157	Fluke USA	24 M	-	30.05.2018
467	Digital Multimeter	Fluke 112	89680306	Fluke USA	36 M	-	30.04.2018

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
468	Digital Multimeter	Fluke 112	90090455	Fluke USA	36 M	-	30.04.2018
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR) NSA	-	ETS Lindgren / CETECOM	24 M	-	31.03.2019
489	EMI Test Receiver	ESU40	1000-30	Rohde & Schwarz	12 M	-	18.05.2019
502	band reject filter	WRCG 1709/1786- 1699/1796-	SN 9	Wainwright	pre-m	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.03.2018
547 549	Univ. Radio Communication Tester Log.Per-Antenna	CMU 200 HL 025	835390/014 1000060	Rohde & Schwarz Rohde & Schwarz	12 M 36/12 M	-	05.07.2018 31.07.2018
	System CTC S-VSWR Verification SAR-	System EMI Field SAR S-	1000000	ETS			
550	EMI	VSWR	-	Lindgren/CETECOM	24 M	-	30.03.2019
558	System CTC FAR S-VSWR	System CTC FAR S- VSWR	-	CTC	24 M	-	08.08.2019
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre-m	-	
597 600	Univ. Radio Communication Tester	CMU 200 NRVD (Reserve)	100347 834501/018	Rohde & Schwarz Rohde & Schwarz	pre-m 24 M	-	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080	Rohde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	
612	DC power supply	E3632A	MY 40001321	Agilent	pre-m	2	
613	Attenuator	R416120000 20dB 10W	Lot. 9828	Radiall	pre-m	2	
616	Digitalmultimeter Carting 19	Fluke 177	88900339	Fluke	24 M	-	30.05.2018
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	-	2	
618	Power Splitter/Combiner Power Splitter/Combiner	50PD-634 50PD-634	600994 600995	JFW Industries USA JFW Industries, USA	-	3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	16.05.2018
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.4	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet 1m	-	KogiLink	_	2	
638	HDMI Kabel with Ethernet 1,5 m flach	HDMI cable with Ethernet	<u> </u>	Reichelt	_	2	
640	HDMI cable 2m rund	HDMI cable 2m rund	-	Reichelt	_	2	
	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	12 M	-	24.05.2018
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2018
671	DC-power supply 0-5 A	EA-3013S	101620	Elektro Automatik	pre-m	2	
678	Power Meter Spectrum Analyzer	NRP FSU 26	101638 200571	Rohde&Schwarz Rohde & Schwarz	pre-m 12 M	-	17.05.2018
				Narda Safety Test			
686	Field Analyzer	EHP-200A	160WX30702	Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	17.05.2018
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre-m	-	16.05.2010
690	Spectrum Analyzer OSP120 Base Unit	FSU OSP120	100302/026 101183	Rohde&Schwarz Rohde & Schwarz	12 M 12 M	-	16.05.2018 22.05.2018
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
697	Power Splitter	ZN4PD-642W-S+	165001445	Mini-Circuits		2	
703	INNCO Antennen Mast	MA 4010-KT080-XPET- ZSS3	MA4170-KT100- XPET-	INNCO	pre-m	-	
704	INNCON Controller	CO 3000-4port	CO3000/933/3841051 6/L	INNCO Systems GmBh	pre-m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	12 M	-	22.02.2018
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	12 M	-	22.02.2018
713	Harmonic Mixer, 50 GHz - 75GHz	FS-Z75	101022	Rohde & Schwarz	12 M	-	22.05.2018
714	Signal Analyzer 67GHz	FSW67	104023	Rohde & Schwarz	24 M	-	03.03.2019
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer Physics	12 M	-	03.08.2018
716	Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101005	RPG Radiometer Physics	12 M	-	13.02.2018
747 748	Spectrum Analyzer Pickett-Potter Horn Antenna	FSU 26 FH-PP 4060	200152 010001	Rohde & Schwarz Radiometer Physiscs	12 M	-	18.05.2018
749	Pickett-Potter Horn Antenna Pickett-potter Horn Antenna	FH-PP 4060 FH-PP 60-90	010001	Radiometer Physics Radiometer Physics	_	1	
749	i iekeu-pouei 110111 Amemiä	111-11 00-70	010003	Naurometer Filysics	<u> </u>		

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	-	-	

6.1.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f System CTC-CTIA-OTA (RefNo . 420)	
	1 g System CTC-FAR-EMS (RefNo . 444)	
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months, between this every 12 months internal validation
	36/12 M	Calibration every 36 months, between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	_	Without calibration

7. Versions of test reports (change history)

Version	Applied changes	Date of release
	Initial release	2017-11-13