TEST REPORT

Test Report No. : UL-RPT-RP-12720775-516-FCC

Applicant	:	Stanley Black & Decker Inc		
Model No.	:	J6112BT		
FCC ID	:	2ANWF-STW		
Technology	:	Bluetooth – Low Energy		
Test Standard(s)	:	FCC Parts 15.207, 15.209(a) & 15.247		
		For details of applied tests refer to test result summary		

1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.

- 2. The results in this report apply only to the sample tested.
- 3. The test results in this report are traceable to the national or international standards.
- 4. Test Report Version 1.0
- 5. Result of the tested sample: **PASS**

Frame La

Prepared by: Krume, Ivanov Title: Laboratory Engineer Date: 09 May 2019

notare

Approved by: Ajit, Phadtare Title: Lead Test Engineer Date: 09 May 2019

This laboratory is accredited by DAkkS. The tests reported herein have been performed in accordance with its' terms of accreditation.

UL INTERNATIONAL GERMANY GMBH Hedelfinger Str. 61 70327 Stuttgart, Germany STU.CTECHLab@ul.com This page has been left intentionally blank.

Table of Contents

1. Customer Information	4
1.1. Applicant Information	4
1.2. Manufacturer Information	4
2. Summary of Testing	5
	5
	5
Location	5 5
Date information	5
	6
	6
2.4. Deviations from the Test Specification	6
3. Equipment Under Test (EUT)	7
	7
	7
	7
	8
	8
	8 8
4. Operation and Monitoring of the EUT during Testing	
	9
4.2. Configuration and Peripherals	9
5. Measurements, Examinations and Derived Results1	10
	10
	11
	11
	13
I	15 19
	28
6. Measurement Uncertainty	
7. Used equipment	33
8. Report Revision History	₹∡

<u>1. Customer Information</u>

1.1. Applicant Information

Company Name:	Stanley Black & Decker Inc	
Company Address:	400 Executive Blvd. S, Southington, CT 06489 USA	
Contact Person:	Mr.Simon Aman	
Contact E-Mail Address:	Simon.aman@sbdinc.com	
Contact Phone No.:	+ 1 (860)-406-9103	

1.2. Manufacturer Information

Company Name:	Stanley Black & Decker Inc	
Company Address:	Via Roma 5; Gemonio (VA° 21036 Italy	
Contact Person:	Mr.Marco Zambon	
Contact E-Mail Address:	Marco.zambon@sbdinc.com	
Contact Phone No.:	00390332790544	

2. Summary of Testing

2.1. General Information

Applied Standards

Specification Reference:	47CFR15.247	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247	
Specification Reference:	47CFR15.207 and 47CFR15.209	
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 and 15.209	
Test Firm Registration:	399704	

Location

Location of Testing:	UL International Germany GmbH		
	Hedelfinger Str. 61		
	70327 Stuttgart		
	Germany		

Date information

Order Date:	14 February 2019	
EUT arrived:	21 March 2019	
Test Dates:	21 March 2019 to 01 April 2019	
EUT returned:	-/-	

2.2. Summary of Test Results

Clause	Measurement	Complied	Did not comply	Not performed	Not applicable
Part 15.207	Transmitter AC Conducted Emissions ⁽¹⁾				\boxtimes
Part 15.247(a)(2)	Transmitter Minimum 6 dB Bandwidth	\boxtimes			
Part 15.35(c)	Transmitter Duty Cycle	\boxtimes			
Part 15.247(e)	Transmitter Power Spectral Density ⁽²⁾			\boxtimes	
Part 15.247(b)(3)	Transmitter Maximum Peak Output Power	\boxtimes			
Part 15.247(d)/15.209(a)	Transmitter Radiated Emissions	\boxtimes			
Part 15.247(d)/15.209(a)	Transmitter Band Edge Radiated Emissions	\boxtimes			

Note:

- 1. The EUT cannot operate during charing, so no AC conducted measurements needed
- In accordance with KDB 558074 D01 section 8.4 referencing ANSI C63.10:2013, subclause 11.10.1, PSD is not required if the maximum conducted output power is less than the PSD limit of 8 dBm / 3 kHz. The PSD level is therefore deemed to be equal to the measured total output power.

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 558074 D01 DTS Meas Guidance v05r01 February 11, 2019	
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Proto Smart Torque Wrench	
Model Name or Number:	J6112BT	
Test Sample Serial Number:	X020005 (Radiated sample)	
Hardware Version Number:	1.4	
Software Version Number:	V0.27	
FCC ID:	2ANWF-STW	

Brand Name:	Proto Smart Torque Wrench
Model Name or Number:	J6112BT
Test Sample Serial Number:	X020005(Conducted sample with RF port)
Hardware Version Number:	1.4
Software Version Number:	V0.27
FCC ID:	2ANWF-STW

3.2. Description of EUT

The equipment under test was a Smart Torque Wrench supporting Bluetooth Low Energy.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Technology Tested:	Bluetooth Low Energy (Digital Transmission System)			
Type of Unit:	Transceiver			
Channel Spacing:	2 MHz			
Modulation:	GFSK			
Data Rate:	1 Mbps			
Power Supply Requirement(s):	Nominal	3.6 V DC		
Power Supply Type(s):	Internal Rechargebale Battery			
Maximum Conducted Output Power:	-8.4 dBm			
Antenna Gain:	0.5 dBi			
Antenna Type:	Ceramic Chip Antenna			
Antenna Details:	Manufacturer: Johanson Technology Model No.: 2450AT18A100 Version 1.3			
Transmit Frequency Range:	2402 MHz to 2480 MHz			
Transmit Channels Tested:	Channel ID	RF Channel Index	Channel Frequency (MHz)	
	Bottom	0	2402	
	Middle	17	2440	
	Top 39 2480			

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

A. <u>Support Equipment (In-house)</u>

ltem	Description	Brand Name	Model Name or Number	Serial Number
1	-/-	-/-	-/-	-/-

B. <u>Support Equipment (Manufacturer supplied)</u>

ltem	Description	Brand Name	Model Name or Number	Serial Number
1	-/-	-/-	-/-	-/-

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

⊠ Transmitting at maximum power in Bluetooth LE mode with modulation, maximum possible data length available and Pseudorandom Bit Sequence 9.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- The EUT was powered via fully charged internal battery.
- Channels, packet lengths and other settings were set, using the on/off button of the EUT.
- The EUT conducted sample was used for 6 dB bandwidth and maximum peak output power.
- Before starting final radiated measurements "worst case verification" with EUT in Standing & EUT in Laying position was performed by Lab.
- EUT in Laying position found to be the worst case therefore this report includes relevant results.
- EMC32 V10.1.0 Software was used for the Radiated spurious emission measurement.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

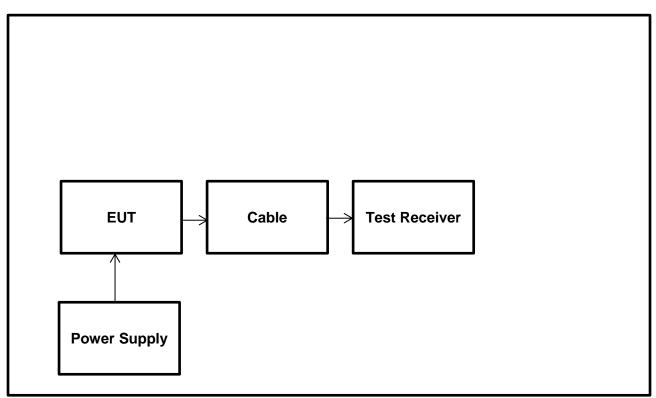
TEST REPORT VERSION 1.0

5.2.1. Transmitter Minimum 6 dB Bandwidth

Test Summary:

Test Engineer:	Abdoufataou Salifou Test Date: 29 March 2		29 March 2019	
Test Sample Serial Number:	X020005(Conducted sample with RF port)			
Test Site Identification	lentification SR 9			

FCC Reference:Part 15.247(a)(2)	
	FCC KDB 558074 Section 8.2 referring
Test Method Used:	ANSI C63.10:2013 Section 11.8.1 Option 1

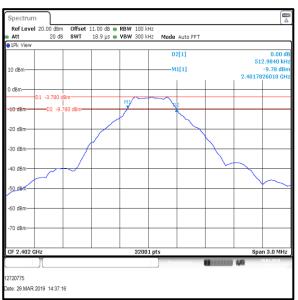

Environmental Conditions:

Temperature (°C):	23.0
Relative Humidity (%):	27

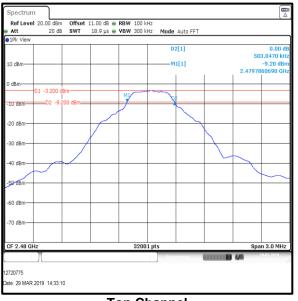
Notes:

- 6 dB DTS bandwidth tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.2 referring ANSI C63.10:2013 Section 11.8.1 Option 1 measurement procedure. The spectrum analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
- 2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors. The RF cable attenuation (1.0 dB@2.4GHz) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input was added as a reference level offset (11.0 dB) to each of the conducted plots.

Test Setup:

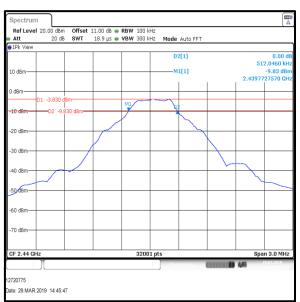


ISSUE DATE: 09 MAY 2019


Transmitter Minimum 6 dB Bandwidth (continued)

Results:

Test Channel	6 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)	Result
Bottom	512.984	≥500	12.984	Complied
Middle	512.046	≥500	12.046	Complied
Тор	503.047	≥500	3.047	Complied



Bottom Channel

Middle Channel

5.2.2.Transmitter Duty Cycle

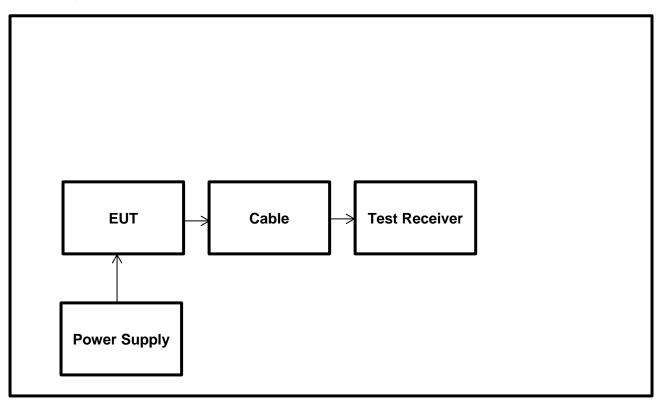
Test Summary:

Test Engineer:	Abdoufataou SalifouTest Date:29 March 2		29 March 2019
Test Sample Serial Number:	X020005(Conducted sample with RF port)		
Test Site Identification	SR 9		

FCC Reference:	Part 15.35(c)
Test Method Used:	FCC KDB 558074 Section 6.0

Environmental Conditions:

Temperature (°C):	23.1
Relative Humidity (%):	27


Note:

The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

10 log (1 / (On Time / [Period or 100 ms whichever is the lesser])).

BLE duty cycle: 10 log (1 / (2102.063 µs/ 2226.563µs)) = 0.3 dB

Test Setup:

Transmitter Duty Cycle (continued)

Results:

Pulse Duration	Period	Duty Cycle Correction
(μs)	(μs)	(dB)
2102.063	2226.563	0.3

Spectrum	J					
Ref Level 20.0	DO dBm Offset	11.00 dB 👄	RBW 3 MHz			
👄 Att	20 dB 😑 SWT	3 ms 👄	VBW 10 MHz			
SGL						
●1Pk View						
				D3[1]		0.55 dB
10 dBm						2.2265625 ms
				M1[1]		-4.41 dBm
0 dBm						710.6250 µs
						A A
-10 dBm						
00 d0						
-20 dBm						
-30 dBm						
-so abiii						
-40 dBm						
	Los Joh					1141.00
-50 dBm						del de p
-60 dBm	1					սես և
-70 dBm	l di data					1414 <u>1</u>
-70 ubiii	r					1
CF 2.44 GHz			32001 p	ts		300.0 µs/
Marker						
Type Ref Tr			Y-value	Function	Function Re	esult
M1		625 µs	-4.41 dBm			
D2 M1 D3 M1	1 2.10200 1 2.22650		0.62 dB 0.55 dB			
	2,22030	220 1113	0,33 UB)		20.02.2010
	Prody 20.03.2019					
10700775						
12720775						
Date: 29.MAR.2019	14:51:30					

5.2.3. Transmitter Maximum Peak Output Power

Test Summary:

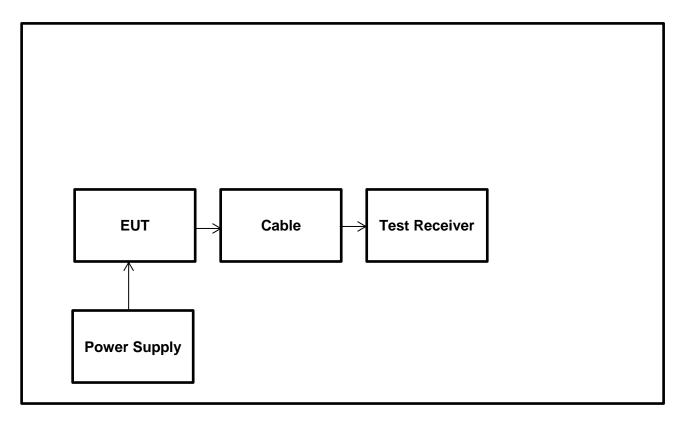
Test Engineer:	Abdoufataou Salifou Test Date: 29 March 2019			
Test Sample Serial Number:	X020005(Conducted sample with RF port)			
Test Site Identification	SR 9			

FCC Reference:	Part 15.247(b)(3)
To at Mathematica	FCC KDB 558074 Section 8.3.1.1 referring
Test Method Used:	ANSI C63.10 Section 11.9.1.1

Environmental Conditions:

Temperature (°C):	23.2
Relative Humidity (%):	27

Notes:


- 1. Conducted power tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.3.1.1 referring ANSI C63.10 Section 11.9.1.1 with the RBW ≥ *DTS bandwidth* procedure.
- 2. The signal analyser resolution bandwidth was set to 3 MHz and video bandwidth of 10 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 10 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
- 3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors. The RF cable attenuation (1.0 dB@2.4GHz) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input was added as a reference level offset (11.0 dB) to each of the conducted plots.
- 4. The measurement was made with highest possible duty cycle.
- 5. The conducted power was added to the declared antenna gain to obtain the EIRP.

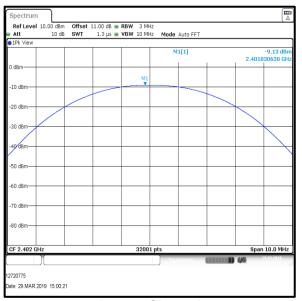
ISSUE DATE: 09 MAY 2019

Transmitter Maximum Peak Output Power (continued)

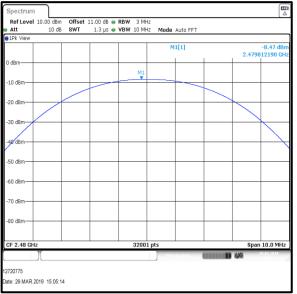
Test setup:

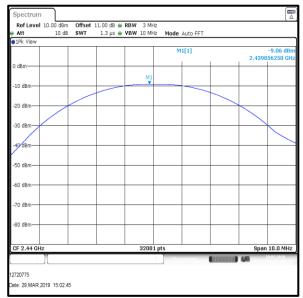
Transmitter Maximum Peak Output Power (continued)

Results:


Test Channel	Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	-9.1	30.0	39.1	Complied
Middle	-9.0	30.0	39.0	Complied
Тор	-8.4	30.0	38.4	Complied

Test Channel	Corrected Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	-9.1	0.5	-8.6	36.0	44.6	Complied
Middle	-9.0	0.5	-8.5	36.0	44.5	Complied
Тор	-8.4	0.5	-7.9	36.0	43.9	Complied


Result: Pass


Transmitter Maximum Peak Output Power (continued)

Bottom Channel

Top Channel

Middle Channel

5.2.4. Transmitter Radiated Emissions

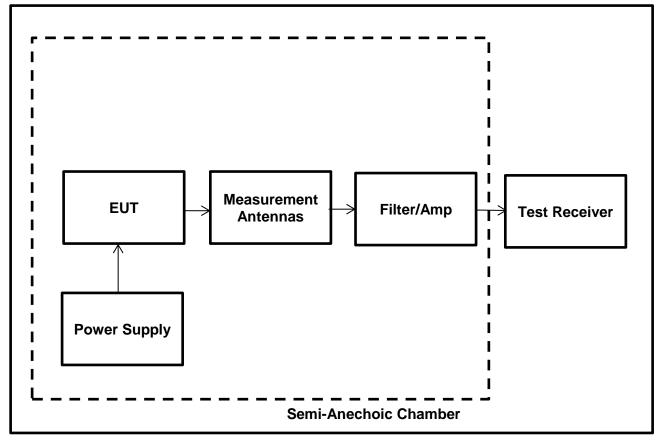
Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	21 & 22 March 2019
Test Sample Serial Number:	X020005 (Radiated sample)		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	FCC KDB 558074 Sections 8.5 & 8.6 referring ANSI C63.10 Sections 11.10 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.5
Frequency Range	30 MHz to 1000 MHz

Environmental Conditions:

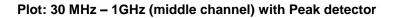
Temperature (°C):	21
Relative Humidity (%):	21

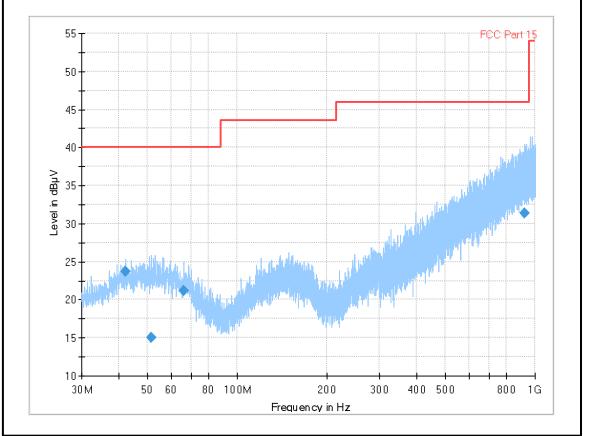

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. The preliminary scans showed similar emission levels below 1 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- 3. All emissions shown on the pre-scans were investigated and found to be ambient, or > 20 dB below the appropriate limit or below the noise floor of the measurement system. Therefore the highest peak noise floor reading of the measuring receiver was recorded in the table below.
- 4. All other emissions shown on the pre-scan plots were investigated and found to be ambient, or >20 dB below the applicable limit or below the measurement system noise floor and therefore not recorded.
- 5. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak noise floor reading of the measuring receiver was recorded as shown in the table below.
- 6. Measurements below 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 7. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
- 8. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 120 kHz, using a CISPR quasi-peak detector and span big enough to see the whole emission.

Transmitter Radiated Emissions (continued)

Test Setup:




Transmitter Radiated Emissions

TEST REPORT VERSION 1.0

Results:	Peak /	Middle	Channel

Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	Limit (dBµV/m)	Margin (dB)	Result
42.240	Vertical	23.76	40.00	16.24	Complied
51.555	Vertical	14.98	40.00	25.02	Complied
65.955	Vertical	21.23	40.00	18.77	Complied
920.125	Vertical	31.33	46.00	14.67	Complied

Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.

Result: Pass

Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	21 & 22 & 27 March 2019 & 01 April 2019
Test Sample Serial Number:	X020005 (Radiated sample)		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)	
FCC KDB 558074 Sections 8.5 & 8.6 referring		
Test Method Used:	ANSI C63.10 Sections 11.10 and 11.12	
	ANSI C63.10:2013 Sections 6.3 and 6.6	
Frequency Range	1 GHz to 25 GHz	

Environmental Conditions:

Temperature (°C):	21 & 22.6 & 23
Relative Humidity (%):	21 & 27 & 22

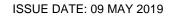
Notes:

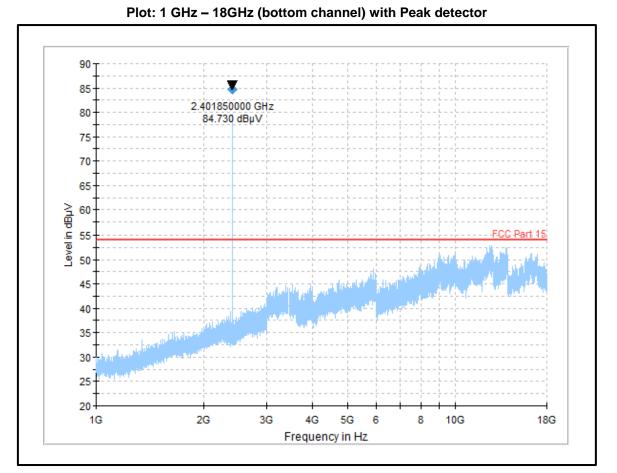
- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. All other emissions shown on the pre-scan plot were investigated and found to be ambient or >20 dB below the applicable limit or below the measurement system noise floor.
- 3. No spurious emissions were detected above the noise floor of the measuring receiver therefore the highest peak noise floor reading of the measuring receiver was recorded as shown in the table above. The peak level was compared to the average limit as opposed to being compared to the peak limit because this is the more onerous limit.
- 4. The emission shown on the 1 GHz to 4 GHz plot is the EUT fundamental.
- 5. Pre-scans above 1 GHz were performed in a fully anechoic chamber (Asset Number K0002) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 6. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
- 7. *In accordance with ANSI C63.10 Section 6.6.4.3, Note 1, if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 8. The reference level for the emission in the non-restricted band was established by following KDB 558074 Section 11.2 procedure.
- 9. **-20 dBc limit applies in non-restricted band as the conducted output power measurements were performed using a peak detector.
- 10. For frequency range between 18 GHz and 25 GHz, no critical emission was found so only the measurement receiver noise floor level has been measured and recorded in the table .
- 11. The preliminary scans showed similar emission levels above 18 GHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.

Results: Peak / Bottom Channel

Frequency	Antenna	Level	Average Limit	Margin	Result	
(MHz)	Polarization	(dBµV/m)	(dBµV/m)	(dB)		
No spurious was found						

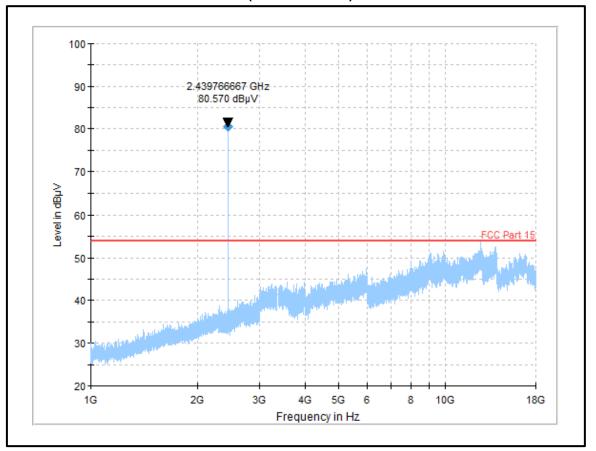
Results: Peak / Middle Channel


Frequency (MHz)	Antenna Polarization	Level (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Result	
No spurious was found						

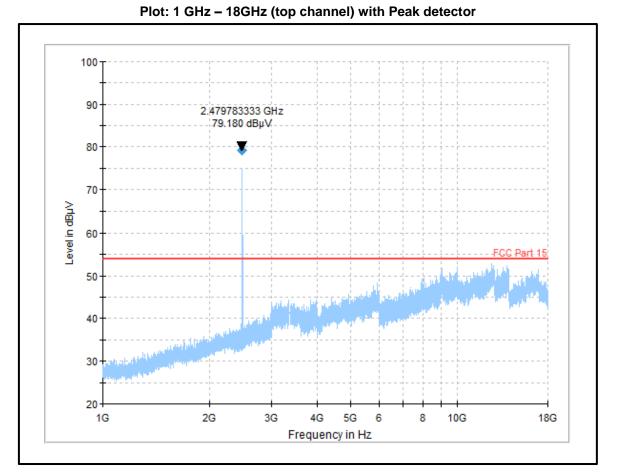

Results: Peak / Top Channel

Frequency	Antenna	Level	Average Limit	Margin	Result		
(MHz)	Polarization	(dBµV/m)	(dBµV/m)	(dB)			
No spurious was found							

Result: Pass



Note: The above plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.


ISSUE DATE: 09 MAY 2019

TEST REPORT VERSION 1.0

Plot: 1 GHz – 18GHz (middle channel) with Peak detector

Note: The above plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

Note: The above plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

Results: Peak / Bottom Channel

Frequency	Antenna	Peak Level	Average Limit	Margin	Result		
(MHz)	Polarization	(dBμV/m)	(dBµV/m)	(dB)			
No critical spurious was found							

Plot: 18 GHz – 25GHz (middle channel) with Peak detector

Spectrum	ı								₽
	108.00 dB			■ RBW 1 M					
Att	0	db SWT	32 ms	👄 УВЖ З М	1Hz Mode	Auto Swee	p		
●1Pk View									
					M	1[1]			50.59 dBµV 55230 GHz
100 dBµV—								20.1	33230 GHZ
90 dBµV—									
80 dBµV—									
	D1 74.000	dвµ∨ I							
70 dBµV—									
60 dBµV									
	—D2 54	.000 dBµV—	11						
50 dBµV	الدريقية المراجع	distant in the second la	The second se		t is fait		1	and state of a state of a	and the statement of
disease of the second	Contract of Contract of Contract	And a state of the second	and the second second second	الالاحداد المعالمين مشالل		A search of the local sector of the	and the second states	The second s	
40 dBµV			and the stress			and the second	Contraction of the second s		
30 dBµV									
20 dBµV—									
10 dBµV—									
Start 18.0	GHz			3200	0 pts	1		Stop	25.0 GHz
	Υ				Mea	suring		1/1	7.03.2019
								-	
12720775									
Date: 27.MAR.	2019 10:27:	12							

Note: The above plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

5.2.5. Transmitter Band Edge Radiated Emissions

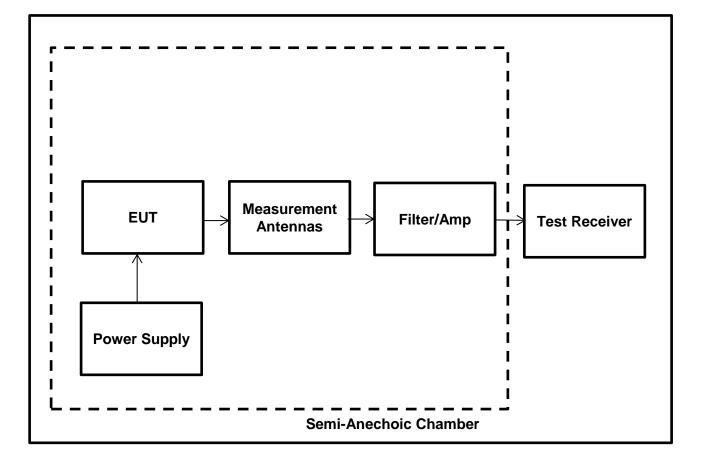
Test Summary:

Test Engineer:	Krume Ivanov	ume Ivanov Test Date: 21 & 22 March 2019 & 01 Ap	
Test Sample Serial Number:	X020005 (Radiated sample)		
Test Site Identification	SR 1/2		

FCC Reference: Parts 15.247(d) & 15.209(a)		
Test Method Used:	FCC KDB 558074 Sections 8.7 referring ANSI C63.10:2013 Section 6.10.4, 6.10.5 & Section 11.11	

Environmental Conditions:

Temperature (°C):	21 & 22.8
Relative Humidity (%):	21 & 22


Notes:

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- The maximum peak conducted output power was previously measured. In accordance with FCC KDB 558074 Section 8.7 lower band edge measurement was performed with a peak detector and the -20 dBc limit applied.
- 3. As the lower band edge falls within a non-restricted band, only peak measurements are required. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. Marker frequencies and levels were recorded.
- 4. As the upper band edge falls within a restricted band both peak and average measurements were recorded by placing a marker at the edge of the band. For peak measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. For average measurements the test receiver resolution bandwidth was set to 1 MHz and the video bandwidth 10 Hz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker was placed on the band edge spot frequencies and a second marker placed on the highest emission level in the adjacent restricted band of operation (where a higher level emission was present). Marker frequencies and levels were recorded.
- 5. There is a restricted band 10 MHz below the lower band edge. The test receiver was set up as follows: the RBW set to 1 MHz, the VBW set to 3 MHz, with the sweep time set to auto couple. Peak and average measurements were performed with their respective detectors. Markers were placed on the highest point on each trace.
- 6. The measured Average Level has been corrected by adding Duty Cycle Correction Factor (0.3 dB) into it.

ISSUE DATE: 09 MAY 2019

Transmitter Band Edge Radiated Emissions (continued)

Test Setup:

ISSUE DATE: 09 MAY 2019

Transmitter Band Edge Radiated Emissions (continued)

Results: Lower Band Edge/Peak

Frequency	Peak Level	-20 dBc Limit	Margin	Result
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	
2399.59	37.02	64.3	27.28	Complied

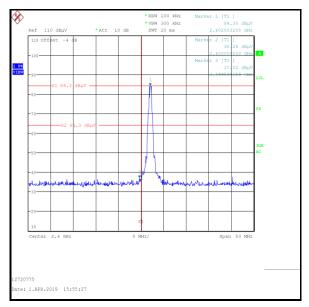
Results: Upper Band Edge/Peak

Frequency	Peak Level	Peak Limit	Margin	Result
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	
2483.50	45.81	74.0	28.19	Complied

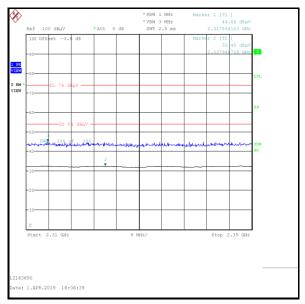
Results: Upper Band Edge/Average

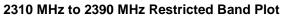
Frequency (MHz)	Measured Average Level (dBµV/m)	Corrected Average Level (dBµV/m)	Average Limit (dBμV/m)	Margin (dB)	Result
2483.50	36.07	36.37	54.0	17.63	Complied

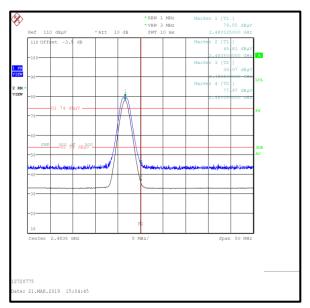
Results: 2310 to 2390 MHz Restricted Band/Peak


Frequency	Peak Level	Peak Limit	Margin	Result
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	
2317.56	44.86	74.0	29.14	Complied

Results: 2310 to 2390 MHz Restricted Band/Average


Frequency (MHz)	Measured Average Level (dBμV/m)	Corrected Average Level (dBµV/m)	Average Limit (dBμV/m)	Margin (dB)	Result	
2337.94	32.45	32.75	54.0	21.25	Complied	




Transmitter Band Edge Radiated Emissions (continued)

Lower Band Edge Peak Measurement

Upper Band Edge Peak & Average Measurement

6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Confidence Level (%)	Calculated Uncertainty
Conducted Maximum Peak Output Power	95%	±0.59 dB
Radiated Spurious Emissions	95%	±3.10 dB
Band Edge Radiated Emissions	95%	±3.10 dB
Minimum 6 dB Bandwidth	95%	±0.87 %

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

7. Used equipment

Test site: SR 1/2

ID	Manufacturer	Туре	Model	Serial No.	Calibration Date	Cal. Cycle
377	BONN Elektronik	Amplifier, Low Noise Pre	BLMA 0118-1A	025294B	7/12/2018	12
383	Rohde & Schwarz	Antenna, Rod	HFH2-Z1	890151/11	7/14/2017	24
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	055929	7/12/2018	12
460	Deisl	Turntable	DT 4250 S		n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9168	9168-240	8/8/2016	36
495	Rohde & Schwarz	Antenna, Log Periodical	HL050	100296	7/20/2016	36
587	Maturo	antenna mast, tilting	TAM 4.0-E	011/7180311	n/a	n/a
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
591	Rohde & Schwarz	Receiver	ESU 40	100244/040	7/12/2018	12
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	4/8/2014	60
615	Wainwright Instruments	Highpass Filter 1GHz	WHKX12-	3	Lab verification	n/a
620	Bonn Elektronik	pre-amplifier	BLNA 0110-01N	1510111	7/12/2017	24
628	Maturo	Antenna mast	CAM 4.0-P	224/19590716	n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M	MAT002	n/a	n/a

Test site: SR 9

ID	Manufacturer	Туре	Model	Serial No.	Calibration Date	Cal. Cycle
636	Rohde & Schwarz	switching unit	OSP120	101698	7/12/2018	12
637	Rohde & Schwarz	Spectrum Analyzer	FSV40	101587	7/11/2018	12
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	55929	7/12/2018	24
195	SPS	Power Supply	TOE8842-24	51455	Verified by Multimeter	12
216	Agilent	Multimeter	34401A	US36017458	7/11/2017	24

8. Report Revision History

Version	Revision Details			
Number	Page No(s)	Clause	Details	
1.0	-	-	Initial Version	