

FCC RADIO TEST REPORT FCC ID: 2ANUXMT101BTN

Product: Wireless Smart Gateway

Trade Name: TASHI, Unitech, WELLDO, TVPRO

Model Name: MT101

Serial Model: HD3 S

Prepared for

TASHI Smartech Co., Ltd

3F, No.188, Baoqiao Road, Xindian District, New Taipei City 231, Taiwan R.O.C

Prepared by

Dongguan Yaxu (AiT) Technology Limited
No.22, Jinqianling Third Street, Jitigang, Huangjiang, Dongguan,
Guangdong, China

Report No. E-Y1708893-1 - Page 2 of 75 -

TEST RESULT CERTIFICATION

Manufacture's Name TASH	I Smartech Co., Ltd
	o.188, Baoqiao Road, Xindian District, New Taipei City 231, n R.O.C
Product description	
Product name Wirele	ess Smart Gateway
Model and/or type referenceMT10	1
Additional Model HD3 S	S
Standards FCC F	Part15.247
Test procedure ANSI	C63.10-2013
	as been tested by AiT, and the test results show that the equipment ce with the FCC requirements. And it is applicable only to the tested
This report shall not be reprodu	iced except in full, without the written approval of AiT, this documen
may be altered or revised by A	T, personal only, and shall be noted in the revision of the document
Date of Test	
Date (s) of performance of tests	₃ Jul. 02 2017 ~Jul. 11 2017
Date of Issue	Jul. 11 2017
Test Result	Pass

Testing Engineer

Technical Manager

Authorized Signatory:

Jack Yu
(Jack Yu)

(Jerry You)

(Can Liu)

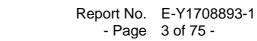


Table of Contents Page

1 . SUMMARY OF TEST RESULTS	5
1.1 TEST FACILITY	7
1.2 MEASUREMENT UNCERTAINTY	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	9
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3 . EMC EMISSION TEST	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	15
3.1.2 TEST PROCEDURE	16
3.1.3 DEVIATION FROM TEST STANDARD	16
3.1.4 TEST SETUP 3.1.5 EUT OPERATING CONDITIONS	16 16
3.1.6 TEST RESULTS	17
3.2 RADIATED EMISSION MEASUREMENT	19
3.2.1 RADIATED EMISSION LIMITS	19
3.2.2 TEST PROCEDURE	19
3.2.3 DEVIATION FROM TEST STANDARD	22
3.2.4 TEST SETUP	23
3.2.5 EUT OPERATING CONDITIONS	24
3.2.6 TEST RESULTS (BETWEEN 9KHZ – 30 MHZ)	25
3.2.7 TEST RESULTS (BETWEEN 30MHZ – 1GHZ)	26
3.2.8 TEST RESULTS (ABOVE 1000 MHZ)	28
4 . POWER SPECTRAL DENSITY TEST	52
4.1 APPLIED PROCEDURES / LIMIT	52
4.1.1 TEST PROCEDURE	52
4.1.2 DEVIATION FROM STANDARD 4.1.3 TEST SETUP	52 52
4.1.4 EUT OPERATION CONDITIONS	52 52
4.1.5 TEST RESULTS	53
5 . BANDWIDTH TEST	59
5.1 APPLIED PROCEDURES / LIMIT	59
5.1.1 TEST PROCEDURE	59

Report No. E-Y1708893-1 - Page 4 of 75 -

Table of Contents	Page
5.1.2 EUT OPERATION CONDITIONS 5.1.3 TEST RESULTS	59 60
6 . PEAK OUTPUT POWER TEST	66
6.1 APPLIED PROCEDURES / LIMIT	66
6.1.1 TEST PROCEDURE	66
6.1.2 DEVIATION FROM STANDARD	66
6.1.3 TEST SETUP	66
6.1.4 EUT OPERATION CONDITIONS	66
6.1.5 TEST RESULTS	67
7. 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	68
7.1 DEVIATION FROM STANDARD	68
7.2 TEST SETUP	68
7.3 EUT OPERATION CONDITIONS	68
7.4 TEST RESULTS	69
8 . ANTENNA REQUIREMENT	73
8.1 STANDARD REQUIREMENT	73
8.2 EUT ANTENNA	73
9 . EUT TEST PHOTO APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	74

Report No. E-Y1708893-1 - Page 5 of 75 -

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

Test Item	FCC Part No.	lo. Requirements	
DTS (6 dB) Bandwidth	15.247(a)(2)	≥ 500 kHz.	PASS
Maximum Peak Conducted Output Power	15.247(b)(3)	For directional gain:< 30dBm – (G[dBi] –6 [dB]),peak; Otherwise :< 30dBm, peak.	PASS
Transmitter Power Spectral Density	ral For directional gain :< 8dBm/3 kHz – (G[dBi] –6[dB]), peak. Otherwise :< 8dBm/3 kHz, peak.		PASS
Conducted Out of band emission measurement	15.247(d)	< -20dBr/100 kHz if total peak power ≤power limit.	PASS
Spurious Radiated Emissions	15.247(d) 15.209 15.35(b)	FCC Part 15.209&15.35(b) field strength limit;	PASS
AC Power Line Conducted Emissions	15.207	FCC Part 15.207 conducted limit;	PASS

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Summary of measurement results

	Summary of measurement results									
Test Specific ation clause	Test case	Test Mode	Test Channel	Record In Rep		Pass	Fail	NA	NP	Remark
§15.24 7(b)(4)	Antenna gain	802.11b	✓ Lowest✓ Middle✓ Highest	802.11b	✓ Lowest✓ Middle✓ Highest	\boxtimes				complie s
§15.24 7(e)	Power spectral density	802.11b 802.11g 802.11n HT20	 Lowest Middle Highest	802.11b 802.11g 802.11n HT20	 Lowest Middle Highest	\boxtimes				complie s
§15.24 7(a)(2)	Spectru m bandwidt h - 6 dB bandwidt h	802.11b 802.11g 802.11n HT20	∠ Lowest∠ Middle∠ Highest	802.11b 802.11g 802.11n HT20	□ Lowest □ Middle □ Highest	\boxtimes				complie s
§15.24 7(b)(3)	Maximu m output power	802.11b 802.11g 802.11n HT20		802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	\boxtimes				complie s
§15.24 7(d)	Band edge complian ce conducte d	802.11b 802.11g 802.11n HT20		802.11b 802.11g 802.11n HT20	☑ Lowest☑ Highest	\boxtimes				complie s
§15.20 5	Band edge complian ce radiated	802.11b 802.11g 802.11n HT20		802.11b 802.11g 802.11n HT20		\boxtimes				complie s

Report No. E-Y1708893-1 - Page 6 of 75 -

§15.24 7(d)	TX spurious emission s conducte d	802.11b 802.11g 802.11n HT20	✓ Lowest✓ Middle✓ Highest	802.11b 802.11g 802.11n HT20	☑ Lowest☑ Middle☑ Highest	\boxtimes		complie s
§15.24 7(d)	TX spurious emission s radiated	802.11b 802.11g 802.11n HT20	✓ Lowest✓ Middle✓ Highest	802.11b	 Lowest Middle Highest	\boxtimes		complie s
§15.10 9	RX spurious emission s radiated	-/-	-/-	-/-	-/-	\boxtimes		complie s
§15.20 9(a)	TX spurious Emission s radiated < 30 MHz	802.11b	-/-	802.11b	-/-	\boxtimes		complie s
§15.10 7(a) §15.20 7	Conduct ed Emission s < 30 MHz	802.11b	-/-	802.11b	-/-	\boxtimes		complie s

1.1 TEST FACILITY

The test facility is recognized, certified or accredited by the following organizations:

.CNAS- Registration No: L6177

Dongguan Yaxu (AiT) technology Limited is accredited to ISO/IEC 17025:2005 general Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the competence of testing and calibration laboratories) on Apr. 18, 2013

.FCC- Registration No: 248337

The 3m Semi-Anechoic Chamber, 3m/10m Open Area Test Site and Shielding Room of Dongguan Yaxu (AiT) Technology Limited have been registered by Federal Communications Commission (FCC) on Aug.29, 2014.

.Industry Canada(IC)-Registration No: IC6819A-1

The 3m Semi-Anechoic Chamber and 3m of Dongguan Yaxu (AiT) Technology Limited have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing on Oct. 01, 2014.

.VCCI- Registration No: 2705

The 3m/10m Open Area Test Site, Shielding Room and 3m Chamber of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on Nov. 21, 2012. The Telecommunication Ports Conducted Disturbance Measurement of Dongguan Yaxu (AiT) Technology Limited have been registered by Voluntary Control Council for Interference on May. 13, 2013.

.TUV NORD

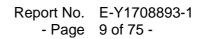
Dongguan Yaxu (AiT) Technology Limited has been assessed on Jun. 13, 2013 that it can carry out EMC tests by order and under supervision of TUV NORD.

.ITS- Registration No: TMPSHA031

Dongguan Yaxu (AiT) Technology Limited has been assessed and included in Intertek Shanghai TMP Program regarding Laboratory facilities and test equipment on Jul.22, 2012.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % $^{\circ}$


No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power,conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Wireless Smart Gateway
Model Name	MT101
Serial number	N/A
Serial Model	HD3 S
Model Difference	All models are identical except model name and colors.
WLAN FCC Operation frequency	IEEE 802.11b:2412-2462MHz IEEE 802.11g:2412-2462MHz IEEE 802.11n HT20:2412-2462MHz
WLAN FCC Modulation Type	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK) IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
Antenna	0dbi, PCB antenna
Ratings	DC 5V, 0.1A
Adapter	M/N:XSG0502000US Input:100-240V~, 50/60Hz, 0.6A Output:5Vdc, 2A
Battery	N/A
HW:	V1.0
SW:	V1.1

2.2 DESCRIPTION OF TEST MODES

IEEE 802.11b/g/n: The product support thirteen channels but only use Eleventh channels in USA.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432		
6	2437		
7	2442		

2.2.1 TEST MODES

Test Case	Test Conditions			
lest Case	Configuration	Description		
DTS (6 dB) Bandwidth	Measurement Method	FCC KDB 558074 §8.2 Option 2		
	Test Environment	NTNV		
		11b_L,11b_M,11b_H		
	EUT Configuration	11g_L,11g_M,11g_H		
	EOT Configuration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§9.1.2		
	Test Environment	NTNV		
Maximum Peak Conducted Output	Test Setup	Test Setup 1		
Power		11b_L,11b_M,11b_H		
1 OWC1	EUT Configuration	11g_L,11g_M,11g_H		
	Lor Comiguration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074 §10.2 (peak PSD).		
	Test Environment	NTNV		
Maximum Power Spectral Density		11b_L,11b_M,11b_H		
Level	EUT Configuration	11g_L,11g_M,11g_H		
	Lot comigaration	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§11.0.		
	Test Environment	NTNV		
Unwanted Emissions into	Test Setup	Test Setup 1		
Non-Restricted Frequency Bands		11b_L,11b_M,11b_H		
	EUT Configuration	11g_L,11g_M,11g_H		
	3	11n HT20_L, 11n HT20_M, 11n		
		HT20_H		
	Measurement Method	FCC KDB 558074§12.2, Conducted		
Have at a Larianiana in the		(antenna-port).		
Unwanted Emissions into	Test Environment	NTNV		
Restricted Frequency Bands		11b_L,11b_M,11b_H		
(Conducted)	EUT Configuration	11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n		
		_ · _ ·		
Unwanted Emissions into	Measurement Method	HT20_H FCC KDB		
Restricted	ivieasurement ivietnou			
Vesilicien		558074§12.1,Radiated(cabinet/case emissions with		
	<u> </u>	CHII99IOH9 WILH		

Report No. E-Y1708893-1 - Page 10 of 75 -

	Impedance matching for antenna-port).
Test Environment	NTNV
EUT Configuration	11b_L,11b_M,11b_H 11g_L,11g_M,11g_H 11n HT20_L, 11n HT20_M, 11n HT20_H

Test Case	Test Conditions			
lest Case	Configuration	Description		
AC Power Line Conducted	Measurement Method	AC mains conducted.		
Emissions	Test Environment	NTNV		
	EUT Configuration	11g_M (Worst Conf.).		

Remark:

- 1. For Radiated Emissions, By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.
- 2. Typical working modes for each IEEE 802.11mode are selected to perform tests. The manufacturer provide special test software(WLAN facility) to control TX duty cycle >98% for TX test. Set the output power to max(PK) as Prescribed by the manufacturer.

Test Mode	Test Modes Description
IEEE 802.11b	IEEE 802.11b with data rate of 1 Mbps using SISO mode.
IEEE 802.11g	IEEE 802.11g with data rate of 6 Mbps using SISO mode.
IEEE 802.11n HT20	IEEE 802.11n with data date of MCS0 and bandwidth of 20MHz using SISO
	mode.

Report No. E-Y1708893-1 - Page 11 of 75 -

2.2.2 EUT operation mode

Test Mode	RF Ch.	TX Freq. [MHz]	RX Freq. [MHz]	Ch. BW [MHz]
	L	Ch No. 1 / 2412MHz		20
IEEE 802.11b	M	Ch No. 6 / 2437 MHz		20
	Н	Ch No. 11/ 2462MHz		20
	L	Ch No. 1 / 2412MHz		20
IEEE 802.11g	M	Ch No. 6 / 2437 MHz		20
	Н	Ch No. 11/ 2462MHz		20
IEEE 802.11n	L	Ch No. 1 / 2412MHz		20
HT20	M	Ch No. 6 / 2437 MHz		20
11120	Н	Ch No. 11/ 2462MHz		20

2.2.3 EUT configuratio

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- \bigcirc supplied by the lab

\circ	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	/
	Multimeter	Manufacturer:	/
		Model No.:	/

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Brand	Model/Type No.	Series No.	Note
E-1	Wireless Smart Gateway	TASHI, Unitech, WELLDO, TVPRO,	MT101	N/A	EUT
E-2	Adapter	N/A	YNQX09T060060VL	N/A	

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	0.8m	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

Report No. E-Y1708893-1 - Page 13 of 75 -

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment No.	Instrument	Manufacturer	Model Name	Serial Number	Specification	Cal. Data	due date
1	Semi-anechoic chamber	Changzhou Chengyu	EC3088	N/A	9*6*6m	10/25/2016	10/24/2017
2	Broadband antenna	R&S	VULB 9160	VULB91 60-516	30MHz-1500 MHz	10/25/2016	10/24/2017
3	Horn antenna	R&S	BBHA 9120D	10087	1GHz-18GH z	06/05/2016	10/24/2017
4	Test receiver	R&S	ESCI	101686	9KHz-3GHz	10/25/2016	10/24/2017
5	EMI Measuring Receiver	R&S	ESR	101660	9KHz-40GHz	10/25/2016	10/24/2017
6	Multi-device controller	MF	MF-7868	MF78680 8762	N/A	10/25/2016	10/24/2017
7	Amplifier	EM	EM-30180	060538	1GHz-18GH z	10/25/2016	10/24/2017
8	Amplifier	Schwarzbeck	BBV 9475	BBV 9475-663	1GHz-18GH z	06/05/2016	06/04/2017
9	Spectrum Analyzer	agilent	E4440B	US44300368	1GHz-26.5GH z	06/05/2016	06/04/2017
10	Test receiver	R&S	ESCI	101689	9KHz-3GHz	10/25/2016	10/24/2017
11	LISN	R&S	NSLK81 26	8126466	9k-30MHz	10/25/2016	10/24/2017
12	LISN	Narda	L2-16B	5589756	9k-30MHz	10/25/2016	10/24/2017
13	Power Meter	Anritsu	ML2495A	N/A	40MHz	10/25/2016	10/24/2017
14	Power sensor	Anritsu	MA2411B	N/A	40MHz	10/25/2016	10/24/2017
15	Radiated Cable 1#	FUJIKURA	5D-2W	01	30MHz-1GHz	10/25/2016	10/24/2017
16	Radiated Cable 2#	FUJIKURA	10D2W	02	1GHz -25GHz	10/25/2016	10/24/2017
17	Conducted Cable 1#	FUJIKURA	1D-2W	01	9KHz-30MHz	10/25/2016	10/24/2017
18	SMA Antenna connector	Dosin	Dosin-SMA	N/A	N/A	10/25/2016	10/24/2017

Report No. E-Y1708893-1 - Page 14 of 75 -

Note: The SMA antenna connector is soldered on the PCB board in order to perform conducted tests and this SMA antenna connector is listed in the equipment list.

The Cal.Interval was one year

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

		Ctondord	
FREQUENCY (MHz)	Quasi-peak	Average	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	CISPR
0.50 -5.0	56.00	46.00	CISPR
5.0 -30.0	60.00	50.00	CISPR

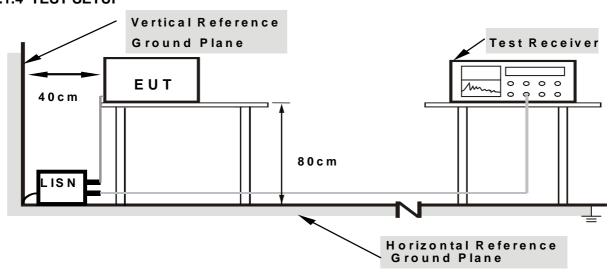
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

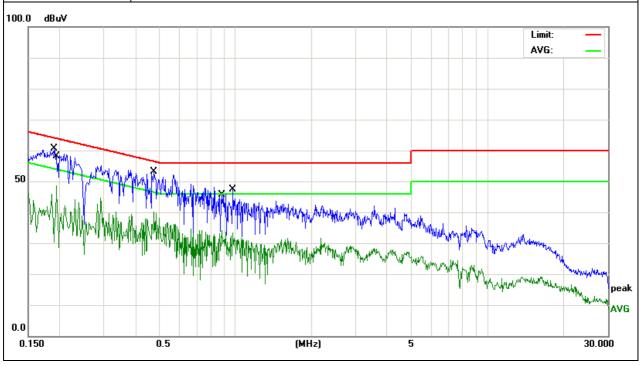
3.1.4 TEST SETUP

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

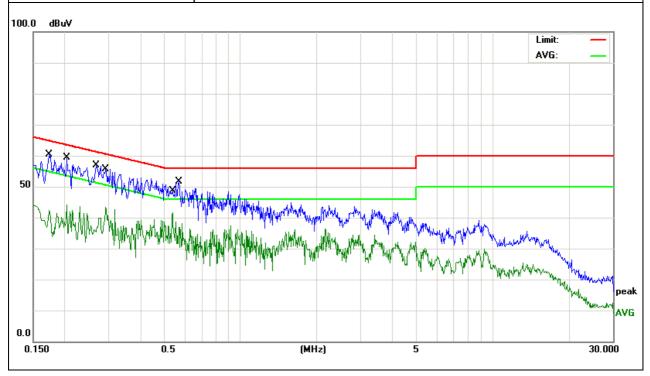


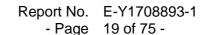
3.1.6 TEST RESULTS

Test Voltage : DC 5V from adapter AC 120V/60Hz Phase:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	0.1904	49.34	11.26	60.60	64.01	-3.41	QP		
2	0.1945	37.33	11.21	48.54	53.84	-5.30	AVG		
3 *	0.4740	43.08	10.04	53.12	56.44	-3.32	QP		
4	0.4740	30.13	10.04	40.17	46.44	-6.27	AVG		
5	0.8820	24.20	9.95	34.15	46.00	-11.85	AVG		
6	0.9780	37.51	9.93	47.44	56.00	-8.56	QP		

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 N/A means All Data have pass Limit




Test Voltage : DC 5V from adapter AC 120V/60Hz Phase: Ν

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1731	48.80	11.50	60.30	64.81	-4.51	QP	
2	0.2040	33.09	11.11	44.20	53.44	-9.24	AVG	
3 *	0.2660	46.15	10.84	56.99	61.24	-4.25	QP	
4	0.2909	32.88	10.47	43.35	50.50	-7.15	AVG	
5	0.5350	31.51	10.00	41.51	46.00	-4.49	AVG	
6	0.5700	41.66	10.00	51.66	56.00	-4.34	QP	

Remark:

- All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.
 N/A means All Data have pass Limit

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted	1 MHz / 1 MHz for Dook, 1 MHz / 10Hz for Average
band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane for below 1GHz and 1.50m above ground plane for above 1GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.

Report No. E-Y1708893-1 - Page 20 of 75 -

5. The EUT minimum operation frequency was 24MHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9 KHz to 25GHz.

6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3
1GHz-18GHz	Horn Antenna	3
18GHz-25GHz	Horn Anternna	3

7. Setting test receiver/spectrum as following table states:

Test Frequency	Test Receiver/Spectrum Setting	Detector	
range			
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP	
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP	
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep	QP	
301V1112-11G112	time=Auto		
	Peak Value: RBW=1MHz/VBW=3MHz,	Peak	
1GHz-40GHz	Sweep time=Auto	reak	
IGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	Peak	
	Sweep time=Auto		

More procudre as follows;

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Report No. E-Y1708893-1 - Page 21 of 75 -

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (± 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

Report No. E-Y1708893-1 - Page 22 of 75 -

- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The antenna is moved spherical over the EUT in different polarizations of the antenna. Final measurement:
- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

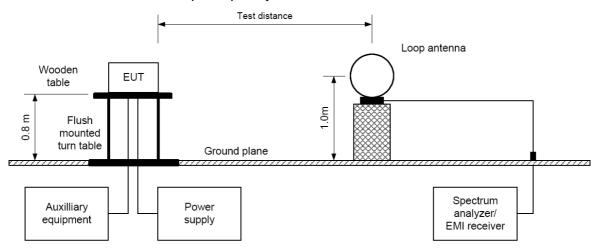
FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)		
RA = Reading Amplitude	AG = Amplifier Gain		
AF = Antenna Factor			

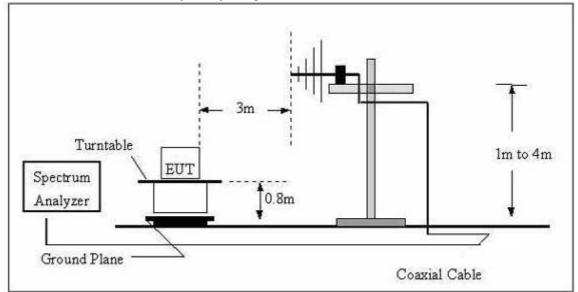
For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

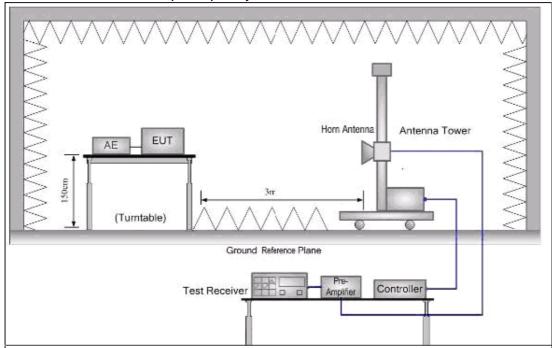

3.2.3 DEVIATION FROM TEST STANDARD

No deviation



3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz


(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Report No. E-Y1708893-1 - Page 24 of 75 -

(C) Radiated Emission Test-Up Frequency Above 1GHz

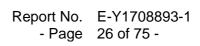
3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No. E-Y1708893-1 - Page 25 of 75 -

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

EUT:	Wireless Smart Gateway	Model Name. :	MT101
Temperature:	20 ℃	Relative Humidtity:	48%
Pressure:	1010 hPa	LIAST VICITADA .	DC 5V from adapter AC 120V/60Hz
Test Mode:	TX	Polarization:	

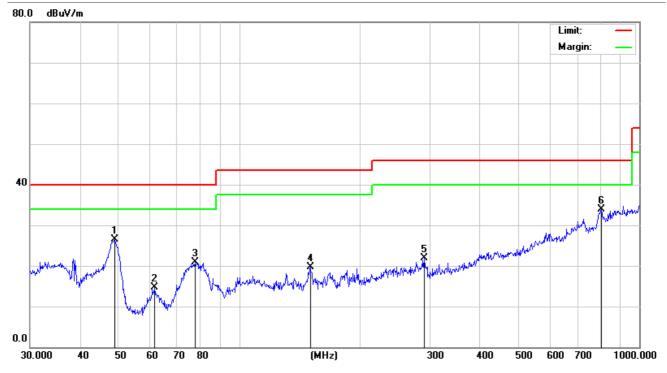

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				Р
				Р

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

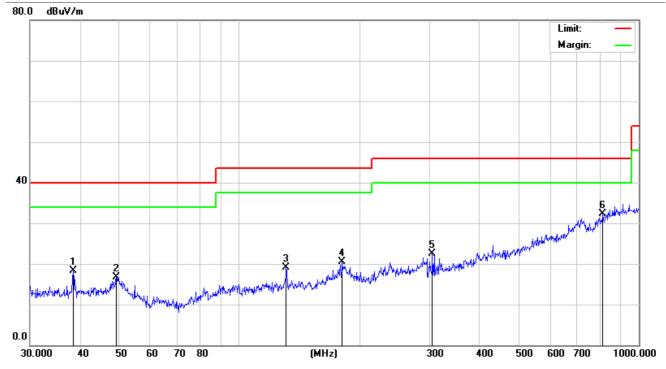
Limit line = specific limits(dBuv) + distance extrapolation factor.



3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Polarization:	Horizontal	LIACT VALTAAA .	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2412		

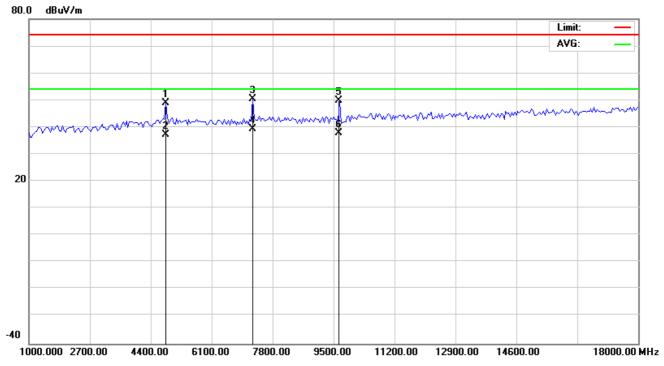
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		48.8429	55.16	-28.68	26.48	40.00	-13.52	QP			
2		61.5618	44.47	-29.69	14.78	40.00	-25.22	QP			
3		77.5928	49.98	-29.11	20.87	40.00	-19.13	QP			
4		150.5378	44.91	-25.29	19.62	43.50	-23.88	QP			
5		290.0172	41.80	-19.90	21.90	46.00	-24.10	QP			
6	*	804.6028	40.11	-6.21	33.90	46.00	-12.10	QP			



Report No. E-Y1708893-1 - Page 27 of 75 -

Polarization:	Vertical	LIAST VAITANA .	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2412		

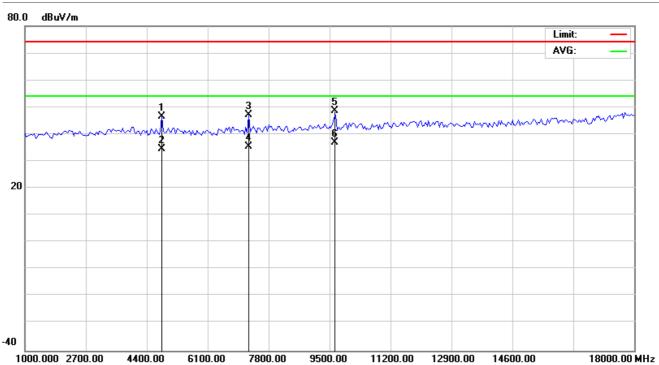
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		38.4809	42.83	-24.47	18.36	40.00	-21.64	QP			
2		49.3594	41.22	-24.42	16.80	40.00	-23.20	QP			
3		131.2965	44.15	-25.05	19.10	43.50	-24.40	QP			
4		181.2834	42.16	-21.64	20.52	43.50	-22.98	QP			
5		304.6099	42.06	-19.62	22.44	46.00	-23.56	QP			
6	*	813.1115	40.43	-8.06	32.37	46.00	-13.63	QP			


Note:test perform on $802.11b/g/n \mod e$, "802.11b TX2412" mode is the worst mode and has been reported.

3.2.8 TEST RESULTS (ABOVE 1000 MHZ)

Polarization:	Horizontal	LIAST VALTADA .	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2412		

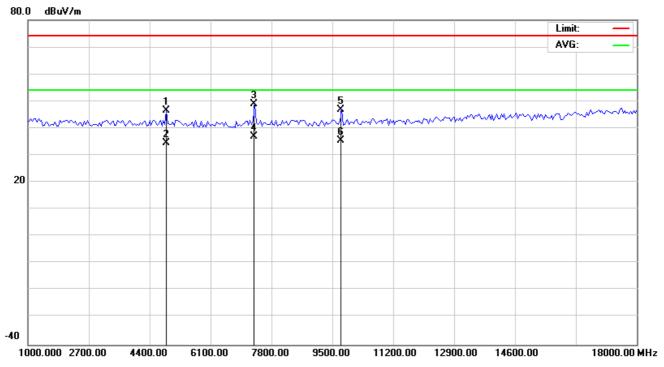
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	4824.000	40.96	8.14	49.10	74.00	-24.90	QP			
2	4	4824.000	29.00	8.14	37.14	54.00	-16.86	AVG			
3	7	7236.000	38.77	11.73	50.50	74.00	-23.50	QP			
4	*	7236.000	27.62	11.73	39.35	54.00	-14.65	AVG			
5	9	9648.000	32.12	17.68	49.80	74.00	-24.20	QP			
6	(9648.000	20.16	17.68	37.84	54.00	-16.16	AVG			



Report No. E-Y1708893-1 - Page 29 of 75 -

Polarization:	Vertical	LIAST VALISAA .	DC 5V from adapter AC 120V/60Hz	
Test Mode:	802.11B TX 2412			

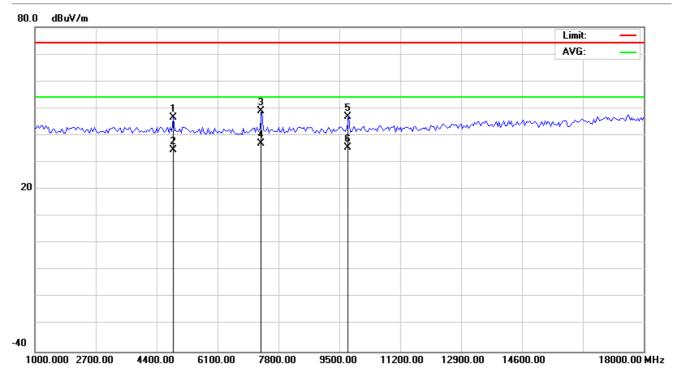
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	4	1824.000	38.46	8.14	46.60	74.00	-27.40	QP			
2	4	1824.000	26.37	8.14	34.51	54.00	-19.49	AVG			
3	7	7236.000	35.37	11.73	47.10	74.00	-26.90	QP			
4	7	7236.000	23.66	11.73	35.39	54.00	-18.61	AVG			
5	9	9648.000	31.02	17.68	48.70	74.00	-25.30	QP			
6	* (9648.000	19.30	17.68	36.98	54.00	-17.02	AVG			



Report No. E-Y1708893-1 - Page 30 of 75 -

Polarization:	Horizontal	Test Voltage:	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2437		

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4874.000	38.33	8.17	46.50	74.00	-27.50	QP			
2		4874.000	26.40	8.17	34.57	54.00	-19.43	AVG			
3		7311.000	36.83	12.07	48.90	74.00	-25.10	QP			
4	*	7311.000	24.87	12.07	36.94	54.00	-17.06	AVG			
5		9748.000	28.80	18.20	47.00	74.00	-27.00	QP			
6		9748.000	17.28	18.20	35.48	54.00	-18.52	AVG			



Report No. E-Y1708893-1 - Page 31 of 75 -

Polarization:	Vertical	Test Voltage:	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2437		

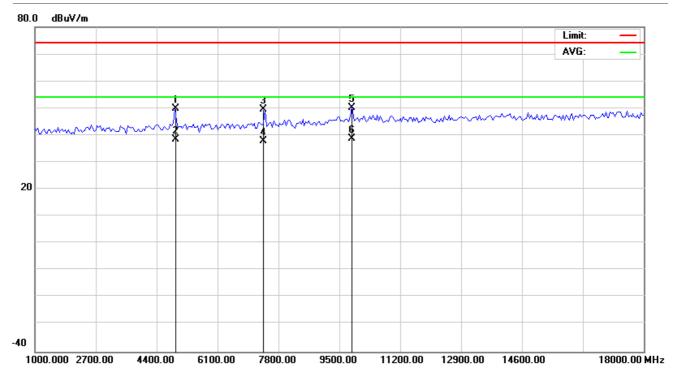
No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4874.000	39.13	8.17	47.30	74.00	-26.70	QP			
2		4874.000	27.77	8.17	35.94	54.00	-18.06	AVG			
3		7311.000	34.63	12.07	46.70	74.00	-27.30	QP			
4		7311.000	23.09	12.07	35.16	54.00	-18.84	AVG			
5		9748.000	30.50	18.20	48.70	74.00	-25.30	QP			
6	*	9748.000	18.64	18.20	36.84	54.00	-17.16	AVG			



Report No. E-Y1708893-1 - Page 32 of 75 -

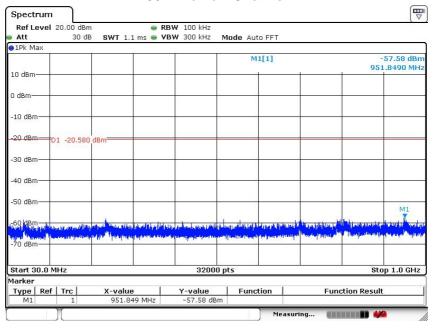
Polarization:	Horizontal	LIDET VIOITAND .	DC 5V from adapter AC 120V/60Hz
Test Mode:	802.11B TX 2462		

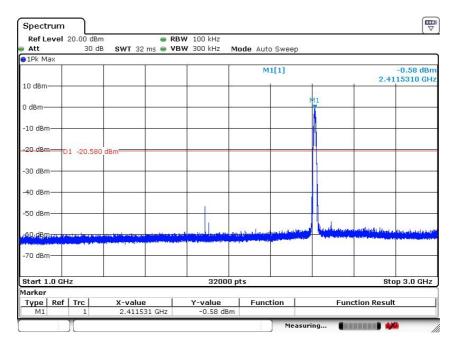
No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	41.60	8.20	49.80	74.00	-24.20	QP			
2		4924.000	29.42	8.20	37.62	54.00	-16.38	AVG			
3		7386.000	37.59	12.41	50.00	74.00	-24.00	QP			
4	*	7386.000	27.07	12.41	39.48	54.00	-14.52	AVG			
5		9848.000	30.69	18.71	49.40	74.00	-24.60	QP			
6		9848.000	19.93	18.71	38.64	54.00	-15.36	AVG			



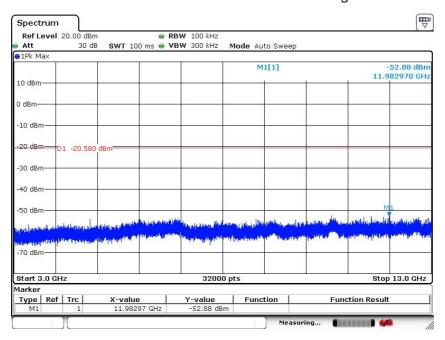
Report No. E-Y1708893-1 - Page 33 of 75 -

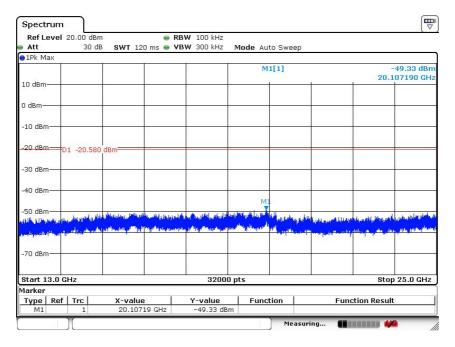
Polarization:	Vertical	Test Voltage:	DC 5V from adapter AC 120V/60Hz		
Test Mode:	802.11B TX 2462				

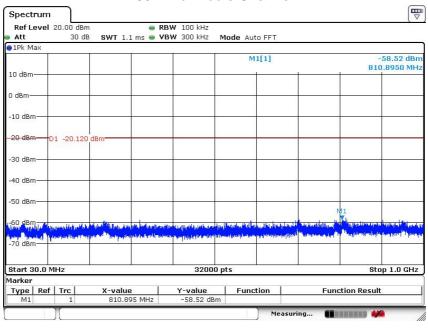

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		4924.000	41.70	8.20	49.90	74.00	-24.10	QP			
2		4924.000	30.26	8.20	38.46	54.00	-15.54	AVG			
3		7386.000	37.19	12.41	49.60	74.00	-24.40	QP			
4		7386.000	25.53	12.41	37.94	54.00	-16.06	AVG			
5		9848.000	31.59	18.71	50.30	74.00	-23.70	QP			
6	*	9848.000	20.04	18.71	38.75	54.00	-15.25	AVG			

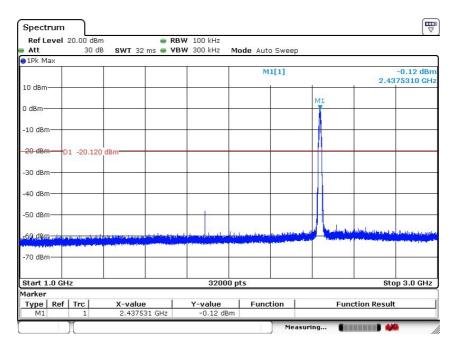


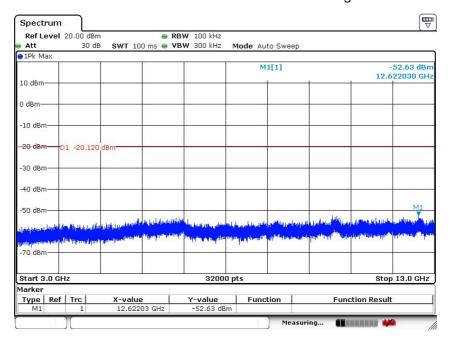
Conducted Spurious Emissions at Antenna Port:

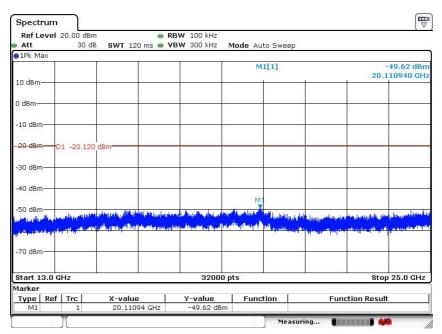

802.11b Low Channel

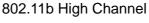


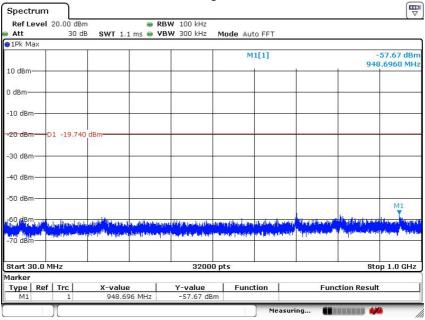

Report No. E-Y1708893-1 - Page 35 of 75 -

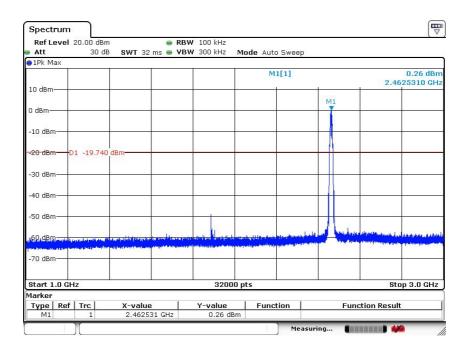


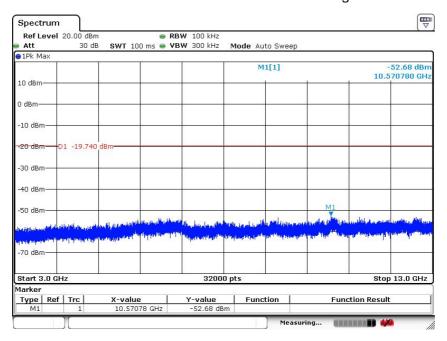

802.11b Middle Channel

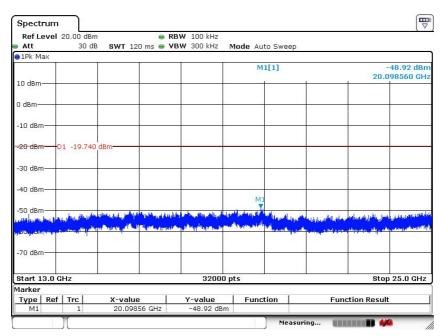


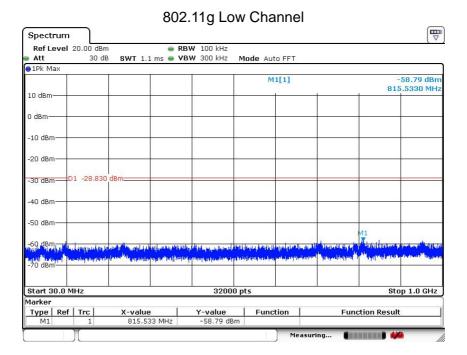


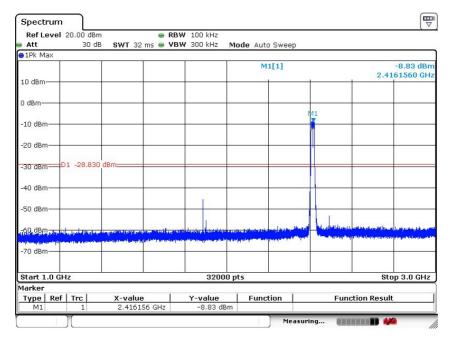

Report No. E-Y1708893-1 - Page 37 of 75 -

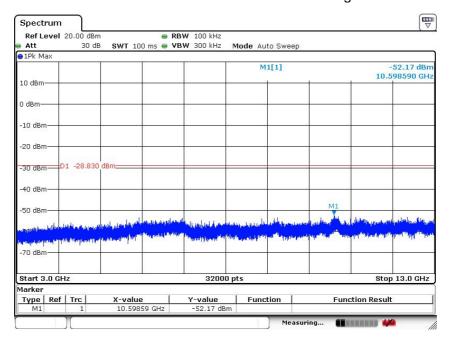


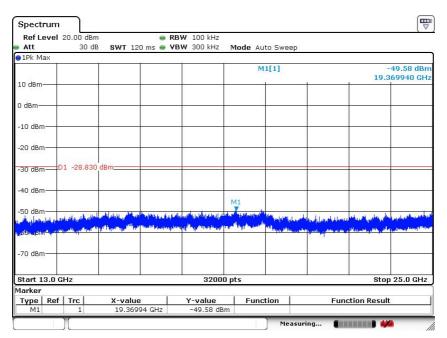


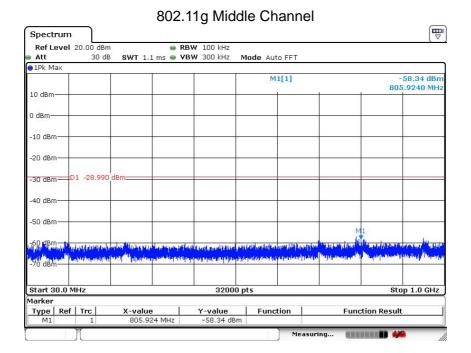


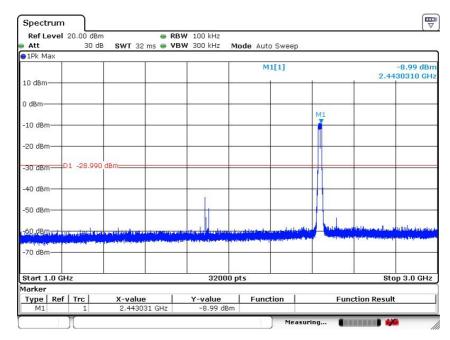


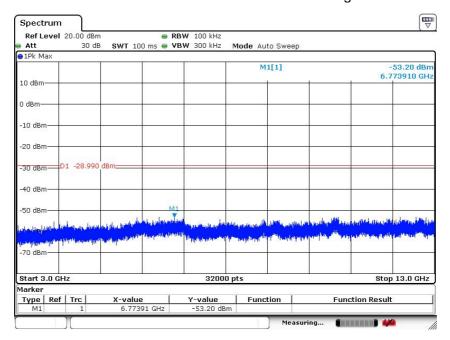

Report No. E-Y1708893-1 - Page 39 of 75 -

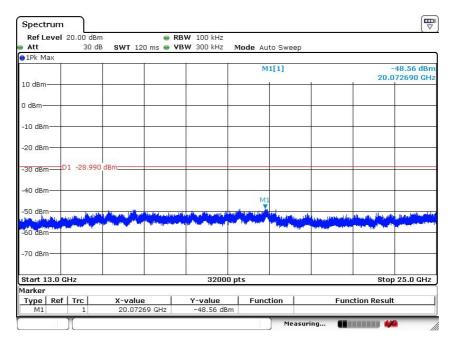


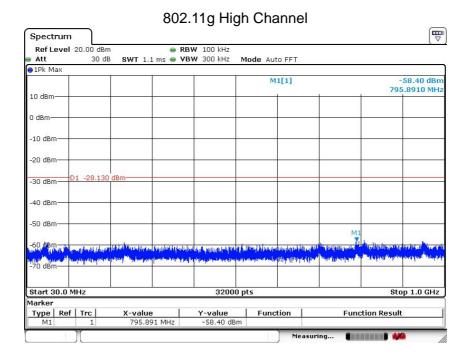


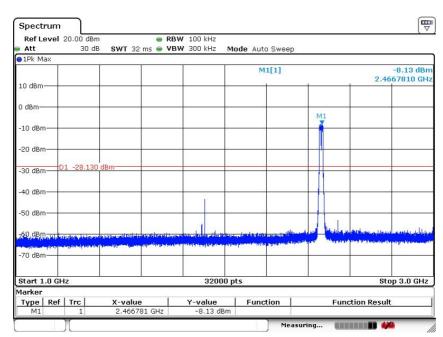


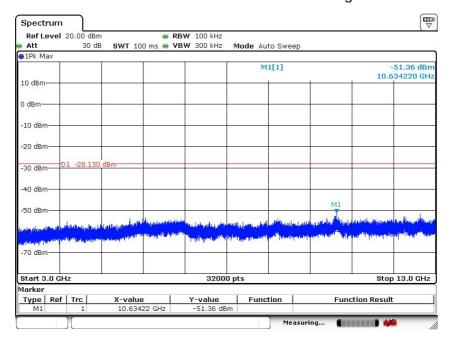

Report No. E-Y1708893-1 - Page 41 of 75 -

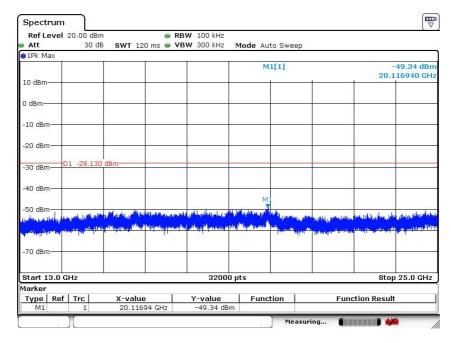


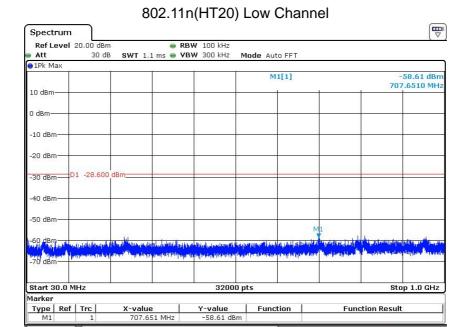


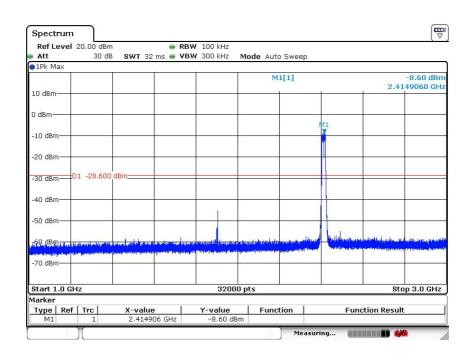


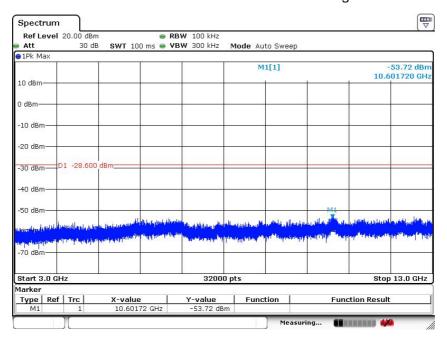

Report No. E-Y1708893-1 - Page 43 of 75 -

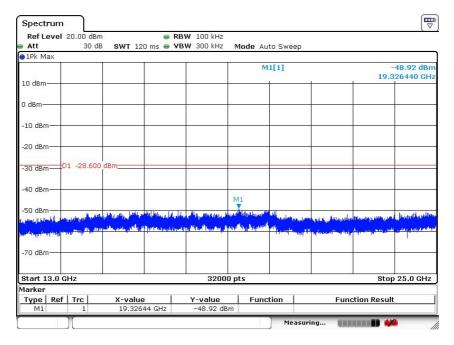


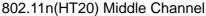


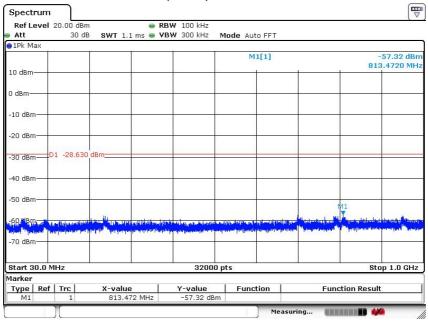


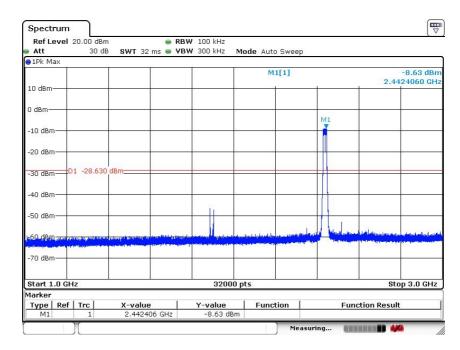

Report No. E-Y1708893-1 - Page 45 of 75 -

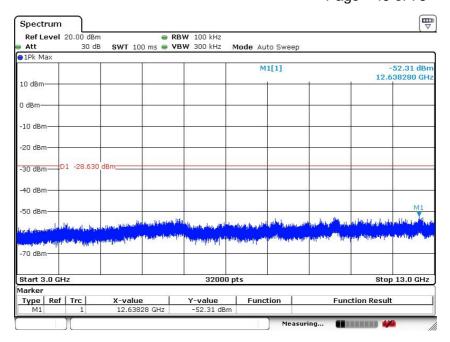


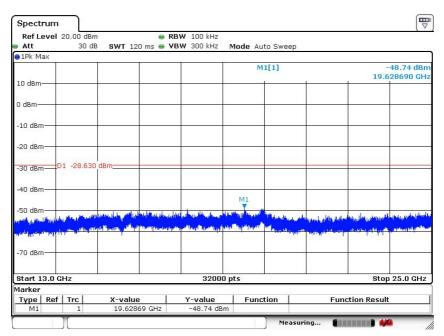


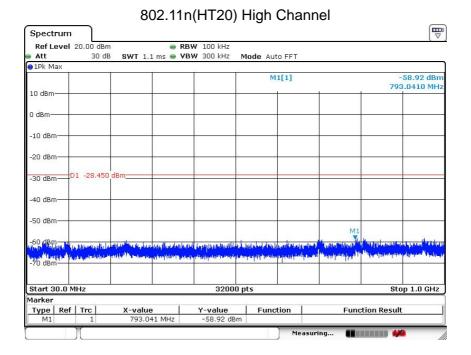


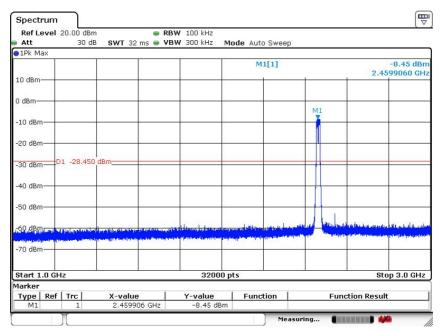

Report No. E-Y1708893-1 - Page 47 of 75 -

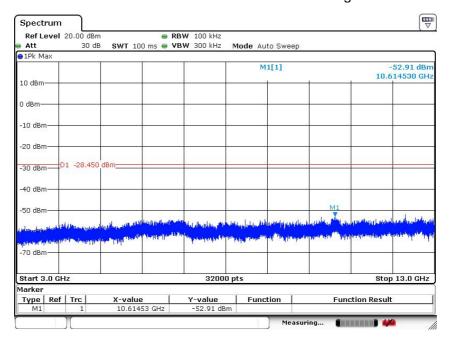


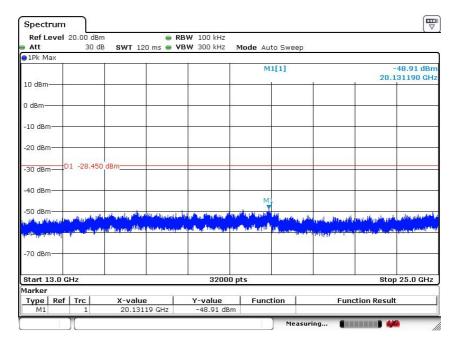







Report No. E-Y1708893-1 - Page 49 of 75 -





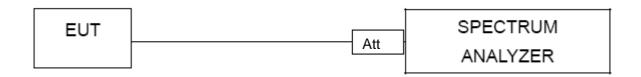
Report No. E-Y1708893-1 - Page 51 of 75 -

Report No. E-Y1708893-1 - Page 52 of 75 -

4. POWER SPECTRAL DENSITY TEST

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS


4.1.1 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times DTS bandwith.
- 3. Set the RBW ≥ 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

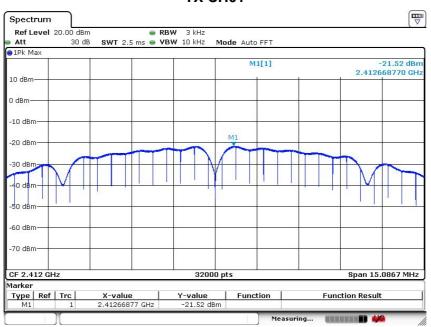
4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

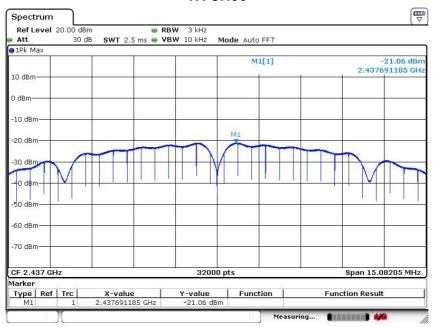
4.1.4 EUT OPERATION CONDITIONS

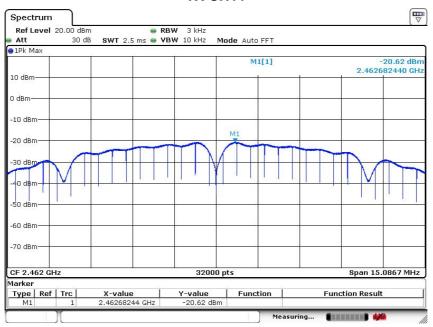
The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.



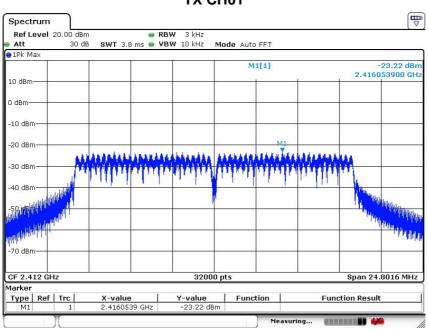
4.1.5 TEST RESULTS

EUT:	Wireless Smart Gateway	Model Name :	MT101
Temperature:	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	HEST VOUAGE .	DC 5V from adapter AC 120V/60Hz
Test Mode : TX b Mode /CH01, CH06, CH11			


Note: The relevant measured result has the offset with cable loss already.

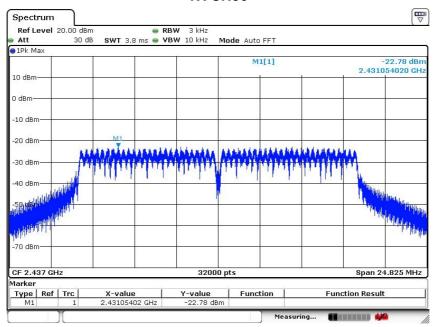

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-21.52	8	PASS
2437 MHz	-21.06	8	PASS
2462 MHz	-20.62	8	PASS

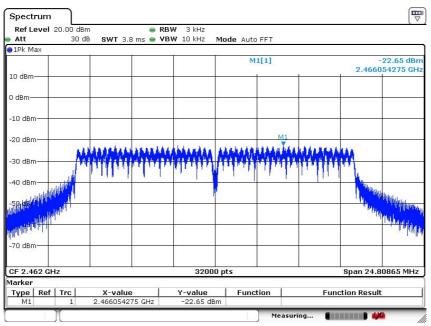
TX CH06



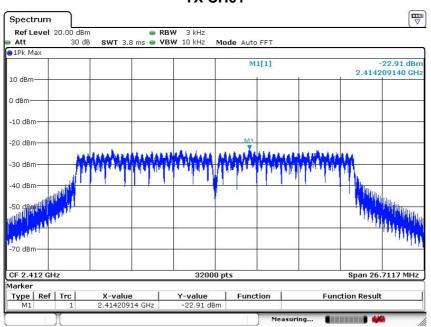
Report No. E-Y1708893-1 - Page 55 of 75 -

EUT:	Wireless Smart Gateway	Model Name :	MT101
Temperature:	25 ℃	Relative Humidity:	56%
Pressure :	1015 hPa	Hest voltage .	DC 5V from adapter AC 120V/60Hz
Test Mode :	Mode : TX g Mode /CH01, CH06, CH11		


Note: The relevant measured result has the offset with cable loss already.

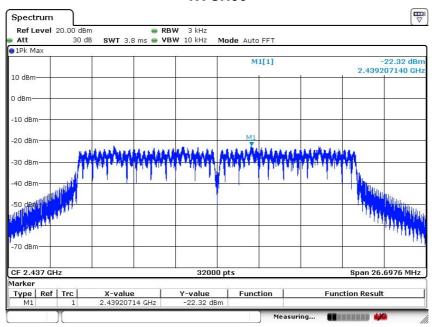

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-23.22	8	PASS
2437 MHz	-22.78	8	PASS
2462 MHz	-22.65	8	PASS

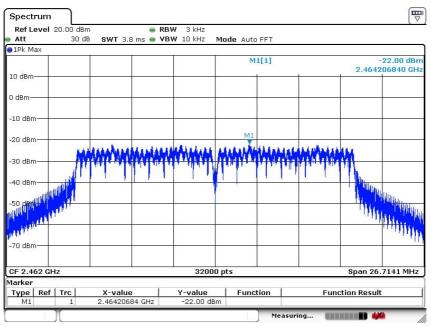
TX CH06



Report No. E-Y1708893-1 - Page 57 of 75 -

EUT:	Wireless Smart Gateway	Model Name :	MT101
Temperature:	25 ℃	Relative Humidity:	56%
Pressure :	essure: Test Voltage : DC 5V from adapter / 120V/60Hz		DC 5V from adapter AC 120V/60Hz
Test Mode : TX n(HT20) Mode /CH01, CH06, CH11			


Note: The relevant measured result has the offset with cable loss already.


Frequency	Power Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2412 MHz	-22.91	8	PASS
2437 MHz	-22.32	8	PASS
2462 MHz	-22.00	8	PASS

TX CH06

