RF TEST REPORT

Report No.: 17021528-FCC-R1					
Supersede Report No.: N/A					
Applicant	Zhejiang VALUE	Mechanical & Electrical Products	CO.,LTD		
Product Name	Handheld device				
Main Model	H2				
Serial Model	H50, H1, H100, H3	3, H120			
Test Standard	FCC Part 15.247:	2017, ANSI C63.10: 2013			
Test Date	November 08 to N	November 13, 2017			
Issue Date	November 15, 2017				
Test Result	🖂 Pass 🗌 Fail				
Equipment complied	with the specification	ation 🖂			
Equipment did not c	omply with the sp	ecification			
Trety. In Deon Dai					
Trety Lu Test Engineer		Deon Dai Engineer Reviewer			
This test report may be reproduced in full only					
Test result presented in this test report is applicable to the tested sample only					

Issued by:

SIEMIC (Nanjing-China) Laboratories

2-1 Longcang Avenue Yuhua Economic and Technology Development Park, Nanjing, China

Tel:+86(25)86730128/86730129 Fax:+86(25)86730127 Email: China@siemic.com.cn

Page

2 of 48

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope	
USA	EMC, RF/Wireless, SAR, Telecom	
Canada	EMC, RF/Wireless, SAR, Telecom	
Taiwan	EMC, RF, Telecom, SAR, Safety	
Hong Kong	RF/Wireless, SAR, Telecom	
Australia	EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety	
Japan	EMI, RF/Wireless, SAR, Telecom	
Singapore	EMC, RF, SAR, Telecom	
Europe	EMC, RF, SAR, Telecom, Safety	

Test Report No.	17021528-FCC-R1
Page	3 of 48

This page has been left blank intentionally.

 Test Report No.
 17021528-FCC-R1

 Page
 4 of 48

<u>CONTENTS</u>

1.	REPORT REVISION HISTORY	5
2.	CUSTOMER INFORMATION	5
3.	TEST SITE INFORMATION	5
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5.	TEST SUMMARY	8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
6.1 F	RF EXPOSURE	9
6.2 A	NTENNA REQUIREMENT1	0
6.3 C	TS (6 DB) CHANNEL BANDWIDTH1	1
6.4 N	1AXIMUM OUTPUT POWER	3
6.5 F	OWER SPECTRAL DENSITY	5
6.6 E	AND-EDGE & UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS	7
6.7 F	OWER LINE CONDUCTED EMISSIONS	2
6.8 F	ADIATED EMISSIONS	4
ANN	EX A. TEST INSTRUMENT	5
ANN	EX B. EUT AND TEST SETUP PHOTOGRAPHS	6
ANN	EX C. TEST SETUP AND SUPPORTING EQUIPMENT4	5
ANN	EX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST4	7
ANN	EX E. DECLARATION OF SIMILARITY	8

 Test Report No.
 17021528-FCC-R1

 Page
 5 of 48

1. <u>Report Revision History</u>

Report No.	Report Version	Description	Issue Date
17021528-FCC-R1	NONE	Original	November 15, 2017

2. Customer information

Applicant Name	Zhejiang VALUE Mechanical & Electrical Products CO.,LTD
Applicant Add	jiulong Avenue,Western Industrial District,Wenling,Zhejiang,China
Manufacturer	Zhejiang VALUE Mechanical & Electrical Products CO.,LTD
Manufacturer Add	jiulong Avenue,Western Industrial District,Wenling,Zhejiang,China

3. <u>Test site information</u>

Lab performing tests	SIEMIC (Nanjing-China) Laboratories
Lab Address	2-1 Longcang Avenue Yuhua Economic and
	Technology Development Park, Nanjing, China
FCC Test Site No.	694825
IC Test Site No.	4842B-1
Test Software	EZ_EMC

6 of 48

4. Equipment under Test (EUT) Information		
Description of EUT:	Handheld device	
Main Model:	H2	
Serial Model:	H50, H1, H100, H3, H120	
Date EUT received:	November 06, 2017	
Test Date(s):	November 08 to November 13, 2017	
Output Max power	BLE: -0.702dBm	
Antenna Gain:	BLE:0.5 dBi	
Type of Modulation:	BLE: GFSK	
RF Operating Frequency (ies):	BLE: 2402-2480 MHz	
Number of Channels:	BLE: 40CH	
Port:	N/A	
Input Power:	4*AAA(4*1.5V)	
Trade Name :	N/A	
FCC ID:	2ANTN0002	

Test Report No.	17021528-FCC-R1
Page	7 of 48

Operating channel list

Channel	Frequency(MHz)	Channel	Frequency(MHz)	Channel	Frequency(MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Test Report No.	17021528-FCC-R1
Page	8 of 48

5. Test Summary

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.247 (i), §2.1091	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands	Compliance
§15.207 (a),	Power Line Conducted Emissions	N/A
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance

Measurement Uncertainty

Test Item	Description	Uncertainty
Radiated Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	3.952dB

Test Report No.	17021528-FCC-R1
Page	9 of 48

6. <u>Measurements, Examination And Derived Results</u>

6.1 RF Exposure

The EUT is a portable device, thus requires RF exposure evaluation; Please refer to SIEMIC RF Exposure Report: 17021528-FCC-H1.

 Test Report No.
 17021528-FCC-R1

 Page
 10 of 48

6.2 Antenna Requirement

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit. And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

Antenna must be permanently attached to the unit, it meets up with the ANTENNA REQUIREMENT.

Result: Compliant.

 Test Report No.
 17021528-FCC-R1

 Page
 11 of 48

6.3 DTS (6 dB) Channel Bandwidth

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	November 08, 2017
Tested By :	Trety Lu

Spec	Item	Requirement	Applicable					
§ 15.247(a)(2)	a)	6dB BW≥500kHz;	\square					
RSS Gen (4.6.1)	b)	b) 20dB BW: For FCC reference only; required by IC.						
Test Setup								
Test Procedure	558074 D01 DTS Meas Guidance V04, 8.1 DTS bandwidth 6dB Emission bandwidth measurement procedure - Set RBW = 100 kHz. - Set the video bandwidth (VBW) ≥ 3 x RBW. - Detector = Peak. - Trace mode = max hold. - Sweep = auto couple. - Allow the trace to stabilize. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the							
Remark								
Result	⊠Pas	s 🔤 Fail						
Test Data	⊠Yes	B N/A						
Test Plot	⊠Yes	s (See below)						

 Test Report No.
 17021528-FCC-R1


 Page
 12 of 48

6dB Bandwidth measurement result

Туре	Test mode	СН	Freq (MHz)	Result (MHz)	Limit (MHz)	Result
	6dB BW BLE	Low	2402	0.7067	≥0.5	Pass
6dB BW		Mid	2440	0.7193	≥0.5	Pass
		High	2480	0.7116	≥0.5	Pass

Test Plots

6dB Bandwidth measurement result

Test Report No.	17021528-FCC-R1
Page	13 of 48

6.4 Maximum Output Power

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	November 08, 2017
Tested By :	Trety Lu

Spec ltem Requirement Applicable FHSS in 2400-2483.5MHz with ≥ 75 channels: ≤1 Watt a) FHSS in 5725-5850MHz: ≤1 Watt b) §15.247(b) For all other FHSS in the 2400-2483.5MHz band: ≤0.125 Watt. c) (2),RSS210 FHSS in 902-928MHz with \geq 50 channels: \leq 1 Watt d) (A8.4) FHSS in 902-928MHz with ≥ 25 & <50 channels: ≤0.25 Watt e) DSSS in 902-928MHz, 2400-2483.5MHz, 5725-5850MHz: ≤1 Watt f) \boxtimes 00 0 Test Setup 558074 D01 DTS Meas Guidance V04, 9.1.2 Integrated band power method Maximum output power measurement procedure a) Set the RBW \geq DTS bandwidth. b) Set VBW \geq 3 × RBW. c) Set span \geq 3 x RBW **Test Procedure** d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level. Remark Result Pass Fail Yes Test Data N/A

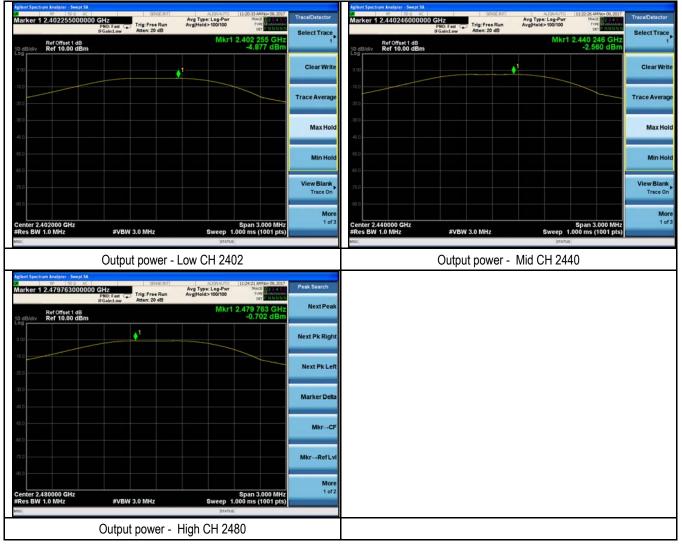
N/A

 \boxtimes Yes (See below)

Requirement(s):

Test Plot

 Test Report No.
 17021528-FCC-R1


 Page
 14 of 48

Output Power measurement result

Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Limit (dBm)	Result
Output BLE		Low	2402	-4.877	30	Pass
	Mid	2440	-2.560	30	Pass	
		High	2480	-0.702	30	Pass

Test Plots

Output Power measurement result

Test Report No.	17021528-FCC-R1
Page	15 of 48

6.5 Power Spectral Density

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	November 08, 2017
Tested By :	Trety Lu

Spec	Item	Requirement	Applicable						
§15.247(e)	a)	The power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.							
Test Setup									
Test Procedure	 558074 D01 DTS MEAS Guidance V04 10.2 power spectral density method power spectral density measurement procedure a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to: 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ 3 × RBW. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. 								
Remark									
Result	🔀 Pas	s 🔤 Fail							
Result	Pass	s Fail							
Test Data	⊠Yes	□N/A							

 Test Report No.
 17021528-FCC-R1

 Page
 16 of 48

Power Spectral Density measurement result

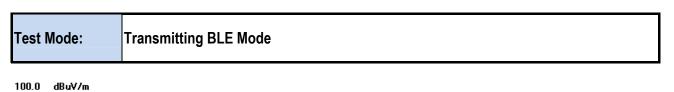
Туре	Test mode	СН	Freq (MHz)	PSD (dBm)	Limit (dBm)	Result
	Low	2402	-5.510	8	Pass	
PSD	PSD BLE	Mid	2440	-3.268	8	Pass
	High	2480	-1.380	8	Pass	

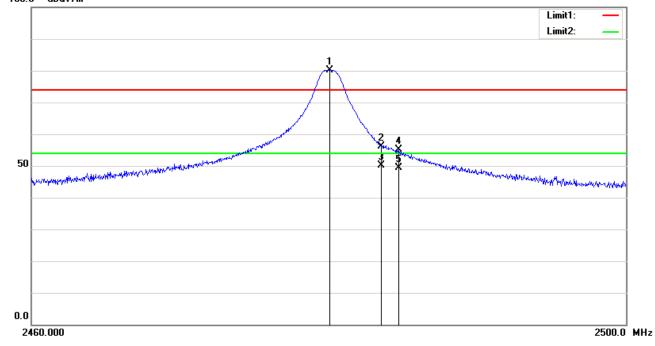
Test Plots

Power Spectral Density measurement result

Test Report No.	17021528-FCC-R1
Page	17 of 48

6.6 Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands


Temperature		20°C					
Relative Humidity		50%					
Atmospheric Pressure		1019mbar					
Test date :		November 13, 2017					
Tested By :		Trety Lu					
Requirement(s):	14						
Spec	Item	Requirement	Applicable				
§15.247(d)	a)	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, he radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the wand that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.					
Test Setup		Ant. Tower L-im Variable Support Units Turn Table 150:m Ground Plane Test Receiver					
Test Procedure	-	 Method Only 1. Check the calibration of the measuring instrument using either an internal calknown signal from an external generator. 2. Position the EUT without connection to measurement instrument. Put it on tand turn on the EUT and make it operate in transmitting mode. Then set it to L High Channel within its operating range, and make sure the instrument is operange. 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a conversion including 100kHz bandwidth from band edge, check the emission of EUT Spectrum Analyzer as below: a. The resolution bandwidth and video bandwidth of test receiver/spectrum an for Quasi Peak detection at frequency below 1GHz. b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video the receiver/spectrum analyzer is 1MHz and the for Average detection (AV) as below at frequency above 1GHz. a. 1/T kHz (Duty cycle < 98%) □ 10 Hz (Duty cycle > 98%) 4. Measure the highest amplitude appearing on spectral display and set it as a Plot the graph with marking the highest point and edge frequency. 	the Rotated table ow Channel and rated in its linear enient frequency f, if pass then set alyzer is 120 kHz deo bandwidth is e video bandwidth				
Remark							
Result		s 🔤 Fail					
Test Data	🖂 Yes	□N/A					
Test Plot	🖂 Yes	(See below) N/A					

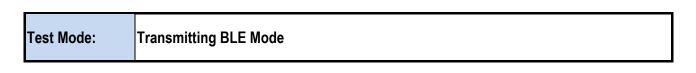


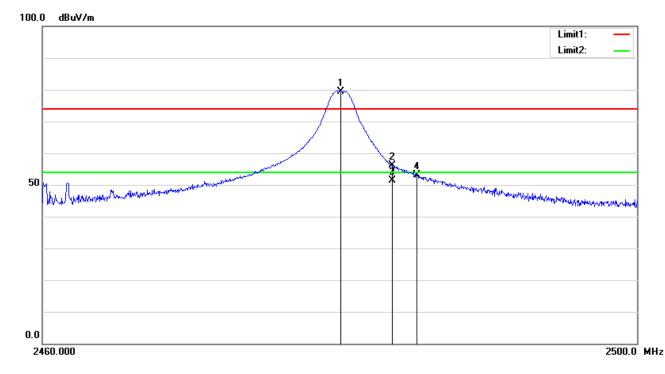
Test Report No.	17021528-FCC-R1
Page	18 of 48

Test Plots

Band Edge measurement result

Test Data


GFSK-Right Side-V


No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2480.000	97.09	peak	31.59	52.62	4.06	80.12	74.00	6.12	100	308
2	2483.500	73.17	peak	31.59	52.63	4.06	56.19	74.00	-17.81	100	271
3	2483.500	67.10	AVG	31.59	52.63	4.06	50.12	54.00	-3.88	100	271
4	2484.680	72.08	peak	31.59	52.63	4.06	55.10	74.00	-18.90	200	271
5	2484.680	66.31	AVG	31.59	52.63	4.06	49.33	54.00	-4.67	200	271

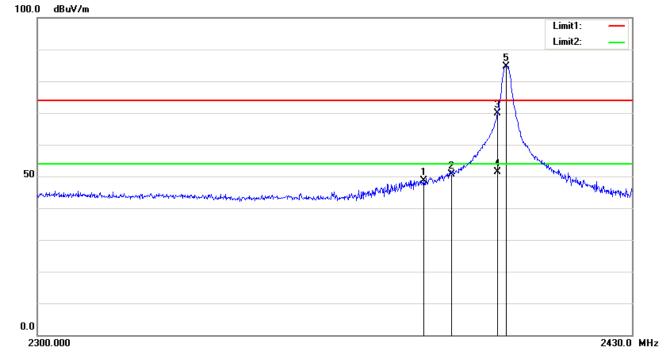
Page

19 of 48

Test Data

GFSK-Right Side-H

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2480.000	96.47	peak	31.59	52.62	4.06	79.50	74.00	5.50	100	333
2	2483.500	73.06	peak	31.59	52.63	4.06	56.08	74.00	-17.92	100	333
3	2483.500	68.36	AVG	31.59	52.63	4.06	51.38	54.00	-2.62	100	333
4	2485.160	70.15	peak	31.59	52.63	4.06	53.17	74.00	-20.83	100	321



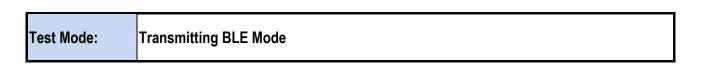
2

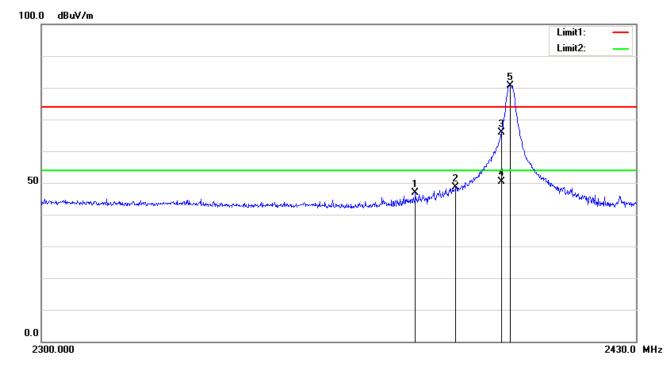
20 of 48

Test Mode: Transmitting BLE Mode

Page

Test Data


GFSK-Left Side-V


No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2383.720	65.69	peak	31.53	52.55	4.03	48.70	74.00	-25.30	200	316
2	2390.000	67.61	peak	31.53	52.55	4.02	50.61	74.00	-23.39	200	317
3	2400.000	86.81	peak	31.54	52.56	4.01	69.80	74.00	-4.20	100	317
4	2400.000	68.34	AVG	31.54	52.56	4.01	51.33	54.00	-2.67	100	317
5	2402.000	101.64	peak	31.54	52.56	4.01	84.63	74.00	10.63	200	317

Page

21 of 48

Test Data

GFSK-Left Side-H

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	2380.990	63.83	peak	31.53	52.54	4.03	46.85	74.00	-27.15	200	324
2	2390.000	65.64	peak	31.53	52.55	4.02	48.64	74.00	-25.36	100	325
3	2400.000	82.78	peak	31.54	52.56	4.01	65.77	74.00	-8.23	100	329
4	2400.000	67.30	AVG	31.54	52.56	4.01	50.29	54.00	-3.71	100	329
5	2402.000	97.60	peak	31.54	52.56	4.01	80.59	74.00	6.59	100	310

Page

22 of 48

6.7 Power Line Conducted Emissions

Temperature	
Relative Humidity	
Atmospheric Pressure	
Test date :	
Tested By :	

Requirement(s):

Spec	Item	Requirement Applicable							
47CFR§15.20 7, RSS210 (A8.1)	a)	For Low-power radio-frequer public utility (AC) power line, onto the AC power line on ar to 30 MHz, shall not exceed 50 [mu]H/50 ohms line imped applies at the boundary betw Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 30$ Frequency ranges (MHz) $0.15 \sim 0.5$ $0.5 \sim 5$ $5 \sim 30$	the radio frequency voltagency voltagency the frequency or frequencies the limits in the following ta dance stabilization network	e that is conducted back s, within the band 150 kHz ble, as measured using a (LISN). The lower limit s. dBµV) Average 66 60					
Test Setup		Vertical Ground Reference Plane EUT U U U U U U U U U U U U U U U U U U							
Procedure	top 2. The 3. The 4. All c 5. The 6. A sc freq 7. High the	 top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. 							
Remark		supply by battery							
Result	Pas	s 🗌 Fail	⊠N/A						

Test Report No. 17021528-FCC-R1 23 of 48

Test Data	Yes	⊠N/A
Test Plot	Yes (See below)	⊠N/A

Page

Data sample

No.	Frequency	Reading	Detector	Lisn/Isn	Ps_Lmt	Cab_L	Result	Limit	Margin
	(MHz)	(dBµV)		(dB}	(dB)	(dB)	(dBµV)	(dBµV)	(dB)

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V)$ = Receiver Reading Value

Detector=Quasi Peak Detector or Average Detector

Lisn/ISN= Insertion loss of LISN

Ps_Lmt= Insertion loss of transient limiter (The transient limiter included 10dB attenuation)

Cab_L= cable loss

Result (dBµV) = Reading Value + Corrected Value

Limit (dB μ V) = Limit stated in standard

Calculation Formula:

Margin (dB) = Result (dB μ V) – limit (dB μ V)

 Test Report No.
 17021528-FCC-R1

 Page
 24 of 48

6.8 Radiated Emissions

Temperature	20°C
Relative Humidity	50%
Atmospheric Pressure	1019mbar
Test date :	November 10, 2017
Tested By :	Trety Lu

Requirement(s):				1
Spec	Item	Requirement		Applicable
47CFR§15.24 7(d), RSS210 (A8.5)	a)	Except higher limit as specified elsewhere the low-power radio-frequency devices sh specified in the following table and the lev exceed the level of the fundamental emissi- band edges Class A Frequency range (MHz) 30 – 88 88 – 216 216 – 960 Above 960 Class B	all not exceed the field strength levels el of any unwanted emissions shall not sion. The tighter limit applies at the Limit Field Strength (µV/m) 90 150 210 300	
		Frequency range (MHz) 30 – 88	Field Strength (µV/m) 100	
		88 - 216	150	
		216 - 960	200	
		Above 960	500	
Test Setup		Test F	ad Plane Receiver	-
Procedure	1. 2. 3. 4.	of the EUT) was chosen.b. The EUT was then rotated to the di emission.	ency points obtained from the EUT charact ut by rotating the EUT, changing the anter ring manner: whichever gave the higher emission level of irection that gave the maximum usted to the height that gave the maximun th of test receiver/spectrum analyzer is 120 um analyzer is 1MHz and video bandwidth quency above 1GHz.	na polarization, over a full rotation n emission. 0 kHz for Quasiy i is 3MHz with

 Test Report No.
 17021528-FCC-R1

 Page
 25 of 48

	■1/T kHz (Duty cy	ge Measurement as below at frequency above 1GHz. (cle < 98%) \Box 10 Hz (Duty cycle > 98%) re repeated for the next frequency point, until all selected frequency points were
Remark		
Result	Pass	Fail
Test Data	⊠Yes	□N/A
Test Plot	Yes (See below)	□N/A

Data sample

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree	
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)	

Frequency (MHz) = Emission frequency in MHz

Reading $(dB\mu V/m)$ = Receiver Reading Value

Detector= Peak Detector or Quasi Peak Detector

Ant_F=Antenna Factor

PA_G=Pre-Amplifier Gain

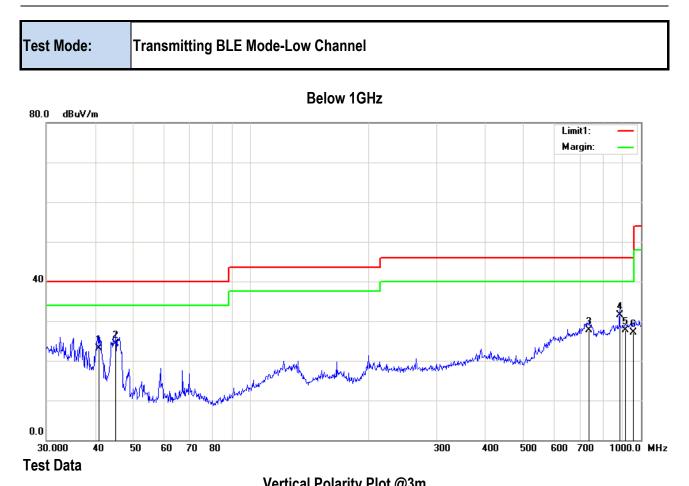
Cab_L=Cable Loss

Result (dB μ V/m) = Read ing Value + Corrected Value

Limit (dB μ V/m) = Limit stated in standard

Height (cm) = Height of Receiver antenna

Degree = Turn table degree


Calculation Formula:

Margin (dB) = Result (dB μ V/m) – limit (dB μ V/m)

Page

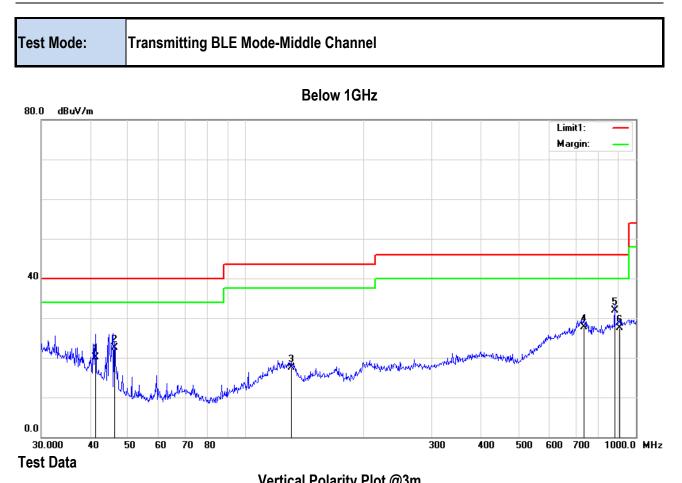

26 of 48

				ven	Ical Fold	inty Fiot	யுள				
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	40.8446	52.61	QP	15.21	45.75	1.07	23.14	40.00	-16.86	100	162
2	45.2166	56.94	QP	12.27	46.03	1.15	24.33	40.00	-15.67	200	152
3	737.0714	46.33	QP	22.20	45.21	4.36	27.68	46.00	-18.32	100	82
4	881.4067	49.33	QP	23.28	45.95	4.80	31.46	46.00	-14.54	200	225
5	912.8620	45.77	QP	23.66	46.63	4.89	27.69	46.00	-18.31	300	350
6	955.4381	44.74	QP	23.64	46.16	4.97	27.19	46.00	-18.81	200	27

Test Report No.	17021528-FCC-R1
Page	27 of 48

Horizontal Polarity Plot @3m

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree			
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)			
1	729.3583	47.00	QP	22.58	45.46	4.34	28.46	46.00	-17.54	200	212			
2	755.3873	45.03	QP	22.73	44.98	4.41	27.19	46.00	-18.81	300	137			
3	785.0935	46.11	QP	22.91	46.19	4.50	27.33	46.00	-18.67	300	271			
4	881.4067	48.60	QP	22.76	45.95	4.80	30.21	46.00	-15.79	200	357			
5	925.7563	46.84	QP	23.32	46.40	4.91	28.67	46.00	-17.33	100	215			
6	948.7610	44.64	QP	23.87	46.02	4.96	27.45	46.00	-18.55	200	246			


No. Frequency

Reading

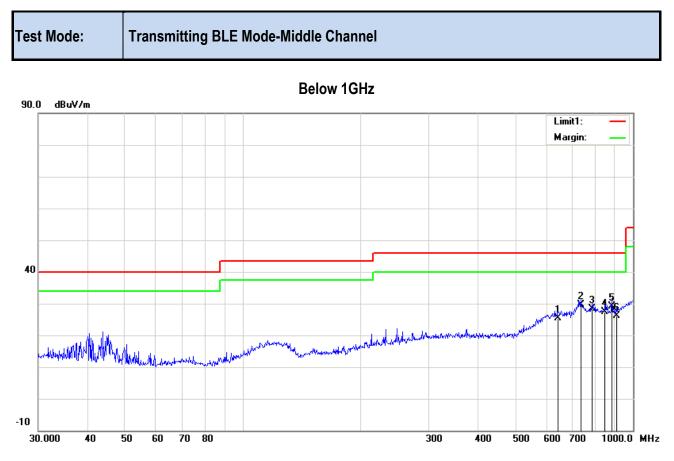
Test Report No. 17021528-FCC-R1

Page

28 of 48

	vert	ical Pola	irily Piol	യാന		
Detector	Ant_F	PA_G	Cab_L	Result	Limit	ſ
	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	ſ

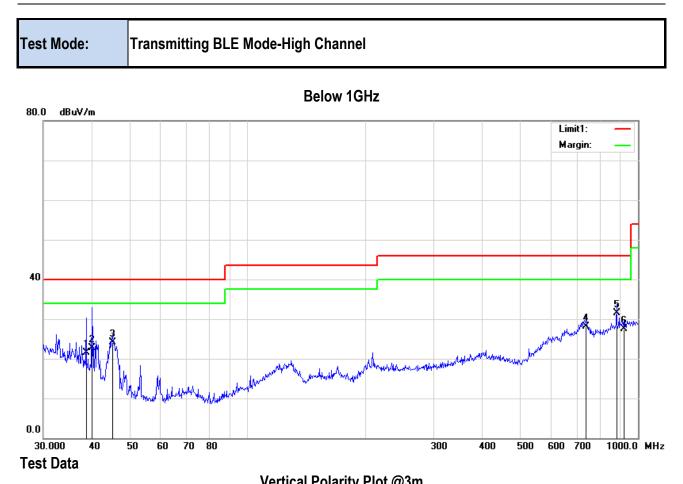
Margin


Height

Degree

	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	41.2765	49.97	QP	14.92	45.78	1.08	20.19	40.00	-19.81	100	129
2	46.1780	55.80	QP	11.62	46.11	1.17	22.48	40.00	-17.52	200	225
3	130.8369	46.99	QP	16.04	47.36	1.87	17.54	43.50	-25.96	200	49
4	734.4913	46.35	QP	22.23	45.29	4.35	27.64	46.00	-18.36	300	148
5	881.4067	49.81	QP	23.28	45.95	4.80	31.94	46.00	-14.06	100	108
6	909.6667	45.51	QP	23.67	46.63	4.88	27.43	46.00	-18.57	200	154

29 of 48


No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	642.8613	46.91	QP	21.75	47.25	4.07	25.48	46.00	-20.52	200	49
2	734.4913	47.98	QP	22.61	45.29	4.35	29.65	46.00	-16.35	100	89
3	785.0935	47.22	QP	22.91	46.19	4.50	28.44	46.00	-17.56	300	349
4	848.0563	46.09	QP	22.86	46.23	4.69	27.41	46.00	-18.59	200	154
5	881.4067	47.58	QP	22.76	45.95	4.80	29.19	46.00	-16.81	300	83
6	906.4824	45.07	QP	22.86	46.63	4.87	26.17	46.00	-19.83	100	189

3

Page

30 of 48

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree				
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)				
1	38.6161	49.55	QP	16.59	45.68	1.03	21.49	40.00	-18.51	100	46				
2	39.9942	51.62	QP	15.78	45.70	1.05	22.75	40.00	-17.25	200	137				
3	45.2166	56.79	QP	12.27	46.03	1.15	24.18	40.00	-15.82	300	333				
4	737.0714	46.84	QP	22.20	45.21	4.36	28.19	46.00	-17.81	200	303				
5	881.4067	49.33	QP	23.28	45.95	4.80	31.46	46.00	-14.54	100	320				
6	919.2866	45.61	QP	23.66	46.62	4.90	27.55	46.00	-18.45	200	140				

 Test Report No.
 17021528-FCC-R1

 Page
 31 of 48

Test Mode:

Transmitting BLE Mode-High Channel

Horizontal Polarity Plot @3m

No.	Frequency	Reading	Detector	Ant F	PA G	Cab L	Result	Limit	Margin	Heiaht	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	734.4913	45.81	QP	22.61	45.29	4.35	27.48	46.00	-18.52	200	117
2	782.3453	45.88	QP	22.89	46.15	4.49	27.11	46.00	-18.89	300	161
3	848.0563	46.83	QP	22.86	46.23	4.69	28.15	46.00	-17.85	100	9
4	881.4067	46.79	QP	22.76	45.95	4.80	28.40	46.00	-17.60	200	142
5	881.4067	45.73	QP	22.76	45.95	4.80	27.34	46.00	-18.66	300	273
6	906.4824	46.09	QP	22.86	46.63	4.87	27.19	46.00	-18.81	200	232

Page

32 of 48

Test Mode:

Transmitting BLE Mode-Low Channel

	Above 1GHz Vertical										
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	1901.000	68.15	peak	30.73	51.77	3.98	51.09	74.00	-22.91	100	267
2	2139.000	63.76	peak	31.38	52.35	4.13	46.92	74.00	-27.08	200	245
3	4315.000	57.43	peak	32.09	52.35	5.93	43.10	74.00	-30.90	200	64
4	6440.000	55.22	peak	34.10	52.64	5.84	42.52	74.00	-31.48	100	73
5	8752.000	55.99	peak	34.96	54.27	8.20	44.88	74.00	-29.12	100	315
6	10588.000	55.30	peak	38.56	53.07	9.38	50.17	74.00	-23.83	200	143

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBµV/m)		(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(cm)	(°)
1	1867.000	65.47	peak	30.53	51.61	3.99	48.38	74.00	-25.62	100	246
2	2139.000	63.34	peak	31.38	52.35	4.13	46.50	74.00	-27.50	200	200
3	4519.000	57.17	peak	32.54	52.06	5.90	43.55	74.00	-30.45	100	98
4	5947.000	55.37	peak	33.41	51.52	5.91	43.17	74.00	-30.83	300	229
5	8089.000	56.25	peak	36.16	54.56	7.95	45.80	74.00	-28.20	200	72
6	10163.000	55.69	peak	38.67	53.75	9.28	49.89	74.00	-24.11	100	92

Note: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Page

33 of 48

Test Mode:

Transmitting BLE Mode-Middle Channel

						e 1GHz tical					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1903	68.27	peak	30.73	51.77	3.98	51.21	74.00	-22.79	100	265
2	2140	63.48	peak	31.38	52.35	4.13	46.64	74.00	-27.36	200	246
3	4316	57.95	peak	32.09	52.35	5.93	43.62	74.00	-30.38	100	65
4	6445	55.66	peak	34.1	52.64	5.84	42.96	74.00	-31.04	300	70
5	8751	55.41	peak	34.96	54.27	8.2	44.3	74.00	-29.7	200	316
6	10590	55.29	peak	38.56	53.07	9.38	50.16	74.00	-23.84	200	142

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1866	65.68	peak	30.53	51.61	3.99	48.59	74.00	-25.41	100	245
2	2138	63.67	peak	31.38	52.35	4.13	46.83	74.00	-27.17	200	205
3	4517	57.46	peak	32.54	52.06	5.9	43.84	74.00	-30.16	200	100
4	5949	55.14	peak	33.41	51.52	5.91	42.94	74.00	-31.06	300	234
5	8090	56.87	peak	36.16	54.56	7.95	46.42	74.00	-27.58	100	78
6	10165	55.43	peak	38.67	53.75	9.28	49.63	74.00	-24.37	100	94

Note: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Page

34 of 48

Test Mode:

Transmitting BLE Mode-High Channel

						e 1GHz tical					
No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1910	68.54	peak	30.73	51.77	3.98	51.48	74.00	-22.52	200	260
2	2145	63.67	peak	31.38	52.35	4.13	46.83	74.00	-27.17	200	243
3	4314	57.84	peak	32.09	52.35	5.93	43.51	74.00	-30.49	100	68
4	6442	55.95	peak	34.1	52.64	5.84	43.25	74.00	-30.75	300	74
5	8755	55.27	peak	34.96	54.27	8.2	44.16	74.00	-29.84	200	312
6	10594	55.97	peak	38.56	53.07	9.38	50.84	74.00	-23.16	200	145

Horizontal

No.	Frequency	Reading	Detector	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degree
	(MHz)	(dBuV/m)		(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	1868	65.18	peak	30.53	51.61	3.99	48.09	74.00	-25.91	100	247
2	2140	63.24	peak	31.38	52.35	4.13	46.4	74.00	-27.6	200	208
3	4520	57.87	peak	32.54	52.06	5.9	44.25	74.00	-29.75	200	105
4	5951	55.77	peak	33.41	51.52	5.91	43.57	74.00	-30.43	300	231
5	8095	56.46	peak	36.16	54.56	7.95	46.01	74.00	-27.99	100	79
6	10169	55.58	peak	38.67	53.75	9.28	49.78	74.00	-24.22	100	97

Note: The AV measurement performed, more than 20dB below limit so AV test data was not presented.

Page

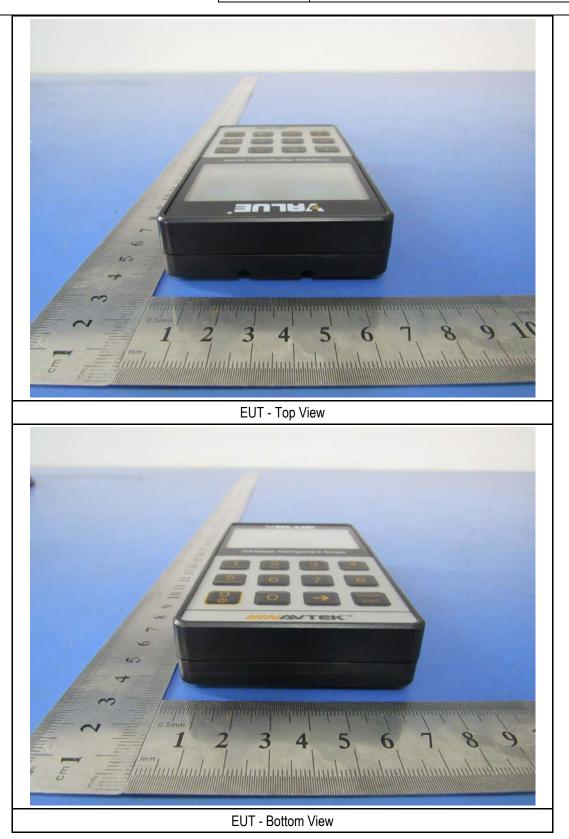
35 of 48

Annex A. TEST INSTRUMENT

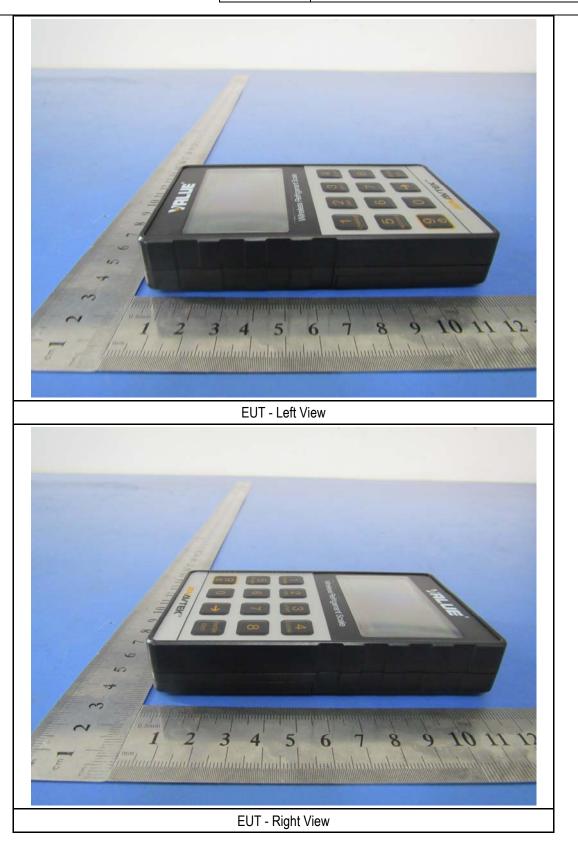
Instrument	Model	Serial #	Cal Date	Cal Due	In use
AC Line Conducted Emissions			1	1	
R&S EMI Test Receiver	ESPI3	101216	05/03/2017	05/02/2018	
Transient Limiter	LIT-153	531021	10/30/2017	10/29/2018	
V-LISN	ESH3-Z5	838979/005	05/15/2017	05/14/2018	
SIEMIC EZ_EMC Conducted Emissions software	Ver.ICP- 03A1	N/A	N/A	N/A	
RF conducted test					
Spectrum Analyzer	N9010A	MY47191130	05/03/2017	05/02/2018	\square
Radiated Emissions					
Spectrum Analyzer	N9010A	MY47191130	05/03/2017	05/02/2018	\square
R&S EMI Receiver	ESPI3	101216	05/03/2017	05/02/2018	\square
Antenna (30MHz~6GHz)	JB6	A121411	10/31/2017	10/31/2018	\boxtimes
EMCO Horn Antenna (1 ~18GHz)	3115	N/A	11/15/2016	11/14/2018	\square
Hp Pre-Amplifier	8447F	1937A01160	10/31/2017	10/30/2018	\square
Agilent Pre-Amplifier	8449B	N/A	10/31/2017	10/30/2018	\boxtimes
SIEMIC EZ_EMC Radiated Emissions software	Ver.ICP- 03A1	N/A	N/A	N/A	\square

Test Report No.	17021528-FCC-R1
⊃age	36 of 48

Page

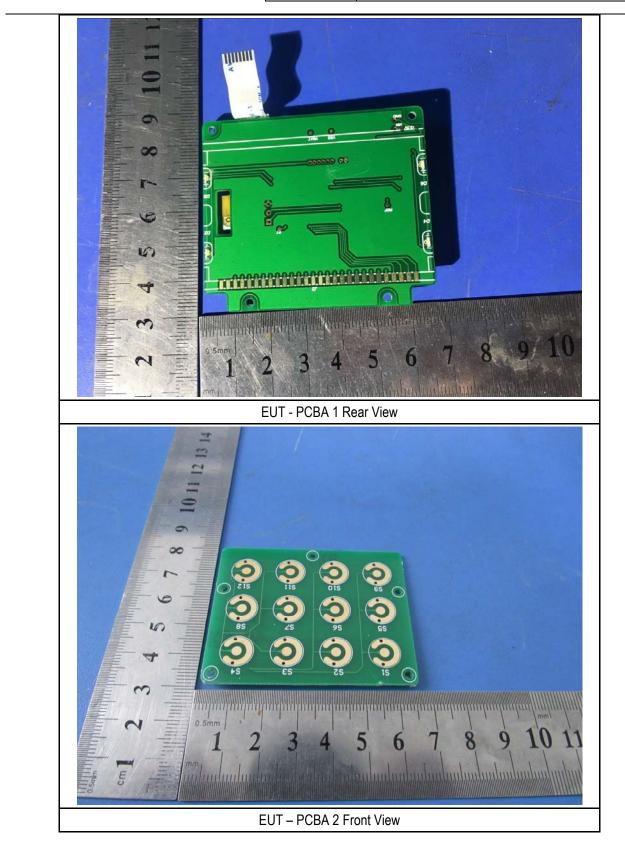

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photos

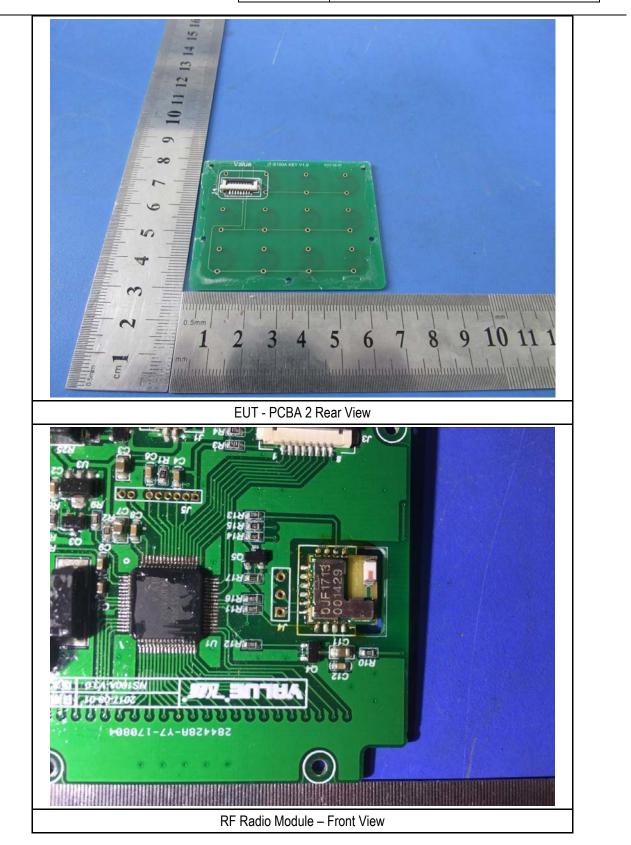


Test Report No.	17021528-FCC-R1
Page	37 of 48

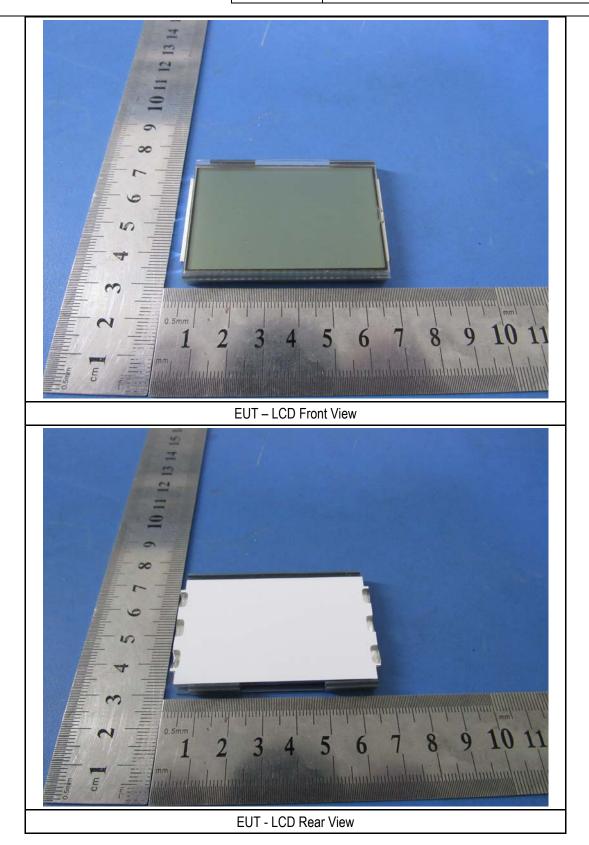
Test Report No.	17021528-FCC-R1
Page	38 of 48


Test Report No.	17021528-FCC-R1
Page	39 of 48

Annex B.ii. Photograph: EUT Internal Photos

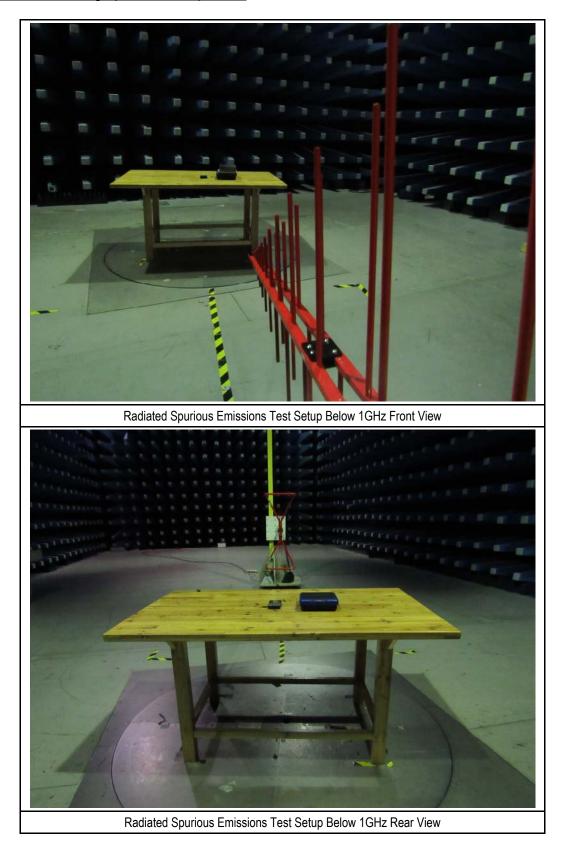


Test Report No.	17021528-FCC-R1
Page	40 of 48



Test Report No.	17021528-FCC-R1
Page	41 of 48

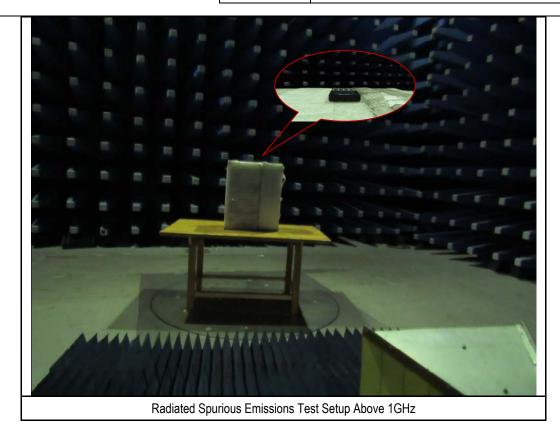
Test Report No.	17021528-FCC-R1
Page	42 of 48



Test Report No. 17021528-FCC-R1

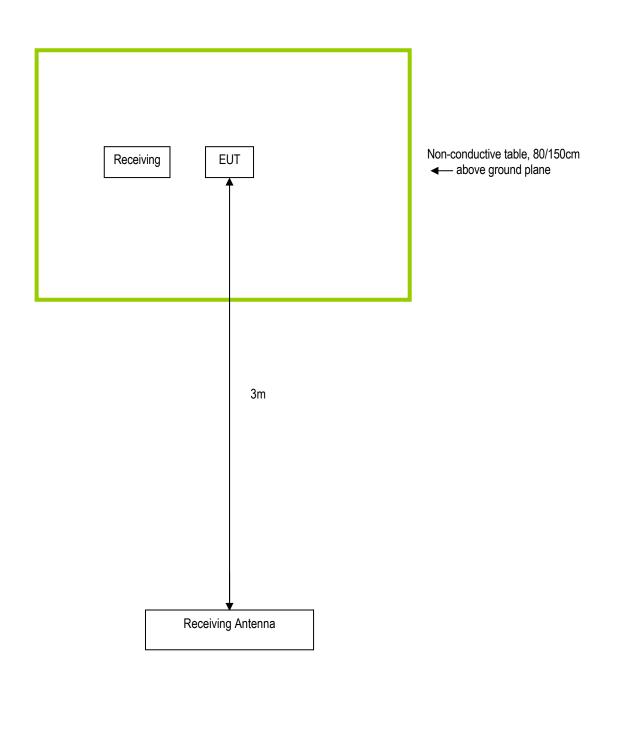
Page

43 of 48


Annex B.iii. Photograph: Test Setup Photo

 Test Report No.
 17021528-FCC-R1

 Page
 44 of 48


Test Report No.	17021528-FCC-R1	
Page	45 of 48	

45 of 48

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.i. TEST SET UP BLOCK

Block Configuration Diagram for Radiated Emissions

Test Report No.	17021528-FCC-R1
Page	46 of 48

Annex C. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description	Model
Zhejiang VALUE Mechanical & Electrical Products CO.,LTD	Wireless Refrigerant Scale	VRS-100i-01

Test Report No. 17021528-FCC-R1

47 of 48

Annex D. User Manual / Block Diagram / Schematics / Partlist

Page

Please see attachment

Test Report No. 17021528-FCC-R1

Page

48 of 48

Annex E. DECLARATION OF SIMILARITY