

FCC - TEST REPORT

Report Number	: 68.950.19.2755.01	Date of Issue:	Sept 9, 2019
Model	: HVN: ED100, HVN: N	D44014	
Product Type	: Mobile POS System		
Applicant	: NumberFour AG		
Address	: Schoenhauser Allee 8	, 10119 Berlin, Germany	1
Manufacturer	: NumberFour AG		
Address	: Schoenhauser Allee 8	, 10119 Berlin, Germany	1
Test Result	: ■ Positive □ Neg	ative	
Total pages including Appendices	: 55		

TÜV SÜD CERTIFICATION AND TESTING (CHINA) CO., LTD. SHENZHEN BRANCH is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025. TÜV SÜD CERTIFICATION AND TESTING (CHINA) CO., LTD. SHENZHEN BRANCH reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations TÜV SÜD CERTIFICATION AND TESTING (CHINA) CO., LTD. SHENZHEN BRANCH issued reports. This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1 Table of Contents

1		Table of Contents	2
2		Details about the Test Laboratory	3
3		Description of the Equipment Under Test	4
4		Summary of Test Standards	5
5		Summary of Test Results	6
6		General Remarks	7
7		Test Setups	8
8		Systems test configuration	9
9		Technical Requirement	10
Ś).1	1 Conducted Emission	10
9	2.2	2 Conducted peak output power	13
9	.3	3 20 dB bandwidth	18
9	.4	4 Carrier Frequency Separation	25
9	.5	Number of hopping frequencies	28
9	0.6	5 Dwell Time	31
9	.7	7 Conducted Spurious Emission	35
9	8.0	Band edge testing	46
9	9.9	9 Spurious radiated emissions for transmitter	51
10		Test Equipment List	54
11		System Measurement Uncertainty	55

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Designation

Number:

CN5009

FCC Registration 514049

No.:

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: Mobile POS System

Model no.: HVN: ED100, HVN: MD44014

FCC ID: 2ANTM-MD44014

Options and accessories: Charger and power Cable

Rating: 3.85VDC, 2810mAh, (Supplied by Rechargeable Li-ion Battery)

or 5VDC (Supplied by external adapter for Charging rechargeable

battery)

Adapter information: Model: DSA-18QFB FUS A

Input:100-240VAC 50/60Hz, 0.8A, Output:5VDC,3A or 9V 2A or 12V 1.5A Manufacturer: Dee Van Enterprise Co., Ltd

RF Transmission Frequency: 13.56MHz for NFC

2402MHz-2480MHz for Bluetooth

2412MHz-2462MHz for 802.11b/g/n20/n40 (WIFI)

5150-5350, 5470-5825MHz for 802.11a/n20/n40/ac20/ac40/ac80 (WIFI)

No. of Operated Channel: 1 for NFC

79 for Bluetooth

11 for 802.11b/g/n20/n40 (WIFI)

43 for 802.11a/n20/n40/ac20/ac40/ac80 (WIFI)

Modulation: ASK for NFC

GFSK, π/4-DQPSK, 8DPSK for Bluetooth

DSSS, OFDM for WIFI

Antenna Type: FPC antenna

Antenna Gain: 1.2dBi max for 2.4GHz

2.0dBi max for 5GHz

Description of the EUT: The Equipment Under Test (EUT) is a Mobile POS System which

support WIFI at 2.4GHz and 5GHz, Bluetooth function operated at

2.4GHz

4 Summary of Test Standards

Test Standards			
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES		
10-1-2018 Edition	Subpart C - Intentional Radiators		

All the test methods were according to KDB558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

	Technical Requirements					
FCC Part 15 Subpart (C					
Test Condition		Test Result	Test Site			
§15.207	Conducted emission AC power port	Pass	Site 1			
§15.247(b)(1)	Conducted peak output power	Pass	Site 1			
§15.247(e)	Power spectral density*	N/A				
§15.247(a)(2)	6dB bandwidth	N/A				
§15.247(a)(1)	20dB bandwidth	Pass	Site 1			
§15.247(a)(1)	Min. of Hopping Channel Carrier Frequency Separation	Pass	Site 1			
§15.247(a)(1)(iii)	Min number of hopping frequencies	Pass	Site 1			
§15.247(a)(1)(iii)	Dwell Time - Average Time of Occupancy	Pass	Site 1			
§15.247(d)	Spurious RF conducted emissions	Pass	Site 1			
§15.247(d)	Band edge	Pass	Site 1			
§15.247(d) & §15.209 &15.205	Spurious radiated emissions for transmitter and receiver	Pass	Site 1			
§15.203	Antenna requirement	See Note 2				

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an FPC antenna, which gain is 1.2dBi. In accordance to §15.203, it is considered sufficiently to comply with the provisions of this section.

General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: 2ANTM-MD44014, complies with Section 15.207, 15.209, 15.205, 15.247 of the FCC Part 15, Subpart C.

HVN: ED100 is a Mobile POS System with Bluetooth Low Energy/Bluetooth

BDR+EDR/WIFI/NFC/GPS/UMTS/LTE function. HVN: ED100 with camera models HZPV4197(Manufacturer: SHENZHEN HEZHONG IMAGE TECHNOLOGY CO. Ltd) and YGA0711(Manufacturer: Shenzhen Yigao Photoelectric Technology Limited), with internal storage models KMQE60013M-B318 (Manufacturer: Sumsung) and H9TQ17ABJTCCUR-KUM (Manufacturer: hynix).

HVN: MD44014 is identical with model: HVN: ED100 except model name and trademark (HVN: MD44014 for MEDION, HVN: ED100 for enforeDonner), unless otherwise Specification the model: HVN: ED100 was choose as representative model to perform all test items, and model: HVN: MD44014 was deemed to fulfil relevant EMC requirements without further testing.

This report is for the Bluetooth BDR +EDR part.

SUMMARY:

All tests according to the regulations cited on page 6 were

- Performed
- □ Not Performed

The Equipment Under Test

- **Fulfills** the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: August 15, 2019

Testing Start Date: August 15, 2019

Testing End Date: September 6, 2019

Prepared by: Reviewed by: Tested by:

Joe Gu

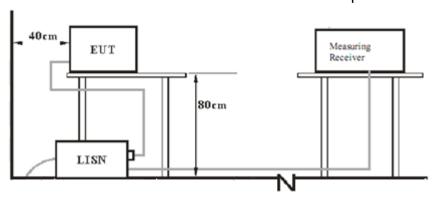
In Com.

Project Engineer Test Engineer

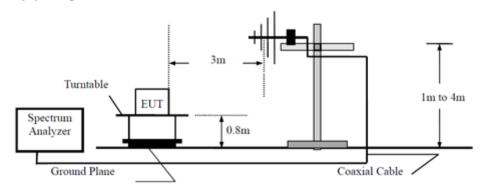
Johnshi

John Zhi

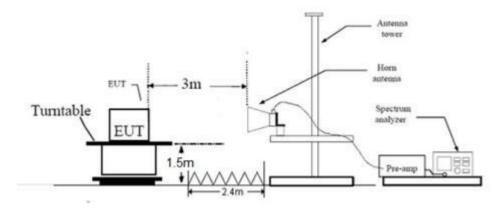
Section Manager

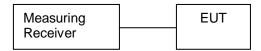

Tree Them

Tree Zhan



7 Test Setups


7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Laptop	Lenovo	T460S	

Test software information:

Test Software Version	HVN: ED100-1.x.x-1.x	
Modulation	Setting TX Power	Packet Type
GFSK	8	DH5
π/4-DQPSK	8	2DH5
8DPSK	8	3DH5

The system was configured to hopping mode and non-hopping mode.

Hopping mode: typical working mode (normal hopping status)

Non-hopping mode: The system was configured to operate at a signal channel transmitting.

The test software allows the configuration and operation at the worst-case duty

9 Technical Requirement

9.1 Conducted Emission

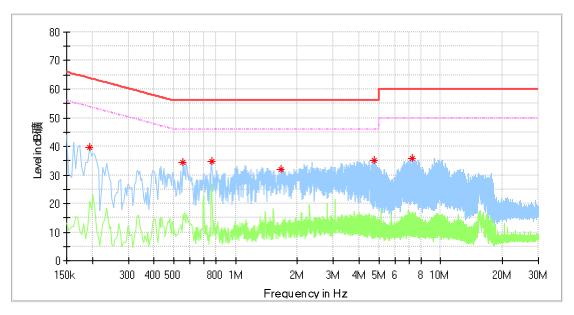
Test Method

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. Both sides of AC line were checked for maximum conducted interference.
- 6. The frequency range from 150 kHz to 30 MHz was searched.
- 7. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

Limit

According to §15.207, conducted emissions limit as below:

Frequency		QP Limit	AV Limit	
_	MHz	dΒμV	dΒμV	
	0.150-0.500	66-56*	56-46*	
	0.500-5	56	46	
	5-30	60	50	


^{*}Decreasing linearly with logarithm of the frequency

Conducted Emission

Product Type : Mobile POS System

M/N : HVN: ED100
Operating Condition : Charging + TX
Test Specification : Power Line, Live
Comment : AC 120V/60Hz

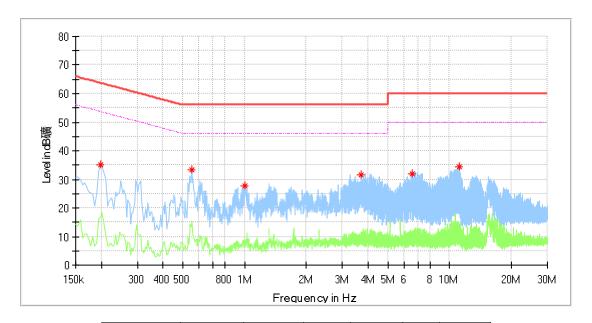
Frequency (MHz)	MaxPeak* (dBµV)	Average* (dBµV)	Limit (dBµV	Margin (dB)	Line	Corr.** (dB)
0.194000	39.55		63.86	24.31	L1	10.2
0.554000	34.28		56.00	21.72	L1	10.3
0.766000	34.87		56.00	21.13	L1	10.3
1.674000	32.01		56.00	23.99	L1	10.3
4.718000	34.94		56.00	21.06	L1	10.4
7.282000	35.92		60.00	24.08	L1	10.5

Remark:

(The Reading Level is recorded by software which is not shown in the sheet)

^{*}Level=Reading Level + Correction Factor

^{**}Correction Factor=Cable Loss + LISN Factor



Conducted Emission

Product Type : Notebook

M/N : NFC7YWW01161024
Operating Condition : Charging + TX
Test Specification : Power Line, Neutral

Comment : AC 120V/60Hz

Frequency	MaxPeak*	Average*	Limit	Margin	Line	Corr.**
(MHz)	(dBµV)	(dBµV)	(dBµV	(dB)		(dB)
0.198000	35.04		63.69	28.65	N	10.2
0.550000	33.17		56.00	22.83	N	10.3
1.002000	27.60		56.00	28.40	N	10.3
3.698000	31.55		56.00	24.45	N	10.4
6.570000	31.82		60.00	28.18	N	10.5
11.158000	34.34		60.00	25.66	N	10.7

Remark:

(The Reading Level is recorded by software which is not shown in the sheet)

^{*}Level=Reading Level + Correction Factor

^{**}Correction Factor=Cable Loss + LISN Factor

9.2 Conducted peak output power

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following test receiver settings:

 Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW,

 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power and record the results in the test report.
- 5. Repeat above procedures until all frequencies measured were complete.

Limits

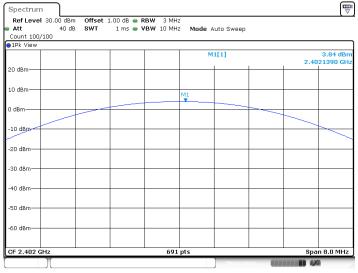
Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

Bluetooth Mode GFSK modulation Test Result

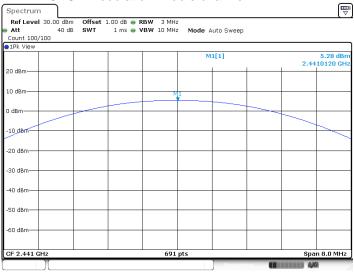
Frequency MHz	Output Power dBm	Result
Low channel 2402MHz	3.84	Pass
Middle channel 2441MHz	5.28	Pass
High channel 2480MHz	3.60	Pass

Bluetooth Mode π/4-DQPSK modulation Test Result Conducted Peak


Frequency MHz	Output Power dBm	Result	
Low channel 2402MHz	3.95	Pass	
Middle channel 2441MHz	5.38	Pass	
High channel 2480MHz	3.63	Pass	

Bluetooth Mode 8DPSK modulation Test Result Conducted Peak

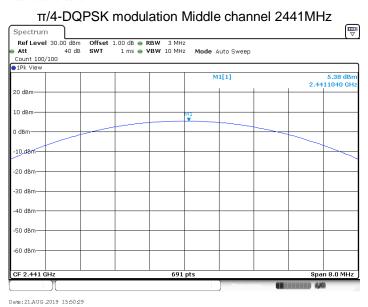
_	Frequency MHz	Output Power dBm	Result	
	Low channel 2402MHz	4.34	Pass	
	Middle channel 2441MHz	5.92	Pass	
	High channel 2480MHz	4.02	Pass	

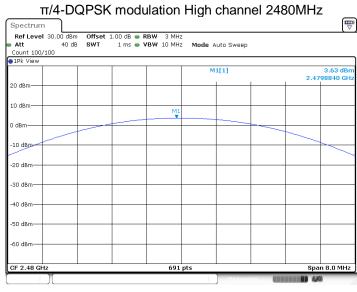


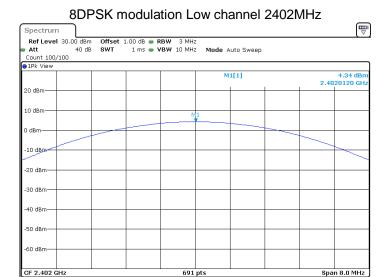
Date: 21 AUG .2019 15:53:50

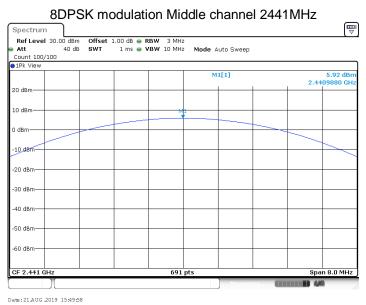
GFSK modulation Middle channel 2441MHz

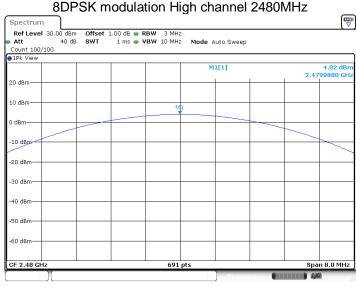
Date: 21 AUG 2019 15:54:14


GFSK modulation High channel 2480MHz Spectrum Ref Level 30.00 dBm Att 40 dB Count 100/100 Offset 1.00 dB ■ RBW 3 MHz SWT 1 ms ■ VBW 10 MHz Mode Auto Sweep M1[1] 20 dBm 0 dBm -10 dBm -20 dBm -30 dBr -40 dBm -50 dBr -60 dBm 691 pt


Date: 21 AUG 2019 15:54:41


Date: 21 AUG 2019 15:51:13




Date: 21 AUG 2019 15:48:39

Date: 21 AUG 2019 15:51:39

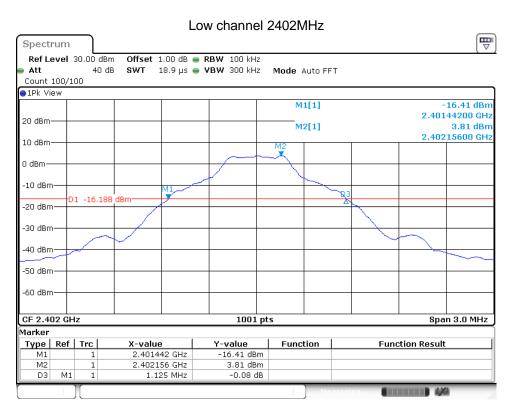
Date:21 AUG 2019 15:49:23

9.3 20 dB bandwidth

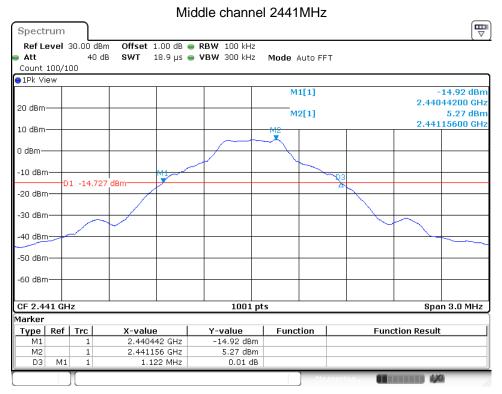
Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Use the following test receiver settings: Span = approximately 5 times the 20dB bandwidth, centered on a hopping channel RBW > the 20dB bandwidth of the emission being measured, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. Record the results.
- 5. Repeat above procedures until all frequencies measured were complete.

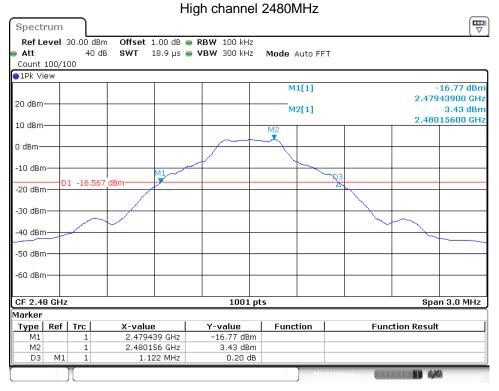
	П	m	П	٠
_	ш			L


Limit [kHz]
N/A

20 dB bandwidth


Bluetooth Mode GFSK Modulation test result

Frequency MHz	20 dB Bandwidth kHz	Limit kHz	Result
2402	1125		Pass
2441	1122		Pass
2480	1122		Pass

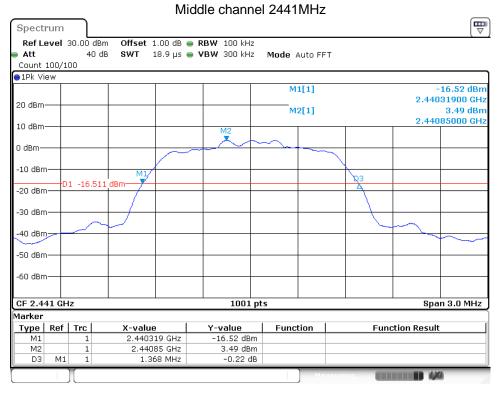


Date: 1 AUG 2019 21:56:58

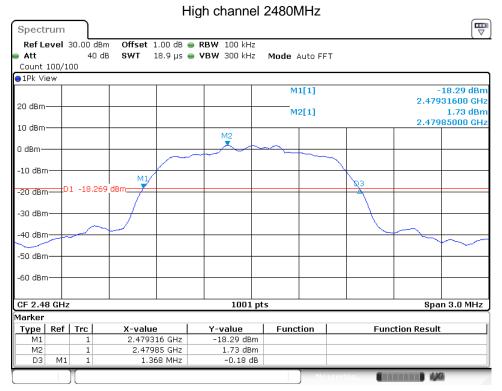
Date: 1 AUG 2019 21:51:38

Date: 1 AUG 2019 21:53:46

20 dB bandwidth

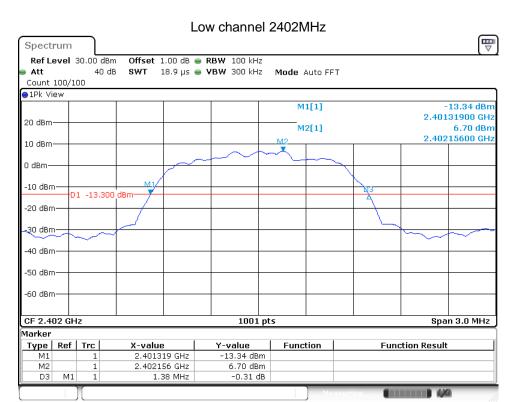

Bluetooth Mode π/4-DQPSK Modulation test result

Frequency	20 dB Bandwidth	Limit	Result
MHz	kHz	kHz	
2402	1368		Pass
2441	1368		Pass
2480	1368		Pass


Low channel 2402MHz Spectrum Ref Level 30.00 dBm Offset 1.00 dB e RBW 100 kHz 18.9 µs **● VBW** 300 kHz Att 40 dB SWT Mode Auto FFT Count 100/100 ●1Pk View -18.36 dBm M1[1] 2.40131900 GHz 20 dBm M2[1] 1.72 dBm 2.40215600 GHz 10 dBm-M2 0 dBm--10 dBm-D1 -18.278 -20 dBm--30 dBm -40 dBm--50 dBm -60 dBm-1001 pts Span 3.0 MHz CF 2.402 GHz Marker Function **Function Result** Type | Ref | Trc X-value Y-value 2.401319 GHz -18.36 dBm М2 2.402156 GHz 1.72 dBm D3 М1 1.368 MHz 0.02 dB

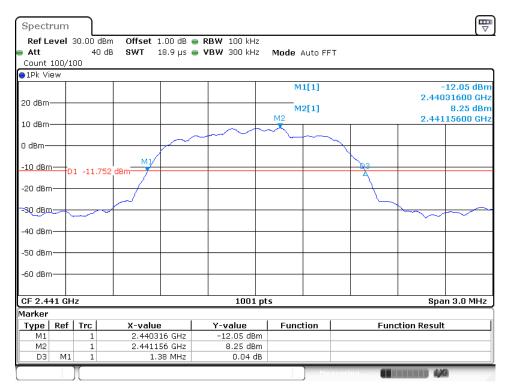
Date: 1 AUG 2019 21:59:56

Date: 1 AUG 2019 22:04:05

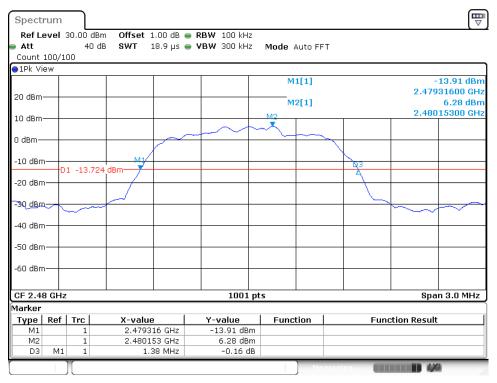

Date: 1 AUG 2019 22:08:51

20 dB bandwidth

Bluetooth Mode 8DPSK Modulation test result


Frequency	20 dB Bandwidth	Limit	Result
MHz	kHz	kHz	
2402	1380		Pass
2441	1380		Pass
2480	1380		Pass

Date: 21 AUG 2019 15:13:03



Middle channel 2441MHz

Date: 21 AUG 2019 15:16:24

High channel 2480MHz

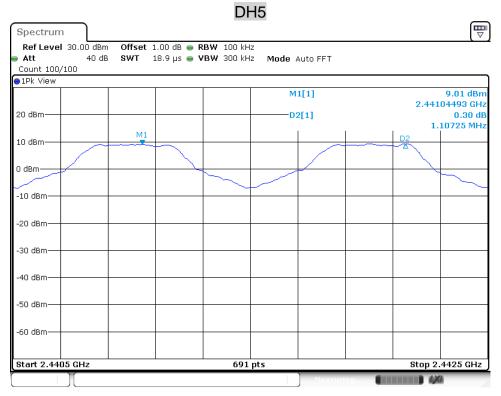
Date: 21 AUG 2019 15:18:27

9.4 Carrier Frequency Separation

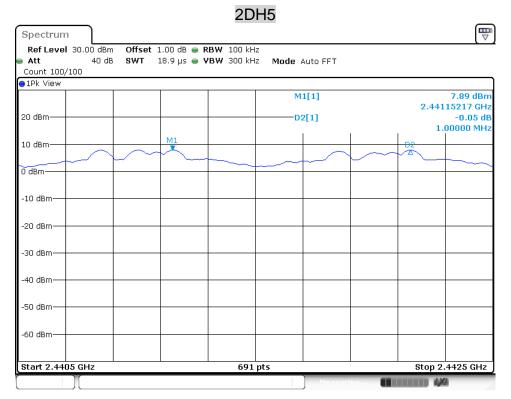
Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. By using the Max-Hold function record the separation of two adjacent channels.
- 5. Measure the frequency difference of these two adjacent channels by spectrum analyzer marker function. Record the results.
- 6. Repeat above procedures until all frequencies measured were complete.

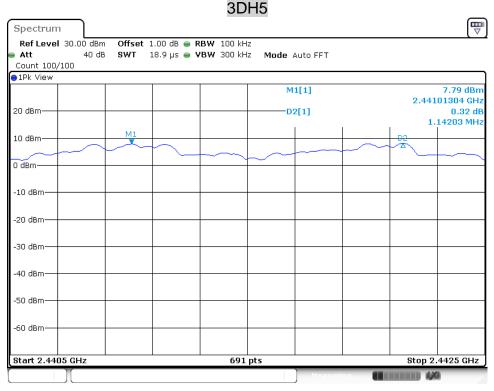
Limit


Limit
kHz

≥25KHz or 2/3 of the 20 dB bandwidth which is greater


Carrier Frequency Separation

TestMode	Channel	Result [MHz]	Limit [MHz]	Verdict
DH5	Нор	1.107	>=0.750	PASS
2DH5	Нор	1.000	>=0.912	PASS
3DH5	Нор	1.142	>=0.920	PASS



Date: 21 AUG 2019 15:22:43

Date: 21 AUG 2019 15:30:17

Date: 21 AUG 2019 15:38:23

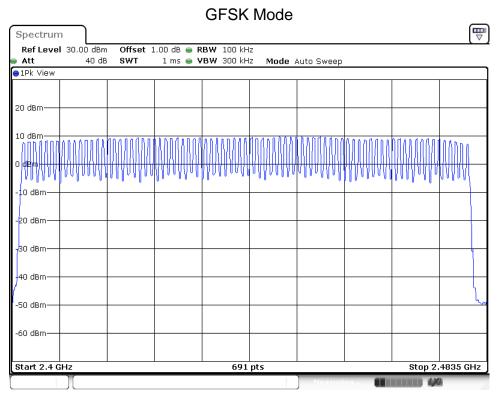
9.5 Number of hopping frequencies

Test Method

- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels, RBW ≥ 1% of the span, VBW) ≥RBW, Sweep = auto, Detector function = peak
- 4. Set the spectrum analyzer on Max-Hold Mode,
- 5. Record all the signals from each channel until each one has been recorded.

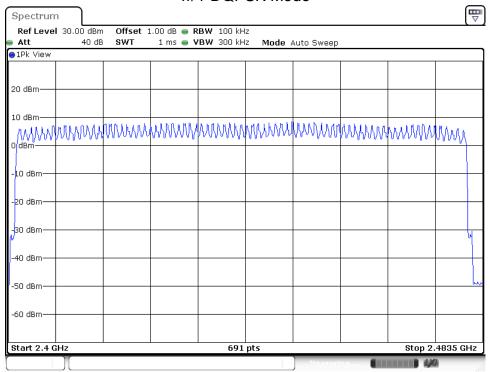
Repeat above procedures until all frequencies measured were complete.

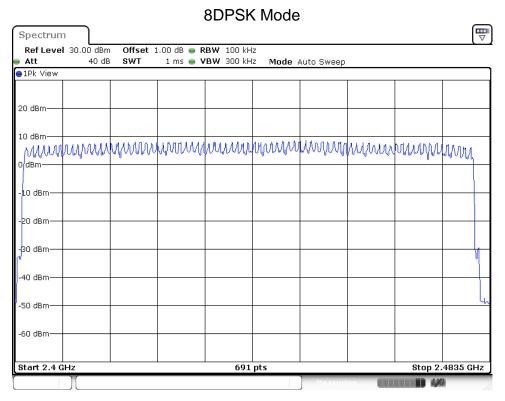
Limit


Limit
number
<u> </u>

Number of hopping frequencies

Test result: The measurement was performed with the typical configuration (normal hopping status), and the total hopping channels is constant for the all modulation mode according with the Bluetooth Core Specification. Here GFSK modulation mode was used to show compliance.


Number of hopping frequencies	Result
79	Pass


Date: 21 AUG 2019 15:23:22

Date: 21 AUG 2019 15:31:09

Date: 21 AUG 2019 15:39:34

9.6 Dwell Time

Test Method

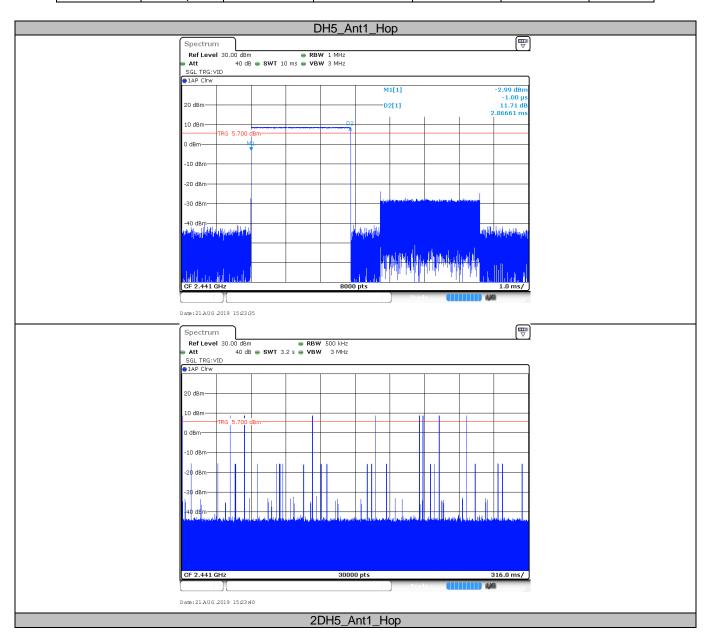
- 1. The RF output of EUT was connected to the test receiver by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit to hopping mode.
- 3. Use the following spectrum analyzer settings: RBW: 1MHz; VBW: 3MHz; SPAN: Zero Span Set the spectrum analyzer on Max-Hold Mode,
- 4. Adjust the center frequency of spectrum analyzer on any frequency be measured.
- 5. Measure the Dwell Time by spectrum analyzer Marker function. Record the results. Dwell Time = Burst Width * Total Hops
- 6. Repeat above procedures until all frequencies measured were complete.

Limit

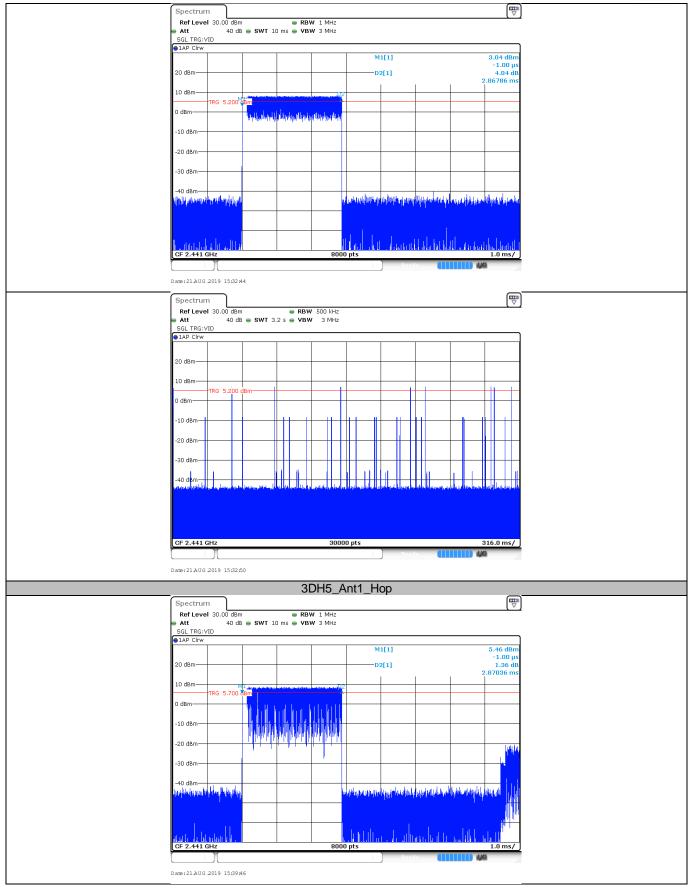
The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Dwell Time

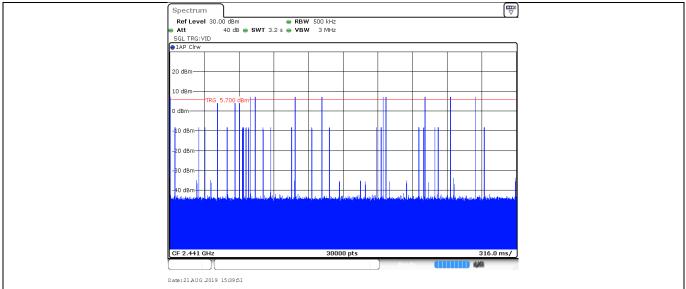
Dwell time


The maximum dwell time shall be 0.4 s.

The Dwell Time = Burst Width * Total Hops. The detailed calculations are showed as follows:


The duration for dwell time calculation: 0.4 [s] * hopping number = 0.4 [s] * 79 [ch] = 31.6 [s*ch];

Test Result

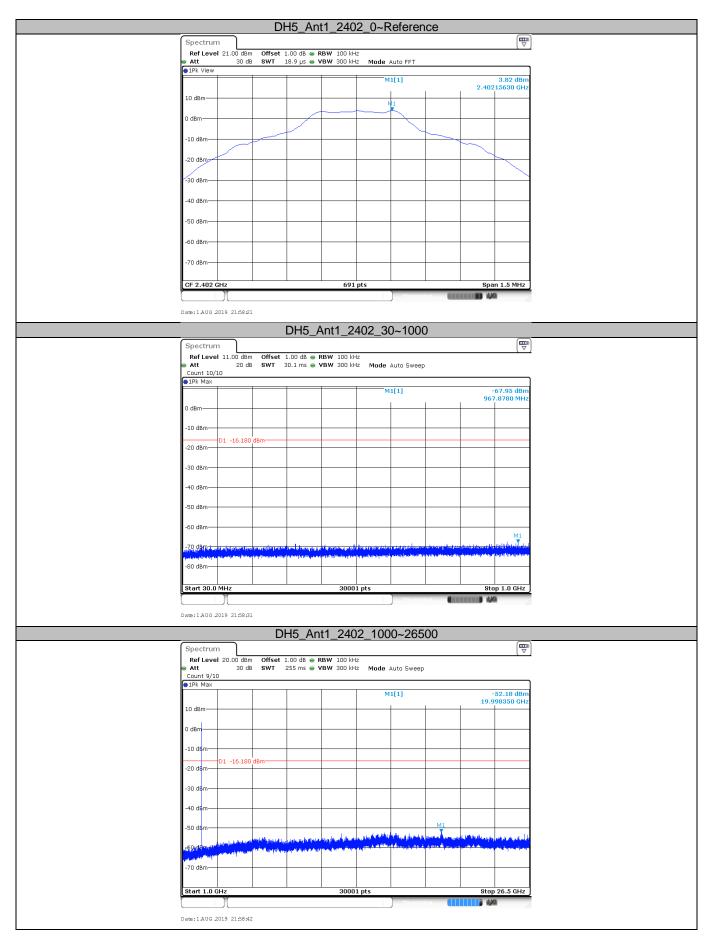

TestMode	Channel	BurstWidth [ms]	TotalHops	Result [s]	Limit [s]	Verdict	
DH5	Нор	2.87	90	0.258	<=0.4	PASS	
2DH5	Нор	2.87	90	0.258	<=0.4	PASS	
3DH5	Hop	2.87	130	0.373	<=0.4	PASS	

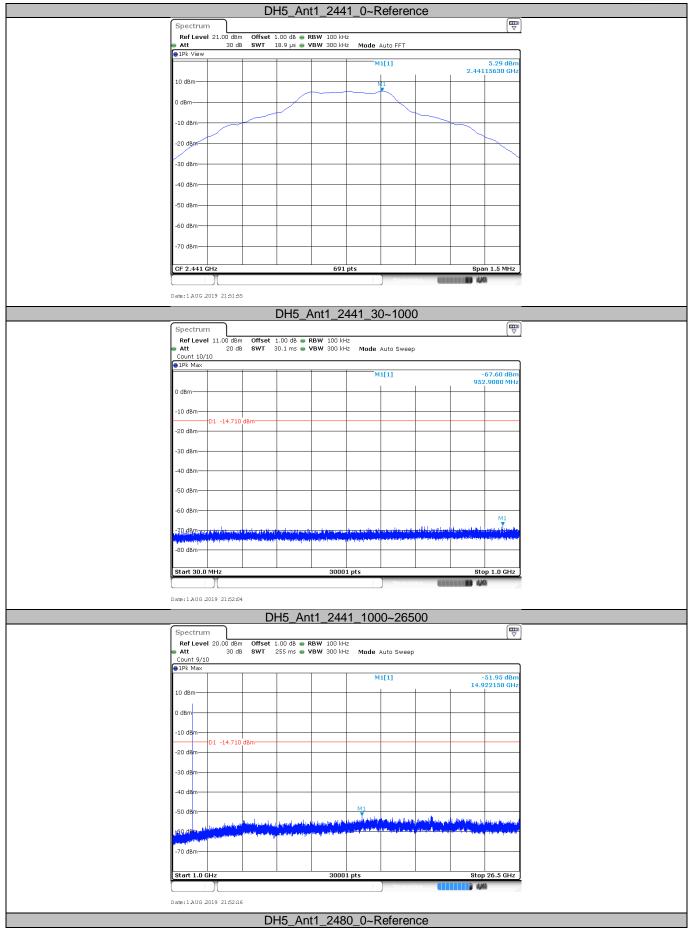
9.7 Conducted Spurious Emission

Test Method

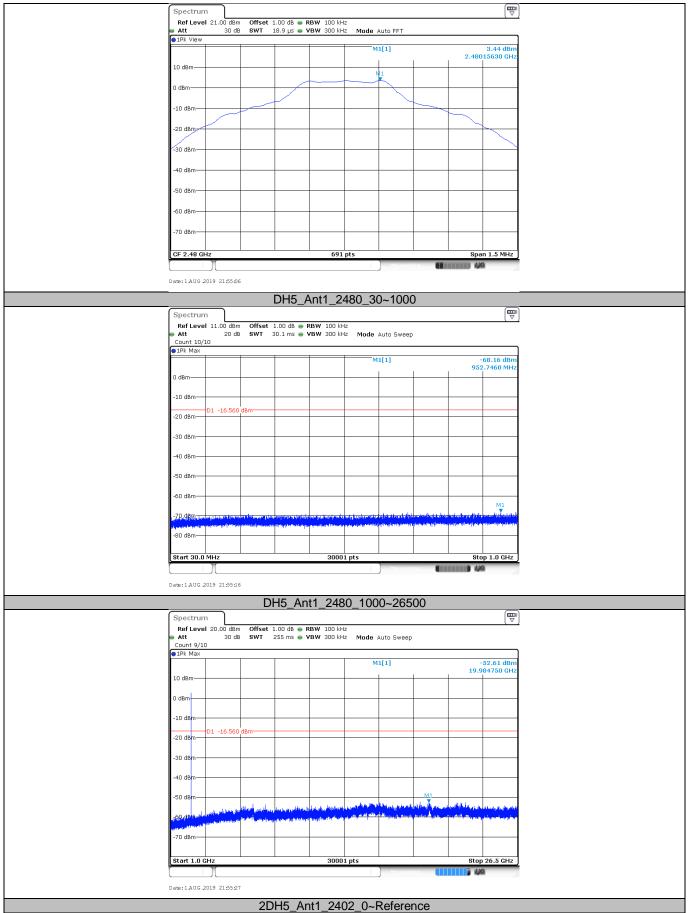
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

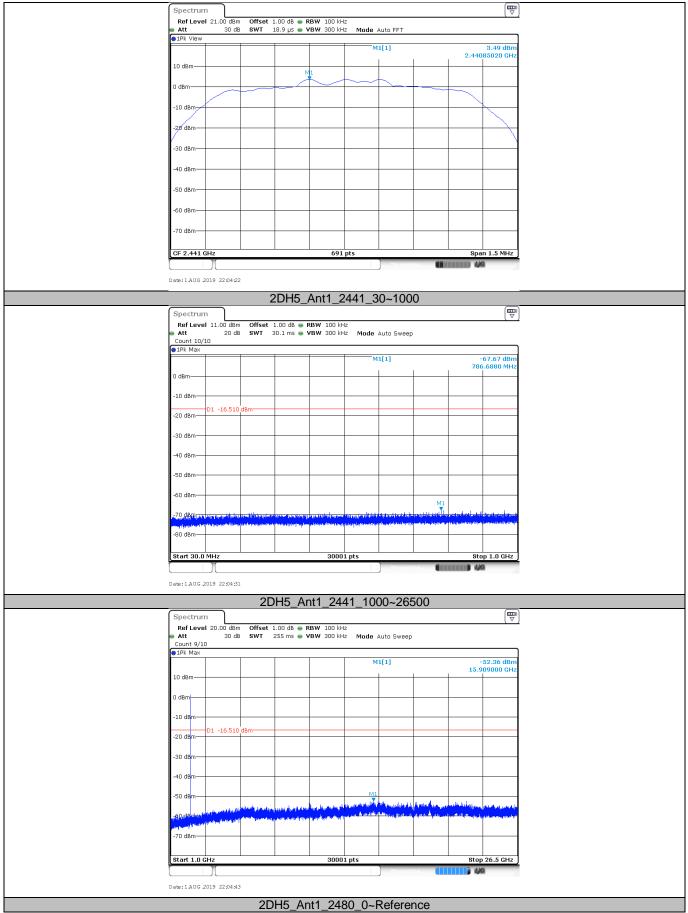
Limit

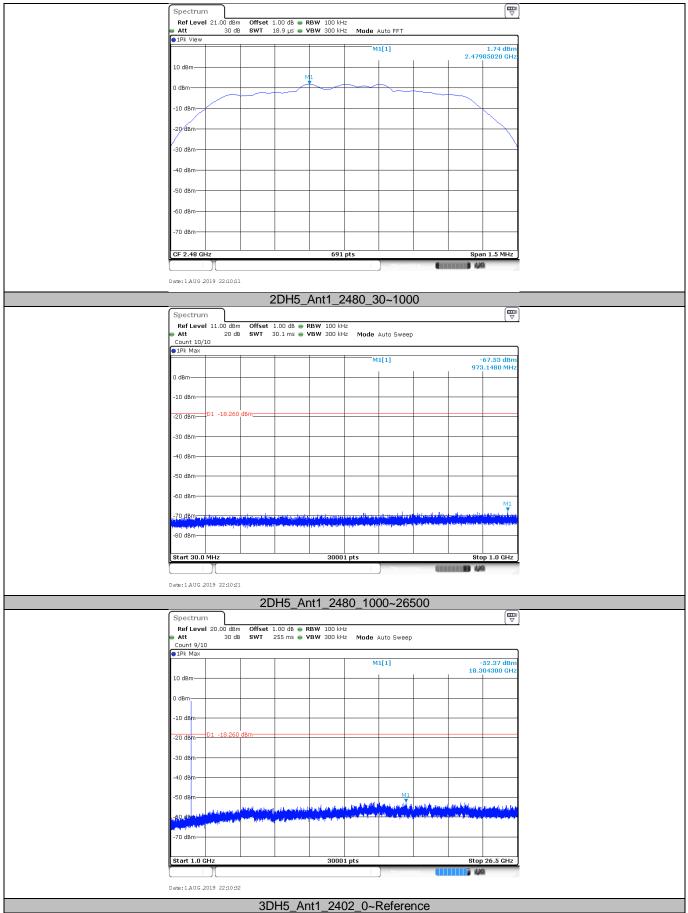

Frequency Range MHz	Limit (dBc)
30-25000	-20

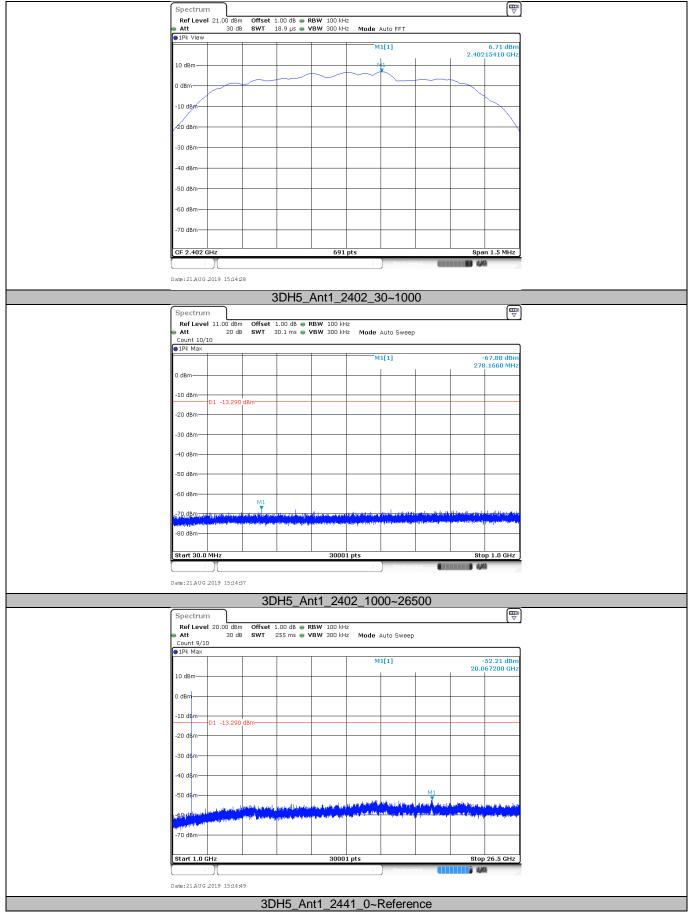

Test result:

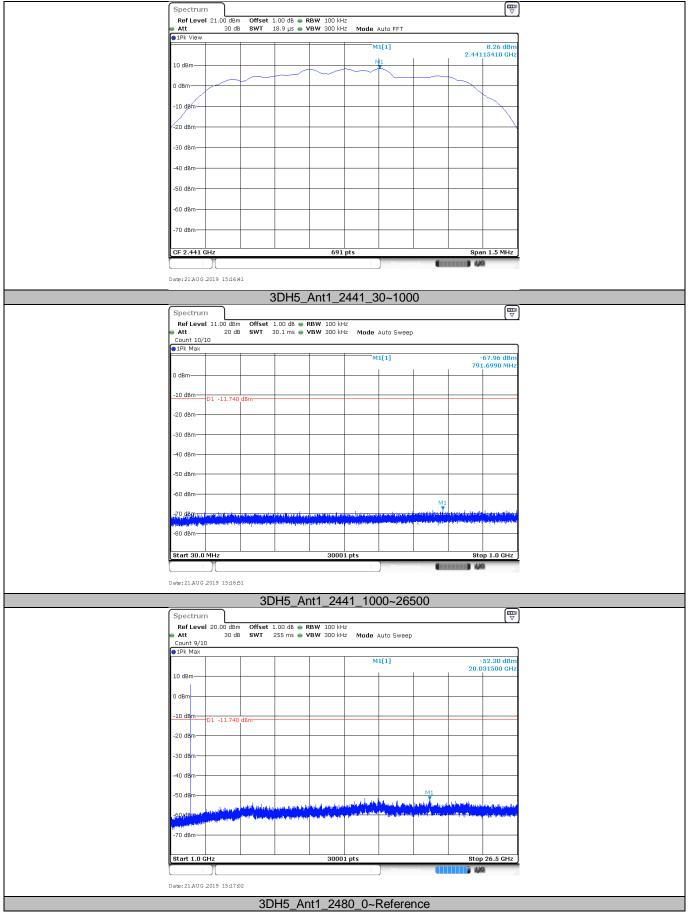
TestMode	Antenna	Channel	FreqRange [MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
		2402	Reference	3.82	3.82		PASS
		2402	30~1000	30~1000	-67.95	<=-16.18	PASS
		2402	1000~26500	1000~26500	-52.18	<=-16.18	PASS
		2441	Reference	5.29	5.29		PASS
DH5	Ant1	2441	30~1000	30~1000	-67.6	<=-14.71	PASS
		2441	1000~26500	1000~26500	-51.95	<=-14.71	PASS
		2480	Reference	3.44	3.44		PASS
		2480	30~1000	30~1000	-68.16	<=-16.56	PASS
		2480	1000~26500	1000~26500	-52.61	<=-16.56	PASS
	Ant1	2402	Reference	1.73	1.73		PASS
		2402	30~1000	30~1000	-68.12	<=-18.27	PASS
		2402	1000~26500	1000~26500	-51.55	<=-18.27	PASS
		2441	Reference	3.49	3.49		PASS
2DH5		2441	30~1000	30~1000	-67.67	<=-16.51	PASS
		2441	1000~26500	1000~26500	-52.36	<=-16.51	PASS
		2480	Reference	1.74	1.74		PASS
		2480	30~1000	30~1000	-67.53	<=-18.26	PASS
		2480	1000~26500	1000~26500	-52.37	<=-18.26	PASS
		2402	Reference	6.71	6.71		PASS
		2402	30~1000	30~1000	-67.88	<=-13.29	PASS
		2402	1000~26500	1000~26500	-52.21	<=-13.29	PASS
		2441	Reference	8.26	8.26		PASS
3DH5	Ant1	2441	30~1000	30~1000	-67.96	<=-11.74	PASS
		2441	1000~26500	1000~26500	-52.3	<=-11.74	PASS
		2480	Reference	6.28	6.28		PASS
		2480	30~1000	30~1000	-68.04	<=-13.72	PASS
		2480	1000~26500	1000~26500	-52.39	<=-13.72	PASS

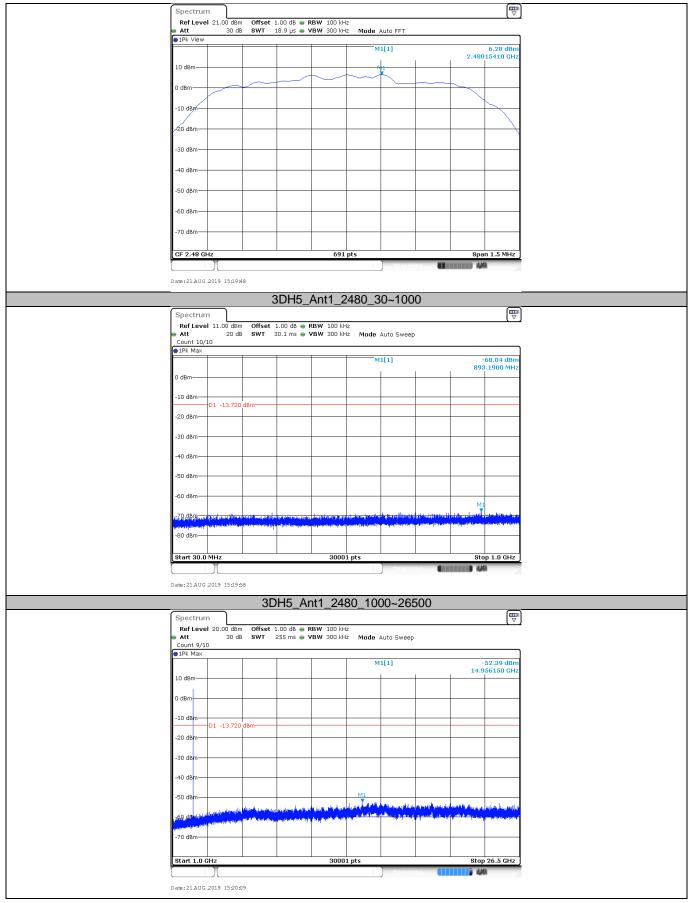










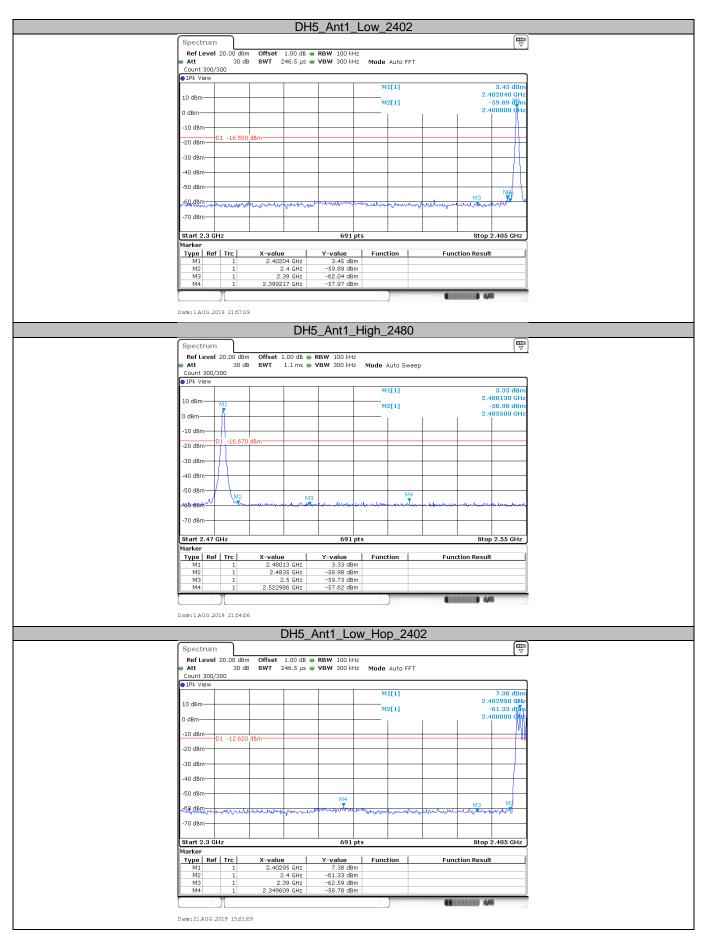


9.8 Band edge testing

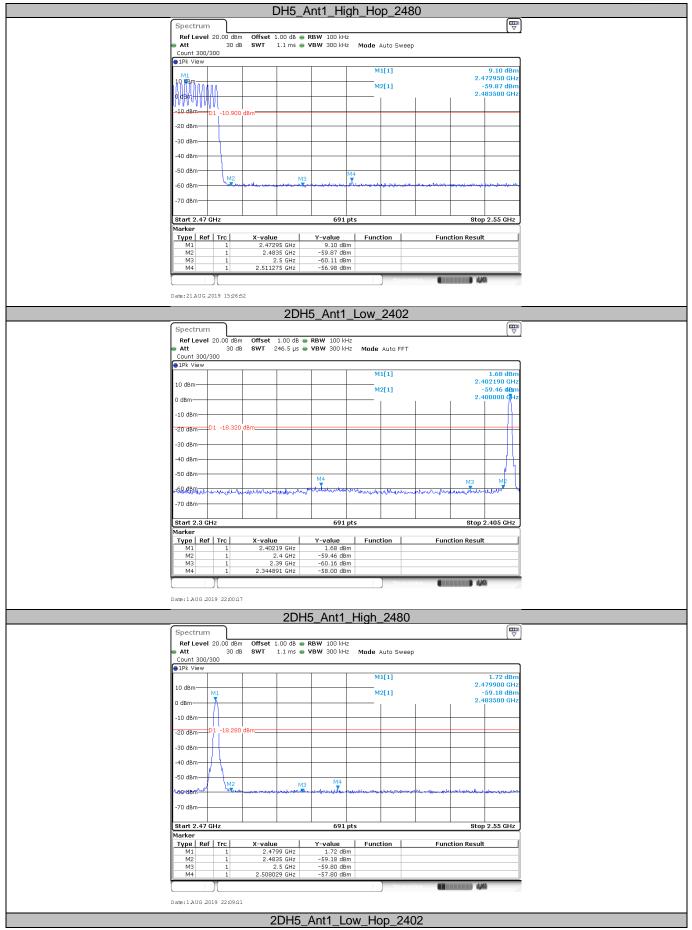
Test Method

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency

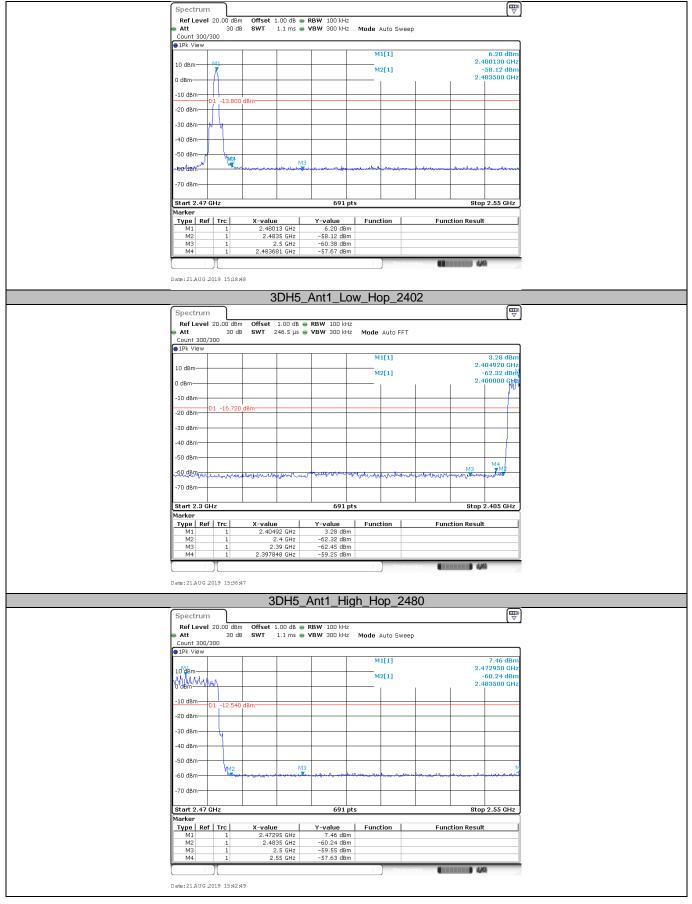
Set to the maximum power setting and enable the EUT hopping mode, repeat the test.


Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.


Test result:

TestMode	Antenna	ChName	Channe[MHz]I	RefLevel [dBm]	Result [dBm]	Limit	Verdict	
		Low	2402	3.45	-57.97	<=-16.55	PASS	
DH5	Ant1	High	2480	3.33	-57.62	<=-16.67	PASS	
טחט	Anti	Low	Hop_2402	7.38	-58.78	-12.62	PASS	
			Hop_2480	9.10	-56.98	-10.9	PASS	
		Low	2402	1.68	-58	<=-18.32	PASS	
2045	2DH5 Ant1	High	2480	1.72	-57.8	<=-18.28	PASS	
20113		ZDI IS AIILI	Low	Hop_2402	3.67	-58.19	-16.33	PASS
		High	Hop_2480	7.42	-57.29	-12.58	PASS	
		Low	2402	6.71	-52.45	<=-13.29	PASS	
3DH5 Ant1	Ant1	High	2480	6.20	-57.67	<=-13.8	PASS	
פחענ	3DH5 Ant1	Low	Hop_2402	3.28	-59.25	-16.72	PASS	
		High	Hop_2480	7.46	-57.63	-12.54	PASS	



9.9 Spurious radiated emissions for transmitter

Test Method Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto,

Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW=10Hz, Sweep = auto, Detector function = peak, Trace = max hold. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correct factor, derived from the appropriate the duty cycle calculation.

The setting method can refer to DA00-705.

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (which is subject to the 8DPSK mode) test result is listed in the report.

Transmitting spurious emission test result as below:

8DPSK Modulation 2402MHz Test Result

Frequency Band	Frequency	Emission level	Polarization	Limit	Detector	Margin	Corr.	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	dB/m	
30-	*174.43	31.22	Н	43.50	QP	12.28	-29.7	Pass
1000MHz	35.24	35.55	V	40.00	QP	4.45	-26.8	Pass
1000-	13151.25	45.39	Н	74	PK	28.61	13.9	Pass
25000MHz	*9374.53	41.49	V	74	PK	32.51	8.6	Pass

8DPSK Modulation 2441MHz Test Result

Frequency Band	Frequency	Emission level	Polarization	Limit	Detector	Margin	Corr.	Result
Ballu	MHz	dBuV/m		dBµV/m		dBuV/m	dB/m	
30-			Н	40	QP			Pass
1000MHz			V	40	QP			Pass
1000-	*9373.13	40.49	Н	74	PK	33.51	8.6	Pass
25000MHz	*12421.41	41.51	V	74	PK	32.49	11.8	Pass

8DPSK Modulation 2480MHz Test Result

Frequency Band	Frequency	Emission level	Polarization	Limit	Detector	Margin	Corr.	Result
Dallu	MHz	dBuV/m		dBµV/m		dBuV/m	dB/m	
30-			Н	40	QP			Pass
1000MHz			V	40	QP			Pass
1000-	15339.84	49.67	Н	74	PK	24.33	18.6	Pass
25000MHz	*12335.63	41.17	V	74	PK	32.83	11.5	Pass

Remark:

- (1) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3) Corrected Amplitude= Read level + Corrector factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Pre-amplifier Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading Level is recorded by software which is not shown in the sheet)

10 Test Equipment List

List of Test Instruments

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2020-6-28
LISN	Rohde & Schwarz	ENV4200	100249	2020-6-28
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2020-6-28
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A

Radiated Emission Test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2020-6-28
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2020-6-29
Horn Antenna	Rohde & Schwarz	HF907	102295	2020-6-22
Wideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2020-7-12
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2020-6-28
Attenuator	Agilent	8491A	MY39264334	2020-6-28
3m Semi-anechoic chamber	TDK	9X6X6		2020-7-7
Test software	Rohde & Schwarz	EMC32	Version 9.15.00	N/A

RF conducted test

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2020-6-28
RF Switch Module	Rohde & Schwarz	OSP120/OSP-B157	101226/100851	2020-6-28
Power Splitter	Weinschel	1580	SC319	2020-7-7
Test software	Tonscend	System for BT/WIFI	Version 2.6	N/A

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty				
Test Items	Extended Uncertainty			
Uncertainty for Radiated Spurious Emission 30MHz-1000MHz	Horizontal: 4.91dB; Vertical: 4.89dB;			
Uncertainty for Radiated Spurious Emission 1000MHz- 18000MHz	Horizontal: 4.80dB; Vertical: 4.79dB;			
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.05dB; Vertical: 5.04dB;			
Uncertainty for Conducted RF test with TS 8997	RF Power Conducted: 1.16dB Frequency test involved: 0.6×10-7 or 1%			

---THE END OF REPORT---