

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.com.cn

TEST REPORT				
Report No. ·····:	GTI20191844E			
FCC ID······:	2ANTM-MD44014			
Applicant	NumberFour AG			
Address······	Schoenhauser Allee 8, 10119 Berlin	n, Germany		
Manufacturer	NumberFour AG			
Address:	Schoenhauser Allee 8, 10119 Berlin	n, Germany		
Product Name·····:	Mobile POS System			
Trade Mark······				
Model/Type reference······:	HVN:ED100			
Listed Model(s) ······	HVN:MD44014			
Standard	FCC CFR Title 47 Part 2 FCC CFR Title 47 Part 22 FCC CFR Title 47 Part 24 FCC CFR Title 47 Part 27			
Date of receipt of test sample:	Aug.28.2019			
Date of testing	Aug.29.2019 to Sep.04.2019			
Date of issue	Sep.06.2019			
Result:	PASS			
Compiled by: (Printed name+signature)	Zaki Zhang	Zali 2hang		
Supervised by: (Printed name+signature)	Miller Ma	Miller Ma		
Approved by: (Printed name+signature)	Walter Chen Walter Chen			
Testing Laboratory Name	CTC Laboratories, Inc.			
Address	1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China			
	ompletely for legal use with the approv			

I his test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	SUN	1MARY	3
	1.1.	Test Standards	3
	1.2.	Report version	3
	1.3.	Test Description	4
	1.4.	TEST FACILITY	5
	1.5.	Measurement Uncertainty	
	1.6.	Environmental conditions	6
2.	GEN	IERAL INFORMATION	7
	2.1.	CLIENT INFORMATION	7
	2.2.	GENERAL DESCRIPTION OF EUT	8
	2.3.	DESCRIPTION OF TEST MODES AND TEST FREQUENCY	9
	2.4.	Measurement Instruments List	11
3.	TEST	۲ ITEM AND RESULTS	13
	3.1.	CONDUCTED OUTPUT POWER	13
	3.2.	Peak-to-Average Ratio	14
	3.3.	Occupy Bandwidth	15
	3.4.	OUT OF BAND EMISSION AT ANTENNA TERMINALS	16
	3.5.	BAND EDGE COMPLIANCE	17
	3.6.	Radiated Power Measurement	18
	3.7.	Radiated Spurious Emission	19
	3.8.	FREQUENCY STABILITY	28
4.	EUT	TEST PHOTOS	29
5.		TOGRAPHS OF EUT CONSTRUCTIONAL	

1. SUMMARY

1.1. Test Standards

FCC Rules Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

FCC Rules Part 22: PRIVATE LAND MOBILE RADIO SERVICES.

FCC Rules Part 24: PUBLIC MOBILE SERVICES

FCC Rules Part 27: MISCELLANEOUS WIRDELESS COMMUNICATIONS SERVICES

ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

KDB 971168 D01 Power Meas License Digital Systems v03: MEASUREMENT GUIDANCE FOR CERTIFICATION OF LICENSED DIGITAL TRANSMITTERS

1.2. Report version

Revised No.	Date of issue	Description
01	Sep.06.2019	Original

1.3. Test Description

Test Item	Section in CFR 47	Result	Test Engineer
Conducted Output Power	Part 2.1046 Part 22.913(a) Part 24.232(c) Part 27.50	Pass	Roy Luo
Peak-to-Average Ratio	Part 24.232 Part 27.50	Pass	Roy Luo
99% Occupied Bandwidth & 26 dB Bandwidth	Part 2.1049 Part 22.917(b) Part 24.238(b) Part 27.53	Pass	Roy Luo
Band Edge	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Roy Luo
Conducted Spurious Emissions	Part 2.1051 Part 22.917 Part 24.238 Part 27.53	Pass	Roy Luo
Frequency stability VS Temperature	Part 2.1055(a)(1)(b) Part 22.355 Part 24.235 Part 27.54	Pass	Roy Luo
Frequency stability VS Voltage	Part 2.1055(d)(1)(2) Part 22.355 Part 24.235 Part 27.54	Pass	Roy Luo
ERP and EIRP	Part 22.913(a) Part 24.232(b) Part 27.50	Pass	Roy Luo
Radiated Spurious Emissions Part 22.917 Part 24.238 Part 27.53		Pass	Roy Luo

Page 4 of 30

Note: The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the test laboratory

CTC Laboratories, Inc.

Add: 1F, 2 Block, Jiaquan Building, Guanlan High-tech Park Baoan District, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

ISED Registration No.: CN0029

The 3m alternate test site of CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: CN0029 on Dec, 2018.

FCC-Registration No.: CN1208

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration CN1208, Sep 07, 2017

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements and is documented in the CTC Laboratories, Inc. Ltd quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emission 1~18GHz	5.16 dB	(1)
Radiated Emission 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

Hereafter the best measurement capability for CTC Laboratories, Inc. is reported:

101 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature:	25°C
Relative Humidity:	55 %
Air Pressure:	101 kPa

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	NumberFour AG	
Address:	Schoenhauser Allee 8, 10119 Berlin, Germany	
Manufacturer:	NumberFour AG	
Address:	Schoenhauser Allee 8, 10119 Berlin, Germany	
Factory:	Zhangzhou Wanlida Technology Co.,Ltd.	
Address:	Wanlida Industrial Zone, Nanjing, Zhangzhou, Fujian, China	

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>

Product Name:	Mobile POS System	
Model/Type reference:	HVN:ED100	
Marketing Name:		
Listed Model(s):	HVN:MD44014	
Power supply:	3.85Vdc 2810mAh from Li-ion Battery	
Adapter:	Model: DSA-18QFB FUSA Input:100-240VAC 50/60Hz 0.8A Output: 5VDC 3A or 9VDC 2A or 12VDC 1.5A	
Adapter Manufacturer:	Dee Van Enterprise Co., Ltd	
Hardware version:	A267C	
Software version:	HVN:ED100-1.x.x-1.x	
LTE		
Operation Band:	Band 2: UL: 1850.7MHz~1909.9MHz, DL: 1930MHz~1989.9MHz Band 4: UL: 1710 MHz~1754.9MHz, DL: 2110.0MHz~2154.9MHz Band 7: UL: 2500.0MHz~2569.9MHz, DL: 2620.0MHz~2689.9MHz Band 13: UL: 777.0 MHz~786.9MHz, DL: 746.0MHz~755.9MHz Band 25: UL: 1850MHz~1941.9MHz, DL: 1930MHz~1994.9 MHz Band 41: UL: 2555 MHz~2655MHz, DL: 2555 MHz~2655MHz	
Modulation Type:	QPSK, 16QAM	
Antenna type:	FPC Antenna	
Antenna Gain:	FDD Band 2: 1.0dBi FDD Band 4: 1.0dBi FDD Band 7: 1.0dBi FDD Band 13: 1.0dBi FDD Band 25: 1.0dBi FDD Band 41: 1.0dBi	

2.2. General Description of EUT

2.3. Description of Test Modes and Test Frequency

The EUT has been tested under typical operating condition. The CMW500 used to control the EUT staying in continuous transmitting and receiving mode for testing.

Test Frequency:

	Band 2				
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)		
	1.4	18607	1850.70		
	3	18615	1851.50		
Low Range	5	18625	1852.50		
Low Range	10	18650	1855.00		
	15	18675	1857.50		
	20	18700	1860.00		
Mid Range	1.4/3/5/10/15/20	18900	1880.00		
	1.4	19193	1909.30		
	3	19185	1908.50		
High Range	5	19175	1907.50		
nigh Kange	10	19150	1905.00		
	15	19125	1902.50		
	20	19100	1900.00		

	Band 4				
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)		
	1.4	19957	1710.70		
	3	19965	1711.50		
Low Range	5	19975	1712.50		
Low Mange	10	20000	1715.00		
	15	20025	1717.50		
	20	20050	1720.00		
Mid Range	1.4/3/5/10/15/20	20175	1732.50		
	1.4	20393	1754.30		
	3	20385	1753.50		
High Range	5	20375	1752.50		
r light Kalige	10	20350	1750.00		
	15	20325	1747.50		
	20	20300	1745.00		

	Band 7				
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)		
	5	20775	2502.50		
Low Range	10	20800	2505.00		
Low Range	15	20825	2507.50		
	20	20850	2510.00		
Mid Range	5/10/15/20	21100	2535.00		
	5	21425	2567.50		
High Range	10	21400	2565.00		
r ligh Range	15	21375	2562.50		
	20	21350	2560.00		

Band 13			
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)
Low Range	5	23205	779.50
	10	23230	782.00
Mid Range	5/10	23230	782.00
High Range	5	23255	784.50
	10	23230	782.00

		Band 25	
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)
	1.4	26047	1850.70
	3	26055	1851.50
Low Range	5	26065	1852.50
Low Range	10	26090	1855.00
	15	26115	1857.50
	20	26140	1860.00
Mid Range	1.4/3/5/10/15/20	26365	1882.50
	1.4	26683	1914.30
	3	26675	1913.50
High Range	5	26665	1912.50
r light Kange	10	26640	1910.00
	15	26615	1907.50
	20	26590	1905.00

		Band 41	
Test channel	Bandwidth(MHz)	N _{UL}	Frequency of Uplink (MHz)
	5	40265	2557.50
Low Range	10	40290	2560.00
	20	40340	2565.00
Mid Range	5/10/20	40740	2605.00
	5	41215	2652.50
High Range	10	41190	2650.00
	20	41140	2645.00

Output	Output Power (Radiated) & Radiated Spurious Emission											
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until							
1	EMI Test Receiver	R&S	ESCI	100967	Dec. 28, 2019							
2	High pass filter	Compliance Direction systems	BSU-6	34202	Dec. 28, 2019							
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 28, 2019							
4	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4181	Dec. 28, 2019							
5	Spectrum Analyzer	HP	8563E	02052	Dec. 28, 2019							
6	Horn Antenna	Schwarzbeck	BBHA 9120D	648	Dec. 28, 2019							
7	Horn Antenna	Schwarzbeck	BBHA 9120D	649	Dec. 28, 2019							
8	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 28, 2019							
9	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25842	Dec. 28, 2019							
10	Pre-Amplifier	HP	8447D	1937A03050	Dec. 28, 2019							
11	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 28, 2019							
12	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019							
13	Signal Generator	Agilent	N5182A	1019356	Dec. 28, 2019							
14	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 28, 2019							
15	Antenna Mast	UC	UC3000	N/A	N/A							
16	Antenna mast	MATURO	TAM-4.0-P	N/A	N/A							
17	Turn Table	UC	UC3000	N/A	N/A							
18	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 28, 2019							
19	Cable Above 1GHz	Hubersuhner	SUCOFLEX102	DA1580	Dec. 28, 2019							

Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance & Conducted Spurious Emission

Compile	ompliance & conducted optitious Emission										
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until						
1	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 28, 2019						
2	Spectrum Analyzer	Rohde & Schwarz	FSU	100105	Dec. 28, 2019						
3	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28, 2019						
4	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019						

Frequency Stability

Freque	ncy Stability				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	UNIVERSAL RADIO COMMUNICATION	Rohde & Schwarz	CMU200	114694	Dec. 28, 2019
2	Spectrum Analyzer	Rohde & Schwarz	FSU	100105	Dec. 28, 2019
3	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Dec. 28, 2019
4	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 28, 2019
5	Climate Chamber	ESPEC	EL-10KA	05107008	Dec. 28, 2019

Note: 1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Output Power

<u>LIMIT</u>

Conducted Output Power: N/A

TEST CONFIGURATION

• For Conducted output Power

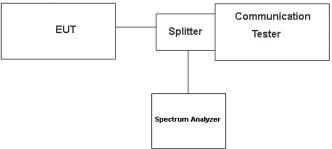
Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- For Conducted output Power
- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum PK burst power and maximum Avg. burst power.

TEST RESULTS

Please see the Appendix for every tested Band.


3.2. Peak-to-Average Ratio

LIMIT:

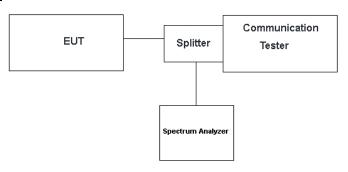
The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13dB.

TEST CONFIGURATION

For Peak-to-Average Ratio

TEST PROCEDURE

- For Peak-to-Average Ratio •
- 1. The testing follows FCC KDB 971168 v02r02 Section 5.7.1.
- 2. The EUT was connected to spectrum and communication tester via a splitter
- 3. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- 4. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1 %.
- 6. Record the deviation as Peak to Average Ratio.


TEST RESULTS

Please see the Appendix for every tested Band.

3.3. Occupy Bandwidth

TEST CONFIGURATION

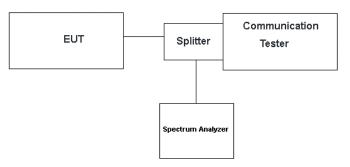
TEST PROCEDURE

- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW \geq 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

Please see the Appendix for every tested Band.

3.4. Out of band emission at antenna terminals


LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

For mobile and portable stations operating in the 2305-2315 MHz: by a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz

For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST CONFIGURATION

TEST PROCEDURE

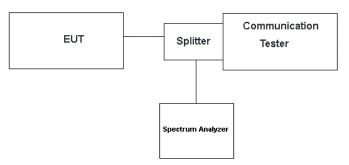
- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz; sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW = $1MHz VBW \ge 3$ times RBW, Start=30MHz, Stop= 10thharmonic.

TEST RESULTS

Please see the Appendix for every tested Band.

3.5. Band Edge compliance

LIMIT


FDD Band 2: The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

FDD Band 4: The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.

FDD Band 7: For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.

FDD Band 13: The power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB. For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropic ally radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

TEST CONFIGURATION

TEST PROCEDURE

- The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. RBW was set to about 1% of emission BW, VBW ≥3 times RBW.

TEST RESULTS

Please see the Appendix for every tested Band.

Remark: We tested all the patterns, but only the worst data was found in the appendix.


3.6. Radiated Power Measurement

<u>LIMIT</u>

22.913(a) - The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.
24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.
27.50 (c) (10) the following power and antenna height requirements apply to stations transmitting in the 698–746 MHz band, the portable stations (hand-held devices) are limited to 3 watts ERP.
27.50 (b)(10) Portable stations (hand-held devices) transmitting in the 746–757 MHz, 758–763 MHz, 776–793 MHz, and 805–806 MHz bands are limited to 3 watts ERP.

27.50 (d)(4) The following power and antenna height requirements apply to stations transmitting in the 1710–1755 MHz and 2110–2155 MHz bands: Fixed, mobile, and portable (hand-held) stations operating in the 1710–1755 MHz band are limited to 1 watt EIRP

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

EIRP/ERP:

- 1. EIRP= Conducted Power +Antenan gain
- 2. ERP power=EIPR power-2.15dBi.

TEST RESULTS

Please see the Appendix for every tested Band.

3.7. Radiated Spurious Emission

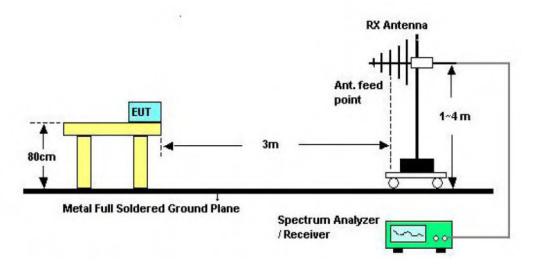
LIMIT

FDD Band 2: The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

FDD Band 4: The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least $43 + 10 \log 10$ (P) dB.

FDD Band 5: The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

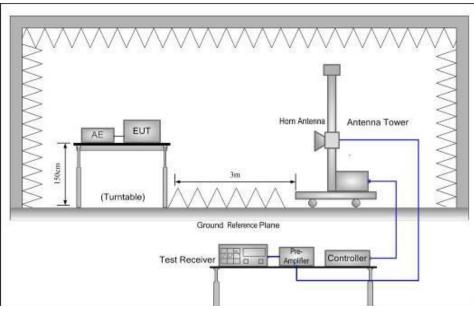
FDD Band 7: For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz.


FDD Band 12: the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least $43 + 10 \log (P) dB$.

FDD Band 13: The power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB. For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW/MHz equivalent isotropic ally radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth.

FDD Band 17: The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

TEST CONFIGURATION


For the actual test configuration, please refer to the related Item – EUT Test Photos.

Below 1GHz

Above 1GHz

TEST PROCEDURE

- EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test. Set Test Receiver or Spectrum RBW=1MHz, VBW=3MHz, and the maximum value of the receiver should be recorded as (Pr).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjusts the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. An amplifier should be connected to the Signal Source output port. And the cable should be connecting between the Amplifier and the Substitution Antenna. The cable loss (PcI) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below:

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 中国国家认证认可监督管理委员会

Power(EIRP)=PMea- PAg - Pcl + Ga

We used SMF100A microwave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substitution test; The measurement results are amend as described below:

Power(EIRP)=PMea- Pcl + Ga

7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

8. Test frequency range should extend to 10th harmonic of highest fundamental frequency.

TEST RESULTS

Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. We test all modulation type and record worst case at Voice mode.

Measured data (worst case):

	Band 2 Radiated Spurious Emissions									
Bandwidth	Modulation	Test		Spurious Emissio	n	Limit	Result			
Danuwiuth	wouldtion	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result			
			3720.00	-36.20	Vertical					
20MHz	QPSK		5580.00	-41.31	Vertical	12.00	Deee			
	QFSK	L	3720.00	-47.42	Horizontal	-13.00	Pass			
			5580.00	-43.53	Horizontal					
		×	3760.00	-37.54	Vertical	- 13.00	Pass			
20MHz	QPSK		5640.00	-42.65	Vertical					
	QFSK	М	3760.00	-39.82	Horizontal					
			5640.00	-37.93	Horizontal					
			3800.00	-35.97	Vertical					
20MHz	ODEK	ц	5700.00	-41.08	Vertical	-13.00	Deee			
	Qron	QPSK H	3800.00	-39.17	Horizontal		Pass			
			5700.00	-46.28	Horizontal					

Remark :

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

	Band 4 Radiated Spurious Emissions											
Bandwidth	Modulation	Test		Spurious Emissio	n	Limit	Result					
Danuwiutii	Wouldtion	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result					
			3440.00	-42.00	Vertical							
20MHz	QPSK	L	5160.00	-43.11	Vertical	-13.00	Pass					
20101112	QFSK	L	3440.00	-47.48	Horizontal	-13.00	Pass					
			5160.00	-42.59	Horizontal							
								3500.00	-48.11	Vertical		
20MHz		QPSK M	5260.00	-46.22	Vertical	-13.00	Pass					
20101112	QFSK		3500.00	-47.50	Horizontal							
			5260.00	-48.61	Horizontal							
			3490.00	-39.08	Vertical							
20MHz	ODSK	н	5235.00	-46.19	Vertical	-13.00	Dava					
	QPSK		3490.00	-40.39	Horizontal		Pass					
			5235.00	-42.50	Horizontal							

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

	Band 7 Radiated Spurious Emissions										
Bandwidth	Modulation	Test		Spurious Emissio	า	Limit	Result				
Danuwiuth	Modulation	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result				
			5020.00	-45.58	Vertical						
20MHz	QPSK	L	7530.00	-44.69	Vertical	-25.00	Daga				
20101112	QFON	L	5020.00	-42.70	Horizontal	-25.00	Pass				
			7530.00	-45.81	Horizontal						
	0501/	QPSK M	5070.00	-40.26	Vertical	-25.00	Pass				
20MHz			7605.00	-42.31	Vertical						
20101112	QFON		5070.00	-47.48	Horizontal						
			7605.00	-45.59	Horizontal						
			5120.00	-44.89	Vertical						
20MHz	ODSK		7680.00	-43.00	Vertical	-25.00	Pass				
	QPSK	QPSK H	5120.00	-42.51	Horizontal						
			7680.00	-46.29	Horizontal						

1. The emission behavior belongs to narrowband spurious emission.

2. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会 下 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>

	Band 13 Radiated Spurious Emissions											
Bandwidth	Modulation	Test		Spurious Emissio	n	Limit	Result					
Danuwiuth	wooulation	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result					
			1564.00	-43.42	Vertical							
10MHz	QPSK	L	2346.00	-42.53	Vertical	-13.00	Pass					
	QFSK	L	1564.00	-46.64	Horizontal	-13.00	Pass					
			2346.00	-41.75	Horizontal							
		QPSK M	1564.00	-42.36	Vertical	-13.00	Pass					
10MHz			2346.00	-45.47	Vertical							
	QFSK	IVI	1564.00	-46.58	Horizontal							
			2346.00	-43.69	Horizontal							
			1564.00	-47.43	Vertical							
10MHz	QPSK	QPSK H	2346.00	-45.54	Vertical	13.00	Pass					
			1564.00	-46.65	Horizontal							
			2346.00	-42.76	Horizontal							

- 1. The emission behavior belongs to narrowband spurious emission.
- 2. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

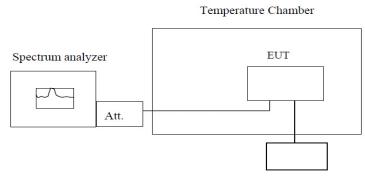
	Band 25 Radiated Spurious Emissions										
Bandwidth	Modulation	Test	Test Spurious Emission			Limit	nit Result				
Danuwiuth	Wouldtion	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result				
			3720.00	-49.57	Vertical						
20MHz	QPSK	L	5580.00	-47.68	Vertical	-13.00	Daga				
20101112	QFSK	L	3720.00	-46.79	Horizontal	-13.00	Pass				
			5580.00	-44.90	Horizontal						
			3770.00	-49.80	Vertical	-13.00	Pass				
20MHz	QPSK	М	5650.00	-47.91	Vertical						
	QFSK	IVI	3770.00	-47.02	Horizontal						
			5650.00	-45.13	Horizontal						
			3810.00	-48.69	Vertical						
20MHz	ODEK	н	5720.00	-45.80	Vertical	12.00	Deee				
	QPSK		3810.00	-41.91	Horizontal	-13.00	Pass				
			5720.00	-49.02	Horizontal						

- 3. The emission behavior belongs to narrowband spurious emission.
- 4. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.

	Band 41 Radiated Spurious Emissions											
Bandwidth	Modulation	Test		Spurious Emissio	า	Limit	Deput					
Danuwiuth	wouldtion	Channel	Frequency	Level (dBm)	Polarization	(dBm)	Result					
			5130.00	-45.29	Vertical							
20MHz	QPSK	L	7695.00	-42.40	Vertical	-13.00	Pass					
2011112	QFOR	L	5130.00	-44.51	Horizontal	-13.00	F 055					
			7695.00	-46.62	Horizontal							
			5210.00	-47.47	Vertical	-13.00	Pass					
20MHz	QPSK	М	7815.00	-48.58	Vertical							
2011112	QFOR	IVI	5210.00	-48.69	Horizontal							
			7815.00	-45.80	Horizontal							
			5290.00	-49.42	Vertical							
20MHz	QPSK	QPSK H	7935.00	-46.53	Vertical	-13.00	Pass					
			5290.00	-45.64	Horizontal		1 033					
			7935.00	-44.75	Horizontal							

5. The emission behavior belongs to narrowband spurious emission.

6. The emission levels of below 1 GHz are very lower than the limit above10dB and not show in test report.



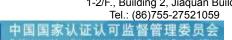
3.8. Frequency stability

LIMIT

Cellular Band: ±2.5ppm PCS Band: Within the authorized frequency block

TEST CONFIGURATION

Variable Power Supply


Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to −30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10° increased per stage until the highest temperature of +55 $^{\circ}$ reached.
- 7. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Please see the Appendix for every tested Band.

Reference to the document No.: Test Photographs

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 EEI 中国国家认证认可监督管理委员会 Geruitation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>

5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

Reference to the document No.: External Photographs and Internal Photographs.

CTC Laboratories, Inc. 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : <u>vz.cncaic.cn</u>