

## Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao' an District, Shenzhen, China

## TEST REPORT

Report Reference No...... CTA24011802201

FCC ID.....: 2ANTI-T14

Compiled by

( position+printed name+signature)..: File administrators Zoey Cao

Supervised by

( position+printed name+signature)..: Project Engineer Amy Wen

Approved by

( position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Jan. 22, 2024

Shenzhen CTA Testing Technology Co., Ltd. Testing Laboratory Name .....:

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address....::

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... Changzhou Smoothies Electronics Co., Ltd.

6 Floor, Buliding 2, ZhiGu Tech Park, 2259#LongCheng RD, Address .....:

ZhongLou District, ChangZhou, China

Test specification .....:

FCC Part 15.247 Standard .....

ANSI C63.10: 2013

## Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ...... Remote control

Trade Mark ...... Jumper-RC

Manufacturer ...... Changzhou Smoothies Electronics Co., Ltd.

Model/Type reference...... T14

Listed Models ...... T14-Pro, T14-S, T14- PLUS, T14-SE

Modulation Type ...... GFSK

Operation Frequency...... From 2404MHz to 2473MHz

Rating ...... DC 7.4V From battery

Result...... PASS

Report No.: CTA24011802201 Page 2 of 41

## TEST REPORT

Equipment under Test 🕟 : Remote control

Model /Type : T14

: T14-Pro, T14-S, T14- PLUS, T14-SE Listed Models

Changzhou Smoothies Electronics Co., Ltd. **Applicant** 

6 Floor, Buliding 2, ZhiGu Tech Park, 2259#LongCheng RD, ZhongLou Address

District, ChangZhou, China

Manufacturer : Changzhou Smoothies Electronics Co., Ltd.

6 Floor, Buliding 2, ZhiGu Tech Park, 2259#LongCheng RD, ZhongLou Address EM CTATESTING

District, ChangZhou, China

| CTATES!      | CTATESTING | -ING |        |
|--------------|------------|------|--------|
| Test Result: | (em)       | PASS | - A TE |

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

## **Contents**

| SUMM                 | ARY ANG                                          |          | <u></u> |
|----------------------|--------------------------------------------------|----------|---------|
|                      | Remarks<br>Description                           |          |         |
| <b>General F</b>     | Remarks                                          |          |         |
| <b>Product I</b>     | Description                                      |          |         |
| <b>Equipme</b>       | nt Under Test                                    |          |         |
| Short des            | scription of the Equipment under Test (EUT)      |          |         |
|                      | ration mode                                      |          |         |
|                      | agram of Test Setup                              |          |         |
|                      | Submittal(s) / Grant (s)                         |          |         |
|                      | iguration                                        |          |         |
| Modificat            | ions                                             |          |         |
|                      |                                                  |          |         |
| TEST I               | ENVIRONMENT                                      | ыG       |         |
|                      | of the test laboratory                           | 100      |         |
| Δddrass              | of the test laboratory                           |          |         |
| Test Faci            | lity                                             |          |         |
|                      | nental conditions                                |          |         |
| Test Des             |                                                  |          |         |
|                      | at of the measurement uncertainty                |          |         |
|                      | nts Used during the Test                         |          |         |
|                      | TESTING                                          |          |         |
| TEST                 | CONDITIONS AND RESULTS                           |          |         |
| CT                   | TATES                                            | .16      |         |
| 4.1.                 | AC Power Conducted Emission                      |          |         |
| 4.1.<br>4.2.         | Radiated Emission                                |          |         |
| 4.2.<br>4.3.         |                                                  |          |         |
| 4.3.<br>4.4.         | Maximum Peak Output Power Power Spectral Density |          | -SP     |
| 4.4.                 | 6dB Bandwidth                                    |          |         |
| 15                   | Band Edge Compliance of RF Emission              |          |         |
| 4.5.                 | Spurious RF Conducted Emission                   |          |         |
| 4.6.                 | CONTROLS BE CONCINCIBLE FILISSION                |          |         |
| 4.6.<br>4.7.         |                                                  |          |         |
| 4.6.                 | Antenna Requirement                              |          |         |
| 4.6.<br>4.7.<br>4.8. | Antenna Requirement                              |          |         |
| 4.6.<br>4.7.<br>4.8. |                                                  |          |         |
| 4.6.<br>4.7.<br>4.8. | Antenna Requirement                              | NG CTING |         |

Report No.: CTA24011802201 Page 4 of 41

## 1. TEST STANDARDS

The tests were performed according to following standards:

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

ANSI C63.4: 2014: —American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz
Range of 9 kHz to 40GHz

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

<u>KDB558074 D01 v05r02</u>: Guidance for Compliance Measurements on Digital Transmission Systems (DTS) ,Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under §15.247 of The FCC rules.

Report No.: CTA24011802201 Page 5 of 41

## 2. SUMMARY

#### 2.1. General Remarks

| Date of receipt of test sample | : | Jan. 15, 2024 |
|--------------------------------|---|---------------|
| ESTIN                          |   |               |
| Testing commenced on           | : | Jan. 15, 2024 |
| CHINA O                        |   | TESTIT        |
| Testing concluded on           | · | Jan. 22, 2024 |

## 2.2. Product Description

| 2.2. Product Descrip  | otion                                                              | CTATES  |
|-----------------------|--------------------------------------------------------------------|---------|
| Product Name:         | Remote control                                                     |         |
| Model/Type reference: | T14                                                                |         |
| Power supply:         | DC 7.4V From battery                                               |         |
| Sample ID:            | CTA240118022-1#(Engineer sample)<br>CTA240118022-2#(Normal sample) | TESTING |
| Hardware version:     | V1.0                                                               | CTP CTP |
| Software version:     | V1.0                                                               | 6       |
| 2.4G                  |                                                                    |         |
| Modulation:           | GFSK                                                               |         |
| Operation frequency:  | 2404MHz~2473MHz                                                    | CTING   |
| Channel number:       | 70 CTATE                                                           | ,5      |
| Channel separation:   | 1MHz                                                               | CTATES  |
| Antenna type:         | External antenna                                                   | (cm)    |
| Antenna gain:         | 2.0 dBi(Max)                                                       |         |

## 2.3. Equipment Under Test

## Power supply system utilised

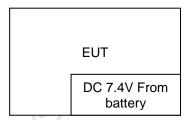
| 2.3. Equipment Under Test Power supply system utilised | OLDOW FOLLS |   | TATESTING                     |    |             |
|--------------------------------------------------------|-------------|---|-------------------------------|----|-------------|
| Power supply voltage                                   | :           | 0 | 230V / 50 Hz                  | 0  | 120V / 60Hz |
| G                                                      |             | 0 | 12 V DC                       | 0  | 24 V DC     |
| .0                                                     |             | • | Other (specified in blank bel | ow | )           |

## DC 7.4V From battery

# CTATESTING 2.4. Short description of the Equipment under Test (EUT)

This is a Remote control.

For more details, refer to the user's manual of the EUT.


## 2.5. EUT operation mode

The Applicant burned the software into the EUT, and can to control the switch of EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 70 channels provided to the EUT. Channel 01/35/70 was selected to test.

Report No.: CTA24011802201 Page 6 of 41

| Channel       | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------------|--------------------|---------|--------------------|
| 1             | 2404               | 36      | 2439               |
| 2             | 2405               | 37      |                    |
|               |                    |         |                    |
| 34            | 2437               | 69      | 2472               |
| 35            | 2438               | 70      | 2473               |
| Block Diagram | of Test Setup      |         |                    |
|               |                    |         |                    |

## 2.6. Block Diagram of Test Setup



## 2.7. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

## 2.8. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- O supplied by the manufacturer
- Supplied by the lab

| <ul><li>- supplied by the manufacturer</li><li>- Supplied by the lab</li></ul> | CTATES.               |      |           |
|--------------------------------------------------------------------------------|-----------------------|------|-----------|
| OADAPTER                                                                       | M/N:<br>Manufacturer: | C.V. | CONTATEST |

## 2.9. Modifications

CTATESTING No modifications were implemented to meet testing criteria.

Report No.: CTA24011802201 Page 7 of 41

## 3. <u>TEST ENVIR</u>ONMENT

## 3.1. Address of the test laboratory

## Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, CTATESTING Shenzhen, China

## 3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### **Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127**

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

| Temperature:          | 25 ° C       |
|-----------------------|--------------|
| . C.                  |              |
| Humidity:             | 45 %         |
| TATES                 | 1.6          |
| Atmospheric pressure: | 950-1050mbar |

Conducted testing:

| 930-103011bai |                                |
|---------------|--------------------------------|
|               | ATESTING                       |
| 25 ° C        | AIL                            |
| (EVA          |                                |
| 44 %          |                                |
|               |                                |
| 950-1050mbar  |                                |
| CTATESTING    |                                |
|               | 25 ° C<br>44 %<br>950-1050mbar |

Report No.: CTA24011802201 Page 8 of 41

## 3.4. Test Description

| FCC Requirements                |                                |      |
|---------------------------------|--------------------------------|------|
| FCC Part 15.207                 | AC Power Conducted Emission    | NA   |
| FCC Part 15.247(a)(2)           | 6dB Bandwidth & 99% Bandwidth  | PASS |
| FCC Part 15.247(d)              | Spurious RF Conducted Emission | PASS |
| FCC Part 15.247(b)              | Maximum Conducted Output Power | PASS |
| FCC Part 15.247(e)              | Power Spectral Density         | PASS |
| FCC Part 15.109/ 15.205/ 15.209 | Radiated Emissions             | PASS |
| FCC Part 15.247(d)              | Band Edge                      | PASS |
| FCC Part 15.203/15.247 (b)      | Antenna gain                   | PASS |

#### Remark:

- The measurement uncertainty is not included in the test result. 1.
- 2. NA = Not Applicable; NP = Not Performed

## 3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

| Test                                     | Range       | Measurement<br>Uncertainty | Notes |  |
|------------------------------------------|-------------|----------------------------|-------|--|
| Radiated Emission                        | 9KHz~30MHz  | 3.02 dB                    | (1)   |  |
| Radiated Emission                        | 30~1000MHz  | 4.06 dB                    | (1)   |  |
| Radiated Emission                        | 1~18GHz     | 5.14 dB                    | (1)   |  |
| Radiated Emission                        | 18-40GHz    | 5.38 dB                    | (1)   |  |
| Conducted Disturbance                    | 0.15~30MHz  | 2.14 dB                    | (1)   |  |
| Output Peak power                        | 30MHz~18GHz | 0.55 dB                    | (1)   |  |
| Power spectral density                   |             | 0.57 dB                    | (1)   |  |
| Spectrum bandwidth                       |             | 1.1%                       | (1)   |  |
| Radiated spurious emission (30MHz-1GHz)  | 30~1000MHz  | 4.10 dB                    | (1)   |  |
| Radiated spurious emission (1GHz-18GHz)  | 1~18GHz     | 4.32 dB                    | (1)   |  |
| Radiated spurious emission (18GHz-40GHz) | 18-40GHz    | 5.54 dB                    | (1)   |  |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 3.6. Equipments Used during the Test

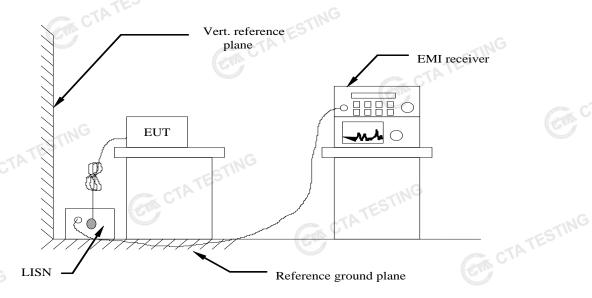
| 3.6. Equipments | Used during the |                     |                  |                     |                         |
|-----------------|-----------------|---------------------|------------------|---------------------|-------------------------|
| Test Equipment  | Manufacturer    | Model No.           | Equipment<br>No. | Calibration<br>Date | Calibration<br>Due Date |
| LISN            | R&S             | <sub>3</sub> ENV216 | CTA-308          | 2023/08/02          | 2024/08/01              |
| LISN            | R&S             | ENV216              | CTA-314          | 2023/08/02          | 2024/08/01              |

Report No.: CTA24011802201 Page 9 of 41

| EMI Test Receiver                         | R&S                       | ESPI        | CTA-307        | 2023/08/02          | 2024/08/01              |
|-------------------------------------------|---------------------------|-------------|----------------|---------------------|-------------------------|
| EMI Test Receiver                         | est Receiver R&S          |             | CTA-306        | 2023/08/02          | 2024/08/01              |
| Spectrum Analyzer Agilent                 |                           | N9020A      | CTA-301        | 2023/08/02          | 2024/08/01              |
| Spectrum Analyzer                         | R&S                       | FSP         | CTA-337        | 2023/08/02          | 2024/08/01              |
| Vector Signal generator                   | Agilent                   | N5182A      | CTA-305        | 2023/08/02          | 2024/08/01              |
| Analog Signal<br>Generator                | R&S                       | SML03       | CTA-304        | 2023/08/02          | 2024/08/01              |
| WIDEBAND RADIO<br>COMMUNICATION<br>TESTER | CMW500                    | R&S         | CTA-302        | 2023/08/02          | 2024/08/01              |
| Temperature and humidity meter            | Chigo                     | ZG-7020     | CTA-326        | 2023/08/02          | 2024/08/01              |
| Ultra-Broadband<br>Antenna                | Schwarzbeck               | VULB9163    | CTA-310        | 2023/10/17          | 2024/10/16              |
| Horn Antenna                              | Schwarzbeck               | BBHA 9120D  | CTA-309        | 2023/10/13          | 2024/10/12              |
| Loop Antenna                              | Zhinan                    | ZN30900C    | CTA-311        | 2023/10/17          | 2024/10/16              |
| Horn Antenna                              | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336        | 2021/08/07          | 2024/08/06              |
| Amplifier                                 | Schwarzbeck               | BBV 9745    | CTA-312        | 2023/08/02          | 2024/08/01              |
| Amplifier                                 | Taiwan chengyi            | EMC051845B  | CTA-313        | 2023/08/02          | 2024/08/01              |
| Directional coupler                       | NARDA                     | 4226-10     | CTA-303        | 2023/08/02          | 2024/08/01              |
| High-Pass Filter                          | XingBo                    | XBLBQ-GTA18 | CTA-402        | 2023/08/02          | 2024/08/01              |
| High-Pass Filter                          | XingBo                    | XBLBQ-GTA27 | CTA-403        | 2023/08/02          | 2024/08/01              |
| Automated filter bank                     | Tonscend                  | JS0806-F    | CTA-404        | 2023/08/02          | 2024/08/01              |
| Power Sensor                              | Agilent                   | U2021XA     | CTA-405        | 2023/08/02          | 2024/08/01              |
| Amplifier                                 | Schwarzbeck               | BBV9719     | CTA-406        | 2023/08/02          | 2024/08/01              |
|                                           |                           | Car Cir     |                |                     | Mas                     |
| Test Equipment                            | Manufacturer              | Model No.   | Version number | Calibration<br>Date | Calibration<br>Due Date |

| Test Equipment    | Manufacturer | Model No.        | Version<br>number | Calibration<br>Date | Calibration<br>Due Date |
|-------------------|--------------|------------------|-------------------|---------------------|-------------------------|
| EMI Test Software | Tonscend     | TS®JS32-RE       | 5.0.0.2           | N/A                 | N/A                     |
| EMI Test Software | Tonscend     | TS®JS32-CE       | 5.0.0.1           | N/A                 | N/A                     |
| RF Test Software  | Tonscend     | TS®JS1120-3      | 3.1.65            | N/A                 | N/A                     |
| RF Test Software  | Tonscend     | TS®JS1120 3.1.46 |                   | N/A                 | N/A                     |
| STING             |              |                  | (Sa)              | (                   | CTATES                  |






Report No.: CTA24011802201 Page 10 of 41

## 4. TEST CONDITIONS AND RESULTS

#### 4.1. AC Power Conducted Emission

## TEST CONFIGURATION



## TEST PROCEDURE

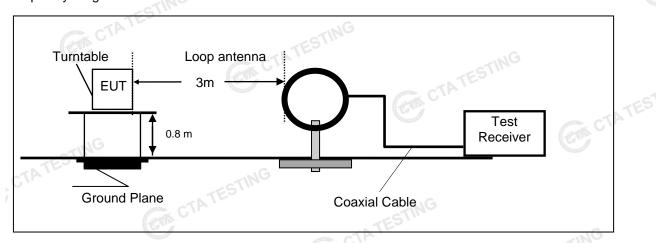
- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received DC5V power, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

## **AC Power Conducted Emission Limit**

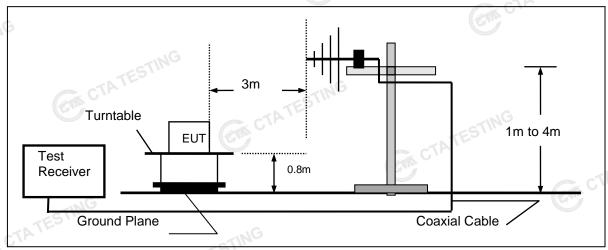
For unintentional device, according to RSS Gen 8.8 and § 15.207(a) Line Conducted Emission Limits is as following:

| Frequency range (MHz)                         | Limit (d   | lBuV)     |
|-----------------------------------------------|------------|-----------|
| Frequency range (wiriz)                       | Quasi-peak | Average   |
| 0.15-0.5                                      | 66 to 56*  | 56 to 46* |
| 0.5-5                                         | 56         | 46        |
| 5-30                                          | 60         | 50        |
| * Decreases with the logarithm of the frequen | cy.        |           |

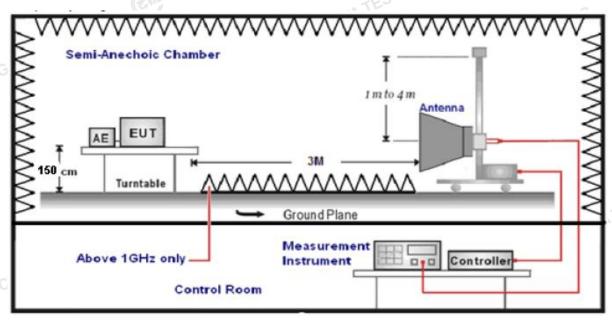
## **TEST RESULTS**


The EUT is Powered by Battery, so this test item is not applicable for the EUT

Report No.: CTA24011802201 Page 11 of 41


## 4.2. Radiated Emission

## **TEST CONFIGURATION**


Frequency range 9 KHz - 30MHz



Frequency range 30MHz - 1000MHz



Frequency range above 1GHz-25GHz



Shenzhen CTA Testing Technology Co., Ltd.

Report No.: CTA24011802201 Page 12 of 41

## **TEST PROCEDURE**

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.

The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz          | Horn Anternna              | 1             |

CTATESTING Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting                                                                            | Detector          |
|----------------------|-----------------------------------------------------------------------------------------------------------|-------------------|
| 9KHz-150KHz          | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | M <sup>O</sup> QP |
| 150KHz-30MHz         | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP                |
| 30MHz-1GHz           | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP                |
| 1GHz-40GHz           | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak              |

## Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

## FS = RA + AF + CL - AG

| Where FS = Field Strength | CL = Cable Attenuation Factor (Cable Loss) |  |  |  |  |  |
|---------------------------|--------------------------------------------|--|--|--|--|--|
| RA = Reading Amplitude    | AG = Amplifier Gain                        |  |  |  |  |  |
| AF = Antenna Factor       |                                            |  |  |  |  |  |
| ransd=AF +CL-AG           |                                            |  |  |  |  |  |
| IATION LIMIT              |                                            |  |  |  |  |  |

Transd=AF +CL-AG

## RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.

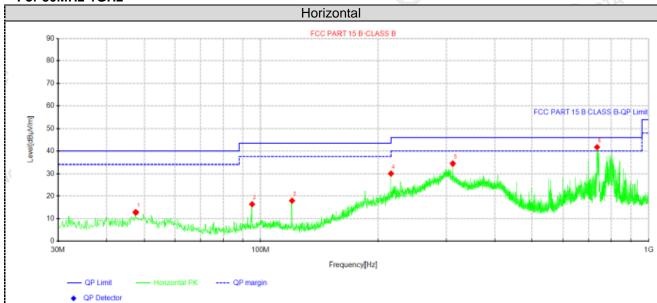
In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

Except when the requirements applicable to a given device state otherwise, emissions from licence-exempt transmitters shall comply with the field strength limits shown in table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission

Unwanted emissions that fall into restricted bands shall comply with the limits specified in RSS-Gen; and Unwanted emissions that do not fall within the restricted frequency bands shall comply either with the limits specified in the applicable RSS or with those specified in this RSS-Gen.

| Frequency (MHz) | Distance | Radiated (dBµV/m)                | Radiated (µV/m) |
|-----------------|----------|----------------------------------|-----------------|
|                 | (Meters) |                                  |                 |
| 0.009-0.49      | 3        | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3        | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3        | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 325      | 40.0                             | 100             |
| 88-216          | 3        | 43.5                             | 150             |

Report No.: CTA24011802201 Page 13 of 41


| 216-960      | 3 | 46.0 | 200 |
|--------------|---|------|-----|
| Above 960    | 3 | 54.0 | 500 |
| TEST RESULTS |   |      |     |

## **TEST RESULTS**

#### Remark:

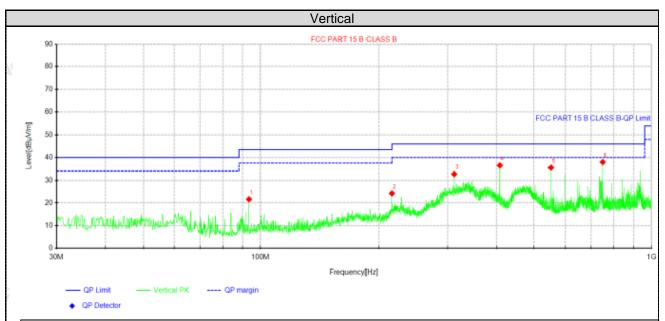
- We measured Radiated Emission at GFSK mode from 9 KHz to 25GHz and recorded worst case at 1. GFSK mode.
- 2. For below 1GHz testing recorded worst at GFSK middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Remark: Result=Reading value+Factor, and Margin=Limit- Result

#### For 30MHz-1GHz



| Suspe | Suspected Data List |         |          |        |          |        |        |       |            |  |  |  |  |
|-------|---------------------|---------|----------|--------|----------|--------|--------|-------|------------|--|--|--|--|
| NO    | Freq.               | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Delevite   |  |  |  |  |
| NO.   | [MHz]               | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity   |  |  |  |  |
| 1     | 47.5812             | 29.04   | 12.80    | -16.24 | 40.00    | 27.20  | 100    | 154   | Horizontal |  |  |  |  |
| 2     | 95.1112             | 35.46   | 16.34    | -19.12 | 43.50    | 27.16  | 100    | 290   | Horizontal |  |  |  |  |
| 3     | 120.452             | 38.26   | 17.93    | -20.33 | 43.50    | 25.57  | 100    | 162   | Horizontal |  |  |  |  |
| 4     | 215.997             | 49.01   | 30.08    | -18.93 | 43.50    | 13.42  | 100    | 290   | Horizontal |  |  |  |  |
| 5     | 311.906             | 51.58   | 34.43    | -17.15 | 46.00    | 11.57  | 100    | 86    | Horizontal |  |  |  |  |
| 6     | 735.796             | 52.72   | 41.70    | -11.02 | 46.00    | 4.30   | 100    | 299   | Horizontal |  |  |  |  |

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V$ )+ Factor (dB/m)


2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTATESTING

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)



Report No.: CTA24011802201 Page 14 of 41



|   | Suspected Data List |         |         |          |        |          |        |        |       |          |  |  |  |  |
|---|---------------------|---------|---------|----------|--------|----------|--------|--------|-------|----------|--|--|--|--|
|   | NO                  | Freq.   | Reading | Level    | Factor | Limit    | Margin | Height | Angle | Dalasita |  |  |  |  |
| 1 | NO.                 | [MHz]   | [dBµV]  | [dBµV/m] | [dB/m] | [dBµV/m] | [dB]   | [cm]   | [°]   | Polarity |  |  |  |  |
|   | 1                   | 93.4137 | 41.00   | 21.61    | -19.39 | 43.50    | 21.89  | 100    | 63    | Vertical |  |  |  |  |
|   | 2                   | 215.997 | 43.14   | 24.21    | -18.93 | 43.50    | 19.29  | 100    | 350   | Vertical |  |  |  |  |
|   | 3                   | 312.027 | 49.87   | 32.72    | -17.15 | 46.00    | 13.28  | 100    | 234   | Vertical |  |  |  |  |
|   | 4                   | 408.057 | 51.95   | 36.48    | -15.47 | 46.00    | 9.52   | 100    | 166   | Vertical |  |  |  |  |
|   | 5                   | 551.981 | 49.11   | 35.50    | -13.61 | 46.00    | 10.50  | 100    | 234   | Vertical |  |  |  |  |
|   | 6                   | 750.103 | 48.62   | 37.95    | -10.67 | 46.00    | 8.05   | 100    | 132   | Vertical |  |  |  |  |

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)



Report No.: CTA24011802201 Page 15 of 41

## For 1GHz to 25GHz

## GFSK (above 1GHz)

| Frequency(MHz):                   |       |                   | 2404           |                        | Polarity:                   |                         | HORIZONTAL                |                                |       |
|-----------------------------------|-------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|-------|
| Frequency Emission Level (dBuV/m) |       | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |       |
| 4808.00                           | 49.64 | PK                | 74.00          | 24.36                  | 53.89                       | 32.35                   | 5.12                      | 41.72                          | -4.25 |
| 4808.00                           | 39.66 | AV                | 54.00          | 14.34                  | 43.91                       | 32.35                   | 5.12                      | 41.72                          | -4.25 |
| 7212.00                           | 50.11 | PK                | 74.00          | 23.89                  | 50.63                       | 36.59                   | 6.5                       | 43.61                          | -0.52 |
| 7212.00                           | 37.10 | AV                | 54.00          | 16.90                  | 37.62                       | 36.59                   | 6.5                       | 43.61                          | -0.52 |

| Frequency(MHz):    |       |    | 2404              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |       |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4808.00            | 47.23 | PK | 74.00             | 26.77          | 51.48                  | 32.35                       | 5.12                    | 41.72                     | -4.25                          |
| 4808.00            | 37.47 | AV | 54.00             | 16.53          | 41.72                  | 32.35                       | 5.12                    | 41.72                     | -4.25                          |
| 7212.00            | 47.87 | PK | 74.00             | 26.13          | 48.39                  | 36.59                       | 6.5                     | 43.61                     | -0.52                          |
| 7212.00            | 34.87 | AV | 54.00             | 19.13          | 35.39                  | 36.59                       | 6.5                     | 43.61                     | -0.52                          |

|                    |                |                       |                   |                | TATES                  |                             |                         | AG.                       |                                |
|--------------------|----------------|-----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency(MHz):    |                |                       | 2438 Polarit      |                | rity: HOF              |                             | ORIZONTA                | ORIZONTAL                 |                                |
| Frequency<br>(MHz) | Le             | ssion<br>vel<br>IV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4876.00            | 51.01          | PK                    | 74.00             | 22.99          | 54.92                  | 32.58                       | 5.33                    | 41.82                     | -3.91                          |
| 4876.00            | 46.62          | AV                    | 54.00             | 7.38           | 50.53                  | 32.58                       | 5.33                    | 41.82                     | -3.91                          |
| 7314.00            | 49.60          | PK                    | 74.00             | 24.40          | 9.54                   | 36.97                       | 6.8                     | 43.71                     | 0.06                           |
| 7314.00            | 39.76          | AV                    | 54.00             | 14.24          | 39.70                  | 36.97                       | 6.8                     | 43.71                     | 0.06                           |
|                    | Desert Control | •                     |                   | CTP            |                        |                             | TING                    |                           |                                |

| Frequency(MHz):    |                      |     | 2438              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|----------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu) | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4876.00            | 49.55                | PK  | 74.00             | 24.45          | 53.46                  | 32.58                       | 5.33                    | 41.82                     | -3.91                          |
| 4876.00            | 44.37                | AV  | 54.00             | 9.63           | 48.28                  | 32.58                       | 5.33                    | 41.82                     | -3.91                          |
| 7314.00            | 47.53                | PK  | 74.00             | 26.47          | 47.47                  | 36.97                       | 6.8                     | 43.71                     | 0.06                           |
| 7314.00            | 37.65                | AV  | 54.00             | 16.35          | 37.59                  | 36.97                       | 6.8                     | 43.71                     | 0.06                           |
|                    |                      |     | , .               |                | JE51                   | 11.0                        |                         |                           |                                |

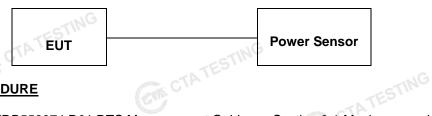
| Frequency(MHz):    |       |                      | 2473              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4946.00            | 52.24 | PK                   | 74.00             | 21.76          | 55.14                  | 32.8                        | 5.65                    | 41.35                     | -2.9                           |
| 4946.00            | 45.60 | AV                   | 54.00             | 8.40           | 48.50                  | 32.8                        | 5.65                    | 41.35                     | -2.9                           |
| 7419.00            | 51.02 | PK                   | 74.00             | 22.98          | 50.67                  | 36.93                       | 7.24                    | 43.82                     | 0.35                           |
| 7419.00            | 40.24 | AV                   | 54.00             | 13.76          | 39.89                  | 36.93                       | 7.24                    | 43.82                     | 0.35                           |
| (2                 | NI N  |                      |                   | TES            |                        |                             |                         |                           |                                |

| Frequency(MHz):    |                     |     | 2473 Po           |                | Pola                   | arity:                      |                         | VERTICAL                  |                                |
|--------------------|---------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4946.00            | 49.81               | PK  | 74.00             | 24.19          | 52.71                  | 32.8                        | 5.65                    | 41.35                     | -2.9                           |
| 4946.00            | 43.49               | ΑV  | 54.00             | 10.51          | 46.39                  | 32.8                        | 5.65                    | 41.35                     | -2.9                           |
| 7419.00            | 50.38               | PK  | 74.00             | 23.62          | 50.03                  | 36.93                       | 7.24                    | 43.82                     | 0.35                           |
| 7419.00            | 38.15               | ΑV  | 54.00             | 15.85          | 37.80                  | 36.93                       | 7.24                    | 43.82                     | 0.35                           |

Report No.: CTA24011802201 Page 16 of 41

#### REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)


  Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor

  Margin value = 1 imit value 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit. CTA TESTI

Report No.: CTA24011802201 Page 17 of 41

## 4.3. Maximum Peak Output Power

## **TEST CONFIGURATION**



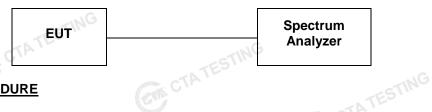
## **TEST PROCEDURE**

According to KDB558074 D01 DTS Measurement Guidance Section 9.1 Maximum peak conducted output power, 9.1.2.

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

## LIMIT

The Maximum Peak Output Power Measurement is 30dBm.


TEST RESULTS

| Туре | Channel  | Output power (dBm) | Limit (dBm) | Result |
|------|----------|--------------------|-------------|--------|
|      | -TING 01 | -3.24              |             |        |
| GFSK | 35       | -3.58              | 30.00       | Pass   |
|      | 70       | -3.86              | .sJG        |        |

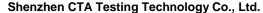
Report No.: CTA24011802201 Page 18 of 41

## 4.4. Power Spectral Density

## **TEST CONFIGURATION**



## **TEST PROCEDURE**


- 1.Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2.Set the RBW =3 kHz.
- 3.Set the VBW =10 KHz.
- 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5.Detector = peak.
- 6.Sweep time = auto couple.
- 7.Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9.Use the peak marker function to determine the maximum power level.
- CTATESTING 10.If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8 dBm.

## LIMIT

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. CTATE

## **TEST RESULTS**

| TEST RESULTS         |            | CTA                                  |                  |        |
|----------------------|------------|--------------------------------------|------------------|--------|
| Туре                 | Channel    | Power Spectral Density<br>(dBm/3KHz) | Limit (dBm/3KHz) | Result |
|                      | 01         | -13.653                              |                  | GAN.   |
| GFSK                 | 35         | -13.153                              | 8.00             | Pass   |
| TES                  | 70         | -12.627                              |                  |        |
| Test plot as follows | S: CTATEST | TING CTATEST!                        | NG.              | CTING  |



Report No.: CTA24011802201 Page 19 of 41



Report No.: CTA24011802201 Page 20 of 41

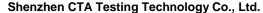
## 4.5. 6dB Bandwidth

## **TEST CONFIGURATION**

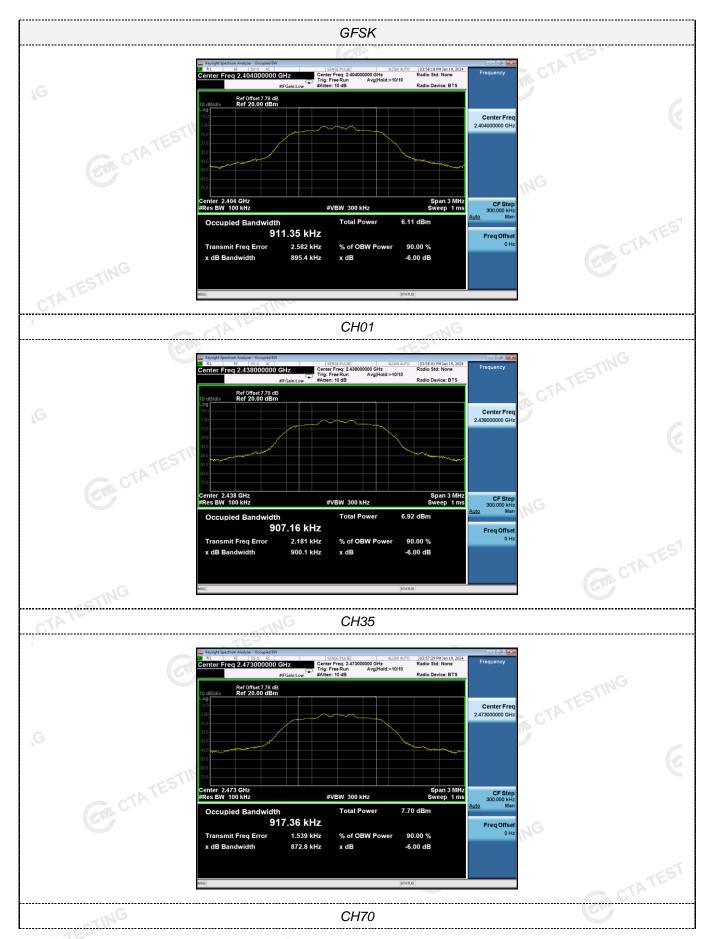


#### **TEST PROCEDURE**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with RBW=100 KHz and VBW=300KHz. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB. According to KDB558074 D01 V03 for one of the following procedures may be used to determine the modulated DTS device signal bandwidth.


- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥ 3 RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

#### LIMIT


For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

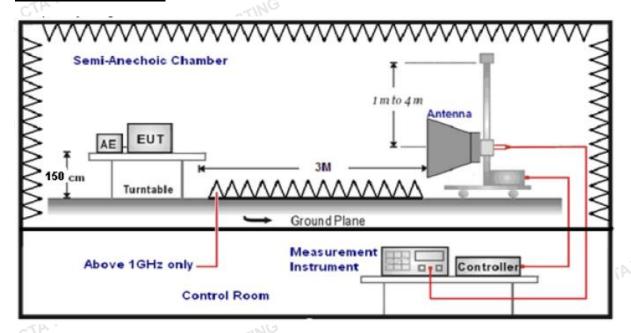
#### **TEST RESULTS**

| TEST RESULTS          | CIN CT  |                        |             |        |  |
|-----------------------|---------|------------------------|-------------|--------|--|
| Туре                  | Channel | 6dB Bandwidth<br>(MHz) | Limit (KHz) | Result |  |
| , Ca                  | 01      | 0.8954                 |             | (EVI)  |  |
| GFSK                  | 35      | 0.9001                 | ≥500        | Pass   |  |
| CIATE                 | 70G     | 0.8728                 |             |        |  |
| Test plot as follows: |         | CTATEST!               |             |        |  |



Report No.: CTA24011802201 Page 21 of 41




Report No.: CTA24011802201 Page 22 of 41

## 4.6. Band Edge Compliance of RF Emission

## **TEST REQUIREMENT**

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1. The EUT was placed on a turn table which is 1.5m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from  $0^{\circ}$  to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed...
- 5. The distance between test antenna and EUT was 3 meter:

6. Setting test receiver/spectrum as following table states:

| Test Frequency range | Test Receiver/Spectrum Setting    | Detector |
|----------------------|-----------------------------------|----------|
|                      | Peak Value: RBW=1MHz/VBW=3MHz,    |          |
| 1GHz-40GHz           | Sweep time=Auto                   | Peak     |
| IGHZ-40GHZ           | Average Value: RBW=1MHz/VBW=10Hz, | reak     |
|                      | Sweep time=Auto                   |          |

#### LIMIT

Below -20dB of the highest emission level in operating band.

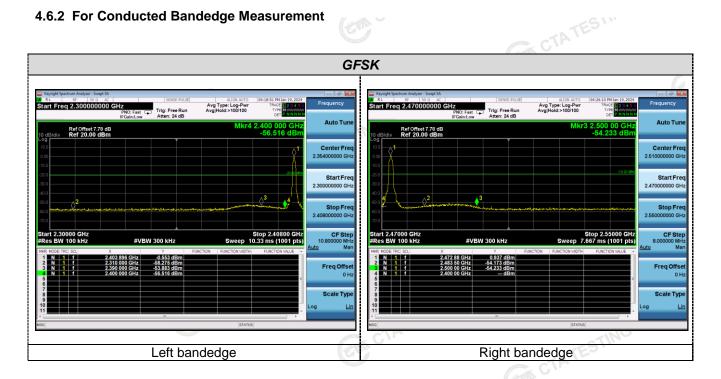
Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

Page 23 of 41 Report No.: CTA24011802201

## **TEST RESULTS**

## Results of Band Edges Test (Radiated)

#### **GFSK**

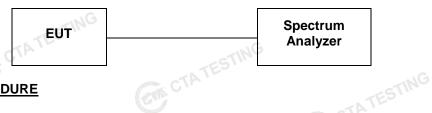

| TEST RES           |                    | aes Test | (Radiated)        |                |                        |                             | CTA CTA                 | ES 1 "                    |                                |  |
|--------------------|--------------------|----------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| \G                 |                    | •        | ,                 | GFS            | K                      |                             | CIN                     |                           |                                |  |
| Freque             | Frequency(MHz):    |          |                   |                | 2404 Polarity:         |                             |                         | HORIZONTAL                |                                |  |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | W =      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 2390.00            | 61.73              | PK       | 74                | 12.27          | 72.15                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| 2390.00            | 43.09              | AV       | 54                | 10.91          | 53.51                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| Freque             | ncy(MHz)           |          | 24                | 04             | Polarity:              |                             | VERTICAL                |                           |                                |  |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | vel      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 2390.00            | 60.14              | PK       | 74                | 13.86          | 70.56                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| 2390.00            | 41.32              | AV       | 54                | 12.68          | 51.74                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |  |
| Freque             | ncy(MHz)           | :        | 2473              |                | P olarity:             |                             | HORIZONTAL              |                           | L                              |  |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | vel      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 2483.50            | 60.85              | PK       | 74                | 13.15          | 70.96                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |  |
| 2483.50            | 43.61              | ΑV       | 54                | 10.39          | 53.72                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |  |
| Freque             | ncy(MHz)           | :        | 24                | 73             | Pola                   | arity:                      |                         | VERTICAL                  |                                |  |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | vel      | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 2483.50            | 59.21              | PK       | 74                | 14.79          | 69.32                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |  |
| 2483.50            | 41.34              | AV       | 54                | 12.66          | 51.45                  | 27.7                        | 4.47                    | 42.28                     | -10.11                         |  |

#### REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
  Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier 2. 3. 4.
- Margin value = Limit value- Emission level.
  -- Mean the PK detector measured value is below average limit.

Report No.: CTA24011802201 Page 24 of 41

#### 4.6.2 For Conducted Bandedge Measurement






Report No.: CTA24011802201 Page 25 of 41

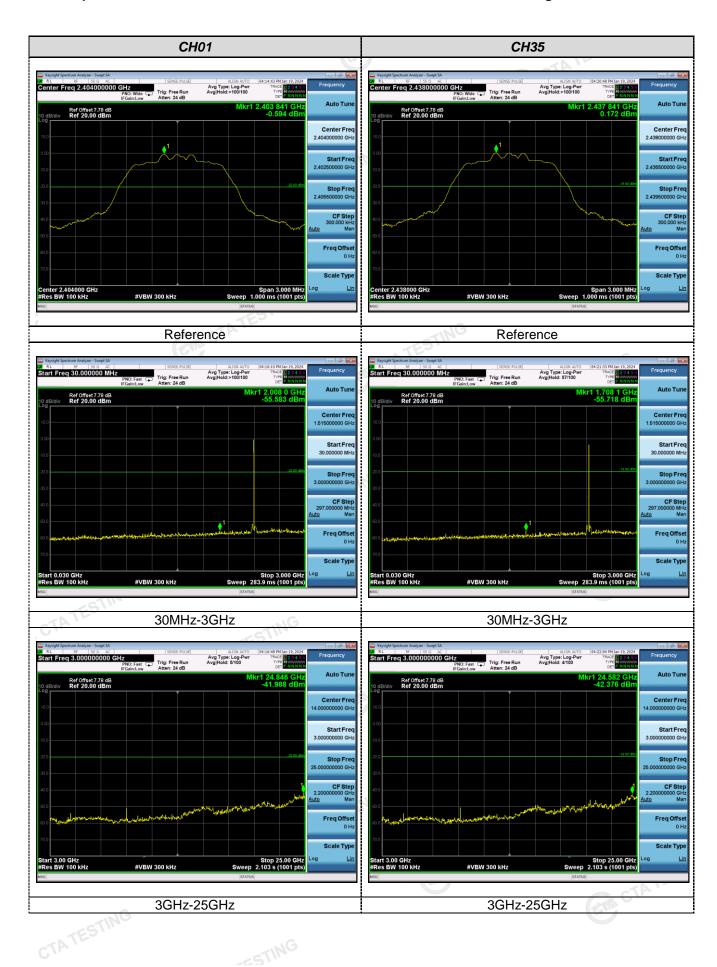
## 4.7. Spurious RF Conducted Emission

## **TEST CONFIGURATION**



## **TEST PROCEDURE**

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and mwasure frequeny range from 9KHz to 25GHz.


## LIMIT

- Below -20dB of the highest emission level in operating band.
   Fall in the restricted bands listed in active (2.7.7). 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed CTATE! in section 15.209.

#### **TEST RESULTS**



Report No.: CTA24011802201 Page 26 of 41





Report No.: CTA24011802201 Page 28 of 41

## 4.8. Antenna Requirement

Gain of the antenna exceeds 6dBi.

## Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not CTA TESTING apply to intentional radiators that must be professionally installed.

## **Antenna Connected Construction**

The maximum gain of antenna was 2.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

Report No.: CTA24011802201 Page 29 of 41

## 5. Test Setup Photos of the EUT



Report No.: CTA24011802201 Page 30 of 41

# 6. External and Internal Photos of the EUT







Report No.: CTA24011802201 Page 31 of 41





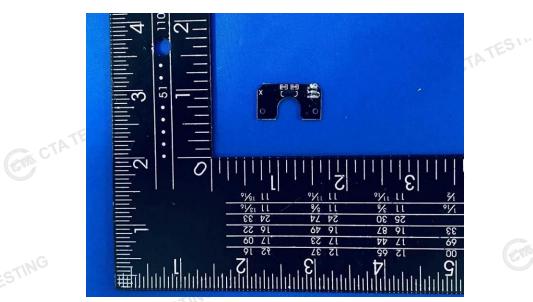


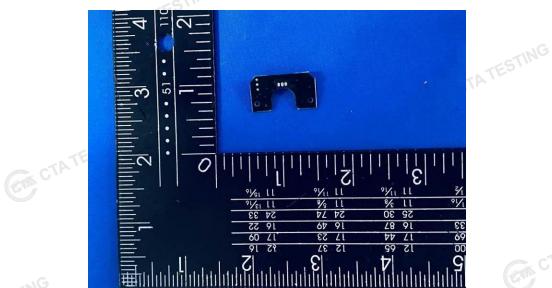
Report No.: CTA24011802201 Page 32 of 41





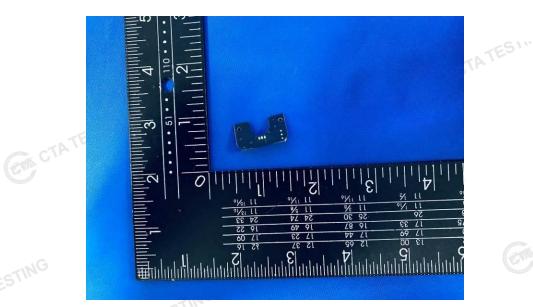


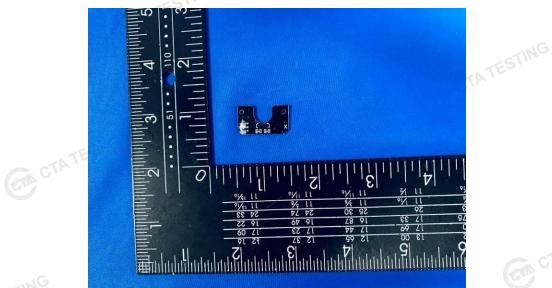

Report No.: CTA24011802201 Page 33 of 41





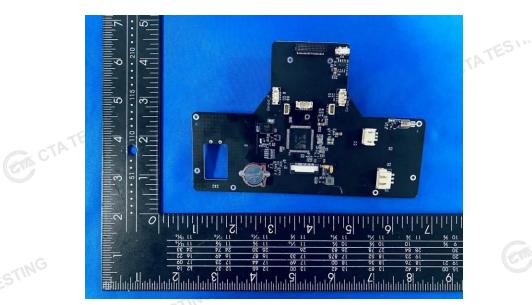


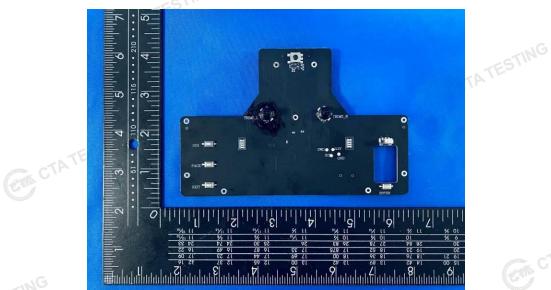


Report No.: CTA24011802201 Page 34 of 41

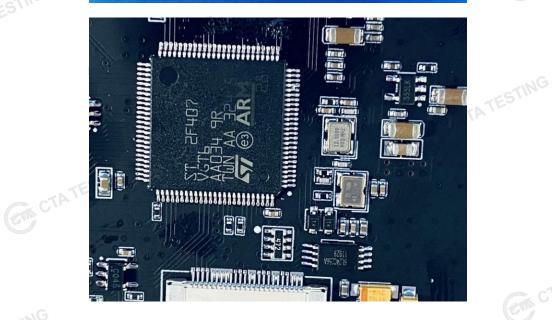








Report No.: CTA24011802201 Page 35 of 41



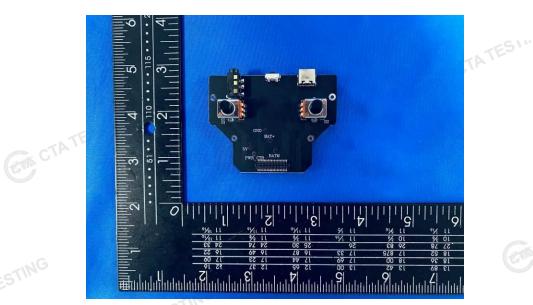


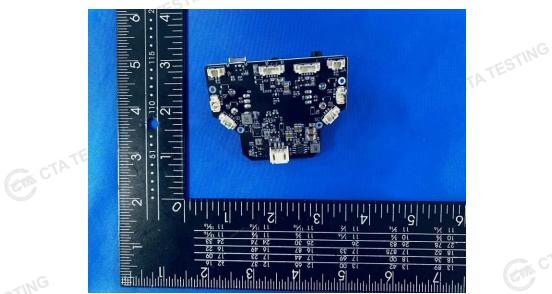

Report No.: CTA24011802201 Page 36 of 41








Report No.: CTA24011802201 Page 37 of 41

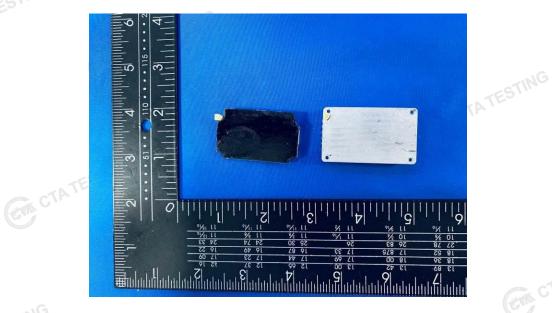




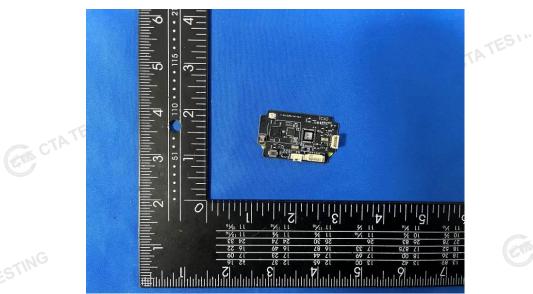


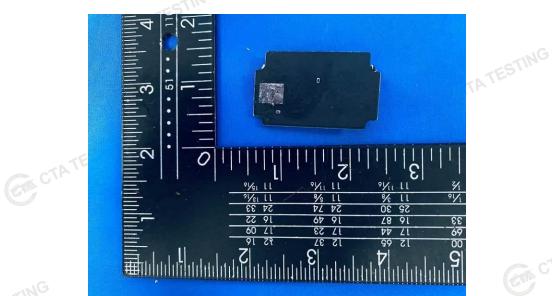

Report No.: CTA24011802201 Page 38 of 41

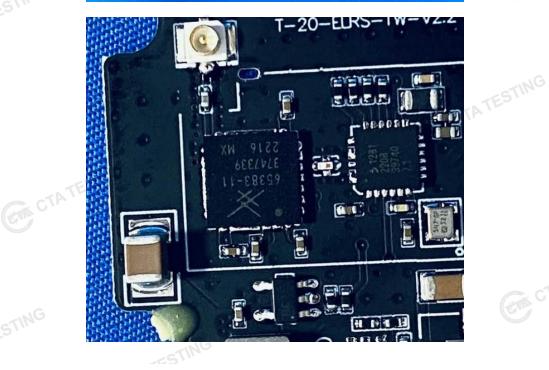




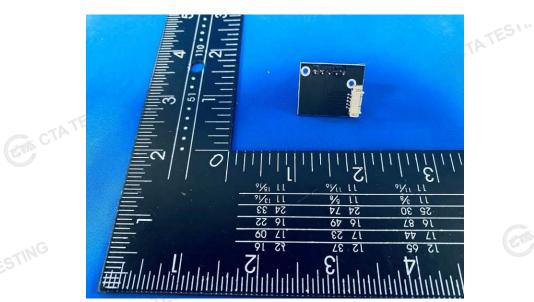


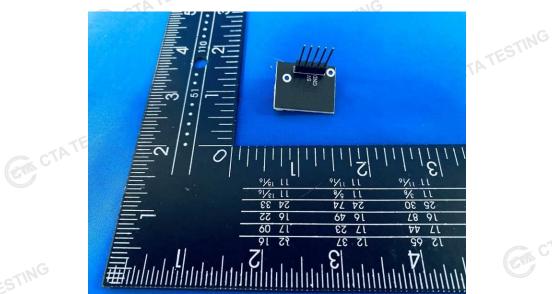


Report No.: CTA24011802201 Page 39 of 41







Report No.: CTA24011802201 Page 40 of 41








Report No.: CTA24011802201 Page 41 of 41





End of Report.....