

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No.....: CTA24041500402 FCC ID.....: : 2ANSZ-ZJR218

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Zoey Cao

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue.....: Apr. 18, 2024

Testing Laboratory NameShenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Zhuangjiaren Technology Co., Ltd

No.41, Area C, Yufengze Garden Plaza, Longguan Road, Longhua

Street, Longhua District, Shenzhen

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Equipment description...... Wireless headset

Trade Mark: N/A

Manufacturer Shenzhen Zhuangjiaren Technology Co., Ltd

Model/Type reference......ZJR218

M-210, M-211, M-212, M-213, M-215, M-216, M-217, M-218,

K09, K10, K11, K12, K13, K15, K16, K17, K18, K19, K20, AX9,

AIR39, G27

Modulation: GFSK

Frequency..... From 2402MHz to 2480MHz

Ratings DC 3.7V From battery and DC 5.0V From external circuit

Result......PASS

Report No.: CTA24041500402 Page 2 of 32

TEST REPORT

Wireless headset Equipment under Test

Model /Type **ZJR218**

: M-210, M-211, M-212, M-213, M-215, M-216, M-217, M-218, M-R-219, Listed Models

Y-220, D-221, K-018, K01, K02, K03, K05, K06, K07, K08, K09, K10, K11,

K12, K13, K15, K16, K17, K18, K19, K20, AX9, AIR39, G27

CTATESTING **Applicant** Shenzhen Zhuangjiaren Technology Co., Ltd

> No.41, Area C, Yufengze Garden Plaza, Longguan Road, Longhua Address

> > Street, Longhua District, Shenzhen

Shenzhen Zhuangjiaren Technology Co., Ltd Manufacturer

Address	: No.41,Area C,Yufengze Street,Longhua District	e Garden Plaza, Longguan Road, Longhua , Shenzhen
Test R	esult:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 32 Report No.: CTA24041500402

Contents

		TESTING	Contents		
	1	TEST STANDARDS	ESTING		4
	The state of the s		ATL	NG	
	2	SUMMARY			5
	_	O M M A A A A A A A A A A A A A A A A A	<u> </u>		0
					_
	2.1	General Remarks			5
	2.2	Product Description*			5
	2.3	Equipment Under Test			5
	2.4	Short description of the Equipme	nt under Test (EUT)		5
	2.5	EUT operation mode			6
	2.6	Block Diagram of Test Setup			6
CAL	2.7	Related Submittal(s) / Grant (s)			6
7	2.8	Modifications			6
		CTA			
	<u>3</u>	TEST ENVIRONMENT			7
	<u>5</u>	TEST ENVIRONMENT			
	3.1	Address of the test laboratory		TATE	7
	3.2	Test Facility			7
	3.3	Environmental conditions		CTATE	7
	3.4	Summary of measurement results			8
	3.5	Statement of the measurement ur			8
	3.6	Equipments Used during the Test	1		9
		ESTIN			
	1	TEST CONDITIONS AND	PESIII TS		11
	C	TEST CONDITIONS AND	-C7/11		
				ATESTING	
	4.1	AC Power Conducted Emission			11
	4.2	Radiated Emissions and Band Ed	ge		14
	4.3	Maximum Peak Output Power		A	21
	4.4	Power Spectral Density	Carlo City		22
	4.5	6dB Bandwidth			24
	4.6	Out-of-band Emissions			26
	4.7	Antenna Requirement			30
	5,	TEST SETUP PHOTOS O	E TUE		31
CTA!	<u> </u>	TEST SETUP PHOTOS O	F THE EUT		<u> 3 1</u>
CTATE		ESTIN			
	<u>6</u>	PHOTOS OF THE EUT			32
			CTA.		
			CTATESTING CTATESTING		51"
				CTATES	

Report No.: CTA24041500402 Page 4 of 32

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 CTATESTING

Report No.: CTA24041500402 Page 5 of 32

SUMMARY

General Remarks

CTATES			
2.1 General Remarks		TESI	
Date of receipt of test sample		Apr. 11, 2024	TESTING
Testing commenced on		Apr. 11, 2024	CTA
Testing concluded on	:	Apr. 18, 2024	

2.2 Product Description*

2.2 Product Descri	ption*
Product Description:	Wireless headset
Model/Type reference:	ZJR218
Power supply:	DC 3.7V From battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version:	V2.0
Software version:	V2.3
Testing sample ID:	CTA240415004-1# (Engineer sample) CTA240415004-2# (Normal sample)
Bluetooth BLE	
Supported type:	Bluetooth low Energy
Modulation:	GFSK
Operation frequency:	2402MHz to 2480MHz
Channel number:	40
Channel separation:	2 MHz
Antenna type:	Chip Antenna
Antenna gain:	1.268 dBi

2.3 Equipment Under Test

Power supply system utilised

2.3 Equipment Under Test Power supply system utilised					;\r	CTATE
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz	
		0	12 V DC	0	24 V DC	
-11	11	•	Other (specified in blank belo	ow)		

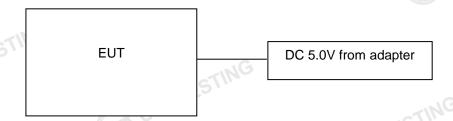
DC 3.7V From battery and DC 5.0V From external circuit

2.4 Short description of the Equipment under Test (EUT)

This is a Wireless headset.

For more details, refer to the user's manual of the EUT.

Page 6 of 32 Report No.: CTA24041500402


2.5 EUT operation mode

The Applicant provides command "*#*#3646633#*#*" access (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing. There are 40 channels provided to the EUT and Channel 00/19/39 were selected to test.

Operation Frequency:

- poranon regulario,	
Channel	Frequency (MHz)
00	2402
01	2404
02	2406
UNG	
19	2440
TESTING	:
37	2476
38	2478
39	2480
2.6 Block Diagram of Test Setup	CTATES III

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING Report No.: CTA24041500402 Page 7 of 32

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	23 ° C
WIN.	TES.
Humidity:	44 %
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
NG	
Humidity:	47 %
. (the state of the s
Atmospheric pressure:	950-1050mbar

	Allilosphene pressure.	930-103011bai	
С	onducted testing:	LES,	TING
	Temperature:	24 ° C	TESI
	Walter and the same of the sam	0.116	(A)
	Humidity:	46 %	
	Atmospheric pressure:	950-1050mbar	

Report No.: CTA24041500402 Page 8 of 32

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
§15.247(e)	Power spectral density	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(b)(3)	Maximum output Peak power	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	Band edge compliance conducted	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.205	Band edge compliance radiated	BLE 1Mpbs	☑ Lowest☑ Highest	BLE 1Mpbs	☑ Lowest☑ Highest	complies
§15.247(d)	TX spurious emissions conducted	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	complies
§15.247(d)	TX spurious emissions radiated	BLE 1Mpbs	✓ Lowest✓ Middle✓ Highest	BLE 1Mpbs	☑ Lowest☑ Middle☑ Highest	complies
§15.209(a)	TX spurious Emissions radiated Below 1GHz	BLE 1Mpbs	-/-	BLE 1Mpbs	-/-	complies
§15.107(a) §15.207	Conducted Emissions < 30 MHz	BLE 1Mpbs	-1NG -/-	BLE 1Mpbs	-/-	complies

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	_ING	0.57 dB	(1)
Spectrum bandwidth	-651111	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

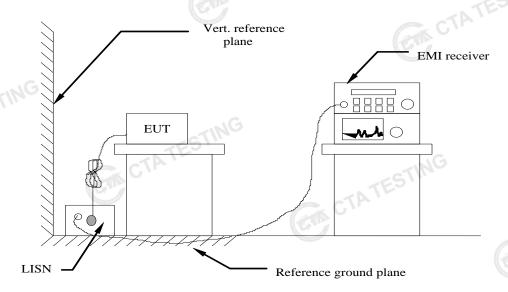
Page 9 of 32 Report No.: CTA24041500402

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
E	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
-	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
240	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
Ī	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
j	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01
Courses	CV.	Carc	TATESTING		TESTING	,

Page 10 of 32 Report No.: CTA24041500402


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
	CTING					
CTATE		CTATESTING				
Ĩ						

Report No.: CTA24041500402 Page 11 of 32

TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

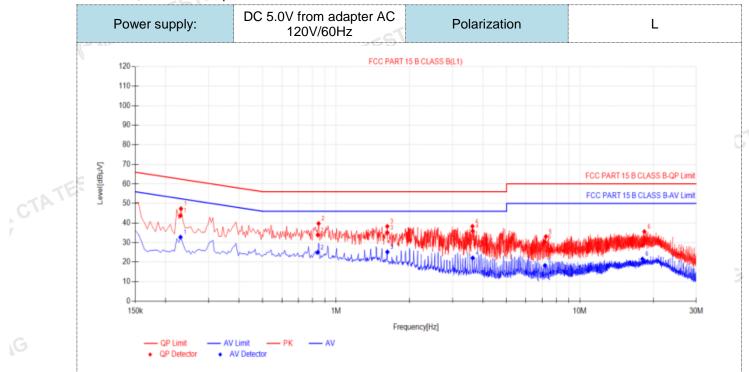
TEST CONFIGURATION

TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

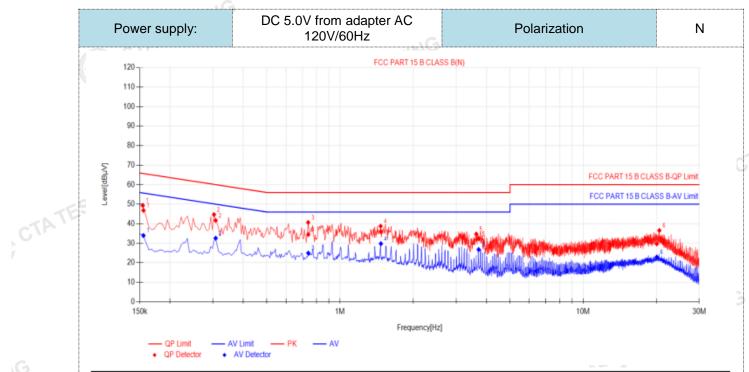

Fraguenay rango (M	⊔ →\	Limit (dBuV)
Frequency range (M	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithn	of the frequency.	
TEST RESULTS Remark:	CTATES	ESTING

TEST RESULTS

1. BLE 1Mpbs was tested at Low, Middle, and High channel; only the worst result of BLE 1Mpbs High channel was reported as below:

Page 12 of 32 Report No.: CTA24041500402

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


	Final Data List													
50	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBµV]	ΑV Value [dBμV]	AV Limit [dΒμV]	AV Margin [dB]	Verdict		
	1	0.2300	10.50	33.28	43.78	62.45	18.67	22.24	32.74	52.45	19.71	PASS		
	2	0.8408	10.50	23.40	33.90	56.00	22.10	14.54	25.04	46.00	20.96	PASS		
	3	1.6234	10.50	24.59	35.09	56.00	20.91	14.68	25.18	46.00	20.82	PASS		
	4	3.6323	10.50	25.42	35.92	56.00	20.08	11.61	22.11	46.00	23.89	PASS		
	5	7.1844	10.50	19.70	30.20	60.00	29.80	7.79	18.29	50.00	31.71	PASS		
	6	18.0468	10.50	18.21	28.71	60.00	31.29	11.07	21.57	50.00	28.43	PASS		

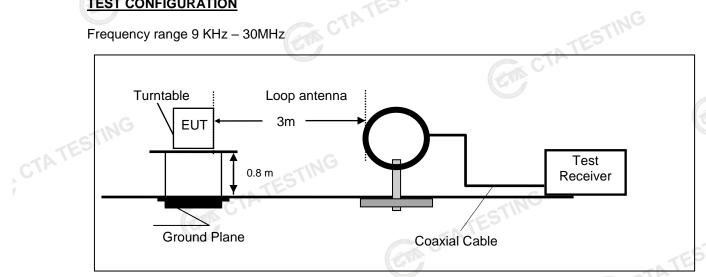
STATE

Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

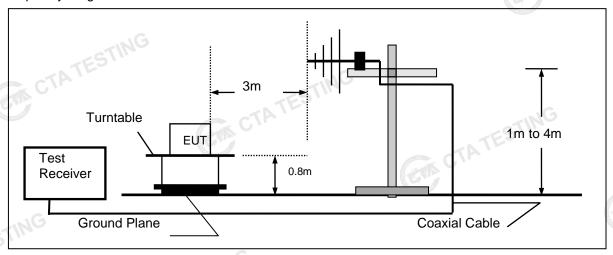
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTATESTING

Report No.: CTA24041500402 Page 13 of 32

NO.	Preq.	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.1554	10.50	36.34	46.84	65.71	18.87	23.44	33.94	55.71	21.77	PASS
2	0.3079	10.50	31.20	41.70	60.03	18.33	22.09	32.59	50.03	17.44	PASS
3	0.7403	10.50	23.97	34.47	56.00	21.53	14.46	24.96	46.00	21.04	PASS
4	1.4723	10.50	25.55	36.05	56.00	19.95	19.30	29.80	46.00	16.20	PASS
5	3.7158	10.50	21.85	32.35	56.00	23.65	16.27	26.77	46.00	19.23	PASS
6	20.0811	10.50	19.18	29.68	60.00	30.32	12.47	22.97	50.00	27.03	PASS
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)											

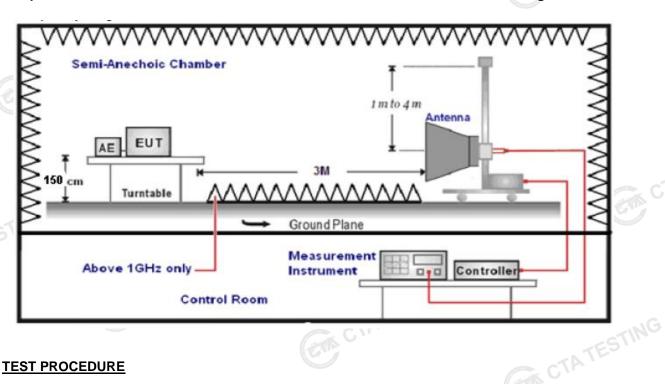

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
 - 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ CTA TESTING

Page 14 of 32 Report No.: CTA24041500402


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Page 15 of 32 Report No.: CTA24041500402

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

The distance between test	antenna and EUT as following tat	ne states:	
Test Frequency range	Test Antenna Type	Test Distance	TATE
9KHz-30MHz	Active Loop Antenna	3	(C. 110
30MHz-1GHz	Ultra-Broadband Antenna	3	Gall
1GHz-18GHz	Double Ridged Horn Antenna	3	No usulas
18GHz-25GHz	Horn Anternna	1	

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector		
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep time=Auto		QP		
30MHz-1GHz	QP			
	Peak Value: RBW=1MHz/VBW=3MHz,	GTING		
1GHz-40GHz	Sweep time=Auto	Peak		
TGHZ-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,			
	Sweep time=Auto			

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

de calculation is as follows.	
RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Report No.: CTA24041500402 Page 16 of 32

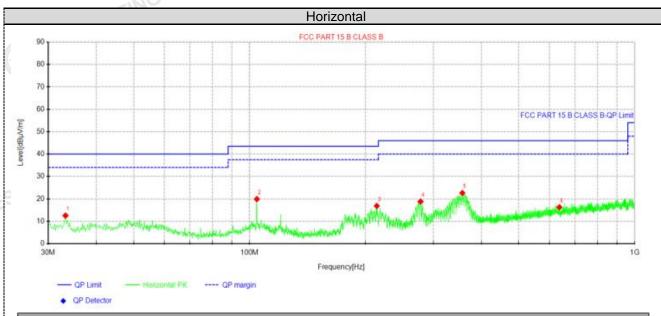
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	photos.			
CTATE	Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (μV/m)
	0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
,	0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
	1.705-30	3	20log(30)+ 40log(30/3)	30
	30-88	3	40.0	100
	88-216	3	43.5	150
	216-960	3	46.0	200
	Above 960	3	54.0	500


TEST RESULTS

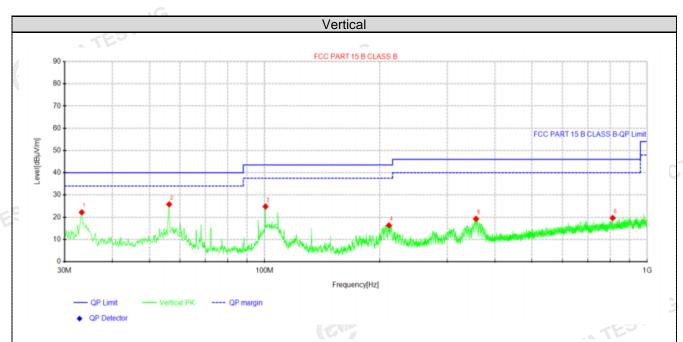
Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- BLE 1Mpbs were tested at Low, Middle, and High channel and recorded worst mode at BLE 1Mpbs.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found CTATESTING except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Report No.: CTA24041500402 Page 17 of 32

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.2738	30.70	12.54	-18.16	40.00	27.46	100	86	Horizontal
2	104.447	38.48	19.90	-18.58	43.50	23.60	100	162	Horizontal
3	213.936	35.83	16.85	-18.98	43.50	26.65	100	95	Horizontal
4	277.956	36.51	18.81	-17.70	46.00	27.19	100	110	Horizontal
5	356.768	38.60	22.63	-15.97	46.00	23.37	100	276	Horizontal
6	637.341	28.34	16.28	-12.06	46.00	29.72	100	119	Horizontal


CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Page 18 of 32 Report No.: CTA24041500402

Susp	ected Data	List							
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	33.2738	40.36	22.20	-18.16	40.00	17.80	100	257	Vertical
2	56.3112	43.21	25.80	-17.41	40.00	14.20	100	76	Vertical
3	100.567	43.19	24.81	-18.38	43.50	18.69	100	136	Vertical
4	211.39	35.38	16.32	-19.06	43.50	27.18	100	350	Vertical
5	357.011	35.24	19.27	-15.97	46.00	26.73	100	0	Vertical
6	812.547	30.02	19.66	-10.36	46.00	26.34	100	136	Vertical

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m) CTATESTIN

Page 19 of 32 Report No.: CTA24041500402

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			.02	Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	62.61	PK	74	11.39	66.88	32.33	5.12	41.72	-4.27	
4804.00	44.64	AV	54	9.36	48.91	32.33	5.12	41.72	-4.27	
7206.00	53.00	PK	74	21.00	53.52	36.6	6.49	43.61	-0.52	
7206.00	43.92	AV	54	10.08	44.44	36.6	6.49	43.61	-0.52	

Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	61.42	PK	74	12.58	65.69	32.33	5.12	41.72	-4.27	
4804.00	45.95	AV	54	8.05	50.22	32.33	5.12	41.72	-4.27	
7206.00	53.42	PK	74	20.58	53.94	36.6	6.49	43.61	-0.52	
7206.00	41.76	AV	54	12.24	42.28	36.6	6.49	43.61	-0.52	

Frequency(MHz):		2440		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.48	PK	74	12.52	65.36	32.6	5.34	41.82	-3.88
4880.00	44.80	AV	54	9.20	48.68	32.6	5.34	41.82	-3.88
7320.00	54.14	PK	74	19.86	54.25	36.8	6.81	43.72	-0.11
7320.00	44.48	AV	54	9.52	44.59	36.8	6.81	43.72	-0.11

73 030			1110	P	-ING				
Freque	Frequency(MHz):		2440		Pola	Polarity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	60.56	PK	74	13.44	64.44	32.6	5.34	41.82	-3.88
4880.00	43.48	AV	54	10.52	47.36	32.6	5.34	41.82	-3.88
7320.00	52.03	PK	74	21.97	52.14	36.8	6.81	43.72	-0.11
7320.00	43.67	ΑV	54	10.33	43.78	36.8	6.81	43.72	-0.11
			GTIN						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	61.26	PK	74	12.74	64.34	32.73	5.66	41.47	-3.08
4960.00	44.80	AV	54	9.20	47.88	32.73	5.66	41.47	-3.08
7440.00	55.40	PK	74	18.60	54.95	37.04	7.25	43.84	0.45
7440.00	43.44	AV	54	10.56	42.99	37.04	7.25	43.84	0.45

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	60.30	PK	74	13.70	63.38	32.73	5.66	9 41.47	-3.08
4960.00	44.19	AV	54	9.81	47.27	32.73	5.66	41.47	-3.08
7440.00	54.92	PK	74	19.08	54.47	37.04	7.25	43.84	0.45
7440.00	43.47	PK	54	10.53	43.02	37.04	7.25	43.84	0.45

Page 20 of 32 Report No.: CTA24041500402

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Margin (dB) 13.45 9.83 2402 Margin (dB) 14.02 11.53 2480 Margin (dB)	Raw Value (dBuV) 70.40 52.89	Antenna Factor (dB/m) 27.42 27.42 arity: Antenna Factor (dB/m) 27.42 27.42 arity: Antenna	Cable Factor (dB) 4.31 4.31 Cable Factor (dB) 4.31 4.31 Factor	Preamplifier (dB) 42.15 42.15 VERTICAL Preamplifier (dB) 42.15 42.15 HORIZONTA	Correction Factor (dB/m) -10.42	
9.83 2402 Margin (dB) 14.02 11.53 2480 Margin	54.59 Raw Value (dBuV) 70.40 52.89 Pol	27.42 arity: Antenna Factor (dB/m) 27.42 27.42 27.42 arity: Antenna	4.31 Cable Factor (dB) 4.31 4.31	42.15 VERTICAL Pre- amplifier (dB) 42.15 42.15	-10.42 Correction Factor (dB/m) -10.42 -10.42	
2402 Margin (dB) 14.02 11.53 2480 Margin	Raw Value (dBuV) 70.40 52.89 Pol	Antenna Factor (dB/m) 27.42 27.42 arity: Antenna	Cable Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15 42.15	Correction Factor (dB/m) -10.42 -10.42	
Margin (dB) 14.02 11.53 2480 Margin	Raw Value (dBuV) 70.40 52.89 Pol	Antenna Factor (dB/m) 27.42 27.42 arity:	Factor (dB) 4.31 4.31	Pre- amplifier (dB) 42.15 42.15	Correction Factor (dB/m) -10.42 -10.42	
14.02 11.53 2480 Margin	Value (dBuV) 70.40 52.89 Pol Raw	Factor (dB/m) 27.42 27.42 arity: Antenna	Factor (dB) 4.31 4.31	amplifier (dB) 42.15 42.15	Factor (dB/m) -10.42 -10.42	
11.53 2480 Margin	52.89 Pol Raw	27.42 arity: Antenna	4.31 H	42.15	-10.42 AL	
2480 Margin	Pol Raw	arity: Antenna	ŀ	IORIZONTA	AL.	
Margin	Raw	Antenna				
			Cable	Pre-	Correction	
., (42)	(dBuV)	Factor (dB/m)	Factor (dB)	amplifier (dB)	Factor (dB/m)	
12.87	71.24	27.7	4.47	42.28	-10.11	
10.02	54.09	27.7	4.47	42.28	-10.11	
2480		Polarity:		VERTICAL		
Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
14.54	69.57	27.7	4.47	42.28	-10.11	
11.88	52.23	27.7	4.47	42.28	-10.11	
	14.54 11.88 (dBuV)+Correct	14.54 69.57 11.88 52.23 (dBuV)+Correction Factor (14.54 69.57 27.7 11.88 52.23 27.7 (dBuV)+Correction Factor (dB/m)	14.54 69.57 27.7 4.47 11.88 52.23 27.7 4.47 (dBuV)+Correction Factor (dB/m)	14.54 69.57 27.7 4.47 42.28 11.88 52.23 27.7 4.47 42.28	

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 32 Report No.: CTA24041500402

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

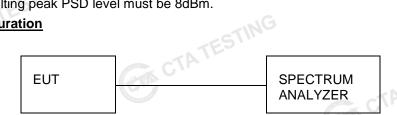
Test Configuration

Test Results

est Results				ATESTI
Туре	Channel	Output power (dBm)	Limit (dBm)	Result
10.	00	5.35		
GFSK 1Mbps	19	4.69	30.00	Pass
CTA	39	3.29		

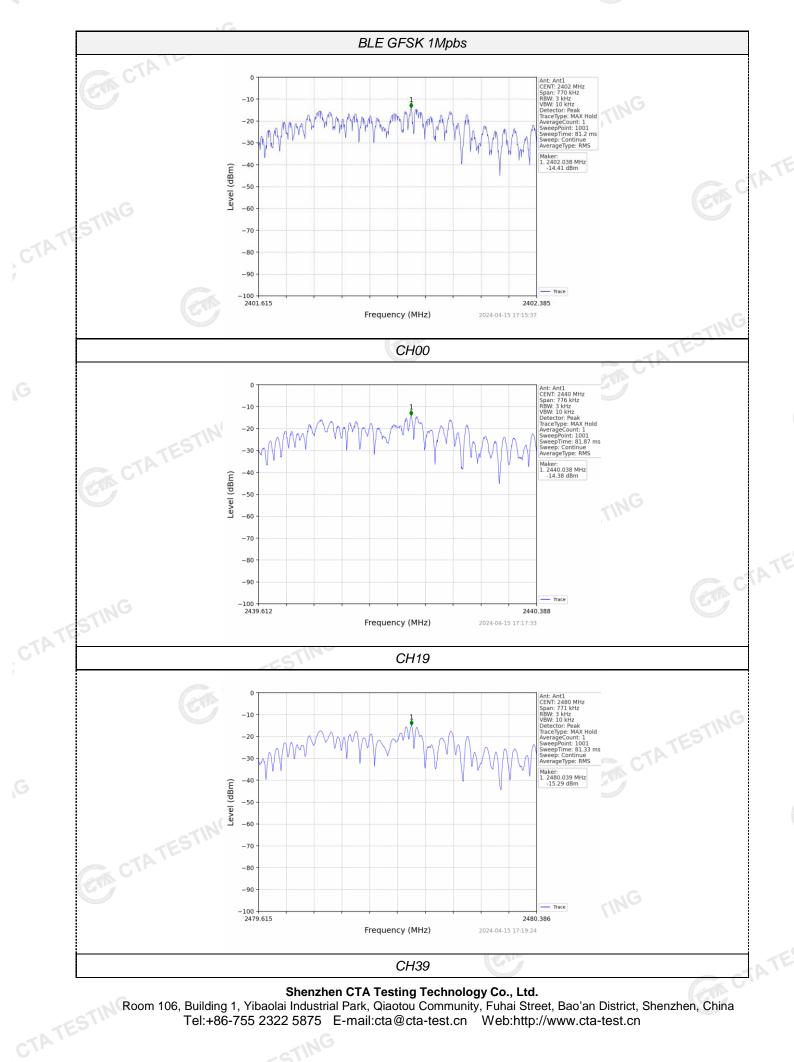
Report No.: CTA24041500402 Page 22 of 32

Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure


- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

Test Configuration

Test Results

	Power Spectral Density	11 1/ 15 (01/11)	- ·
Type Channel	(dBm/3KHz)	Limit (dBm/3KHz)	Result
00	-14.41		
GFSK 1Mbps 19	-14.38	8.00	Pass
39	-15.29	G	
Test plot as follows:			

Report No.: CTA24041500402 Page 24 of 32

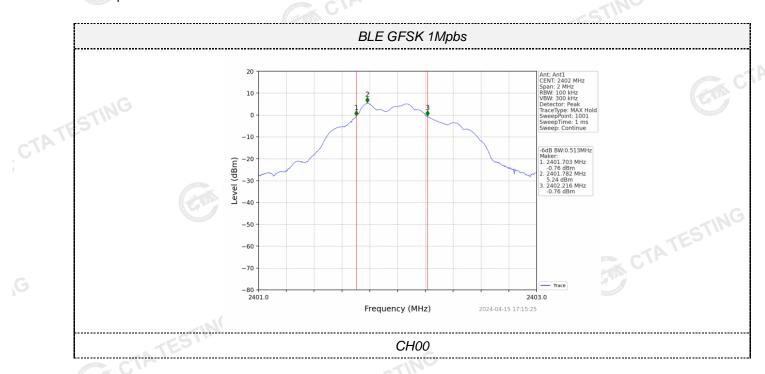
4.5 6dB Bandwidth

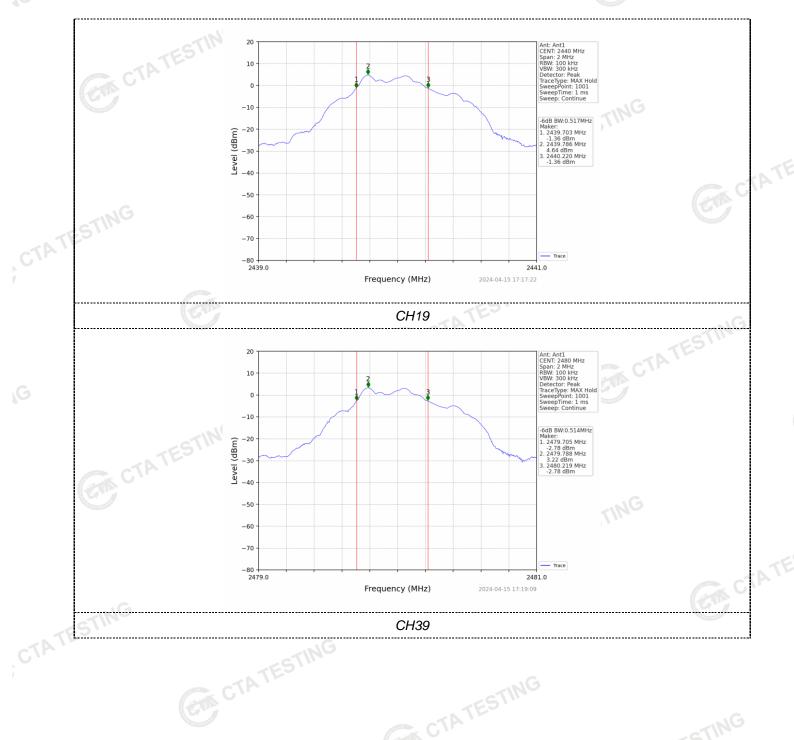
Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.


Test Configuration


Test Results

Test Results		ANALYZE		CTATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
STIP	00	0.513		
GFSK 1Mbps	19	0.517	≥500	Pass
C	39	0.514		

Test plot as follows:

Report No.: CTA24041500402 Page 25 of 32

Report No.: CTA24041500402 Page 26 of 32

Out-of-band Emissions 4.6

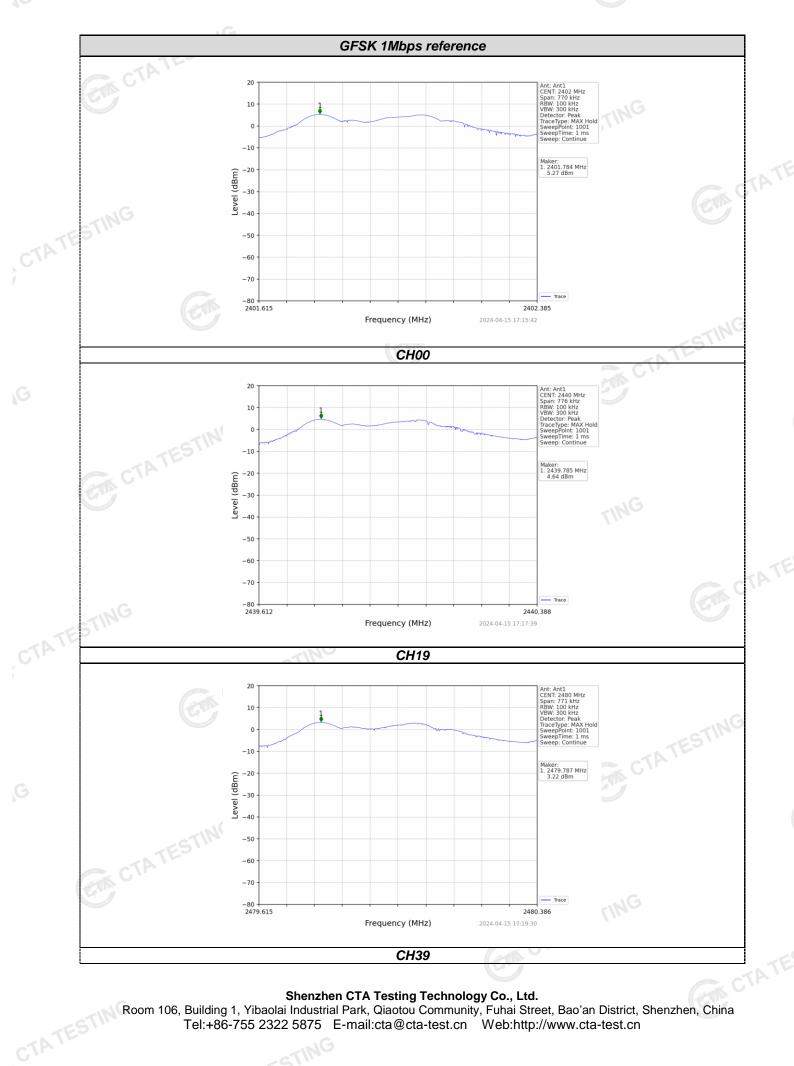
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

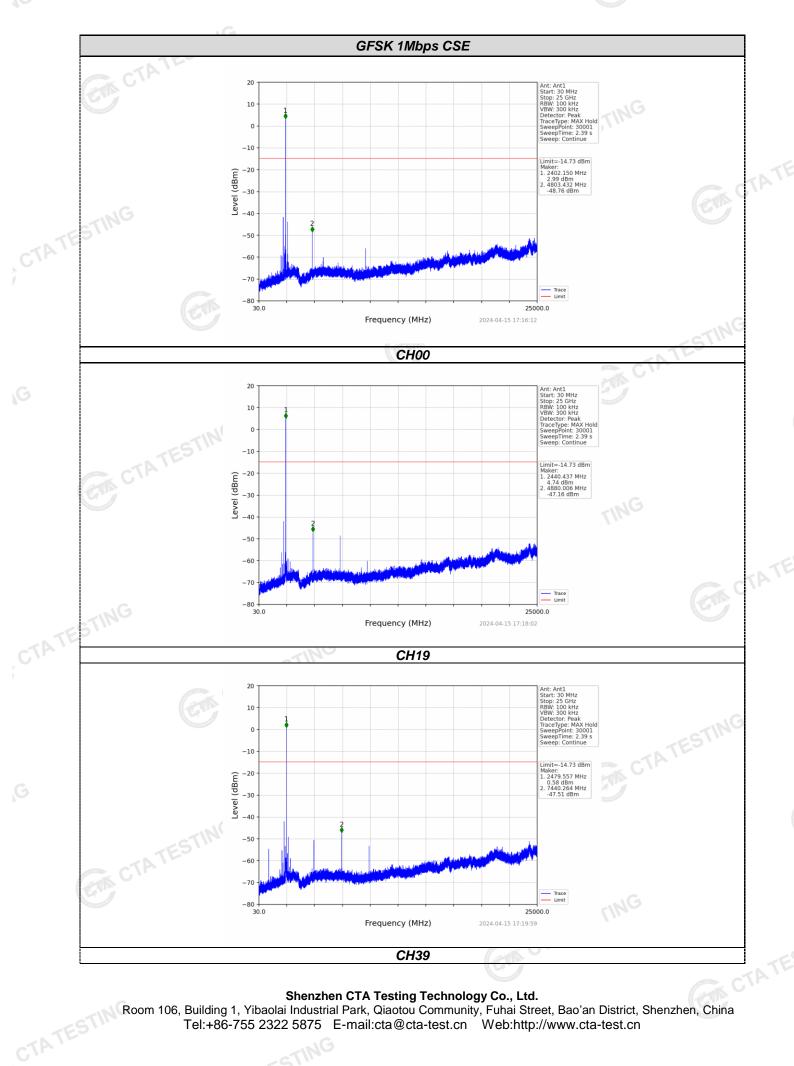
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

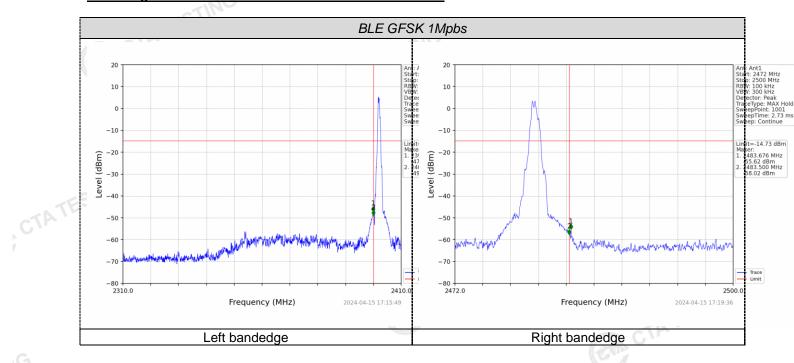


Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage CTATE measurement data.

Test plot as follows:

Page 27 of 32 Report No.: CTA24041500402



Page 28 of 32 Report No.: CTA24041500402

Report No.: CTA24041500402 Page 29 of 32

Band-edge Measurements for RF Conducted Emissions:

Report No.: CTA24041500402 Page 30 of 32

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The gain of antenna was 1.268 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility.

CTATESTING

Page 31 of 32 Report No.: CTA24041500402

Test Setup Photos of the EUT

Report No.: CTA24041500402 Page 32 of 32

Photos of the EUT

Reference to the CTA24041500401 for details.

****** End of Reprt ************ CTATESTING CTAT