1. MAXIMUM PERMISSIBLE EXPOSURE (MPE)

1.1 Standard Applicable

According to § 1.1307(b)(1), system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

(a) Limits for Occupational / Controlled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500	/	/	F/300	6
1500-100000	/	/	5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Times $ E ^2$, $ H ^2$ or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	F/1500	30
1500-100000	/	/	1	30

Note: f = frequency in MHz: * = Plane-wave equivalents power density

1.2 MPE Calculation Method

 $S = (30*P*G) / (377*R^2)$

S = power density (in appropriate units, e.g., mw/cm²)

P = power input to the antenna (in appropriate units, e.g., mw)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor is normally numeric gain.

R = distance to the center of radiation of the antenna (in appropriate units, e.g., cm)

1.3 MPE Calculation Result

Model No.: HiVi M200MKII (WiFi), HiVi T200MKII, HiVi T200MKII+, HiVi M200D,

HiVi H5MKII

FCC ID: 2ANSM-HIVI

Device category: Multimedia Active Speaker

WIFI:

Maximum peak output power: 13.87(dBm)

Maximum peak output power at antenna input terminal: 24.38(mW)

Prediction distance: >20(cm)
Prediction frequency: 2462 (MHz)

Antenna gain: 5(dBi)

Directional gain: 3.16 (numeric)

The worst case is power density at prediction frequency at 20cm: $\underline{0.015(\text{mw/cm}^2)}$ MPE limit for general population exposure at prediction frequency: $\underline{1 \text{ (mw/cm}^2)}$

 $0.015 (\text{mw/cm}^2) < 1 (\text{mw/cm}^2)$

BT(EDR):

Maximum peak output power: 4.34(dBm)

Maximum peak output power at antenna input terminal: 2.72(mW)

Prediction distance: >20(cm)
Prediction frequency: 2480 (MHz)

Antenna gain: 3(dBi)

Directional gain: 2.0 (numeric)

The worst case is power density at prediction frequency at 20cm: $\underline{0.001 (mw/cm^2)}$ MPE limit for general population exposure at prediction frequency: $\underline{1 \ (mw/cm^2)}$

 $0.001 (\text{mw/cm}^2) < 1 (\text{mw/cm}^2)$

BT(BLE):

Maximum peak output power: 2.493(dBm)

Maximum peak output power at antenna input terminal: 1.78(mW)

Prediction distance: >20(cm)
Prediction frequency: 2480 (MHz)

Antenna gain: 3(dBi)

Directional gain: 2.0 (numeric)

The worst case is power density at prediction frequency at 20cm: <u>0.0007(mw/cm²)</u>
MPE limit for general population exposure at prediction frequency: <u>1 (mw/cm²)</u>

 $0.0007 (\text{mw/cm}^2) < 1 (\text{mw/cm}^2)$

So the transmitter complies with the RF exposure requirements and the SAR is not required.