

FCC SAR TEST REPORT

Report No: STS1710028H01

S T S

A

Issued for

JP SA COUTO,SA

R.da Guarda, 675-Matosinhos, EORI:PT502150181, Perafita, 4455-466,PT.

Product Name:	tablet PC						
Brand Name:	N/A						
Test Model Name:	VMH100						
Series Model:	N/A						
FCC ID:	2ANS7VMH100						
	ANSI/IEEE Std. C95.1						
Test Standard:	FCC 47 CFR Part 2 (2.1093)						
	IEEE 1528: 2013						
Max. Report	Body: 0.687 W/kg						
SAR (1g):	Body: 0.687 W/kg						

Any reproduction of this document must be done in full. No single part of this document may be reproduced without permission from STS, All Test Data Presented in this report is only applicable to presented Test sample.

Page 2 of 33

Report No.: STS1710028H01

Test Report Certification

Applicant's name:	JP SA COUTO,SA
Address:	R.da Guarda, 675-Matosinhos, EORI:PT502150181, Perafita, 4455-466,PT.
Manufacture's Name	Shenzhen Vastking Electronic Co .,LTD.
Address:	2/F, Building 6, ZhengZhong Industrial Park, Qiaotou Community, Fuyong, Baoan, Shenzhen, China
Product description	
Product name:	tablet PC
Trademark:	N/A
Model and/or type reference :	VMH100
Series Model:	N/A
Standards	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013
measurement methods and pro apply only to the tested sample	zhen STS Test Services Co., Ltd. in accordance with the cedures specified in KDB 865664 The test results in this report of the stated device/equipment. Other similar device/equipment same results due to production tolerance and measurement
Date of Test	
Date (s) of performance of tests	18 Oct. 2017
Date of Issue	19 Oct. 2017
Teet Deput	L Dana

Test Result..... Pass

Testing Engineer :	Aann 13u.
	(Aaron Bu)
Technical Manager :	John . zom APPROVAL
	(John Zou)
Authorized Signatory :	Virtati
	(Vita Li)

Table of Contents

1.General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Factory	5
2.Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	12
5.1 Validation System	12
5.2 Validation Result	12
6. SAR Evaluation Procedures	13
7. EUT Antenna Location Sketch	14
7.1 SAR test exclusion consider table	15
8. EUT Test Position	16
9. Uncertainty	17
9.1 Measurement Uncertainty	17
9.2 System validation Uncertainty	19
10. Conducted Power Measurement	21
10.1 Test Result	21
10.2 Tune-up Power	21
10.3 SAR Test Exclusions Applied	22
11. EUT And Test Setup Photo	23
11.1 EUT Photo	23
11.2 Setup Photo	26
12. SAR Result Summary	28
12.1 Body-worn SAR	28
13. Equipment List	29
Appendix A. System Validation Plots	30
Appendix B. SAR Test Plots	32
Appendix C. Probe Calibration And Dipole Calibration Report	33

П

Page 4 of 33

1.General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

Equipment	tablet PC	C					
Brand Name	N/A	N/A					
Test Model No.	VMH100)					
Series Model	N/A						
FCC ID	2ANS7V	/MH100					
Model Difference	N/A						
Adapter	N/A						
Battery	Charge I	Rated Voltage: 3.8V; Charge Limit: 5.2V; Capacity: 6000mAh					
Device Category	Portable						
Product stage	Production	on unit					
RF Exposure Environment	General	General Population / Uncontrolled					
Hardware Version	N/A	N/A					
Software Version	N/A	N/A					
Frequency Range	WLAN 802.11b/g/n(HT20/40):2412~2462MHz Bluetooth:2402~ 2480MHz						
Max. Reported	Band	Mode	Body Worn (W/kg)				
SAR(1g):	DTS	WLAN	0.687				
(Limit:1.6W/kg)	DTS	Bluetooth Note	0.053				
FCC Equipment Class	Digital Transmission System (DTS)						
Operating Mode:	WLAN: 802.11 b/g/n(HT20/40); BLE						
Antenna Specification:	BT,WLAN: PIFA Antenna						
Hotspot Mode:	Not Support						
DTM Mode:	Not Sup	Not Support					
Note: 1. Bluetooth SAR was est 2. The EUT battery must		harged and checked pe	eriodically during the test to ascertain uniform				

power

Page 5 of 33 Report No.: STS1710028H01

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road,

Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

CNAS Registration No.: L7649

FCC Registration No.: 625569

IC Registration No.: 12108A

A2LA Certificate No.: 4338.01

2.Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v06	tablet PC and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists,	Feet and Ankles

0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists,	Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE

GENERAL POPULATION/UNCONTROLLED EXPOSURE

PARTIAL BODY LIMIT

1.6 W/kg

Page 7 of 33

3. SAR Measurement System

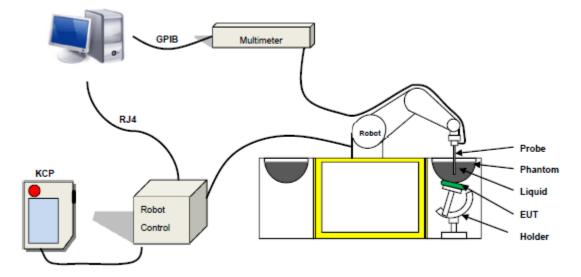
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


 $SAR = \frac{\sigma E^2}{\rho}$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

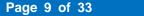
- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Shenzhen STS Test Services Co., Ltd.

Page 8 of 33 Report No.: STS1710028H01

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.


3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 14/16 EP309 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter: 5 mm
- Length of Individual Dipoles: 4.5 mm
- Maximum external diameter: 8 mm
- Distance between dipole/probe extremity: 8 mm (repeatability better than +/- 2.7mm)
- Probe linearity: 0±2.27%(±0.10dB)
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: < 0.10 dB
- Calibration range: 400 MHz to 3 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Figure-SN 32/14 SAM115

Figure-SN 32/14 SAM116

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Frequency	Bactericide	DGBE	HEC	NaCl	Sucrose	1,2-Propan ediol	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	٤r
750	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
835	/	/	/	0.79	/	64.81	/	34.40	0.97	41.8
900	/	/	/	0.79	1	64.81	1	34.40	0.97	41.8
1800	/	13.84	1	0.35	1	1	30.45	55.36	1.38	41.0
1900	/	13.84	1	0.35	1	/	30.45	55.36	1.38	41.0
2000	/	7.99	1	0.16	/	/	19.97	71.88	1.55	41.1
2450	/	7.99	/	0.16	/	/	19.97	71.88	1.88	40.3
2600	/	7.99	/	0.16	1	1	19.97	71.88	1.88	40.3

Tissue dielectric parameters for head and body phantoms							
Frequency	ε _r		σ S/m				
	Head	Body	Head	Body			
300	45.3	58.2	0.87	0.92			
450	43.5	58.7	0.87	0.94			
900	41.5	55.0	0.97	1.05			
1450	40.5	54.0	1.20	1.30			
1800	40.0	53.3	1.40	1.52			
2450	39.2	52.7	1.80	1.95			
3000	38.5	52.0	2.40	2.73			
5800	35.3	48.2	5.27	6.00			

Page 11 of 33

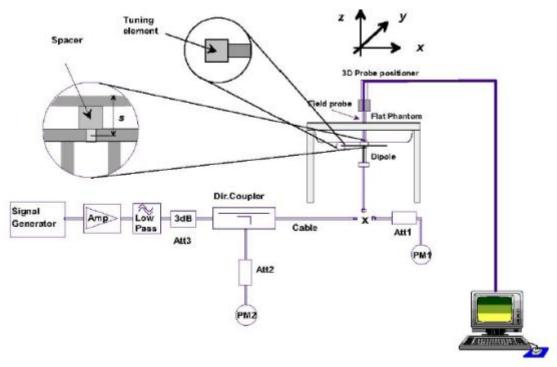
Report No.: STS1710028H01

LIQUID MEASUREMENT RESULTS

	Date	Ambient condition		Body Simulating Liquid		Parameters	Target	Measured	Deviation	Limited
		Temp. [°C]	Humidity [%]	Frequency	Temp. [°C]	Parameters	Target	Measureu	[%]	[%]
	2017-10-18	23.1	50	2450 MHz	22.8	Permittivity:	52.70	52.93	0.43	± 5
			56			Conductivity	1.95	1.98	1.42	±5

Shenzhen STS Test Services Co., Ltd.

Page 12 of 33



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
2450 Body	100	5.118	51.18	52.4	-2.33	2017-10-18

Note: The tolerance limit of System validation ±10%.

Page 13 of 33

Report No.: STS1710028H01

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

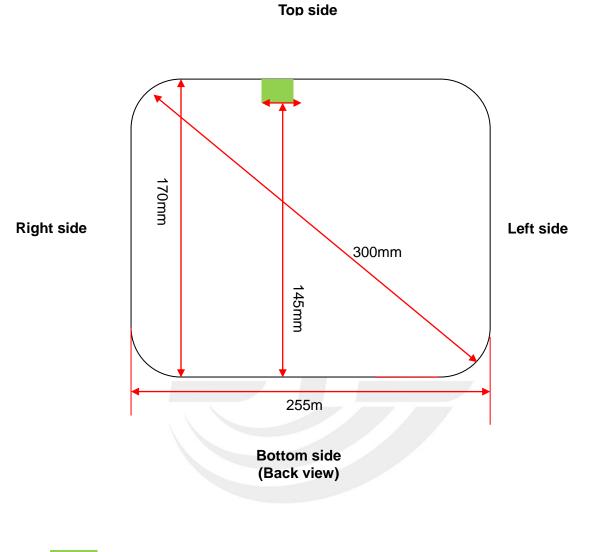
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.



Page 14 of 33 Re

Report No.: STS1710028H01

7. EUT Antenna Location Sketch

It is a tablet PC, support WLAN mode.

WIFI/BT Antenna

Shenzhen STS Test Services Co., Ltd.

Page 15 of 33

7.1 SAR test exclusion consider table

According with FCC KDB 447498 D01, appendix A, <SAR test exclusion thresholds for 100MHz ~ 6GHz and≤50mm>table, this device SAR test configurations consider as following:

D .		Test	position config	gurations							
Band	Back	Right edge	Left edge	Top edge	Bottom edge						
WLAN/BT	<5mm	92mm	163mm	<5mm	158mm						
	Yes	No	No	Yes	No						
Note:											
1. maximu	um power is th	e source-based	time-average po	ower and repres	ents the maximum						
RF outp	out power amo	ong production u	nits.								
2. per KDI	B 447498 D01	, for larger devic	es, the test sepa	aration distance	of adjacent edge						
configu	ration is deter	mined by the clo	sest separation l	between the ant	enna and the use						
3. per KDI	B 447498 D01	, standalone SA	R test exclusion	threshold is app	olied; if the						
distance	e of the anten	na to the user is	<5mm, 5mm is	user to determin	e SAR exclusion						
thresho	ld										
4. per KDI	B 447498 D01	, the 1-g and 10	-g SAR test excl	usion thresholds	s for 100 MHz to 6						
GHz at	test separatio	on distance ${\leqslant}50$	mm are determi	ned by:							
[(max.p	ower of chanr	nel, including tun	e-up tolerance, l	Mw)/(min. test s	separation						
distance	e, mm)]*[√ f(O	GHZ))≪3.0 for 1	I-g SAR and≤7.	.5 for10-g extrer	nity SAR ,f(GHz) i						
the RF	channel trans	mit frequency in	GHz. Power and	d distance are ro	ounded to the						
nearest	mW and mm	before calculation	on. The result is	rounded to one	decimal place for						
compar	rison										
For <50)mm distance,	, we just calculate	e mW of the exc	lusion threshold	l value(3.0)to do						
compar	e										
5. per KDI	B 447498 D01	, at 100 MHz to	6GHz and for te	st separation dis	stances >50mm,						
the SAF	R test exclusion	on threshold is de	etermined accord	ding to the follov	ving						
a)[thres	hold at 50mm	in step 1]+(test	separation dista	nce -50mm)*(f (MHz)/150)]Mw, at						
100 MH	Iz to 1500 MH	lz									
b) [thre	shold at 50mn	n in step1]+(test	separation dista	ance -50mm) *1	0]mW at $>$						
1500MI	Hz and≤6GH	Z									
6. Per KD	B 447498 D02	2, RMC 12.2kbps	s setting is used	to evaluate SAF	R. If HSDPA/						
		output power is<0	U		• • •						
SAR wi	th RMC 12.2k	bps setting is \leq	1.2W/Kg, HSDF	PA/HSUPA/DC-F	ISDPA SAR						
evaluat	evaluation can be excluded.										
7. Per KD	B 248227 D0 ²	1, choose the hig	hest output pow	er channel to te	st SAR and						
determi	ne further SA	R exclusion 8.for	each frequency	/ band ,testing a	t higher data rate						
and hig	her order mod	dulations is not re	equired when the	e maximum avei	rage output power						
for each	n of each of th	ese configuration	ns is less than 1.	/4db higher thar	h those measured						
at the lo	war data rata	than 11h mode	thus the SAR of	an he evoluded							

at the lower data rate than 11b mode , thus the SAR can be excluded.

Shenzhen STS Test Services Co., Ltd.

Page 16 of 33

8. EUT Test Position

This EUT was tested in Rear Face.

8.1Body-worn Position Conditions:

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

Shenzhen STS Test Services Co., Ltd.

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Meas	urement System⊡			L	1	L	I	I	I
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	∞
3	Hemispherical isotropy	5.9	R	√3	√C _p	√C _p	2.41	2.41	∞
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
5	Linearity	4.7	R	√3	1	1	2.71	2.71	∞
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	∞
7	Readout electronics	0.5	Ν	1	1	1	0.50	0.50	∞
8	Response time	0	R	√3	1	1	0	0	∞
9	Integration time	1.4	R	√3	1	1	0.81	0.81	∞
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	∞
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	∞
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	∞
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Test s	sample related								
15	Device positioning	2.6	N	1	1	1	2.6	2.6	11

Page 18 of 33

Report No.: STS1710028H01

16	Device holder	3	Ν	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phant	om and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
19	Liquid conductivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
22	Liquid Permittivity (meas)	5.0	Ν	1	0.23	0.26	1.15	1.30	8
Comb	pined standard	/	RSS	$U_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}^{2}}$			10.63%	10.54%	
Expar (P=95	nded uncertainty 5%)	$U = k U_c$,k=2					21.26%	21.08%	

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1710028H01

9.2 System validation Uncertainty

NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff
Meas	urement System⊡								
1	Probe calibration	5.8	Ν	1	1	1	5.8	5.8	8
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8
3	Hemispherical isotropy	5.9	R	√3	$\sqrt{C_p}$	√Cp	2.41	2.41	8
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	8
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	8
7	Modulation response	0	Ν	1	1	1	0	0	8
8	Readout electronics	0.5	N	1	1	1	0.50	0.50	8
9	Response time	0	R	√3	1	1	0	0	8
10	Integration time	1.4	R	√3	1	1	0.81	0.81	8
11	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8
12	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	8
13	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8
14	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	8
15	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8
Dipole	9					1	1		
16	Deviation of experimental source from	4	Ν	1	1	1	4.00	4.00	8

Shenzhen STS Test Services Co., Ltd.

Page 20 of 33

Report No.: STS1710028H01

17	Input power and SAR drit measurement	5	R	√3	1	1	2.89	2.89	8
18	Dipole Axis to liquid Distance	2	R	√3	1	1			∞
Phant	om and set-up								
19	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	8
20	Uncertainty in SAR correction for deviation(in	2.0	Ν	1	1	0.84	2	1.68	8
21	Liquid conductivity (target)	2	Ν	1	1	0.84	2.00	1.68	8
22	Liquid conductivity (temperature uncertainty)	emperature 2.5 N 1		0.78	0.71	1.95	1.78	5	
23	Liquid conductivity (meas)	4	Ν	1	0.23	0.26	0.92	1.04	5
24	Liquid Permittivity (target)	2.5	Ν	1	0.78	0.71	1.95	1.78	8
25	Liquid Permittivity (temperature uncertainty)	2.5	Ν	1	0.78	0.71	1.95	1.78	5
26	Liquid Permittivity (meas)	5.0	Ν	1 0.23 0.26		0.26	1.15	1.30	8
Comb	bined standard		RSS	$U_{c} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}^{2}}$			10.15%	10.05%	
Expar (P=95	nded uncertainty 5%)	$U = k U_c$,k=2					20.29%	20.10%	

=#

10. Conducted Power Measurement

10.1 Test Result

WLAN

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	1	2412	10.26
802.11b	6	2437	10.24
	11	2462	10.21
	1	2412	9.96
802.11g	6	2437	9.89
	11	2462	9.91
	1	2412	8.74
802.11n(HT 20)	6	2437	8.76
	11	2462	8.71
	3	2422	6.21
802.11n(HT 40)	6	2437	6.24
	9	2452	6.25

BLE

Mode	Channel Number	Frequency (MHz)	Average Power (dBm)
	0	2402	0.82
GFSK(1Mbps)	19	2440	0.78
	39	2480	0.75

10.2 Tune-up Power

Mode	WLAN(AVG)
IEEE 802.11b	10±1dBm
IEEE 802.11g	9±1dBm
IEEE 802.11n(HT 20)	8±1dBm
IEEE 802.11n(HT 40)	6±1dBm

Mode	BLE(AVG)
GFSK	0±1dBm

Page 22 of 33

Report No.: STS1710028H01

10.3 SAR Test Exclusions Applied

Per FCC KDB 447498D01, the 1-g SAR and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\left[\sqrt{f(GHZ)}\right] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where:

• f(GHZ) is the RF channel transmit frequency in GHz

- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

 $\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$

Based on the maximum conducted power of **Bluetooth Body** (rounded to the nearest mW) and the antenna to user separation distance,

Bluetooth Body SAR was not required; $[1.259/5)^* \sqrt{2.480} = 0.40 < 3.0$.

Based on the maximum conducted power of **2.4 GHz WLAN Body** (rounded to the nearest mW) and the antenna to user separation distance,

2.4 GHz WLAN SAR was required; $[(12.589/5)^* \sqrt{2.462}] = 3.95 > 3.0.$

Page 23 of 33

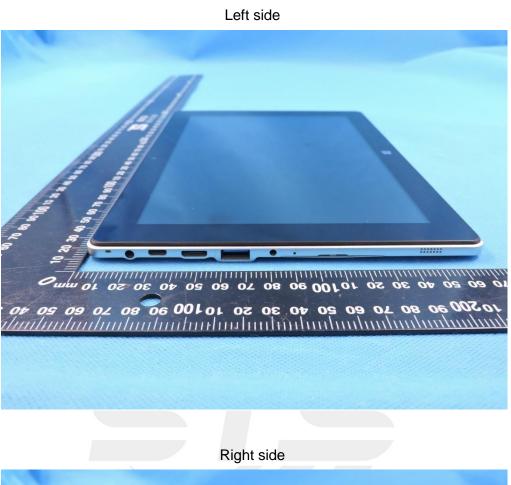
11. EUT And Test Setup Photo

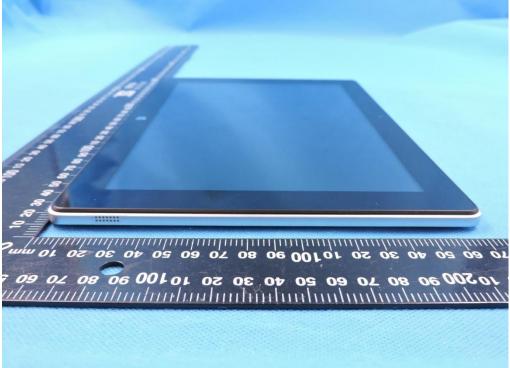
11.1 EUT Photo

Shenzhen STS Test Services Co., Ltd.

Top side

Bottom side




Shenzhen STS Test Services Co., Ltd.

Page 25 of 33

Report No.: STS1710028H01

Shenzhen STS Test Services Co., Ltd.

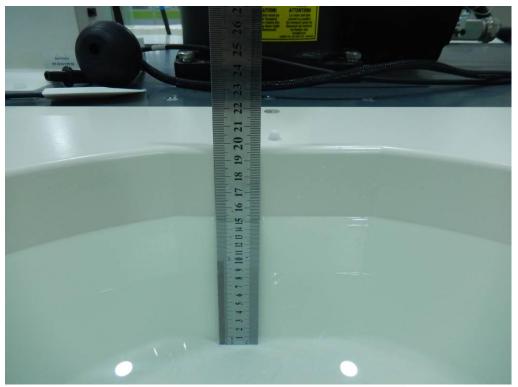
Page 26 of 33

Report No.: STS1710028H01

11.2 Setup Photo

Body Back side(separation distance is 0mm)

Body top side(separation distance is 0mm)



Page 27 of 33

Report No.: STS1710028H01

Liquid depth (15 cm)

Shenzhen STS Test Services Co., Ltd.

12. SAR Result Summary

12.1 Body-worn SAR

Band	Mode	Test Position	Ch.	Result 1g (W/Kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Duty cycle(%)	Scaled SAR (W/Kg)	Meas. No.
WLAN	802.11b	Back side	1	0.579	2.01	11	10.26	100	0.687	1
		Top side	1	0.446	-1.45	11	10.26	100	0.529	/

Note:

- 1. The test separation of all above table is 0mm.
- Per KDB 447498 D01v05r01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor

- Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was 0.641 W/Kg for Body)
- 4. 3. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

12.2Application Simultaneous Transmission information:

- 1. Bluetooth and WLAN can't simultaneous transmission at the same time.
- 2. Based upon KDB 447498 D01, BT SAR is excluded as below table.
- 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 4. For minimum test separation distance \leq 50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm) \cdot [\sqrt{f} (GHz) /x] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR
- 5. The reported SAR summation is calculated based on the same configuration and test position.
- 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

a) (max. power of channel, including tune-up tolerance, mW)/(min. test

separation distance, mm)]·[\sqrt{f} (GHz) /x] W/kg for test separation distances \leq 50 mm;

Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

Estimated SAR		Maximu dBm	ım Power mW	Antenna to user(mm)	Frequency(GHz)	Stand alone SAR(1g) [W/kg]
ВТ	Body	1	1.259	5	2.480	0.053

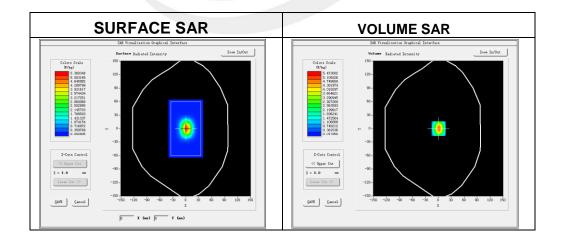
Report No.: STS1710028H01

13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2017.08.15	2020.08.14
E-Field Probe	MVG	SSE5	SN 14/16 EP309	2016.12.05	2017.12.04
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2016.12.05	2017.12.04
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	2014.09.01	N/A
Phantom2	MVG	SAM	SN 32/14 SAM116	2014.09.01	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	2014.09.01	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	2014.09.01	N/A
Network Analyzer	Agilent	8753ES	US38432810	2017.03.16	2018.03.15
Multi Meter	Keithley	Multi Meter 2000	4050073	2016.10.23	2017.10.22
Signal Generator	Agilent	N5182A	MY50140530	2016.10.23	2017.10.22
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2016.10.23	2017.10.22
Power Amplifier	DESAY	ZHL-42W	9638	2016.10.23	2017.10.22
Power Meter	R&S	NRP	100510	2016.10.23	2017.10.22
Power Meter	Agilent	E4418B	GB43312526	2016.10.23	2017.10.22
Power Sensor	R&S	NRP-Z11	101919	2016.10.23	2017.10.22
Power Sensor	Agilent	E9301A	MY41497725	2016.10.23	2017.10.22
9dB Attenuator	Agilent	99899	DC-18GHz	2017.05.10	2018.05.09
11dB Attenuator	Agilent	8494B	DC-18GHz	2017.05.10	2018.05.09
110dB Attenuator	Agilent	8494B	DC-18GHz	2017.05.10	2018.05.09
Dual Directional Coupler	Agilent	SHWPDI- 1080S	N/A	2017.05.09	2018.05.08
Temperature & Humitidy	MiEO	HH660	N/A	2016.10.25	2017.10.24

П

Report No.: STS1710028H01

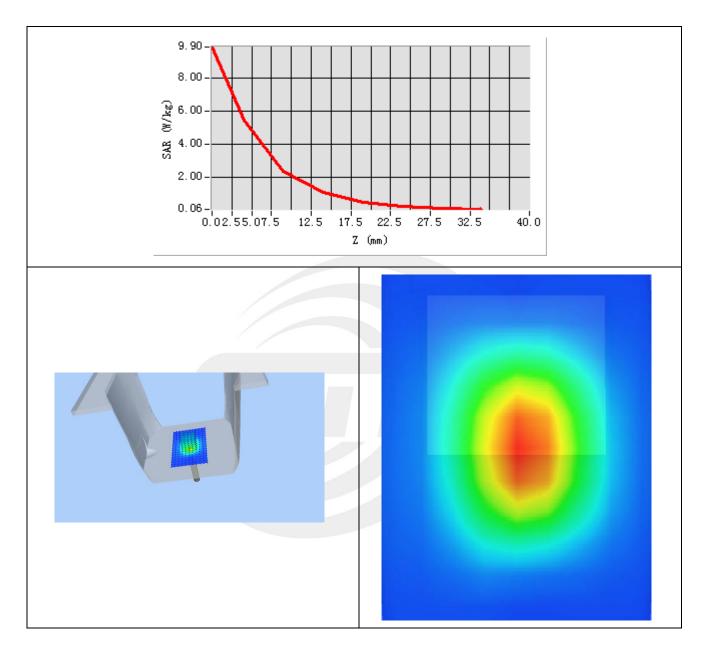

Appendix A. System Validation Plots

System Performance Check Data (2450MHz Body)

Type: Phone measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm Date of measurement: 2017-10-18 Measurement duration: 14 minutes 23 seconds

Experimental conditions.

Device Position	Validation plane		
Band	2450 MHz		
Channels			
Signal	CW		
Frequency (MHz)	2450		
Relative permittivity	52.93		
Conductivity (S/m)	1.98		
Power drift (%)	-0.07		
Probe	SN 14/16 EP309		
ConvF	5.24		
Crest factor:	1:1		

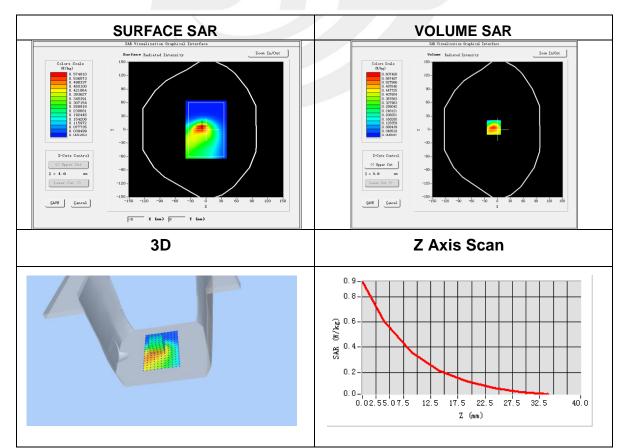


Maximum location: X=1.00, Y=0.00

SAR 10g (W/Kg)	2.351054
SAR 1g (W/Kg)	5.117695

Z Axis Scan

Shenzhen STS Test Services Co., Ltd.



Appendix B. SAR Test Plots Plot 1: DUT: tablet PC; EUT Model: VMH100

Test Date	2017-10-18	
Probe	SN 14/16 EP309	
ConvF	5.24	
Area Scan	dx=8mm dy=8mm, h= 5.00 mm	
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm	
Phantom	Validation plane	
Device Position	Body back side	
Band	IEEE 802.11b ISM	
Channels	Low	
Signal	IEEE802.b (Crest factor: 1.0)	
Frequency (MHz)	2412	
Relative permittivity (real part)	52.70	
Conductivity (S/m)	1.95	
Variation (%)	2.01	
Maximum location: X=-9.00, Y=5.00		

SAR Peak: 0.91 W/kg

SAR 10g (W/Kg)	0.318640
SAR 1g (W/Kg)	0.578902

Shenzhen STS Test Services Co., Ltd.

Page 33 of 33

Report No.: STS1710028H01

Appendix C. Probe Calibration And Dipole Calibration Report

Refer the appendix Calibration Report.

Shenzhen STS Test Services Co., Ltd.