

Test report No.: KES-RF-17T0109 Page (1) of (30)

TEST REPORT

Part 15 Subpart C 15.247

Equipment under test Dofit Band

Model name NF-B20

FCC ID 2ANRT-NF-B20

Applicant MEDI PLUS SOLUTION CO., LTD.

Manufacturer Tianjin Pachem Electronics Co., Ltd.

Date of test(s) 2017.10.20 ~ 2017.10.28

Date of issue 2017.10.28

Issued to MEDI PLUS SOLUTION CO., LTD.

2F, 4F, Bokwang Bldg, 12-10, Jahamun-ro 17-gil, Jongno-gu, Seoul Korea Tel: +82-70-4910-3733 / Fax: +82-2-3402-3391

Issued by

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea 473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450

Test and report completed by :	Report approval by :
lee	Hon on
Young-Jin Lee	Jeff Do
Test engineer	Technical manager

This test report is not related to KOLAS.

Test report No .: KES-RF-17T0109 Page (2) of (30)

Revision history

Revision	Date of issue	Test report No.	Description
-	2017.10.28	KES-RF-17T0109	Initial

Test report No .: KES-RF-17T0109 Page (3) of (30)

TABLE OF CONTENTS

1.	General in	nformation	4
	1.1.	EUT description	4
	1.2.	Test configuration	4
	1.3.	Device modifications	
	1.4.	Information about derivative model	4
	1.5.	Frequency/channel operations	5
	1.6.	Accessory information	5
2.	Summary	of tests	6
3.	Test result	ts	7
	3.1.	6 dB bandwidth	7
	3.2.	Output power	9
	3.3.	Power spectral density	. 11
	3.4.	Radiated restricted band and emissions	. 13
	3.5	Conducted spurious emissions & band edge	. 27
App	endix A.	Measurement equipment	
		Test setup photos	

1. General information

Applicant: Applicant address:	MEDI PLUS SOLUTION CO., LTD. 2F, 4F, Bokwang Bldg, 12-10, Jahamun-ro 17-gil, Jongno-gu, Seoul Korea
Test site:	KES Co., Ltd.
Test site address:	C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea
	473-21, Gayeo-ro, Yeoju-si, Gyeonggi-do, Korea
FCC rule part(s):	15.247
FCC ID:	2ANRT-NF-B20
Test device serial No.:	➢ Production □ Pre-production □ Engineering

1.1. EUT description

Equipment under test	Dofit Band
Frequency range	$2402 \text{ Mz} \sim 2480 \text{ Mz}$
Model:	NF-B20
Modulation technique	GFSK
Number of channels	40
Antenna type	Chip antenna
Antenna gain	1.04 dBi
Power source	DC 3.8 V (Rechargeable Li-Polymer Battery)

1.2. Test configuration

The <u>MEDI PLUS SOLUTION CO., LTD. Dofit Band FCC ID: 2ANRT-NF-B20</u> was tested per the guidance of KDB 558074 D01 v04. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing.

1.3. Device modifications

N/A

1.4. Information about derivative model

N/A

1.5. Frequency/channel operations

Ch.	Frequency (Mz)	Rate(Mbps)
00	2 402	1
:		
20	2 442	1
· .		
39	2 480	1

1.6. Accessory information

Equipment	Manufacturer	Model	Serial No.	Power source
Battery charger	CHINA	NF-B20 charger	-	5V DC 500 mA

Test report No .: KES-RF-17T0109 Page (6) of (30)

2. Summary of	tests	
Reference	Parameter	Test results
15.247(a)(2)	6 dB bandwidth	Pass
15.247(b)(3)	Peak output power	Pass
15.247(e)	Power spectral density	Pass
15.205 15.209	Radiated restricted band and emission	Pass
15.247(d)	Conducted spurious emission and band edge	Pass

Test report No.: KES-RF-17T0109 Page (7) of (30)

3. Test results

3.1. 6 dB bandwidth

Test procedure

KDB 558074 D01 v04 – Section 8.1 or 8.2 Used test method is section 8.1.

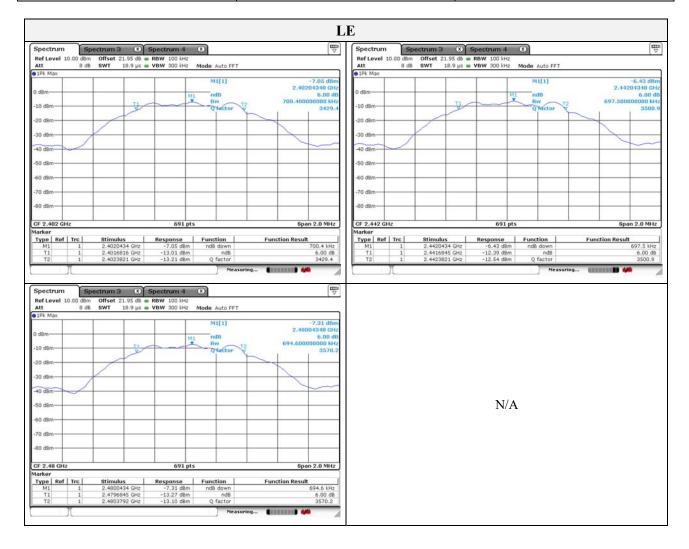
Section 8.1

- 1. RBW = 100 kHz.
- 2. VBW \geq 3 \times RBW.
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Section 8.2

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, $VBW \ge 3 \times RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\ge 6 \text{ dB}$.

Limit


According to \$15.247(a)(2), systems using digital modulation techniques may operate $902 \sim 928$ Mb, $2400 \sim 2483.5$ Mb, and $5725 \sim 5850$ Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (8) of (30)

Itst Itsuits	Test	results
--------------	------	---------

Frequency(Mz)	6 dB bandwidth(Mz)	Limit(Mb)
2 402	0.700	
2 442	0.698	0.5
2 480	0.695	

Test report No.: KES-RF-17T0109 Page (9) of (30)

3.2. Output power

Test procedure KDB 558074 D01 v04 – section 9.1.1 or 9.1.3 Used test method is section 9.1.1

Section 9.1.1

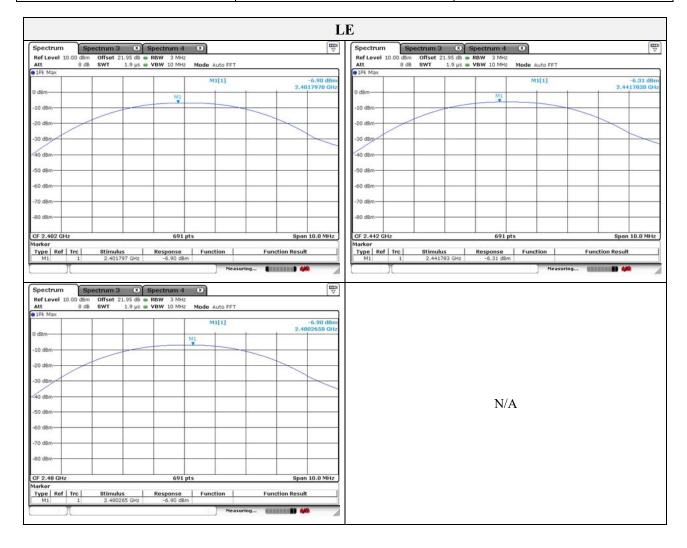
This procedure shall be used when the measurement instrument has available a resolution bandwidth that is gr eater than the DTS bandwidth.

- 1. Set the RBW \geq DTS bandwidth.
- 2. Set VBW \geq 3 \times RBW.
- 3. Set span \geq 3 \times RBW
- 4. Sweep time = auto couple
- 5. Detector = peak
- 6. Trace mode = max hold
- 7. Allow trace to fully stabilize
- 8. Use peak marker function to determine the peak amplitude level

Section 9.1.3

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS ba ndwidth and shall utilize a fast-responding diode detector.

Limit


According to \$15.247(b)(3), For systems using digital modulation in the 902~928 MŁ, 2 400~2 483.5 MŁ, and 5 725~5 850 MŁ bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted out-put power. Maximum Conducted Out-put Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmit-ting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (10) of (30)

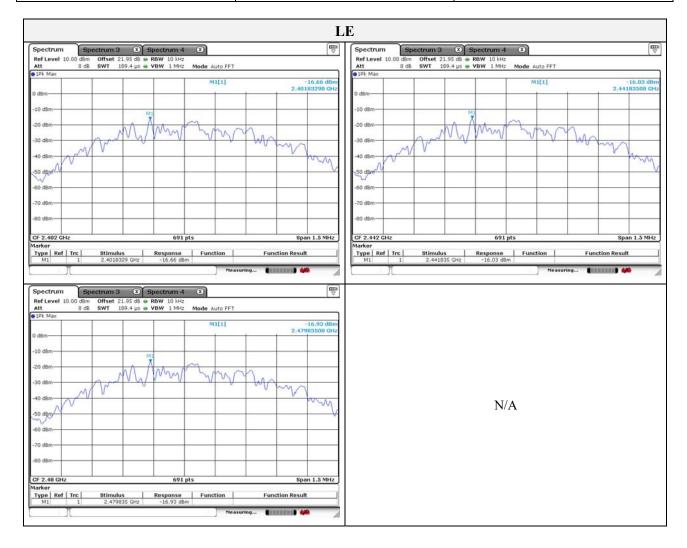
Frequency(Mz)	Peak output power(dBm)	Limit(dBm)
2 402	-6.90	
2 442	-6.31	30
2 480	-6.90	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (11) of (30)

3.3. Power spectral density Test procedure KDB 558074 D01 v04– section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW : 3 kHz \leq RBW \leq 100 kHz
- 4. Set the VBW \geq 3 \times RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW(no less than 3 kHz) and repeat.

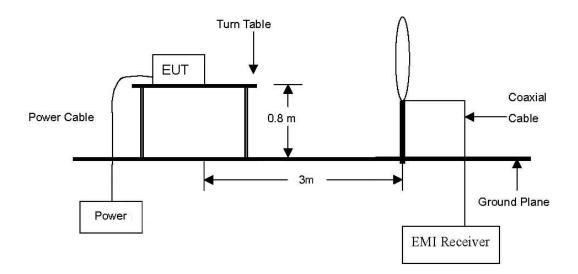
Limit

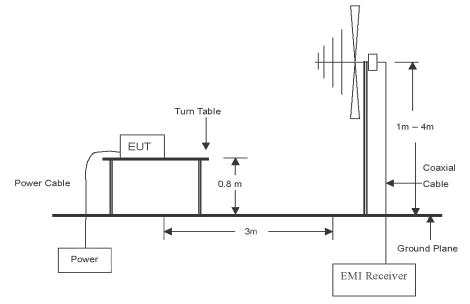

According to \$15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (12) of (30)

Test	results

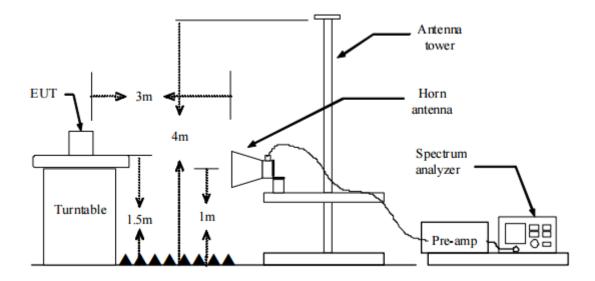
Frequency(Mz)	PSD (dBm)	Limit(dBm)
2 402	-16.66	
2 442	-16.03	8
2 480	-16.93	




3.4. Radiated restricted band and emissions

Test setup

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 $\mathbb{G}\mathbb{Z}$ to the tenth harmonic of the highest fundamental frequency or to 40 $\mathbb{G}\mathbb{Z}$ emissions, whichever is lower.

Test procedure below 30 Mz

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum hold mode.

Test procedure above 30 MHz

- 1. Spectrum analyzer settings for f < 1 GHz:
 - (1) Span = wide enough to fully capture the emission being measured
 - 2 RBW = 100 kHz
 - ③ VBW \ge RBW
 - ④ Detector = quasi peak
 - (5) Sweep time = auto
 - \bigcirc Trace = max hold
- 2. Spectrum analyzer settings for $f \ge 1$ GHz: Peak
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 M/z
 - ③ VBW \ge 3 Mz
 - (4) Detector = peak
 - \bigcirc Sweep time = auto
 - \bigcirc Trace = max hold
 - \bigcirc Trace was allowed to stabilize

- 3. Spectrum analyzer settings for $f \ge 1$ GHz: Average
 - ① Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
 - 2 RBW = 1 M/z

 - (4) Detector = RMS, if span/(# of points in sweep) \leq (RBW/2). Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied, then the detector mode shall be set to peak.
 - (5) Averaging type = power(i.e., RMS)
 - 1) As an alternative, the detector and averaging type may be set for linear voltage averaging.
 - 2) Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used.
 - 6 Sweep = auto
 - \bigcirc Trace = max hold
 - 8 Perform a trace average of at least 100 traces.
 - (9) A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:
 - 1) If power averaging (RMS) mode was used in step (5), then the applicable correction factor is $10 \log(1/x)$, where x is the duty cycle.
 - 2) If linear voltage averaging mode was used in step (5), then the applicable correction factor is 20 log(1/x), where x is the duty cycle.
 - 3) If a specific emission is demonstrated to be continuous (≥ 98 percent duty cycle) rather than turning on and off with the transmit cycle, then no duty cycle correction is required for that emission.

Note.

1. f < 30 MHz, extrapolation factor of 40 dB/decade of distance. $F_d = 40\log(D_m/Ds)$

 $f \ge 30$ MHz, extrapolation factor of 20 dB/decade of distance. $F_d = 20log(D_m/Ds)$ Where:

- F_d = Distance factor in dB
- D_m = Measurement distance in meters
- D_s = Specification distance in meters
- 3. $CF(Correction factors(dB)) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or F_d(dB)$
- 4. Field strength($dB\mu V/m$) = Level($dB\mu V$) + CF (dB) + or DCF(dB)
- 5. Margin(dB) = Limit(dB μ N/m) Field strength(dB μ N/m)
- 6. Emissions below 18 GHz were measured at a 3 meter test distance while emissions above 18 GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z, it was determined that <u>Y orientation</u> was worst-case orientation; therefore, all final radiated testing was performed with the EUT in <u>Y orientation</u>.
- 8. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 9. According to exploratory test no any obvious emission were detected from 9kHz to 30MHz. Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Limit

According to 15.209(a), for an intentional radiator devices, the general required of field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values :

Frequency (Mz)	Distance (Meters)	Radiated (µV/m)
0.009 ~ 0.490	300	2400/F(kHz)
0.490 ~ 1.705	30	24000/F(kHz)
$1.705 \sim 30.0$	30	30
30~88	3	100**
88~216	3	150**
216 ~ 960	3	200**
Above 960	3	500

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54 \sim 72$ Mz, $76 \sim 88$ Mz, $174 \sim 216$ Mz or $470 \sim 806$ Mz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

Duty cycle

Regarding to KDB 558074 D01_v04, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

Ton time	Period	Duty cycle	Duty cycle	Minimum VBW	Duty cycle correction factor
(MS)	(ms)	(Linear)	(%)	(kHz)	(dB)
0.405 8	0.913 0	0.444	44.45	2.46	

Duty cycle (Linear) = T_{on} time/Period

Minimum VBW(kHz) = 1/T_{on}, where T is on time in second DCF(Duty cycle correction factor (dB)) = 10log(1/duty cycle)

Spectr	um	5	Spectrum 3	×	Spect	rum 4	X						₩
Ref Lev	vel 10	0.00 dB	m Offset 2	1.95 dB	RBW	1 MHz		-					
Att		8 0	ib 🖷 SWT	5 ms	VBW	1 MHz							
SGL			SKN10			2011/12/07							
1Pk Ma	эк												
								M	2[1]				3 dBm
0 dBm-	-				_								.80 µs
-			-	-	1 4				1[1]	-	-		1 dBm
-10 dB n	++-	_				-		+	-			200	761 µs
								1					
-20 dBm													
-30 dBm				1	-								
													1
-40 dBm	-						_	+			_	+ +	-
1.00		- 2											
SO GERT	131 1	LUL A	1 Watthe tra		purched	iter.	MUND			hun mill	Washer	1.1	hul
-60 dBm		and the	a area an	Andres	-TYM	mart 1	144 m	N.,	Marrie	a wannary	Antho	10401	boy
-60 GBW		-								-			
-70 dBm	_		-		_			_				-	
						- 1				1 1			
-80 dBm	-				-			_	<u> </u>	+ +		+	
			1 1										
CF 2.44	2 GH	z				691	ots					500.	0 µs/
Marker							1.0					_	
Type	Ref	Trc	Stimulus			ponse		inc	tion	Funct	ion Resul	t	
M1 M2	_	1		.61 µs		3.01 dBn		_					_
		1		5.8 µs	- 5	5.03 dBn	0.1						

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

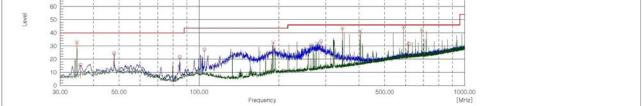
Test results	(Below 30 M	Z)					
Mode:		BLE					
Distance of	measurement:	3 meter					
Channel:		20 (Worst	case)	_			
Frequency	Level	Ant Dol	CF	Fd	Field strength	Limit	Margin
(Mz)	(dBµV)	Ant. Pol. (H/V)	(dB)	rd (dB)	(dBµN/m)	$(dB\mu N/m)$	(dB)

No spurious emissions were detected within 20 $\,\mathrm{dB}\,$ of the limit

Horizontal	Vertical
Spectrum 2 3	Spectrum Spectrum 2 3
Ref Level 57.00 dBµV RBW (CISPR) 200 Hz	Ref Level 57.00 dBµV RBW (CISPR) 200 Hz
Att 0 dB SWT 13.4 ms VBW 3 kHz Mode Auto FFT IPk Max	Att 0 dB SWT 13.4 ms VBW 3 kHz Mode Auto FFT PIPk Max
50 d8µV	50 d8µV
40 d8µV	40 dBuV
30 dBµV	30 dauv
20 d8µV-	20 dBuV
10 dBµV-	10 dBµV
0 dBµV	0 dBuV
10 dev	-10 deur
-20 dbuV	-20 dBuV-
-20 0804	~20 00LV
-30 dBµV	-30 d8µV
-40 d8µV	-40 d8µV
Start 9.0 kHz 691 pts Stop 150.0 kHz	Start 9.0 kHz 691 pts Stop 150.0 kHz
Spectrum Spectrum 2 Important Ref Level 67.00 dBµV	Spectrum Spectrum 2 Image: Clispe, 9 <
e IPk Max	e 1Pk Max
60 d8µV	60 d8µV
50 d8µV	50 d8µV
40 dBµV	40 d8µV
30 dBµV-	30 d8µV
20 dBµV	20 dBµV
10 dBµV	10 dBuV
Joen manufactures and we and a stranger and a stran	" with dense is a second with the members of the with the second and the second a
-10 dBuV	-10 dBµV-
1209254 7.04 (51)	
-20 dBµV	-20 dBµV
-30 dBµV-	-30 dBµV
Start 150.0 kHz 691 pts Stop 30.0 MHz	Start 150.0 kHz 691 pts Stop 30.0 MHz
Measuring Heasuring 40	Heasuring HEASURE 40

.

(D 1


1 000 100

KES Co., Ltd.

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (19) of (30)

Test results (I	Below 1 000	MHz) – Worst	case				
Mode:		BLE					
Distance of me	easurement:	3 meter					
Channel:		20 (Worst c	ase)	_			
KES SAC #4(10 m)			< <d (30="" -="" 0<="" 1="" th=""><th>00) MHz RE TEST>></th><th></th><th></th><th>KES D-SAC #4(10 m) MEDI PLUS SOLUTION_NF-B20.dat</th></d>	00) MHz RE TEST>>			KES D-SAC #4(10 m) MEDI PLUS SOLUTION_NF-B20.dat
Model Op. Mode Operator AC Power Remarkt	NF-820 BLE KES			Standard	: FCC	Part, 15 Class B 3 m	
[d8[UV/m]] 100 90 80 70 60							<pcc 3="" b="" m="" mhz=""> Limit(QP) Sbectrum(H,PK) Sbectrum(Y,PK) Suspectival (tem(Y) K Suspectival (tem(Y)</pcc>
79 E	- E - E - A		1	5 E	12 12		

Spectrum Selection

No.	Frequency	(P)	Reading	c.f	Result PK	Limit QP	Margin QP
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]
1	34.729	V	64.6	-31.6	33.0	40.0	7.0
2	35.820	Н	46.9	-31.2	15.7	40.0	24.3
3	47.945	Н	52.5	-28.0	24.5	40.0	15.5
4	84.684	Н	54.4	-32.7	21.7	40.0	18.3
5	104.811	Н	56.9	-29.5	27.4	43.5	16.1
6	190.535	V	61.5	-28.7	32.8	43.5	10.7
7	288.020	Η	58.5	-24.8	33.7	46.0	12.3
8	346.948	V	66.3	-22.8	43.5	46.0	2.5
9	405.026	٧	62.2	-20.7	41.5	46.0	4.5
10	588.963	٧	60.9	-15.5	43.4	46.0	2.6
11	616.123	Η	46.6	-15.0	31.6	46.0	14.4
12	690.328	V	56.3	-14.0	42.3	46.0	3.7

KES Co., Ltd. C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

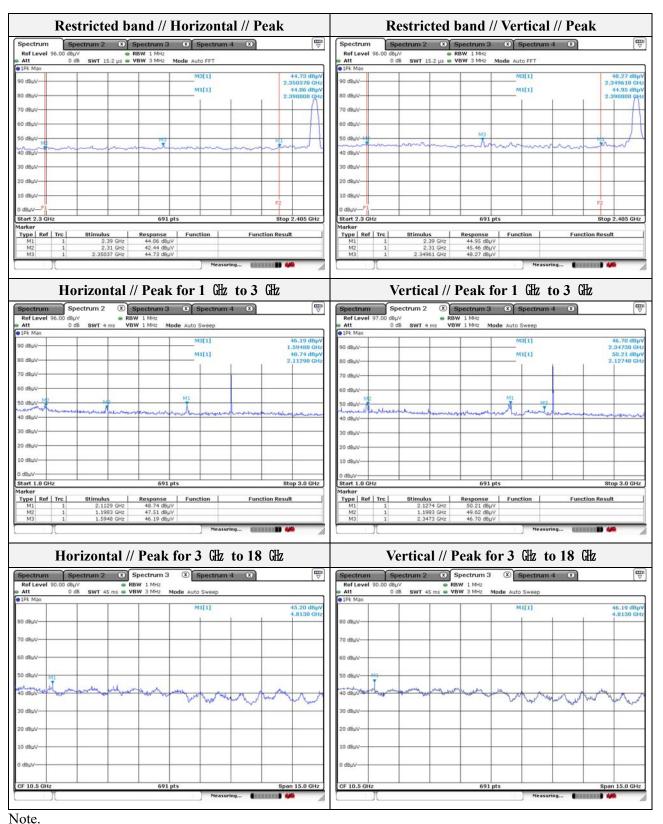
Test results (Above 1 000	MHz)
Mode:	BLE
Distance of measurement:	3 meter
Channel:	00

Spurious

_

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµV/m)	Margin (dB)
1198.30	47.51	Peak	Н	-7.87	-	39.64	74.00	34.36
1594.80	46.19	Peak	Н	-5.04	-	41.15	74.00	32.85
2112.90	48.74	Peak	Н	-0.75	-	47.99	74.00	26.01
4813.00	45.20	Peak	Н	7.66	-	52.86	74.00	21.14
1198.30	49.62	Peak	V	-7.87	-	41.75	74.00	32.25
2127.40	50.21	Peak	V	-0.72	-	49.49	74.00	24.51
2347.30	46.70	Peak	V	-0.30	-	46.40	74.00	27.60
4813.00	46.19	Peak	V	7.66	-	53.85	74.00	20.15

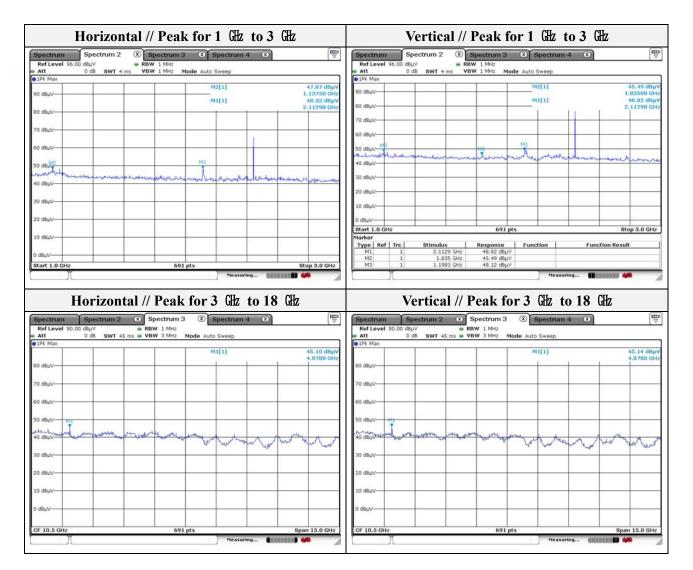
Band edge


_

Frequency (Mz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
2350.37	44.73	Peak	Н	-0.29	-	44.44	74.00	29.56
2349.61	48.27	Peak	V	-0.30	-	47.97	74.00	26.03

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-RF-17T0109 Page (21) of (30)


1. Average testing is performed if peak result is greater then average limit.

Mode:	BLE
Distance of measurement:	3 meter
Channel:	20

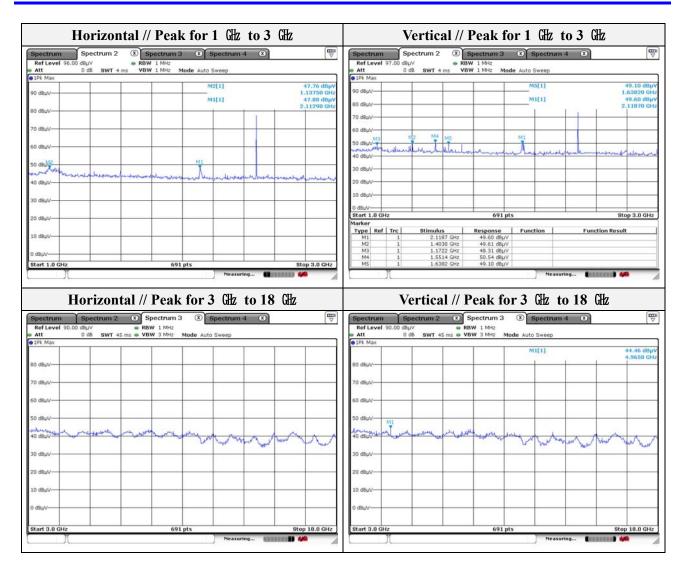
- Spurio	us							
Frequency (Mbz)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1137.50	47.87	Peak	Н	-8.26	-	39.61	74.00	34.39
2112.90	48.33	Peak	Н	-0.75	-	47.58	74.00	26.42
4878.00	45.10	Peak	Н	8.17	-	53.27	74.00	20.73
1198.30	48.12	Peak	V	-7.87	-	40.25	74.00	33.75
1835.00	45.49	Peak	V	-2.71	-	42.78	74.00	31.22
2112.90	48.82	Peak	V	-0.75	-	48.07	74.00	25.93
4878.00	45.14	Peak	V	8.17	-	53.31	74.00	20.69

Note.

1. Average testing is performed if peak result is greater then average limit.

Mode:	BLE
Distance of measurement:	3 meter
Channel:	39

- Spurio	us							
Frequency (Mbz)	Level (dBµN)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµN/m)	Limit (dBµN/m)	Margin (dB)
1137.50	47.76	Peak	Н	-8.26	-	39.50	74.00	34.50
2112.90	47.88	Peak	Н	-0.75	-	47.13	74.00	26.87
1172.20	48.31	Peak	V	-8.04	-	40.27	74.00	33.73
1403.80	49.61	Peak	V	-6.55	-	43.06	74.00	30.94
1551.40	50.54	Peak	V	-5.47	-	45.07	74.00	28.93
1638.20	49.10	Peak	V	-4.62	-	44.48	74.00	29.52
2118.70	49.60	Peak	V	-0.74	-	48.86	74.00	25.14
4965.00	44.46	Peak	V	8.85	-	53.31	74.00	20.69


Band edge

Danu cuge									
	Frequency (畑z)	Level (dBµV)	Detect mode	Ant. Pol. (H/V)	CF (dB)	DCF (dB)	Field strength (dBµV/m)	Limit (dBµN/m)	Margin (dB)
	2493.03	44.40	Peak	Н	-0.03	-	44.37	74.00	29.63
	2490.16	45.14	Peak	V	-0.03	-	45.11	74.00	28.89

	~		×			2	m	_		Y				(7)
Spectrum			Spectrum 3	(X) Spectr	um 4	×		Spectrum	Comments and the second se		Spectrum 3	Spectru	m4 🕱	
Ref Level 97			RBW 1 MHz					Ref Level			RBW 1 MHz			
Att	0 dB	SWT 5.7 µ5	VBW 3 MHz Mo	de Auto FFT				Att	0	dB SWT 5.7 µs 🖷 🕅	VBW 3 MHz Mo	de Auto FFT		
1Pk Max								IPk Max						
90 dBuV				M3[1]			44.40 d8µV 930270 GHz	90 dBuV	1			M3[1]		45.14 dBp 2.4901560 GH
ydan oe				M1[1]			42.36 dBuV	30 06hA				M1[1]		43.16 dBu
80 dBuV							000000 GHz	80 dBuV			-			2,5000000 GH
\cap				E.	1							1	T.	
70 dBuV					-			70 dBuV	-					
/														
60 dBuV								60 dBuV			-			+
Lans IV							1 I	1. and the second			(3)			
50 dBµV	MD		M3		MI			≸0 dBµV-	MP		13		M1	
40 dBuV	-			~~~	24-			40 dBuV-	A	m		~~~	4	
40 OBUV			· · · · · ·					40 0604						
30 dBuV							-	30 dBuV						
20 dBµV					_			20 dBµV						
1012-10-								0.000						
10 dBµV			-		-	0		10 dBµV-	-		-	-		
	F1				F2			0.0000000000000000000000000000000000000	F1				FZ	
0 dBµV								0 dBuV-						
Start 2.478 G	4z		691 pts	C.		Sto	p 2.51 GHz	Start 2.478	GHZ		691 pt:	s		Stop 2.51 GHz
larker			1					Marker	I and I					
Type Ref 1	1	Stimulus 2.5 GH	z 42.36 dBuV	Function		Function Resul	it	Type Rel M1	Trc	Stimulus 2.5 GHz	43.16 dBuV	Function	Fu	nction Result
M2	1	2.4835 GH						M1 M2	1	2.4835 GHz	43.16 dBpV 42.81 dBuV			
M3	1	2.493027 GH						M3	1	2.490156 GHz	45.14 dBµV			
	-			2	asuring	Concerned 4	-	-	11				suring	

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr

Note.

1. Average testing is performed if peak result is greater then average limit.

Test report No .: KES-RF-17T0109 Page (26) of (30)

Test results (18 GHz to 30	(Hz) – Worst case
Mode:	BLE
Distance of measurement:	3 meter
Channel:	20 (Worst case)

	Horizontal		Vertical					
Spectrum Ref Level 97.00 dBuV	RBW 1 MHz		Spectrum Ref Level 97.00 dBuV @ RBW 1 MHz					
Att 0 dB SWT 36 ms	VBW 3 MHz Mode Auto Sweep		Att D dB SWT 36 ms VBW 3 MHz Mode Auto Sweep					
DEK VIEW			Abk Aliam					
90 dBµV			90 dBµV	<u> </u>				
80 d8µV			80 dBµV	-				
70 dBµV-			70 dBuV					
60 dBµV			60 dBuV					
50 d8µV			50 d8µV					
40 dBµV			40 d8µV	-				
30 dBuy	who are and a stranger	un manuser and	50 15 martin har all second and a marine and marine and a martin the the the second	moun				
20 d8µV			20 dBµV	-				
10 d8µV			10 dBuV	-				
0 d8µV-			0 dBuV					
Start 18.0 GHz	691 pts	Stop 30.0 GHz		p 30.0 GHz				
Marker			Marker					
L	Measuring	•••••••	Measuring	• //				
1 6.2%	12							

Note.

1. No spurious emission were detected above 18 GHz.

This report shall not be reproduced except in full, without the written approval of KES Co., Ltd. The results shown in this test report refer only to the sample(s) tested unless otherwise stated.

Test report No.: KES-RF-17T0109 Page (27) of (30)

3.5 Conducted spurious emissions & band edge Test procedure

Band edge

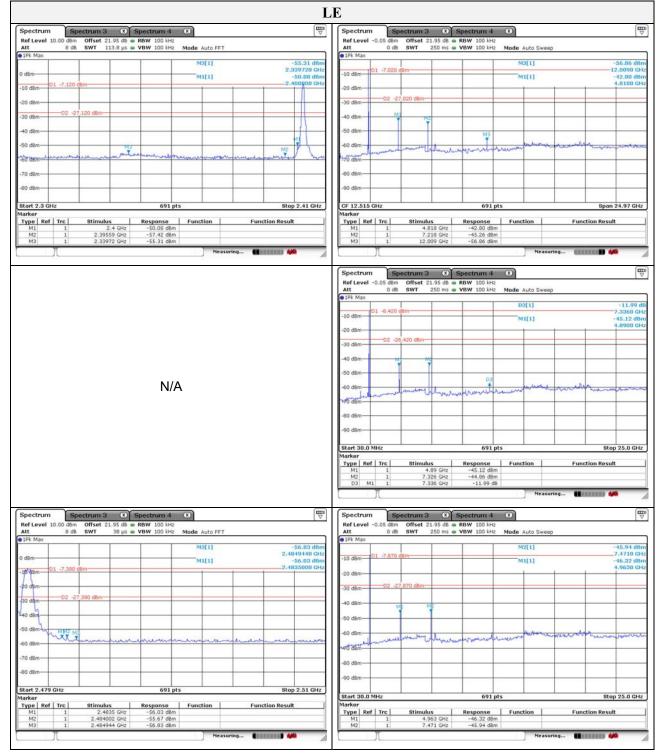
KDB 558074 D01 v04 - Section 11.3

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
 - 3. RBW = 100 kHz
- 4. VBW = 100 kHz
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. Sweep time = auto
- 8. The trace was allowed to stabilize

Out of band emissions

KDB 558074 D01 v04 - Section 11.3

- 1. Start frequency was set to 30 MHz and stop frequency was set to 25 GHz for 2.4 GHz frequencies and 40 GHz for 5 GHz frequencies
- 2. RBW = 100 kHz
- 3. VBW = 100 kHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize


Limit

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section 15.205(a), must also comply the radiated emission limits specified in section 15.209(a) (see section 15.205(c))

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (28) of (30)

Test results

C-3701, 40, Simin-daero 365beon-gil, Dongan-gu, Anyang-si, Gyeonggi-do, Korea Tel: +82-31-425-6200 / Fax: +82-31-424-0450 www.kes.co.kr Test report No.: KES-RF-17T0109 Page (29) of (30)

Appendix A. Measurement equipment

Equipment	Manufacturer	Model	Serial No.	Calibration interval	Calibration due.
Spectrum Analyzer	R&S	FSV30	100736	1 year	2018.07.04
Spectrum Analyzer	R&S	FSV40	101002	1 year	2018.07.04
8360B Series Swept Signal Generator	HP	83630B	3844A00786	1 year	2018.01.23
Attenuator	Agilent	8493C	51401	1 year	2018.07.04
Loop Antenna	Schwarzbeck	FMZB1513	225	2 years	2019.05.10
Trilog-broadband antenna	SCHWARZBECK	VULB 9163	9168-714	2 years	2018.11.28
Horn Antenna	A.H	SAS-571	414	2 years	2019.02.15
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170550	2 years	2019.02.15
High Pass Filter	Wainwright Instrument Gmbh	WHJS3000-10TT	1	1 year	2018.07.03
Low Pass Filter	Wainwright Instrument Gmbh	WLK1.0/18G-10TT	1	1 year	2018.07.03
Preamplifier	HP	8449B	3008A00538	1 year	2018.01.19
Preamplifier	AGILENT	8449B	3008A01729	1 year	2018.05.31
Broadband Amplifier	SCHWARZBECK	BBV-9721	PS9721-003	1 year	2018.01.23
EMI Test Receiver	R&S	ESR3	101781	1 year	2018.04.27
EMI Test Receiver	R&S	ESU26	100552	1 year	2018.04.19

Peripheral devices

Device	Manufacturer	Model No.	Serial No.
Notebook Computer	LG Electronics.	LGS53	306QCZP560949
Test Board	N/A	N/A	N/A