No.I18N00288-EMC Page 1 of 17

TESTREPORT

No.I18N00288-EMC

for

Meizu Technology Co., Ltd.

LTE Mobile Phone

Model Name: M809L

FCC ID: 2ANQ6-M809L

Hardware Version: V1.0

Software Version: Meizu 8.1.1.0G

Issued Date: 2018-05-02

Designation Number: CN1210

Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of SAICT.

Test Laboratory:

Shenzhen Academy of Information and Communications Technology

Building G, Shenzhen International Innovation Center, No.1006 Shennan Road, Futian District, Shenzhen, Guangdong, P. R. China 518026.

Tel:+86(0)755-33322000, Fax:+86(0)755-33322001Email:yewu@caict.ac.cn.www.cszit.com

©Copyright. All rights reserved bySAICT.

REPORT HISTORY

Report Number	Revision	Description	Issue Date
I18N00288-EMC	Rev.0	1st edition	2018-05-02

CONTENTS

1.	TEST LABORATORY	4
1.1.	TESTINGLOCATION	4
1.2.	TESTINGENVIRONMENT	4
1.3.	PROJECT DATA	4
1.4.	SIGNATURE	4
2.	CLIENTINFORMATION	5
2.1.	APPLICANT INFORMATION	5
2.2.	MANUFACTURER INFORMATION	5
3.	EQUIPMENT UNDERTEST (EUT) AND ANCILLARY EQUIPMENT (AE)	6
3.1.	ABOUT EUT	6
3.2.	INTERNAL IDENTIFICATION OF EUT	6
3.3.	INTERNAL IDENTIFICATION OF AE	6
3.4.	EUT SET-UPS	7
4.	REFERENCE DOCUMENTS	8
4.1.	REFERENCE DOCUMENTS FOR TESTING	8
5.	LABORATORY ENVIRONMENT	9
6.	SUMMARY OF TEST RESULTS 1	0
7.	TEST FACILITIES UTILIZED1	1
ANI	NEX A: MEASUREMENT RESULTS1	2

1. Test Laboratory

1.1. TestingLocation

Company Name:	Shenzhen Academy of Information and Communic	ations
	Technology	
Address:	Building G, Shenzhen International Innovation Center, No	.1006
	Shennan Road, Futian District, Shenzhen, Guangdong, P. R. C	China
Postal Code:	518026	
Telephone:	+86(0)755-33322000	
Fax:	+86(0)755-33322001	

1.2. TestingEnvironment

Normal Temperatur	e:	15-35℃
Relative Humidity:		20-75%

1.3. Project data

Testing Start Date:	2018-03-05
Testing End Date:	2018-03-30

1.4. Signature

Liang Yong (Prepared this test report)

ち

Zhang Yunzhuan (Reviewed this test report)

(素得.化

Cao Junfei Director of the laboratory (Approvedthis test report)

©Copyright. All rights reserved bySAICT.

2. <u>ClientInformation</u>

2.1. Applicant Information

Company Name:	Meizu Technology Co., Ltd.
Address:	Meizu Tech Bldg., Technology & Innovation Coast, Zhuhai, Guangdong
	Province, China

2.2. Manufacturer Information

Company Name:	Meizu Technology Co., Ltd
Addroso:	Meizu Tech Bldg., Technology & Innovation Coast, Zhuhai, Guangdong
Address.	Province, China

3. Equipment UnderTest (EUT) and Ancillary Equipment (AE)

3.1. About EUT

Description	LTE Mobile Phone
Model Name	M809L
FCC ID	2ANQ6-M810L

The Equipment Under Test (EUT) are a model of LTE Mobile Phone with integrated antenna.

The EUT supports GPRS service and EGPRS service.

Remark: The above EUT's information is declared by manufacturer. Please refer to the specifications or user's manual for more detailed information.

Note: According to client's description, Radiated Emission test needs to been performed. else results are cited from the initial model. The report number for initial model is and I18N00176-EMC.

3.2. Internal Identification of EUT

EUT1 867877030004322

*EUT ID: is used to identify the test sample in the lab internally.

3.3. Internal Identification of AE

AE ID*	Description	SN
AE1	Battery	/
AE2	Travel charger	/
AE3	USB cable	/
AE1-1		
Model		BA810
Manufactu	ırer	Sunwoda Electronic CO.,LTD.
Capacity		3000mAh
Nominal V	/oltage	3.85V
AE1-2		
Model		BA810
Manufactu	ırer	DONG GUAN DER NEW ENERGY CO., LTD.
Capacity		3000mAh
Nominal V	/oltage	3.85V
AE1-3		
Model		BA810
Manufactu	ırer	Ningbo Veken Battery Co.,Ltd.
Capacity		3000mAh
Nominal V	/oltage	3.85V

AE2	
Model	UP0520A
Manufacturer	Salcomp(Shenzhen)Co., Ltd.
SN	/
AE3	
Model	SYD-A064A
Manufacturer	Saibao(jiangxi) industrial company limited

*AE ID: is used to identify the test sample in the lab internally.

3.4. EUT set-ups

EUT set-up No.	Combination of EUT and AE	Remarks
Set.1	EUT1+ AE1-1+AE2+AE3	Charging mode
Set.2	EUT1+ AE1-1+ AE3	USB mode

4. <u>Reference Documents</u>

4.1. Reference Documents for testing

The following documents listed in this section are referred for testing.

Reference	Title	Version
FCC Part 15,	De die framware en de viene	10-1-2017
Subpart B	Radio frequency devices	Edition
	Methods of Measurement of Radio-Noise Emissions from	
ANSI C63.4	Low-Voltage Electrical and Electronic Equipment in the	2014
	Range of 9 kHz to 40 GHz	

5. LABORATORY ENVIRONMENT

Semi-anechoic chamber did not exceed following limits along the EMC testing:

Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz,>60dB;
	1MHz-18000MHz,>90dB
Electrical insulation	>2MΩ
Ground system resistance	$<4\Omega$
Normalised site attenuation (NSA)	$<\pm4$ dB, 3 m distance, from 30 to 1000 MHz
Shield room did not exceed following limits	along the EMC testing:
Temperature	Min. = 15 °C, Max. = 30 °C
Relative humidity	Min. =20 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz,>60dB;
	1MHz-10000MHz,>90dB
Electrical insulation	$>2M\Omega$
Ground system resistance	$<4\Omega$
Fully-anechoic chamber did not exceed for	lowing limits along the EMC testing:
Temperature	Min. = 15 °C, Max. = 35 °C
Relative humidity	Min. = 15 %, Max. = 75 %
Shielding effectiveness	0.014MHz-1MHz,>60dB;
	1MHz-18000MHz,>90dB
Electrical insulation	$>2M\Omega$
Ground system resistance	$<4\Omega$
VoltageStandingWaveRatio (VSWR)	\leq 6 dB, from 1 to 18GHz, 3 m distance
Uniformity of field strength	Between 0 and 6 dB, from 80 to 6000 MHz

6. SUMMARY OF TEST RESULTS

Abbreviations used in this clause:	
Р	Pass
NA	Not applicable
F	Fail

Items	Test Name	Clause in FCC rules	Section in this report	Verdict
1	Radiated Emission	15.109(a)	A.1	Р

©Copyright. All rights reserved bySAICT.

7. Test Facilities Utilized

NO.	NAME	TYPE	SERIES	PRODUCER	CALDUE	CAL
			NUMBER		DATE	PERIOD
1.	Test Receiver	ESR7	101676	R&S	2018.11.29	1 year
2.	Spectrum Analyzer	FSV40	101192	R&S	2018.05.22	1 year
3.	BiLog Antenna	VULB9163	9163 329	SCHWARZBE CK	2020.02.27	3 years
4.	Horn Antenna	3117	00066577	ETS-lindgren	2019.04.05	3 years
5.	Universal Radio Communication Tester	CMU200	114545	R&S	2018.05.17	1 year
6.	PC	20ET-A00DC D	PF-010TM1	Lenovo	/	/
7.	Printer	P1008	VNF6C12491	HP	/	/
8.	Mouse	MOEUUOA	44NY517	Lenovo	/	/
9.	Chamber	FACT3-2.0	1285	ETS-Lindgren	2019.11.27	3 years

ANNEX A: MEASUREMENT RESULTS

A.1 Radiated Emission (§15.109(a)) Reference FCC: CFR Part 15.109(a)

A.1.1 Method of measurement

The field strength of radiated emissions from the unintentional radiator (USB mode of MS and charging mode of MS) at a distance of 3 meters is tested. Tested in accordance with the procedures of ANSI C63.4 -2014, section 8.3.

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

A.1.2 EUT Operating Mode:

Charging mode: The MS is synchronized to SS, and able to respond to paging messages and incoming call. Anestablished call has been released. The MS is connected to a charger. **USB mode:** The model of the PC is Lenovo 2OET-A00DCD, and the serial number of the PC is PF-010TM1. The software is used to let the PC keep on copying data to MS, reading and erasing the data after copy action was finished.

A.1.3 Measurement Limit

Limit from	CFR Part	15.109(a)
------------	----------	-----------

Frequency range	F	Field strength limit (µV/m	ו)
(MHz)	Quasi-peak	Average	Peak
30-88	100		
88-216	150		
216-960	200		
960-1000	500		
>1000		500	5000

*Note: The original limit is defined at 10m test distance. This limit is calculated according to CISPR requirements.

A.1.4 Test Condition

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)	
30-1000	120kHz (IF bandwidth)	5	
Above 1000	1MHz/3MHz	15	

A.1.5Test set-up: 30MHz-1GHz

1GHz-18GHz

A.1.6 Measurement Results

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss". It includes the antenna factor of receive antenna and the path loss.

The measurement results are obtained as described below:

 $Result = P_{Mea} + A_{Rpl} = P_{Mea} + G_{A} + G_{PL}$

Where

G_A: Antenna factor of receive antenna

G_{PL}:PathLoss

P_{Mea}: Measurement result on receiver.

Note: the result contains vertical part and Horizontal part

RE Measurement uncertainty:30M-1GHz: 4.90dB (k=2); 1GHz-18GHz: 5.32 dB (k=2)

	Pocult(dPu)//m)	Limit	Margin(dB)	Polority	ARpl	P _{Mea}
	Resull(dbuv/iii)	(dBµV/m)		Polanty	(dB/m)	(dBµV)
13911	58.03	74	15.97	V	21.1	36.93
14695	58.95	74	15.05	V	21.6	37.35
15575.5	61.88	74	12.12	Н	23.8	38.08
15920.5	62.85	74	11.15	V	24.7	38.15
16589.5	63.93	74	10.07	V	26.3	37.63
17712	63.45	74	10.55	Н	27.7	35.75

Set.1 Charging mode / Peak detector

Set.1 Charging mode / Average detector

Frequency(MHz)	Pocult(dPu)//m)	Limit	Margin(dP)	Delority	ARpl	P _{Mea}
	Resull(ubuv/iii)	(dBµV/m)	Margin(ub)	Polanty	(dB/m)	(dBµV)
13911	46.22	54	7.78	V	21.1	25.12
14678.5	46.47	54	7.53	Н	21.4	25.07
15575	49.83	54	4.17	V	23.7	26.13
15972	51.06	54	2.94	Н	25.5	25.56
16592	51.96	54	2.04	V	26.3	25.66
17710	51.97	54	2.03	V	27.7	24.27

Set.2 USB mode / Peak detector

		Limit	Margin (dD)	Polarity	ARpl	P _{Mea}		
Frequency(MHZ)	Result(aBuV/m)	(dBµV/m)	iviargin(dB)	Polarity	(dB/m)	(dBµV)		
13792	57.04	74	16.96	Н	20	37.04		
14819	57.72	74	16.28	V	21.7	36.02		
15574.5	61.3	74	12.7	V	23.7	37.6		
16337.5	62.75	74	11.25	V	26	36.75		
17140.5	63.15	74	10.85	Н	26.7	36.45		
17900.5	63.36	74	10.64	Н	27.9	35.46		
Set.2 USB mode / A	Set.2 USB mode / Average detector							
		1				(

		Limit		Delority	ARpl	P _{Mea}
Frequency(MHZ)	Result(dBuV/m)	(dBµV/m)	Margin(dB)	Polarity	(dB/m)	(dBµV)
13908.5	46.11	54	7.89	Н	21.1	25.01
14695.5	46.3	54	7.7	Н	21.6	24.7
15574	49.66	54	4.34	V	23.7	25.96
15960.5	50.91	54	3.09	V	25.4	25.51
16589	51.87	54	2.13	V	26.3	25.57
17708	52.02	54	1.98	Н	27.6	24.42

Note: The measurement result of Set.1 and Set.2 showed here are worst cases of combinations of different batteries and USB cables.

Charging mode: Set 1

Figure A.1 Radiated Emission from 30MHz to 1GHz

Frequency	QuasiPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)		(dB)
33.598750	33.73	40.00	6.27	V	-17.1

Figure A.2 Radiated Emission from 1GHz to 18GHz

USB mode: Set 2

Figure A.4 Radiated Emission from 1GHz to 18GHz ***END OF REPORT***