

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC184493

Page: 1 of 28

FCC Radio Test Report FCC ID: 2ANPS-KS-WL03C

Report No. : TB-FCC184493

Applicant Shenzhen King-Serry Electronics Co.,Ltd

Equipment Under Test (EUT)

Wireless magnetic and Vibration security alarm **EUT Name**

/Motorbike/Bicycle Anti-theft Alarm

Model No. : KS-WL03C

KS-SF22R, KS-SF03R, KS-SF04R, KS-SF18R, KS-SF18C, Series Model No.

KS-SF32R, KS-SF33R

Brand Name

: 20211025-02_01-01 Sample ID

: 2021-10-29 **Receipt Date**

Test Date : 2021-10-29 to 2021-11-22

Issue Date : 2021-11-22

Standards : FCC Part 15, Subpart C (15.231(a))

: ANSI C63.10:2013 **Test Method**

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

IVAN SV Lay Lai. **Engineer Supervisor**

Engineer Manager

Camille Li

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Fax: +86 75526509195

Report No.: TB-FCC184493 Page: 2 of 28

Contents

CON	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	8
3.	TEST SOFTWARE	8
4.	TEST EQUIPMENT	9
5.	CONDUCTED EMISSION TEST	
163	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 Test Data	
6.	RADIATED EMISSION TEST	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Condition	
	6.6 Test Data	
7.	BANDWIDTH	16
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	RELEASE TIME MEASUREMENT	17
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	

Report No.: TB-FCC184493 Page: 3 of 28

	8.6 Test Data	17
9.	DUTY CYCLE	18
	9.1 Test Standard and Limit	18
	9.2 Test Setup	18
	9.3 Test Procedure	18
	9.4 Deviation From Test Standard	18
	9.5 EUT Operating Condition	18
	9.6 Test Data	18
10.	ANTENNA REQUIREMENT	19
	10.1 Standard Requirement	19
	10.1 Deviation From Test Standard	19
	10.2 Antenna Connected Construction	
ATT	ACHMENT A RADIATED EMISSION TEST DATA	20
ATT	ACHMENT BBANDWIDTH DATA	25
ATT	ACHMENT C RELEASE TIME MEASUREMENT DATA	26
ATT	ACHMENT DDUTY CYCLE DATA	27

Report No.: TB-FCC184493 Page: 4 of 28

Revision History

Report No.	Version	Description	Issued Date
TB-FCC184493	Rev.01	Initial issue of report	2021-11-22
MORE		TODY TODY	1000
ULE CHILL			
TO:13	3	023	
	MORE		
TOD!		TOBY	TUD!
ODE	TIO MIN		
	WAR A	MODIA MODIA	
CONTRACT OF THE PARTY OF THE PA	1000		mn33

Page: 5 of 28

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen King-Serry Electronics Co.,Ltd			
Address : Floor 5th.Block T, Nanlian Hengyu science park, I Longgang Distrect, Shenzhen, China		Floor 5th.Block T, Nanlian Hengyu science park, NO.1 Ruiji Road, Longgang Distrect, Shenzhen, China	
Manufacturer		Shenzhen King-Serry Electronics Co.,Ltd	
Address		Floor 5th.Block T, Nanlian Hengyu science park, NO.1 Ruiji Road, Longgang Distrect, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Wireless magnetic and Vibration security alarm /Motorbike/Bicycle Anti-theft Alarm			
Models No.	io. : KS-WL03C, KS-SF22R, KS-SF03R, KS-SF04R, KS-SF18R, KS-SF18C, KS-SF32R, KS-SF33R				
		Operation Frequency:	433.92 MHz		
Product	V	Output Power:	55.85 dBuV/m (PK Max.) 46.26 dBuV/m (AV Max.)		
Description	:	Antenna Type:	PCB Antenna		
		Antenna Gain:	0dBi		
		Modulation Type:	оок		
Power Rating	:	TX: DC 12.0V by batte	ry		
Software Version	<i>)</i> .	N/A			
Hardware Version : N/A					
Remark		The antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Antenna description

Brand Model Name		Туре	Antenna Gain(dBi)	
N/A	N/A	PCB Ant.	0	

Page: 6 of 28

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

The EUT has been test as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	Continuously transmitting
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a Mobile unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 7 of 28

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

RF Power Setting in Test SW:	DEF
------------------------------	-----

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 28

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351 Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. Test Summary

FCC Part 15 Subpart (15.231(a))						
Standard Section FCC	Test Item	Judgment	Remark			
15.203	Antenna Requirement	PASS	N/A			
15.207	Conducted Emission	N/A	N/A			
TO THE PERSON NAMED IN	Release Time	PASS	N/A			
45 004	Radiation Emission	PASS	N/A			
15.231	20 dB Bandwidth	PASS	N/A			
	Duty Cycle	PASS	N/A			

3. Test Software

Test Item	Test Software	Manufacturer	Version No.	
Conducted Emission	EZ-EMC	EZ	CDI-03A2	
Radiation Emission	EZ-EMC	EZ	FA-03A2RE	

Report No.: TB-FCC184493 Page: 9 of 28

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est	-			-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 10, 2021	Sep. 09, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 10, 2021	Sep. 09, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 10, 2021	Sep. 09, 2022
DE Dawn Or	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 10, 2021	Sep. 09, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 10, 2021	Sep. 09, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 10, 2021	Sep. 09, 2022

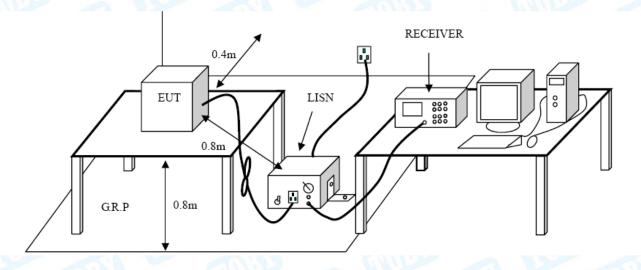
Page: 10 of 28

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Francisco	Maximum RF Line	e Voltage (dBμV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 11 of 28

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

The EUT must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 Test Data

N/A, this device is powered by AAA battery, no USB or AC charging port was provided, therefore, it's not applicable

Page: 12 of 28

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC 15.231

6.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	2250	225
70~130	1250	125
130~174	1250 to 3750(**)	125 to 375(**)
174~260	3750	375
260~470	3750 to 12500(**)	375 to 1250(**)
Above 470	12500	1250

^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in FCC Part15.209.

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Page: 13 of 28

Note:

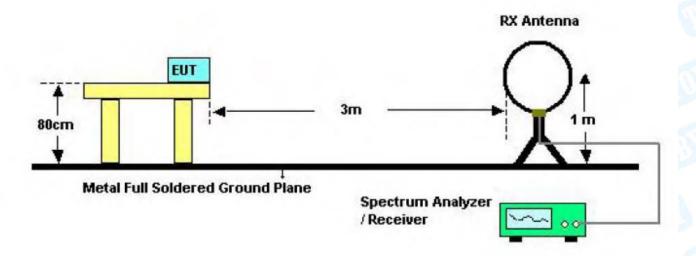
(1) The tighter limit applies at the band edges.

(2) For above 30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m)

For 0.009~0.490MHz:

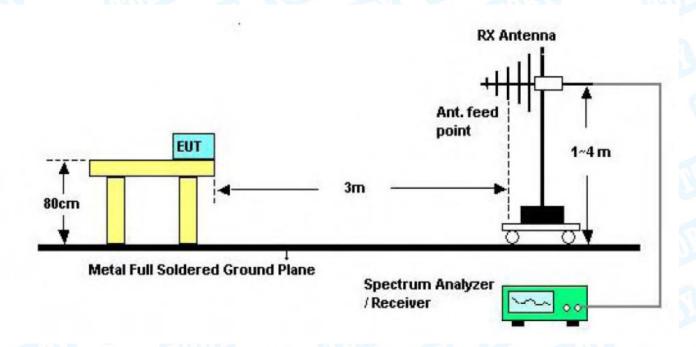
Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(300/3)

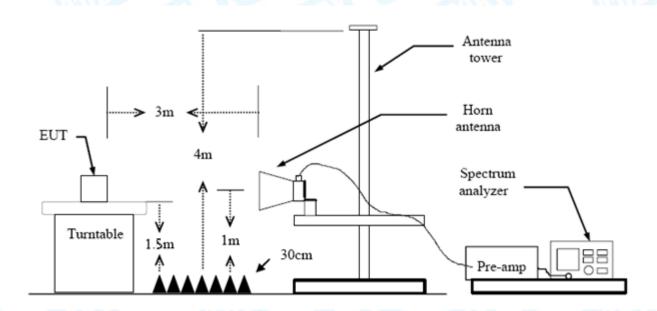

For 0.049~30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(30/3)

So the field strength of emission limits have been calculated in below table.

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m
433.92 MHz	80.82 (Average)
433.92 MHz	100.82 (Peak)


6.2 Test Setup


Below 30MHz Test Setup

Page: 14 of 28

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

Page: 15 of 28

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

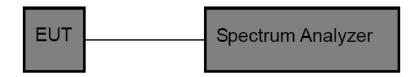
6.6 Test Data

Please refer to the Attachment A.

Page: 16 of 28

7. Bandwidth

7.1 Test Standard and Limit


7.1.1 Test Standard FCC 15.231

7.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)
433.92MHz	1.0848

7.2 Test Setup

7.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

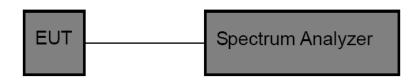
The Equipment Under Test was Programmed to be in continuously transmitting mode.

7.6 Test Data

Please refer to the Attachment B.

Page: 17 of 28

8. Release Time Measurement


8.1 Test Standard and Limit

8.1.1 Test Standard FCC 15.231

8.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.2 Test Setup

8.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

8.4 Deviation From Test Standard

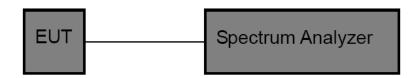
No deviation

8.5 EUT Operating Condition

The EUT was set to work in transmitting mode.

8.6 Test Data

Please refer to the Attachment C.


Page: 18 of 28

9. Duty Cycle

9.1 Test Standard and Limit

9.1.1 Test Standard FCC 15.231

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

9.6 Test Data

Please refer to the Attachment D.

Page: 19 of 28

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.1 Deviation From Test Standard

No deviation

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is an PCB Antenna. It complies with the standard requirement.

Antenna Type								
33	▼ Permanent attached antenna							
Minn.	□ Unique connector antenna							
	☐ Professional installation antenna							

Page: 20 of 28

Attachment A-- Radiated Emission Test Data

9 KHz to 30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

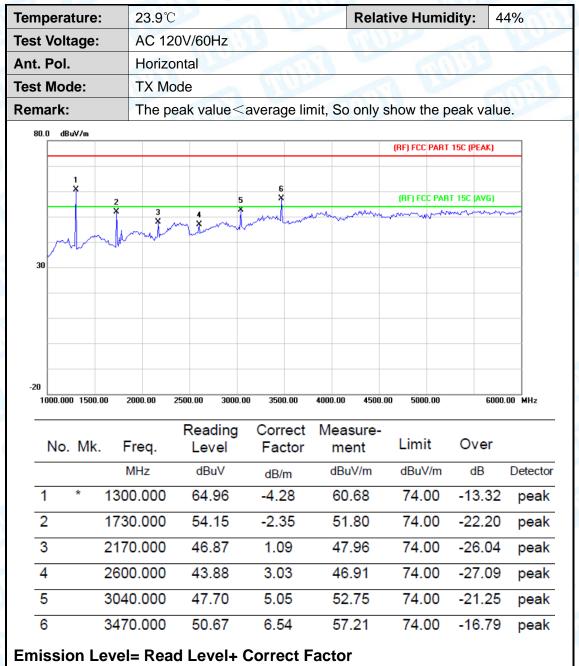
Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz-1GHz

empe	rature	: :	23.9	3°C				<u>}</u>	Relat	ive Hu	midit	y:	44%	6	
est Vo	ltage	:	AC	120	V/60)Hz	A Division		51	No.			11	1	
nt. Po	ol.		Hor	izon	tal	3						19/1			
est M	ode:		TX	Mod	le		1	Carried States	6	THE				-	
Remar	k:				ort fo		emission w	hich mo	ore th	an 10 d	B be	low t	he		
80.0 d	BuV/m														
										1 ¥					
														2	
					-					(RF)FC	C 15C 3	√ Radia	tion		
												Margi	1 -6 dB		
					\perp									НП	
30													سرمرميد		
										بالبير	mmm	A CONTRACTOR OF THE PARTY OF TH	Y 11P		
m	my						. h. warne	Mary Mary	Mary Market	Ann.					
	Muymy	My M	mad	what	wyw	Munana	human							+	
														\perp	
-20															
-20 30.000	40	50	60	70 80	0		(MHz)		300	400	500	600 7	00	1000.0	000
	40	50	60			dina		Moas		400	500	600 7	00	1000.0	000
30.000	. Mk.		60 eq.			ding /el	(MHz) Correct Factor	Meas me	ure-	400		600 7		1000.0	000
30.000		Fr			Read	/el	Correct		ure- nt		t		r	1000.0	
30.000	. Mk.	Fr	eq. Hz	F	Read Lev	/el u∨	Correct Factor	me	ure- nt //m	Limi	t /m	Ove	r		cto

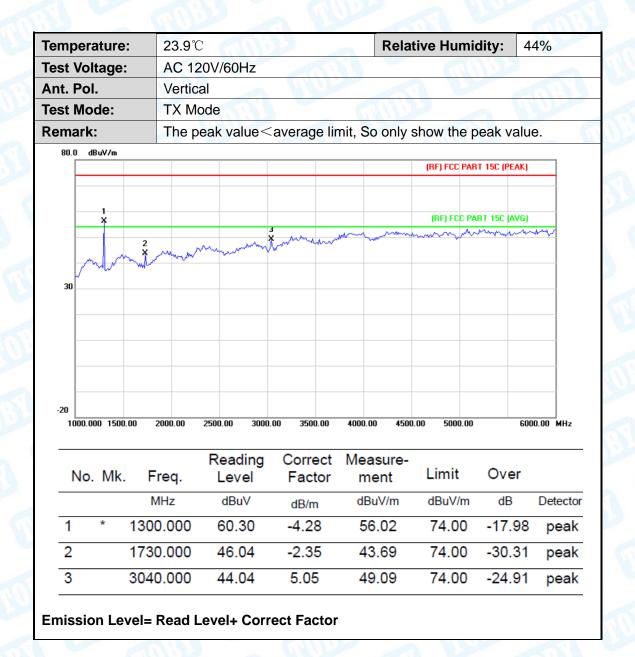
			MI HATE									
Fundamental and Harmonics Result												
Freq(MHz)	Peak Level (dBμV/m)	AV Factor(dBμV/m) (see Attachment D)	Average Level (dBμV/m)	Limit(dBμV/m) (average)	Limit(dBμV/m) (Peak)	Conclusion						
434.0651	72.56	-16.71	55.85	80.80	100.80	PASS						
869.1302	62.97	-16.71	46.26	60.80	80.80	PASS						

Report No.: TB-FCC184493 Page: 21 of 28


	npera	ture:		23.9)℃			F	Relati	ive Hun	nidit	y:	44	%	
Гes	t Volt	age:	/	AC	120V	/60Hz	7			1016		A			V James
4nt	. Pol.		,	Vert	ical			2.0		C.	M				
Гes	t Mod	le:	-	TX I	Mode)	a and	Salara		J W					
Rer	nark:					t for tl	ne emission v	which mo	re tha	an 10 dl	3 be	low	the	VI.	
80.0	0 dBuV	/m													
										1 X					
														2 X	
										(RF)FCC	. 150 3		diation gin -6	dBı	Ч
															-
														#	4
30						-							· ·	سالب	~
											MAN	year, der			
	www	new	W ₁₅				and the same of th	ammundam.	w. March	, ,					
			Am	Mour	V-W		CONTRACTOR OF THE PROPERTY OF								
-20 30	0.000	40	50 6	SO 7	0 80		(MHz)		300	400	500	600	700	100	00.000
	0.000	40	50 6	io 7						400	500	600	700	100)0.000
30	0.000 No. N		50 6		R	eadin _evel	g Correct		ure-	400 Limit		600		100)0.000
30				q.	Re		g Correct		ure- nt				er		
30	No. N	Лk.	Fre	q. z	Re	_evel	g Correct Factor	mer	ure- nt //m	Limit	m	Ov	er	De	tecto
3(No. N	Лk. 4	Fre MH:	q. z 351	Ri L	_evel dBuV	G Correct Factor dB/m	mer dBuV	ure- nt //m	Limit dBuV/	m O	Ov dl	er 3	De	tectoreak

		Fundam	ental and Harmonics Re	esult		
Freq(MHz)	Peak Level (dBμV/m)	AV Factor(dBμV/m) (see Attachment D)	Average Level (dBμV/m)	Limit(dBμV/m) (average)	Limit(dBμV/m) (Peak)	Conclusion
434.0651	70.08	-16.71	53.37	80.80	100.80	PASS
869.1302	60.10	-16.71	43.39	60.80	80.80	PASS

Page: 22 of 28


1GHz -6GHz

Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization
1300.000	60.68	-16.71	43.97	54.00	-10.03	Horizontal
1730.000	51.80	-16.71	35.09	54.00	-18.91	Horizontal
2170.000	47.96	-16.71	31.25	54.00	-22.75	Horizontal
2600.000	46.91	-16.71	30.2	54.00	-23.8	Horizontal
3040.000	52.75	-16.71	36.04	54.00	-17.96	Horizontal
3470.000	57.21	-16.71	40.5	54.00	-13.5	Horizontal

Page: 23 of 28

Average Value	:					
Frequency (MHz)	Peak Level (dBuV/m)	Duty cycle factor	Average value (dBuV/m)	Limit Line (dBuV/m)	Over limit (dB)	Polarization
1300.000	56.02	-16.71	39.31	54.00	-14.69	Vertical
1730.000	43.69	-16.71	26.98	54.00	-27.02	Vertical
3040.000	49.09	-16.71	32.38	54.00	-21.62	Vertical

Page: 24 of 28

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV. And AV is calculated by the following:

Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

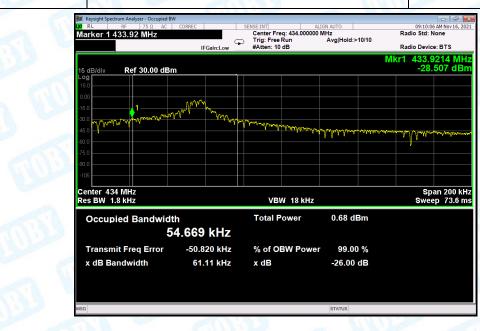
Pulse Desensitization Correction Factor

Note:

1)The Smallest Pulse Width (PW)= 0.400ms

(2) 2/PW=2/0.400(ms)= 5kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.



Page: 25 of 28

Attachment B--Bandwidth Data

Temperature	:	25℃
Relative Humidity	÷	65 %
Pressure	1	1010 hPa
Test Power	13	AC 120V/60Hz

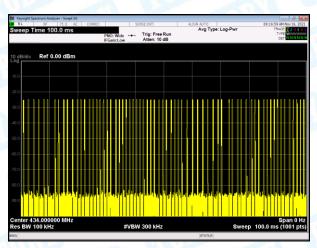
Frequency	20 dBc Bandwidth	Limit	Result
(MHz)	(kHz)	(kHz)	
433.92	54.669	1084.8	PASS

Attachment C-- Release Time Measurement Data

mperature	: 25 ℃						
elative Humidity	: 65 %						
essure	: 1010 hPa						
st Power	: AC 120V/6	0Hz	OND.				
GIUL S							
Release Time(s)		Limit (s)		Result			
0.912		5	40105	PASS			
Keysight S	pectrum Analyzer - Swept SA RF 75 Ω AC CORREC	SENSE:INT	ALIGN AUTO	09:11:26 AM Nov 16, 2021			
	Fime 5.000 s	PNO: Wide Trig: Free Run Atten: 10 dB	Avg Type: Log-Pwr Avg Hold: 4/100	TRACE 123456 TYPE MWWWWW DET PNNNNN			
10 dB/div Log	Ref 0.00 dBm						
111111111111111111111111111111111111111							
-10.0							
-20.0							
-30.0							
-40.0							
-60.0							
-70.0							
90.0				10123			
-90.0	ngerfilmelden og fljeren fans fan	استهدا والمحادث المحادث المحاد	application to great reference any high strong a second research to the	**************************************			
	24 000000 8811-			Snor All			
Res BW	34.000000 MHz 100 kHz	#VBW 300 kHz		Span 0 Hz 5.000 s (1001 pts)			
MSG	Tradesis Andre Control		STATUS				
LXI RL	Spectrum Analyzer - Swept SA RF 75 Ω AC CORREC 1 Δ 912.000 ms	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	09:15:10 AN NOV16, 2021 TRACE 1 2 3 4 5 6 TYPE M			
		PNO: Wide +> Trig: Free Run IFGain:Low Atten: 10 dB	Avg Hold: 24/100	∆Mkr1 912.0 ms			
10 dB/div Log	Ref 0.00 dBm			0.402 dB			
-10.0							
-20.0			 				
-30.0							
-40.0							
-50.0							
-60.0							
-70.0							
-80.0			102	(c. protessore to a protect to the later story)			
-90.0	2						
30.0							
THU .	34.000000 MHz 100 kHz			Span 0 Hz 1.500 s (1001 pts)			

Page: 27 of 28

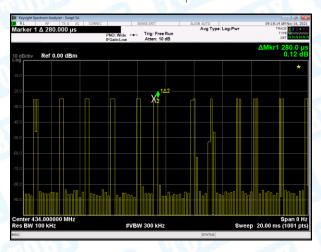
Attachment D--Duty Cycle Data

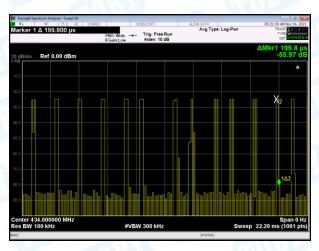

Please refer the following pages:

Plot 1: transmit once in 100ms, there are two kinds of pulse, the large pulses total 45, the small pulses total 10.

Plot 2: one large pulse in a time period of 0.28 ms **Plot 3:** one small pulse in a time period of 0.20 ms

Duty Cycle=ON/Total= (0.28*45+0.2*10)/100=14.6/100=14.6% 20log (Duty Cycle) =-16.71 Average=Peak Value+ 20log (Duty Cycle), AV=PK-16.71


Plot 1



Page: 28 of 28

Plot 2

Plot 3

----END OF REPORT----