

• Frequency range 793 MHz – 806 MHz:

									-
Spectrum									
RefLevel -10.00 dBr Att 0 d	m Offset 32.00 dB e IB SWT 33.3 ms e	RBW 6,25 kHz VBW 20 kHz Mod	e Sweep						10 - 14 1
10F									
-20 d8m									
-20 0511									
-30 dBm									
	01 3E 000 dam		1						
	DT -33.000 0Bm								
-40 dBm-					2		č		
-50 dBm									
-So dam									
-60 dBm									
	_	_		27.1		1.2			
مرارا للتربع بالمرابع المروانية فالأرامين	Maria Maria Maria Maria	فالتلاق وبغرابة الباسيعا والبار	يعنى العاقرة المرقب الملاحم المالا	Rollins of Lake & Holes on Deckel	منافعه ويتحاد اللامين الترجيم	the Black that And A lines of	Here and the stand the second second	والمراجع ويسر التعالق فرافع الترماليا	فارتقاله والمراجع ومارتك والمالية
-20 SBURNING ALTONIA	te selahara des in a terlette son de	Anish and an internal line and a	and the state of the state of the state of	of the balance of the product of the	lantar Adia hidin diktan fanilin	an of the add of the second of the second	alling in one line that he was to be	and a formed as the other insides the day of high ref	a indistant and affects the
-80 dBm-									o
10010000000000000000000000000000000000									
-90 dBm									
100 dBm									
100 000									
Start 793.0 MHz				1000	nts		0.0		Ston 806.0 MU-
Y				1000	and factorial			Measuring	

LTE Cat-M1 Band 66. BW=10 MHz. 16QAM. RB Size 1. RB Offset 2.

Low Channel:

The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

Middle Channel:

The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

									×
Spectrum									
RefLevel 0.00 dB	m Offset 32.00 dB 👄 B SWT - R0 ms 👄	RBW 1 MHz VBW 3 MHz Mode St	Neeo						
TDF		Ten office mode of	weep						
9 1Pk Yiew		1	(File)	1	(1			
-10 dBm									
	D1 -13.000 dBm								
-20 dBm		-							
-30 dBm									0
							μ Λ.	A DEPARTMENT	
10.10		1.111	يغرب المعلمان بدرادهم	1 8 10 10 10 10	Land, und have	a , lak, e., a the in estance	authentication V	Contraction of the second second	المورية المسالي والمطرول المطرر العل
-40 dBm-	استريابا الألبا التروي	and the set of the second set of the	Ballan and and a start of the start	Willy a Berry Manager and	and the state of a	en er	parent from the optimizer	the second s	
مقريبانا باعالاتك وطاوريا	Strange Bills and a strange and a strange	and the second	and the second second	Marthal and Milliamore and					
PART Contraction of the	Designation of the second second								
1									
-60 dBm									
-70 dBm-					5				
-80 dBm									
-90 dBm									
Start 9.0 kHz	12 ····		Na .	3000	0 pts	A.		,	Stop 20.0 GHz

The peak above the limit is the carrier frequency.

The highest peak next to the carrier is the Downlink frequency.

LTE Cat-M1 Band 71. BW=10 MHz. 16QAM. RB Size 1. RB Offset 2.

Low Channel:

The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

Middle Channel:

Spectrum RefLevel 0.00 dBm Offset 32.00 dB ⊕ RBW 100 kHz Att 0 dB SWT 100 ms ⊕ VBW 300 kHz Mode Sweep TDF 9 1Pk View -10 dBn D1 -13.000 dBm 20 dBr 30 dB 40 d June Mary dela parte and 70 d 60 dl 90 de tart 9.0 k 30000 pt Stop 10.0 GHz Measuring 1.20

> The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

High Channel:

3	5									
Spectrum										
Ref Level 0.0	00 dBm Off	set 32.00 dB 👄 I	RBW 100 kHz							1
Att	0 dB SW	T 100 ms 👄 '	VBW 300 kHz Mode	Sweep						
1 Pk Yiew										
	1									
-10 dBm										
	01 -	13.000 dBm								
-20 dBm										
-30 dBm				,		2				
		P								
-40 dBm										
			T				7 - 1 - 10			
-50 dBm					Labored to a set of the	hand the second with the	Advantulation of the second	whether we all the strengthe	har half ar a Mar	the last a conthe distribute
	a line a	11 A 10110	La La Laubert H. and the	فالماله وخرور والماتخلية فأعر وتعاول المرو	Unit when a data shirt of first an	and the state of the state of the state of the	The prototic state of the second	this shap to a state of the second state	in finite difficities and second second	for reality as set of the set of
m A days add	- Jahren and Andright	on diale such that	A PULLER AND DESCRIPTION OF	A STATE OF THE OWNER	all a suit of the suit of the suit of the				a transfer in a sta	
and the state of the	PROPERTY INCOME.	production productions	160							
P										
-70 dBm										
104.040.040.040.040.0										
-60 dBm										
-90 d8m										
Start 9.0 kHz	110			45	3000	0 pts				Stop 10.0 GHz
і — П									Measuring	AND REAL PROPERTY AND

The peak above the limit is the carrier frequency.

The highest peak next to the carrier is the Downlink frequency.

LTE Cat-M1 Band 85. BW=10 MHz. 16QAM. RB Size 1. RB Offset 2.

Low Channel:

The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

Middle Channel:

Spectrum RefLevel 0.00 dBm Offset 32.00 dB ⊕ RBW 100 kHz Att 0 dB SWT 100 ms ⊕ VBW 300 kHz Mode Sweep TDF 9 1Pk View -10 dBn D1 -13.000 dBm 20 dB 30 dl 70 d 60 d 90 de tart 9.0 k 30000 pt Stop 10.0 GH; Measuring 1.20

> The peak above the limit is the carrier frequency. The highest peak next to the carrier is the Downlink frequency.

	_									
Spectrum Ref Level 0.0 Att	00 dBm Off: 0 dB SW	set 32.00 dB ⊜ 1 T 100 ms ⊜ '	RBW 100 kHz VBW 300 kHz Mode	Sweep						[2
TDF 1Pk View										
	T									
10 dBm						P		· · · · · · · · · · · · · · · · · · ·		-
	01 -:	13.000 dBm								
-20 dBm										
-30 dBm	1			0						0
		1								
-40 dBm										
						a la	and the			
-50 dBm				in wells, and the same	الالمادين فقر الالترابي الالتقيمة والا	all had been the black all at the	herein an familia an a	alance , the life had be	In the second biological but	والتحقيق الداخل فالمحمد
	La bar	1. 1. 11. 11.0	a . I have be to be the parcel	Little Market alle and the	All of the second second	and a phile opening the phile	and build all standards and	with some share the second second	a to the construction of the little	unital fill
A daily and prairies	1. Handler und days	en de la management de la compañía d	and president states	Altion of the other strategies	The second s					C. C. R. R. S. S. S.
adv. do. 40.40	- design to the second second	And the second	1015 C							
-70 dBm										
-80 dBm										
-90 dBm				c		· · · · · · · · · · · · · · · · · · ·		-		¢.
9tart 0 0 kUz	1.1				2000	0 ptc				Stop 10.0 CH
1010 1012					3000	- P			Mascuning	atop 10.0 GPB

The peak above the limit is the carrier frequency.

The highest peak next to the carrier is the Downlink frequency.

Spurious Emissions at Antenna Terminals at Block Edges

Limits

1. LTE Cat-M1 Band 8. FCC §27.1509 (a).

FCC §27.1509 (a):

The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) in watts by at least the following amounts:

(a) For 900 MHz broadband operations in 897.5–900.5 MHz band by at least 43 + 10 log (P) dB.

2. LTE Cat-M1 Band 13.

FCC §27.53 (c):

On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB. Compliance is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations. Compliance is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

RSS-130, Clause 4.7.2:

The power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least $65 + 10 \log_{10} p$ (watts), dB, for mobile and portable equipment.

3. LTE Cat-M1 Band 66.

FCC §27.53 (h), RSS-139, Clause 6.6:

According to specification, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater.

4. LTE Cat-M1 Band 71 & LTE Cat-M1 Band 85.

FCC §27.53 (g):

For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater.

RSS-130, Clause 4.7.1:

The unwanted emissions in any 100 kHz bandwidth on any frequency outside the low frequency edge and the high frequency edge of each frequency block range(s), shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log₁₀ p (watts), dB.

At Po transmitting power, the specified minimum attenuation becomes 43+10 log (Po), and the level in dBm relative to Po becomes:

Po (dBm) - [43 + 10 log (Po in mW) - 30] = -13 dBm

Method

The EUT RF output connector was connected to a spectrum analyser and to the Universal Radio Communication tester R&S CMW500 (selecting maximum transmission power of the EUT and different modes of modulation) using a 50-Ohm attenuator and a power splitter.

The reading of the spectrum analyser is corrected with the attenuation loss of connection between output terminal of EUT and input of the spectrum analyser.

Test Setup

Results

LTE Cat-M1 Band 8:

Preliminary measurements determined QPSK, BW=1.4 MHz as the worst-case modulation in terms of band edge results. The next results are for this worst-case configuration.

Low Block Edge. Narrow Band= 0.

LTE QPSK:	RB=1.	RB=1.
	Offset=0.	Offset=0.
	BW = 1.4 MHz	BW = 3 MHz
Maximum measured level at <u>Low Block Edge</u> at antenna port (dBm)	-19.646	-25.11

LTE QPSK:	RB = All.	RB = All.
	Offset = 0.	Offset = 0.
	BW = 1.4 MHz	BW = 3 MHz
Maximum measured level at <u>Low Block Edge</u> at antenna port (dBm)	-14.97	-27.22

High Block Edge. Narrow Band= Max.

LTE QPSK:	RB=1.	RB=1.	
	Offset=Max.	Offset=Max.	
	BW = 1.4 MHz	BW = 3 MHz	
Maximum measured level			
at <u>High Block Edge</u> at	-19.1	-24.59	
antenna port (dBm)			

LTE QPSK:	RB = All.	RB = All.	
	Offset = 0.	Offset = 0.	
	BW = 1.4 MHz	BW = 3 MHz	
Maximum measured level			
at <u>High Block Edge</u> at	-21.92	-25.5	
antenna port (dBm)			

Measurement uncertainty: <±2.76 dB

Verdict

LTE Cat-M1 Band 13:

Preliminary measurements determined QPSK, BW=5 MHz as the worst-case modulation in terms of band edge results. The next results are for this worst-case configuration.

Low Block Edge. Narrow Band= 0.

	RB=1.	RB=1.
LTE QPSK:	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>Low Block</u> <u>Edge</u> at antenna port (dBm)	-31.99	-47.32

LTE QPSK:	RB = All.	RB = All.
	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>Low Block</u> <u>Edge</u> at antenna port (dBm)	-35.32	-33.53

High Block Edge. Narrow Band= Max.

LTE QPSK:	RB=1.	RB=1.
	Offset=Max.	Offset=Max.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>High Block</u> <u>Edge</u> at antenna port (dBm)	-34.78	-47.53

LTE QPSK:	RB = All.	RB = All.
	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>High</u> <u>Block Edge</u> at antenna port (dBm)	-33.3	-33.65

Measurement uncertainty: <±2.76 dB

Verdict

LTE Cat-M1 Band 66:

Preliminary measurements determined 16QAM, BW=1.4 MHz as the worst-case modulation in terms of band edge results. The next results are for this worst-case configuration.

Low Block Edge. Narrow Band= 0.

	RB=1.	RB=1.	RB=1.	RB=1.	RB=1.	RB=1.
LTE 16QAM	Offset = 0.					
MODULATION:	BW = 1.4	BW = 3	BW = 5	BW = 10	BW = 15	BW = 20
	MHz	MHz	MHz	MHz	MHz	MHz
Maximum measured level at <u>Low Block Edge</u> at antenna port (dBm)	-20.84	-39.76	-35.45	-48.67	-48.69	-52.11

LTE 16QAM MODULATION:	RB = 5. Offset = 0. BW = 1.4	RB = 5. Offset = 0. BW = 3	RB = 5. Offset = 0. BW = 5	RB = 5. Offset = 0. BW = 10	RB = 5. Offset = 0. BW = 15	RB = 5. Offset = 0. BW = 20
	MHz	MHz	MHz	MHz	MHz	MHz
Maximum measured level at <u>Low Block Edge</u> at antenna port (dBm)	-25.67	-37.15	-34.7	-37.71	-39.32	-41.26

High Block Edge. Narrow Band= Max.

	RB=1.	RB=1.	RB=1.	RB=1.	RB=1.	RB=1.
LTE 16QAM	Offset=Max.	Offset=Max.	Offset=Max.	Offset=Max.	Offset=Max.	Offset=Max.
MODULATION:	BW = 1.4	BW = 3	BW = 5	BW = 10	BW = 15	BW = 20
	MHz	MHz	MHz	MHz	MHz	MHz
Maximum measured level at <u>High Block Edge</u> at antenna port (dBm)	-23.63	-42.51	-35.18	-49.55	-50.67	-52.51

LTE 16QAM MODULATION:	RB = 5. Offset =0. BW = 1.4 MHz	RB = 5. Offset =0. BW = 3 MHz	RB = 5. Offset =0. BW = 5 MHz	RB = 5. Offset =0. BW = 10 MHz	RB = 5. Offset =0. BW = 15 MHz	RB = 5. Offset =0. BW = 20 MHz
Maximum measured level at <u>High Block Edge</u> at antenna port (dBm)	-28.08	-37.06	-35.84	-38.74	-38.99	-40.83

Measurement uncertainty: <±2.76 dB

Verdict

LTE Cat-M1 Band 71:

Preliminary measurements determined 16QAM, BW=5 MHz as the worst-case modulation in terms of band edge results. The next results are for this worst-case configuration.

Low Block Edge. Narrow Band= 0.

LTE 16QAM	RB=1.	RB=1.	RB=1.	RB=1.
MODULATION:	Offset=0.	Offset=0.	Offset=0.	Offset=0.
	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Maximum measured level at <u>Low Block Edge</u> at antenna port (dBm)	-24.47	-35.23	-36.77	-40.67

LTE 16QAM	RB = 5.	RB = 5.	RB = 5.	RB = 5.
MODULATION:	Offset = 0.	Offset = 0.	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Maximum measured level at <u>Low Block Edge</u> at	-26.11	-28.89	-32.1	-34.89
antenna port (dBm)				

High Block Edge. Narrow Band= Max.

LTE 16QAM	RB=1.	RB=1.	RB=1.	RB=1.
MODULATION:	Offset=Max.	Offset=Max.	Offset=Max.	Offset=Max.
	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Maximum measured level at <u>High Block Edge</u> at antenna port (dBm)	-24.44	-35.81	-40.48	-42.13

LTE 16QAM	RB = 5.	RB = 5.	RB = 5.	RB = 5.
MODULATION:	Offset = 0.	Offset = 0.	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz	BW = 15 MHz	BW = 20 MHz
Maximum measured level				
at <u>High Block Edge</u> at	-28.09	-32.99	-31.78	-36.17
antenna port (dBm)				

Measurement uncertainty: <±2.76 dB

Verdict

LTE Cat-M1 Band 85:

Preliminary measurements determined 16QAM, BW=5 MHz as the worst-case modulation in terms of band edge results. The next results are for this worst-case configuration.

Low Block Edge. Narrow Band= 0.

	RB=1.	RB=1.
LTE 16QAM MODULATION:	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>Low Block</u> <u>Edge</u> at antenna port (dBm)	-16.65	-29.12

LTE 16QAM MODULATION:	RB = 5.	RB = 5.
	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>Low Block</u> <u>Edge</u> at antenna port (dBm)	-32.2	-34.59

High Block Edge. Narrow Band= Max.

LTE 16QAM MODULATION:	RB=1.	RB=1.
	Offset=Max.	Offset=Max.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>High Block</u> <u>Edge</u> at antenna port (dBm)	-32.34	-44.85

LTE 16QAM MODULATION:	RB = All.	RB = All.
	Offset = 0.	Offset = 0.
	BW = 5 MHz	BW = 10 MHz
Maximum measured level at <u>High</u> <u>Block Edge</u> at antenna port (dBm)	-30.35	-34.56

Measurement uncertainty: <±2.76 dB

Verdict

Span 5.0 MHz

200.00 dB 200.00 dB 200.00 dB

∆Limit

LTE Cat-M1 Band 8:

CF 897.5 MHz

ourious Emission

Range Low 895.000 MHz 897.400 MHz 897.500 MHz

LTE Cat-M1 Band 8. BW=1.4 MHz. QPSK. RB=1. Offset=0. Low Block Edge:

The equipment transmits at the maximum output power

10000 pt

Frequency

897.39575 MHz 897.48725 MHz 897.77125 MHz Power Abs

-19.64 dBm -23.81 dBm -21.33 dBm

RBW

100.000 kHz 30.000 kHz 100.000 kHz

Range Up

97.400 MHz 897.500 MHz 900.000 MHz

The equipment transmits at the maximum output power

LTE Cat-M1 Band 8. BW=1.4 MHz. QPSK. RB=All. Offset=0. High Block Edge:

LTE Cat-M1 Band 13:

LTE Cat-M1 Band 13. BW=5 MHz. QPSK. RB=1. Offset=0. Low Block Edge:

The equipment transmits at the maximum output power

LTE Cat-M1 Band 13. BW=5 MHz. QPSK. RB=All. Offset=0. Low Block Edge:

LTE Cat-M1 Band 13. BW=5 MHz. QPSK. RB=1. Offset=Max. High Block Edge:

The equipment transmits at the maximum output power

LTE Cat-M1 Band 13. BW=5 MHz. QPSK. RB=All. Offset=0. High Block Edge:

LTE Cat-M1 Band 66:

LTE Cat-M1 Band 66. BW=1.4 MHz. QPSK. RB=1. Offset=0. Low Block Edge:

The equipment transmits at the maximum output power

LTE Cat-M1 Band 66. BW=1.4 MHz. QPSK. RB=All. Offset=0. Low Block Edge:

LTE Cat-M1 Band 66. BW=1.4 MHz. QPSK. RB=1. Offset=Max. High Block Edge:

The equipment transmits at the maximum output power

LTE Cat-M1 Band 66. BW=1.4 MHz. QPSK. RB=All. Offset=0. High Block Edge:

LTE Cat-M1 Band 71:

LTE Cat-M1 Band 71. BW=5 MHz. QPSK. RB=All. Offset=0. Low Block Edge:

LTE Cat-M1 Band 71. BW=5 MHz. QPSK. RB=1. Offset 5. High Block Edge:

LTE Cat-M1 Band 71. BW=5 MHz. QPSK. RB=All. Offset 0. High Block Edge:

LTE Cat-M1 Band 85:

LTE Cat-M1 Band 85. BW=5 MHz. QPSK. RB=1. Offset=0. Low Block Edge:

LTE Cat-M1 Band 85. BW=5 MHz. QPSK. RB=All. Offset=0. Low Block Edge:

LTE Cat-M1 Band 85. BW=5 MHz. QPSK. RB=1. Offset 5. High Block Edge:

LTE Cat-M1 Band 85. BW=5 MHz. QPSK. RB=All. Offset 0. High Block Edge:

Radiated Emissions

Limits

1. LTE Cat-M1 Band 8. FCC §27.1509 (a).

FCC §27.1509:

The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) in watts by at least the following amounts:

(a) For 900 MHz broadband operations in 897.5–900.5 MHz band by at least 43 + 10 log (P) dB.

2. LTE Cat-M1 Band 13. FCC §2.1053 & §27.53 (c) (2) (4) & (f) / RSS-130 Issue 2 Clause 4.7.1. & 4.7.2.

FCC §27.53 (c) (2) (4) & (f):

(c) (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB.

(c) (4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to -70 dBW (-40 dBm)/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW (-50 dBm) EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

RSS-130 Issue 2 Clause 4.7.1 and 4.7.2:

4.7.1. The power of any unwanted emissions in any 100 kHz bandwidth on any frequency outside the frequency range(s) within which the equipment is designed to operate shall be attenuated below the transmitter power, P (dBW), by at least 43 + 10 log10 p (watts), dB. However, in the 100 kHz band immediately outside the equipment's operating frequency range, a resolution bandwidth of 30 kHz may be employed.

4.7.2. In addition to the limit outlined in section 4.7.1 above, equipment operating in the frequency bands 746-756 MHz and 777-787 MHz shall also comply with the following restrictions:

a. the power of any unwanted emissions in any 6.25 kHz bandwidth for all frequencies between 763-775 MHz and 793-806 MHz shall be attenuated below the transmitter power, P (dBW), by at least:

i. 76 + 10 log10 p (watts), dB, for base and fixed equipment and

ii. 65 + 10 log10 p (watts), dB, for mobile and portable equipment

b. the e.i.r.p. in the band 1559-1610 MHz shall not exceed -70 dBW (-40 dBm) /MHz for wideband signal and -80 dBW(-50 dBm) for discrete emission with bandwidth less than 700 Hz.

3. LTE Cat-M1 66. FCC §2.1053 & §27.53 (h) / RSS-139 Issue 4 Clause 5.6.

FCC §27.53 (h):

(h) For operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB.

RSS-139 Issue 4 Clause 5.6:

Unwanted emissions shall be measured in terms of average value. Equipment shall have the TRP or conducted power (all antenna connectors), of unwanted emissions outside the frequency block or frequency block group not exceeding the limits shown in the next table: