RF EXPOSURE EVALUATION

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency(RF) Radiation as specified in §1.1307(b)

FCC ID: 2ANPBGWSN-W02W

EUT Specification

EUT	Renogy ONE Core			
Frequency band (Operating)	🖂 WLAN: 2.412GHz ~ 2.462GHz			
	🗌 WLAN: 5.18GHz ~ 5.24GHz			
	□ WLAN: 5.745GHz ~ 5.825GHz			
	⊠ Others: BLE: 2402-2480MHz			
	Zigbee: 2405~2480MHz			
Device category	Portable (<20cm separation)			
	\boxtimes Mobile (>20cm separation)			
	Others			
Exposure classification	Occupational/Controlled exposure			
	General Population/Uncontrolled exposure			
Antenna diversity	□ Single antenna			
	⊠ Multiple antennas			
	□ Tx diversity			
	□ Rx diversity			
	□ Tx/Rx diversity			
Antenna gain (Max)	BLE (Module RTL8762): -5.08 dBi			
	BLE (Module RTL8723): 0.57 dBi			
	WiFi 2.4G: 0.57 dBi			
	Zigbee: 1.71 dBi			
Evaluation applied	⊠ MPE Evaluation			
	SAR Evaluation			

Limits for Maximum Permissible Exposure(MPE)

Frequency	Electric Field	Magnetic Field	Power	Average					
Range(MHz)	Strength(V/m)	Strength(A/m)	Density(mW/cm ²)	Time					
(A) Limits for Occupational/Control Exposures									
300-1500			F/300	6					
1500-100000			5	6					
(B) Limits for General Population/Uncontrol Exposures									
300-1500		F/1500		30					
1500-100000			1	30					

Friis transmission formula: Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm^2

Pout=output power to antenna in mW G= gain of antenna in linear scale

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE. If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

Max Measurement Result

Operating Mode	Measured Power	Tune tolera	•	Max. Tune up Power	Antenna Gain	Power density at 20cm	Power density Limits (mW/cm ²)
	(dBm)	(dBr	n)	(dBm)	(dBi)	(mW/ cm^2)	(mw/cm/)
BLE (Module RTL8762)	-0.66	-0.66	±1	0.34	-5.08	0.0001	1
BLE (Module RTL8723)	1.20	1.20	±1	2.20	0.57	0.0004	1
WiFi 2.4G	18.54	18.54	±1	19.54	0.57	0.0204	1
Zigbee	4.10	4.10	±1	5.10	1.71	0.0010	1

The BLE (Module RTL8762) and BLE (Module RTL8723) can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{Limit,i}}$$

 $= S_{BLE \ (Module \ RTL 8762)} / S_{limit-BLE \ (Module \ RTL 8762)} + S_{BLE \ (Module \ RTL 8723)} / S_{limit-BLE \ (Module \ RTL 8723)}$

=0.0001/1+0.0004/1

=0.0005

< 1.0

The BLE (Module RTL8762) and WiFi 2.4G can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{Limit,i}}$$

 $=S_{BLE (Module RTL8762)}/S_{limit-BLE (Module RTL8762)}+S_{WiFi 2.4G}/S_{limit-WiFi 2.4G}$ =0.0001/1+0.0204/1 =0.0205 < 1.0

The BLE (Module RTL8762) and Zigbee can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{Limit,i}}$$

 $=SS_{BLE (Module RTL8762)}/Slimit-BLE (Module RTL8762)^{+} S_{Zigbee}/Slimit-Zigbee}$ =0.0001/1+0.0010/1 =0.0011 < 1.0

The BLE (Module RTL8723) and Zigbee can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{Limit,i}}$$

 $=S_{BLE (Module RTL8723)}/S_{limit-BLE (Module RTL8723)}+S_{Zigbee}/S_{limit-Zigbee}$ =0.0004/1+0.0010/1 =0.0014 < 1.0

The WiFi 2.4G and Zigbee can transmit simultaneously:

$$\sum_{i} \frac{S_i}{S_{Limit,i}}$$

 $= S_{WiFi\ 2.4G}/S_{limit-WiFi\ 2.4G} + S_{Zigbee}/S_{limit-Zigbee}$ =0.0204/1+0.0010/1 =0.0214 < 1.0

Result: No Standalone SAR test is required.