

TEST REPORT

Test Report No.: UL-RPT-RP15051752-116A

Manufacturer : Inxpect S.p.a

Model No. : S203A

FCC ID : 2ANOS-S203A

Test Standard(s) : FCC Parts 15.207, 15.209, 15.215 & 15.255

- 1. This test report shall not be reproduced except in full, without the written approval of UL International (UK) Ltd.
- 2. The results in this report apply only to the sample(s) tested.
- 3. The sample tested is in compliance with the above standard(s).
- 4. The test results in this report are traceable to the national or international standards.

5. Version 1.0.

Date of Issue: 30 January 2024

Checked by:

Sarah Williams

RF Operations Leader, Radio Laboratory

Company Signatory:

Ben Mercer Lead Project Engineer, Radio Laboratory

UKAS
TESTING
5772

SERIAL NO: UL-RPT-RP15051752-116A

TEST REPORT

VERSION 1.0

ISSUE DATE: 30 JANUARY 2024

This page has been left intentionally blank.

Table of Contents

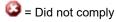
1. Customer Information	4
2. Summary of Testing	5 5 5 6 6
3. Equipment Under Test (EUT) 3.1. Identification of Equipment Under Test (EUT) 3.2. Description of EUT 3.3. Modifications Incorporated in the EUT 3.4. Additional Information Related to Testing 3.5. Support Equipment	7 7 7 7 7 8
4. Operation and Monitoring of the EUT during Testing	9 9 9
5. Measurements, Examinations and Derived Results 5.1. General Comments 5.2. Test Results 5.2.1 Transmitter Duty Cycle 5.2.2. Transmitter Peak EIRP 5.2.3. Transmitter 6 dB Bandwidth 5.2.4 Transmitter 20 dB Bandwidth 5.2.5. Transmitter Radiated Spurious Emissions 5.2.6. Transmitter Frequency Stability (Temperature Variation) 5.2.7. Transmitter Frequency Stability (Voltage Variation) 5.2.8. Transmitter AC Conducted Spurious Emissions	
6 Measurement Uncertainty & Decision Rule	56
7. Report Revision History	57

1. Customer Information

Company Name:	Inxpect S.p.A
Address:	Via Serpente 91, 25131 Brescia (BS) Italy

2. Summary of Testing

2.1. General Information


Specification Reference:	47CFR15.255
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Radio Frequency Devices) – Section 15.255
Specification Reference:	47CFR15.207 and 47CFR15.209
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Sections 15.207 & 15.209
Specification Reference:	47CFR15.215
Specification Title:	Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.215
Site Registration:	685609
FCC Lab. Designation No.:	UK2011
Location of Testing:	Unit 3 Horizon, Wade Road, Kingsland Business Park, Basingstoke, Hampshire, RG24 8AH, United Kingdom
Test Dates:	05 December 2023 to 23 January 2024

2.2. Summary of Test Results

FCC Reference (47CFR)	Measurement	Result
Part 15.255(c)(2)	Transmitter Duty Cycle	Ø
Part 15.255(c)(2)	Transmitter EIRP	Ø
Part 15.255(e)(1)	Transmitter 6 dB Bandwidth	②
Part 15.215(c)	Transmitter 20 dB Bandwidth	②
Part 15.255(d) / 15.209	Transmitter Spurious Emissions	②
Part 15.255(f)	Transmitter Frequency Stability (Temperature & Voltage Variation)	②
Part 15.207	AC Conducted Emissions	②
Key to Results		•

= Complied

VERSION 1.0 ISSUE DATE: 30 JANUARY 2024

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
Reference:	FCC KDB 174176 D01 Line Conducted FAQ v01r01 June 3, 2015
Title:	AC Power-Line Conducted Emissions Frequently Asked Questions

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

Page 6 of 57

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Inxpect
Model Name or Number:	S203A
Test Sample Serial Number:	PR013 (Profile 2)
Hardware Version:	1.0
Software Version:	N/A
Firmware Version:	RADAR 6.3.2.6 + RadioConfig.h v1.0 + RadioConfig-WW.h v1.0 + RadioConfig-S203A.h v1.0
FCC ID:	2ANOS-S203A
Date of Receipt:	04 December 2023

Brand Name:	Inxpect
Model Name or Number:	S203A
Test Sample Serial Number:	PR020 (Profile 3)
Hardware Version:	1.0
Software Version:	N/A
Firmware Version:	RADAR 6.3.2.6 + RadioConfig.h v1.0 + RadioConfig-WW.h v1.0 + RadioConfig-S203A.h v1.0
FCC ID:	2ANOS-S203A
Date of Receipt:	04 December 2023

3.2. Description of EUT

The equipment under test was a 60GHz radar sensor using FMCW.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Category of Equipment:	Transceiver	
Modulation Type:	FMCW	
Power Supply Requirement:	Nominal 12 VDC	
Antenna Type:	Integrated Patch	
Antenna Gain:	11.0 dBi	
Transmit Frequency Range:	61.2 GHz to 63.4 GHz	
Transmit Channels Tested:	Channel ID	Channel Frequency (GHz)
	Single	62.3

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

Description:	Control Unit (Profile 2)
Brand Name:	Inxpect
Model Name or Number:	ISC-B01
Serial Number:	ZZ055

Description:	Control Unit (Profile 3)
Brand Name:	Inxpect
Model Name or Number:	C201B
Serial Number:	ZZ999

Description:	CAN Cable. Length 10 m.
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

Description:	CAN Termination
Brand Name:	Not marked or stated
Model Name or Number:	Not marked or stated
Serial Number:	Not marked or stated

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

Transmit Mode: transmitting at maximum power with a FMCW modulated signal.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

- Transmit tests: The EUT powered up in transmit mode. No configuration was required.
- The EUT was connected to either an ISC-B01 or C201B control unit via a 10m CAN cable The
 control units supplied 12 VDC to the EUT via the CAN cable. The control units were powered by a
 24 VDC bench DC power supply. The DC power supply was connected to a 120 VAC 60 Hz
 single phase main supply.
- Transmitter radiated spurious emission tests were performed with the EUT in the
 position/orientation that produced the worst case with respect to emissions. The unused CAN port
 was fitted with a CAN termination.

Page 9 of 57

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to *Section 6: Measurement Uncertainties* for details.

In accordance with UKAS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

Page 10 of 57

VERSION 1.0

ISSUE DATE: 30 JANUARY 2024

5.2. Test Results

5.2.1 Transmitter Duty Cycle

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Date:	17 January 2024
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.255(c)(2)(iii)
Test Method Used:	ANSI C63.10 Section 7.5 and notes below

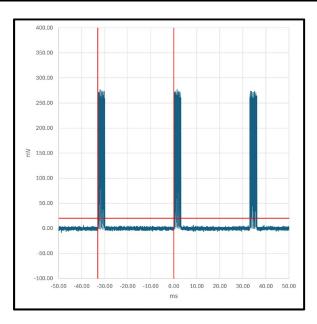
Environmental Conditions:

Temperature (°C):	24
Relative Humidity (%):	21

Note(s):

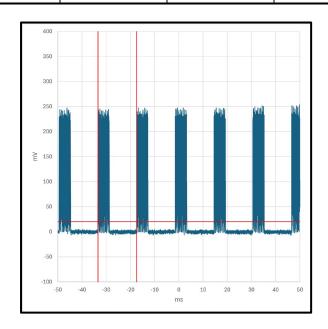
1. Transmitter duty cycle was measured using an RF detector connected to a digital storage oscilloscope. The raw data was captured and analysed to calculate the duty cycle.

On Time / [Period or 100 ms whichever is the lesser].


Profile 2 duty cycle: 3.07 ms / 33.00 ms = 0.0930 Profile 3 duty cycle: 4.74 ms / 16.00 ms = 0.2944

2. Transmitter off times exceeding 2 ms were summed over a rolling 33 ms period. The minimum combined off time in any 33 ms period was recorded below.

Transmitter Duty Cycle (continued)


Results: Profile 2

Tx On Duration (ms)	Period (ms)	Duty Cycle (%)	Minimum Tx Off Duration (ms)	Tx Off Limit (ms)	Result
3.07	33.00	9.30	29.93	>25.5	Complied

Results: Profile 3

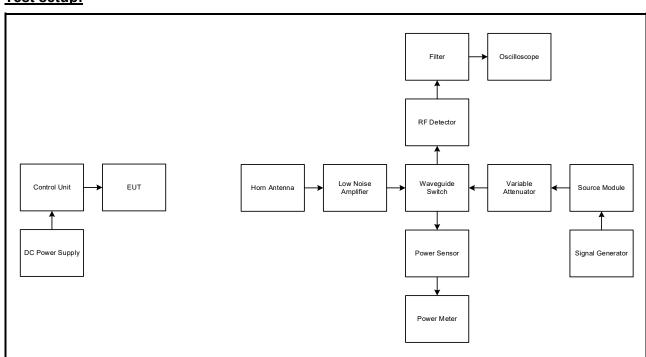
Tx On Duration (ms)	Period (ms)	Duty Cycle (%)	Minimum Tx Off Duration (ms)	Tx Off Limit (ms)	Result
4.71	16.00	29.44	22.58	>16.5	Complied

5.2.2. Transmitter Peak EIRP

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Date:	23 January 2024
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.255(c)(2)(iii)
Test Method Used:	ANSI C63.10 Section 9.11


Environmental Conditions:

Temperature (°C):	19
Relative Humidity (%):	46

Note(s):

- 1. The measurement antenna was connected to an RF detector via a low noise amplifier and 4-way waveguide switch. A CW signal generator and wideband thermocouple power sensor were connected to the remaining two ports.
- 2. The RF detector was connected to the 50 Ω input of a digital storage oscilloscope via a 10 MHz low pass filter.
- 3. The EUT peak voltage was measured on the oscilloscope. The waveguide switch was then rotated to connect the signal generator to the RF detector, and the signal generator output was adjusted to match the previously measured voltage. The waveguide switch was then rotated to connect the signal generator output to the thermocouple power sensor, and the signal generator output power was measured.
- 4. The substituted level recorded below includes the calibrated path loss of the waveguide switch.

Test setup:

VERSION 1.0

ISSUE DATE: 30 JANUARY 2024

Transmitter Peak EIRP (continued)

Results: Profile 2

Frequency (GHz)	Level (V)	Substituted EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Result
62.300	2.8	13.1	14.0	0.9	Complied

Results: Profile 3

Frequency (GHz)	Level (V)	Substituted EIRP Level (dBm)	Limit (dBm)	Margin (dB)	Result
62.300	5.7	19.9	20.0	0.1	Complied

Test Equipment Used:

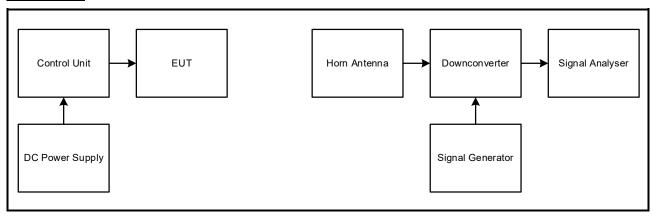
Asset No.	Instrument	Manufacturer	Туре No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0010	3m RSE chamber	Rainford Solutions	N/A	N/A	11 Oct 2024	12
M2041	Thermohygrometer	Testo	608-H1	45119912	27 Dec 2024	12
A3236	Amplifier	Sage Millimeter	SBL- 5037533550- 1515-E1	18199-01	Calibrated before Use	-
A2964	Horn Antenna	Link Microtek	AM15HA-ULV1	14930	24 Jun 2025	36
G0640	Signal Generator	Keysight	E8257D	US00000055	10 Jan 2025	24
M2070	Oscilloscope	Keysight	DSOX2024A	MY59125508	22 Feb 2024	24
M281	Power Meter	Hewlett Packard	E4418A	GB37170210-01	18 May 2024	12
M291	Power Sensor	Hewlett Packard	V8486A	US39010039	01 Feb 2025	24
M1255	Source Module	Hewlett Packard	83557A	2948A00169	Calibrated before use	-
A3252	Low Pass Filter	Mini-Circuits	BLP-10.7+	YUU54901833	Calibrated before use	-
A3232	Attenuator	Sage Millimeter	STA-30-15-M2	18199-01	Calibrated before use	-
A3233	RF Detector	Sage Millimeter	SFD-503753- 15SF-P1	18199-01	Calibrated before use	-

5.2.3. Transmitter 6 dB Bandwidth

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Dates:	05 December 2023 to 22 January 2024
Test Sample Serial Numbers:	PR013 & PR020		

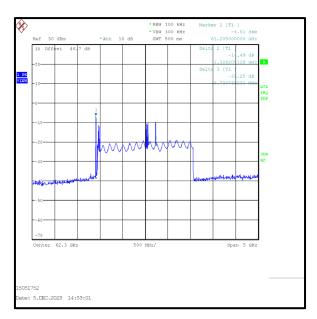
FCC Reference:	Part 15.255(e)(1)
Test Method Used:	ANSI C63.10 Section 9.3


Environmental Conditions:

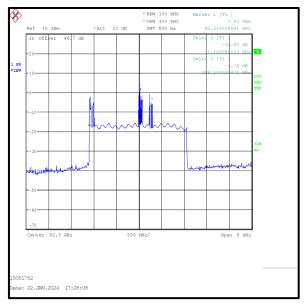
Temperature (°C):	18 to 21
Relative Humidity (%):	45 to 50

Note(s):

1. The analyser span was set to between two and three times the emission bandwidth. The RBW was set to 100 kHz, and the VBW was set to three times the RBW. The marker delta function was used to measure 6 dB down from the peak on both sides of the emission. The resulting frequency delta between the two markers was recorded as the emission bandwidth.


Test setup:

Transmitter 6 dB Bandwidth (continued)


Results: Profile 2

Channel	RBW (kHz)	VBW (kHz)	Emission Bandwidth (MHz)
Single	100	300	1334.936

Results: Profile 3

	Channel	RBW (kHz)	VBW (kHz)	Emission Bandwidth (MHz)
ſ	Single	100	300	1378.205

Single Channel

Transmitter 6 dB Bandwidth (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0010	3m RSE chamber	Rainford Solutions	N/A	N/A	11 Oct 2024	12
M2041	Thermohygrometer	Testo	608-H1	45119912	27 Dec 2024	12
G0640	Signal Generator	Keysight	E8257D	US00000055	10 Jan 2025	24
M2069	Downconverter	Virginia Diodes	WR15.0 SAX	SAX 394	16 Oct 2025	24
A2964	Horn Antenna	Link Microtek	AM15HA-ULV1	14930	24 Jun 2025	36
M1886	Test Receiver	Rohde & Schwarz	ESU26	100554	02 Aug 2024	12

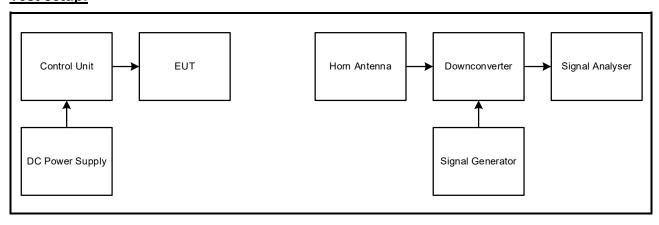
Page 17 of 57

5.2.4 Transmitter 20 dB Bandwidth

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Date:	05 December 2023
Test Sample Serial Numbers:	PR013 & PR020		

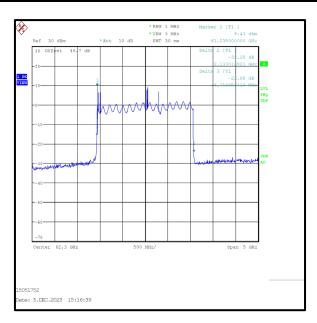
FCC Reference:	Part 15.215(c)
Test Method Used:	ANSI C63.10 Section 6.9.2


Environmental Conditions:

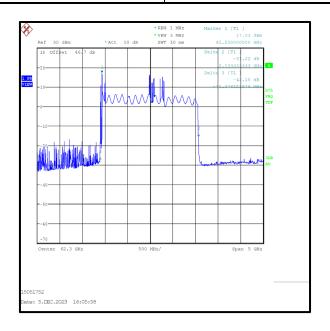
Temperature (°C):	18
Relative Humidity (%):	50

Note(s):

- 1. Due to instrument limitations, it was not possible to set the RBW in the range 1% to 5% of OBW as required by ANSI C63.10 Section 6.9.2. An enquiry was submitted to the FCC OET and it was deemed acceptable to use a minimum RBW of 1 MHz.
- 2. The signal analyser resolution bandwidth was set to 1 MHz and the video bandwidth to 3 MHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The span was set to 5 GHz. The marker delta function was used to measure 20 dB down from the peak on both sides of the emission. The resulting frequency delta between the two markers was recorded as the 20 dB bandwidth.


Test setup:

Transmitter 20 dB Bandwidth (continued)


Results: Profile 2

Channel	20 dB Bandwidth (MHz)	
Single	2139.423	

Results: Profile 3

Channel	20 dB Bandwidth (MHz)
Single	2174.679

VERSION 1.0 ISSUE DATE: 30 JANUARY 2024

Transmitter 20 dB Bandwidth (continued)

Test Equipment Used

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
K0010	3m RSE chamber	Rainford Solutions	N/A	N/A	11 Oct 2024	12
M2041	Thermohygrometer	Testo	608-H1	45119912	27 Dec 2024	12
G0640	Signal Generator	Keysight	E8257D	US00000055	10 Jan 2025	24
M2069	Downconverter	Virginia Diodes	WR15.0 SAX	SAX 394	16 Oct 2025	24
A2964	Horn Antenna	Link Microtek	AM15HA-ULV1	14930	24 Jun 2025	36
M1886	Test Receiver	Rohde & Schwarz	ESU26	100554	02 Aug 2024	12

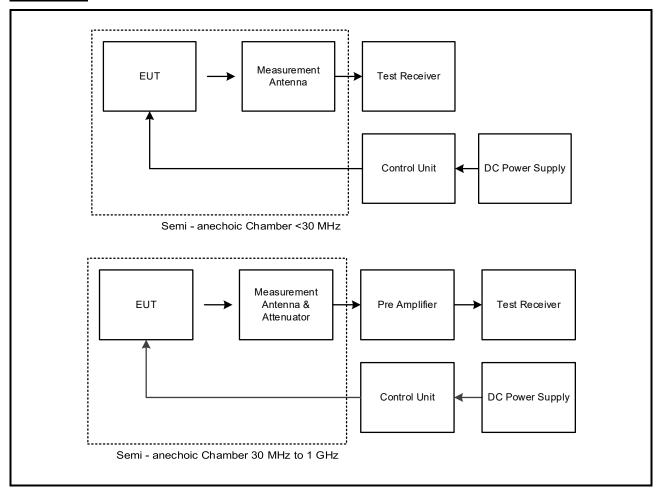
Page 20 of 57

5.2.5. Transmitter Radiated Spurious Emissions

Test Summary:

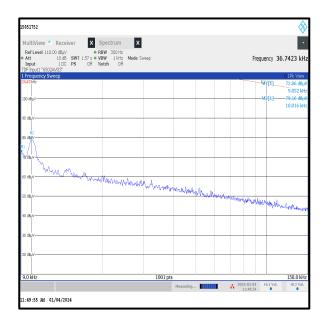
Test Engineers:	Shamraiz Ashiq, Ben Mercer & Andrew Edwards	Test Dates:	18 December 2023 to 04 January 2024
Test Sample Serial Numbers:	PR013 & PR020		

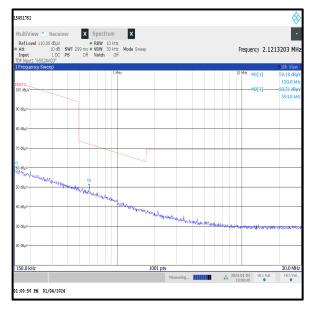
FCC Reference:	Part 15.255(d) / 15.209
Test Method Used:	ANSI C63.10 Sections 6.3, 6.4 and 6.5
Frequency Range	9 kHz to 1000 MHz

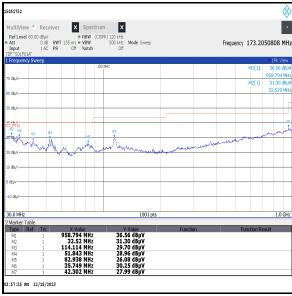

Environmental Conditions:

Temperature (°C):	17 to 20
Relative Humidity (%):	44 to 52

Note(s):

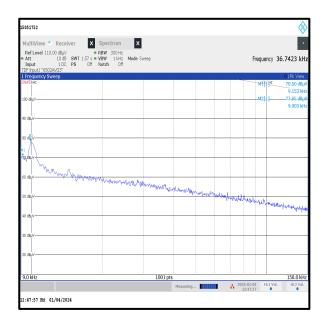

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. All other emissions shown on the pre-scan plot were investigated and found to be ambient, >20 dB below the applicable limit or below the measurement system noise floor.
- 3. Measurements below 30 MHz were performed in a semi-anechoic chamber (Asset Number K0001) at 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. The limit was extrapolated to 3 metres in accordance with ANSI C63.10 clause 6.4.3 using the method described in clause 6.4.4.2. ANSI C63.10 clause 5.2 states an alternative test site that can demonstrate equivalence to an open area test site may be used for measurements below 30 MHz. Therefore, measurements were performed in a semi-anechoic chamber. The correlation data between semi-anechoic chamber and an open field test site is available upon request.
- 4. Measurements from 30 MHz to 1 GHz were performed in a semi-anechoic chamber (Asset Number K0001) at a distance of 3 metres. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver was configured as follows: For 9 kHz to 150 kHz, the resolution bandwidth was set to 300 Hz and video bandwidth 1 kHz. A peak detector was used and trace mode was Max Hold. For 150 kHz to 30 MHz, the resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz, trace mode was Max Hold. For 30 MHz to 1 GHz, the resolution bandwidth was set to 120 kHz and video bandwidth 500 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.

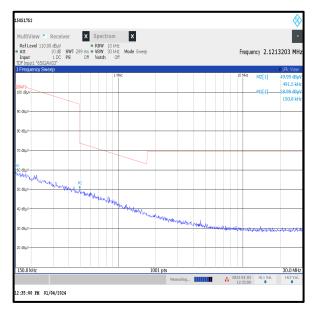

Test setup:



Results: Profile 2

Frequency (MHz)	Antenna Polarity	Quasi-Peak Level (dBμV/m)	Quasi-Peak Limit (dBμV/m)	Margin (dB)	Result
37.766	Vertical	26.9	40.0	13.1	Complied
51.943	Vertical	27.8	40.0	12.2	Complied
82.124	Vertical	24.6	40.0	15.4	Compiled
114.214	Vertical	26.9	43.5	16.6	Compiled







Results: Profile 3

Frequency (MHz)	Antenna Polarity	Quasi-Peak Level (dBμV/m)	Quasi-Peak Limit (dBμV/m)	Margin (dB)	Result
45.706	Vertical	30.3	40.0	9.7	Complied
52.530	Vertical	29.2	40.0	10.8	Complied
80.010	Vertical	31.4	40.0	8.6	Complied
93.418	Vertical	35.3	43.5	8.2	Complied
162.041	Vertical	23.2	43.5	20.3	Complied

VERSION 1.0

ISSUE DATE: 30 JANUARY 2024

Transmitter Radiated Spurious Emissions (continued)

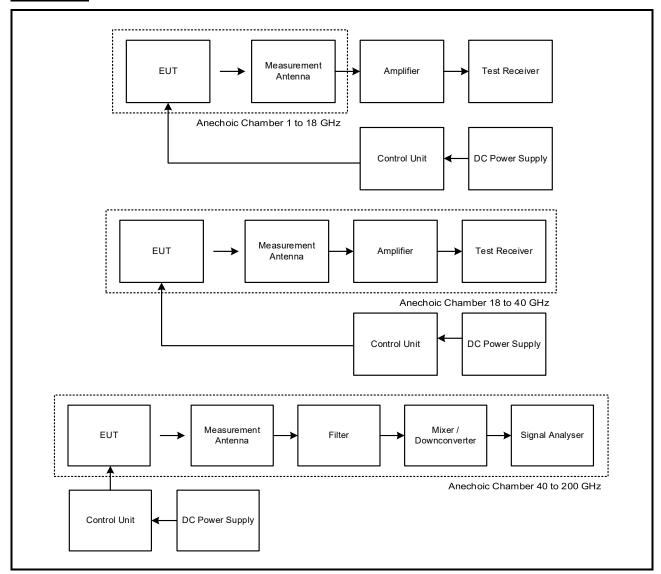
Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Dates:	11 December 2023 to 20 December 2023
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.255(d) / 15.209	
Test Method Used:	ANSI C63.10 Sections 6.3, 6.6, 9.8, 9.9, 9.12 & 9.13	
Frequency Range:	1 GHz to 200 GHz	

Environmental Conditions:

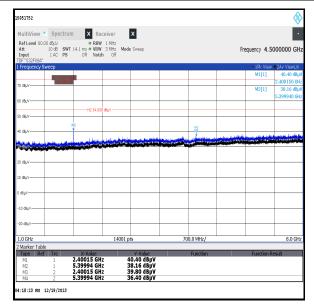
Temperature (°C):	17 to 20
Relative Humidity (%):	45 to 52

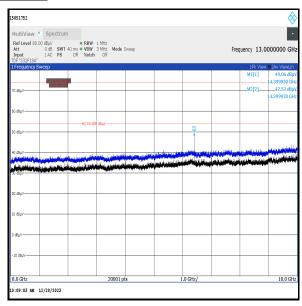

Note(s):

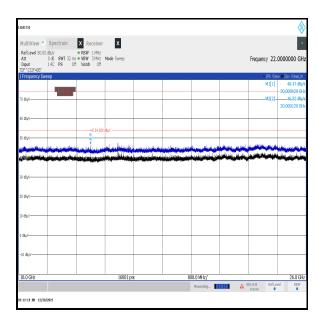
- 1. The final measured value, for the given emission in the field strength result tables, incorporates the calibrated antenna factor and cable loss.
- 2. The emission at approximately 62.3 GHz is the EUT fundamental.
- 3. All other emissions were >20 dB below the applicable limit, below the noise floor of the measurement system, or mixing products.
- 4. Measurements from 1 GHz to 18 GHz were performed in a semi-anechoic chamber (Asset Number K226202) at 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 5. Measurements from 18 GHz to 40 GHz were performed in a semi-anechoic chamber (Asset Number K226202) at 1 metre. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable
- 6. Part 15.255(d)(3) defines a power density limit of 90 pW/cm² at 3 metres for spurious emissions between 40 GHz and 200 GHz. This was converted to a field strength limit of 85.31 dBuV/m using the equations provided in section 9.6 of ANSI C63.10.
- 7. Measurements distances above 40 GHz were determined using the procedure defined in section 9.8 of ANSI C63.10. Measurements were made at the following distances:

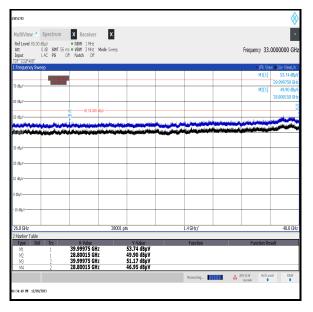
40 GHz to 200 GHz - 1 metre

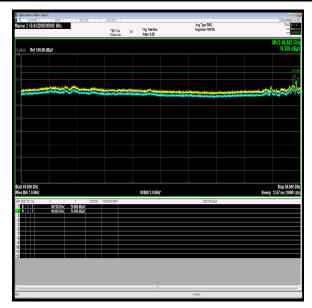
- 8. Where measurements were performed at a distance other than that specified by the limit, a correction factor was calculated using the equation provided in section 9.4 of ANSI C63.10. This correction factor was included in the transducer factor entered on the signal analyser.
- 9. *In accordance with ANSI C63.10 Section 6.6.4.3 Note 1, if the maximized peak measured value complies with the average limit, then it is unnecessary to perform an average measurement.

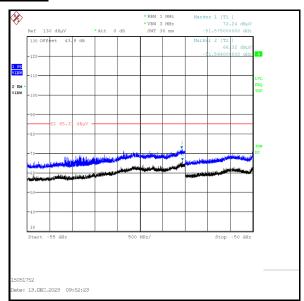

Test setup:

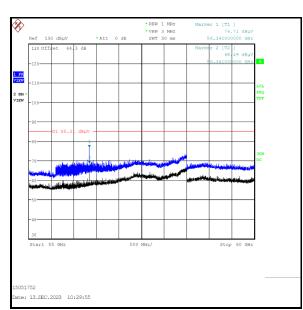


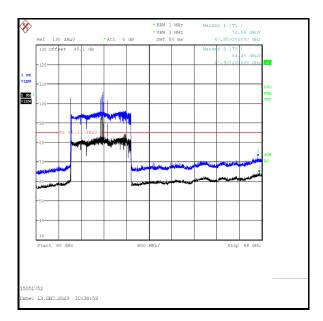

Results: Profile 2

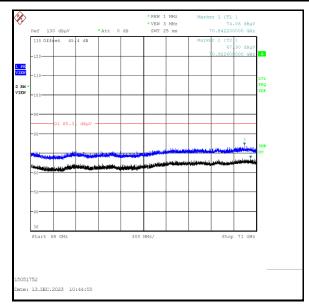

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBμV/m)	Margin (dB)	Result
2400.030	Horizontal	42.2	54.0*	11.8	Compiled
5399.811	Horizontal	40.8	54.0*	13.2	Compiled
14400.071	Horizontal	51.3	54.0*	2.7	Compiled
20000.020	Horizontal	50.2	54.0*	3.8	Compiled
20759.520	Horizontal	49.9	54.0*	4.1	Complied
28799.861	Horizontal	51.1	54.0*	2.9	Compiled
39999.768	Horizontal	53.8	54.0*	0.2	Compiled

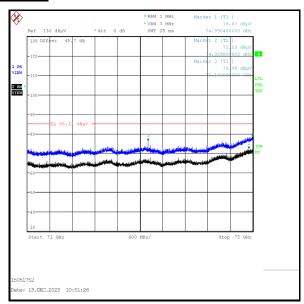

Page 27 of 57

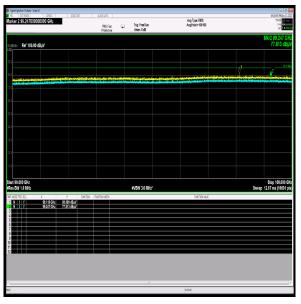


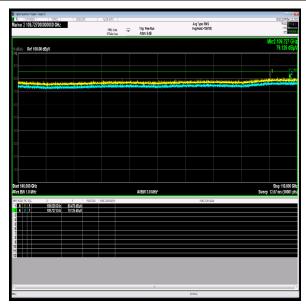


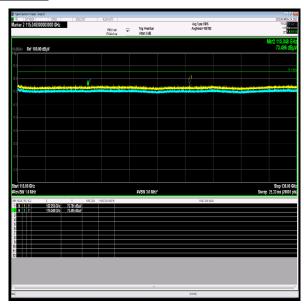






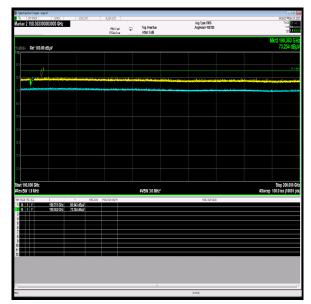


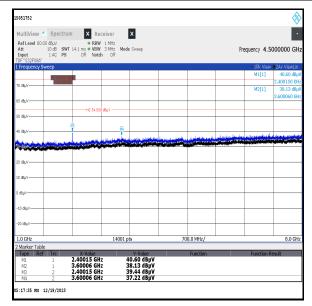


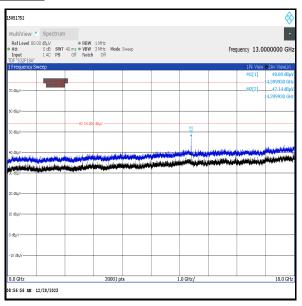


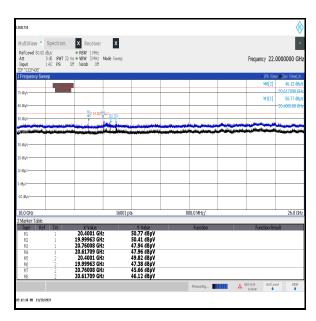


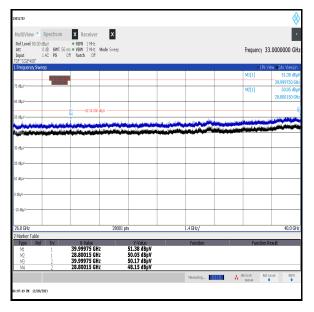


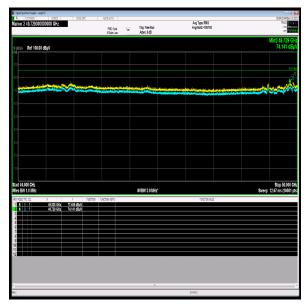


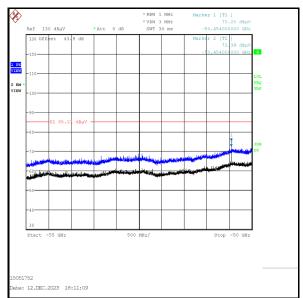


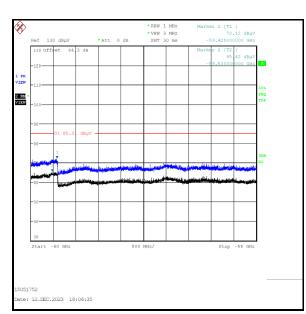


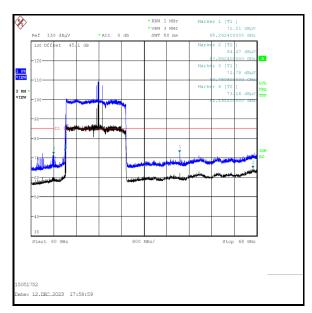

Results: Profile 3

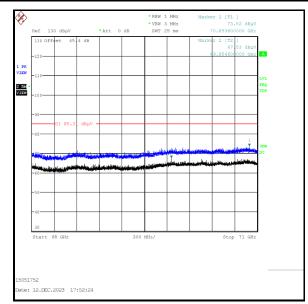

Frequency (MHz)	Antenna Polarity	Peak Level (dBμV/m)	Average Limit (dBμV/m)	Margin (dB)	Result
2400.048	Horizontal	43.0	54.0*	11.0	Compiled
3600.014	Horizontal	40.0	54.0*	14.0	Compiled
14400.291	Horizontal	50.9	54.0*	3.1	Compiled
19999.894	Horizontal	51.1	54.0*	2.9	Compiled
20399.969	Horizontal	52.0	54.0*	2.0	Compiled
20616.738	Horizontal	50.8	54.0*	3.2	Compiled
20758.313	Horizontal	49.1	54.0*	4.9	Compiled
28799.868	Horizontal	50.8	54.0*	3.2	Compiled
40000.021	Horizontal	50.2	54.0*	3.8	Compiled

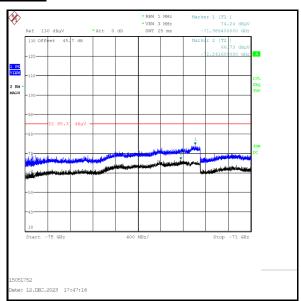

Page 33 of 57

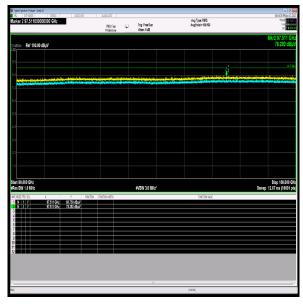






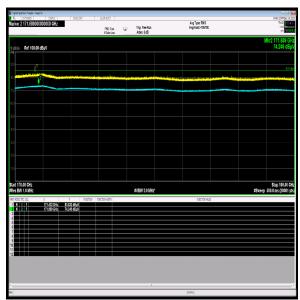


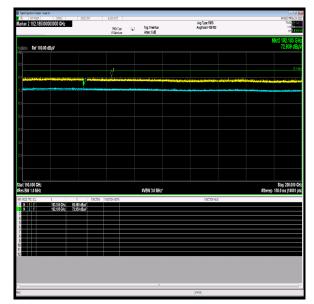






Transmitter Radiated Spurious Emissions (continued)





Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Transmitter Radiated Spurious Emissions (continued)

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying tables.

Transmitter Radiated Spurious Emissions (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2041	Thermohygrometer	Testo	608-H1	45119912	27 Dec 2024	12
M226553	Thermohygrometer	Testo	608-H1	83800731	28 Dec 2024	12
M2040	Thermohygrometer	Testo	608-H1	45124934	27 Dec 2024	12
K0010	3m RSE Chamber	MVG Industries	N/A	N/A	11 Oct 2024	12
K0001	3m RSE Chamber	MVG Industries	N/A	N/A	06 Sep 2024	12
K226202	3m RSE Chamber	Albatross Projects	N/A	N/A	21 Apr 2024	12
M1886	Test Receiver	Rohde & Schwarz	ESU26	100554	02 Aug 2024	12
M236226	Test Receiver	Rohde & Schwarz	ESW26	103134	21 Apr 2024	12
M1832	Signal Analyser	Keysight	N9010A	MY53470303	18 May 2024	24
M227312	Test Receiver	Rohde & Schwarz	ESW44	103203	11 May 2024	12
A2963	Antenna	Link Microtek	AM19HA-ULV1	14929	20 Jun 2025	36
A2964	Antenna	Link Microtek	AM15HA-ULV1	14930	24 Jun 2025	36
A2967	Antenna	Link Microtek	AM10HA-ULV1	14933	13 Jul 2025	36
A2968	Antenna	Link Microtek	AM7HA-ULV1	14934	06 Mar 2024	12
A2969	Antenna	Link Microtek	AM4HA-ULV1	14935	06 Mar 2024	12
A231045	Antenna	Schwarzbeck	HWRD 750	00064	25 Mar 2025	12
A231043	Antenna	Schwarzbeck	BBHA 9120 B	00834	25 Mar 2025	12
A231050	Antenna	Schwarzbeck	BBHA 9170	01280	25 Mar 2024	12
A231925	Antenna	Teseq, Inc	CBL6111D	63584	27 Apr 2024	12
A3165	Antenna	ETS-Lindgren	6502	00224383	13 Apr 2024	12
A219915	Downconverter	Virginia Diodes	WR19SAX	SAX 897	14 Apr 2024	24
M2069	Downconverter	Virginia Diodes	WR15SAX	SAX 394	16 Oct 2025	24
M2065	Downconverter	Virginia Diodes	WR10SAX	SAX 393	30 July 2025	24
M2066	Downconverter	Virginia Diodes	WR6.5SAX	SAX 392	31 May 2024	24
M2067	Downconverter	Virginia Diodes	WR4.3SAX	SAX 391	31 May 2024	24
G0640	Signal Generator	Keysight	E8257D	US00000055	10 Jan 2025	24
A3213	High Pass Filter	Sage Millimeter	SWF-75370340- 10-H1	18199-01	25 Aug 2024	24
A3212	Low Pass Filter	Sage Millimeter	SWF-50354340- 22-L1	B10754-01	25 Aug 2024	24
A3010	Attenuator	AtlanTecRF	AN18-06	208801#5	27 Apr 2024	12
A3154	Pre-Amplifier	Com-Power	PAM-103	18020012	21 Aug 2024	12
A231863	Amplifier	Atlantic Microwave	A-LNAKX- 380116-S5S5	221044001	25 Mar 2024	12
A230567	Amplifier	Atlantic Microwave	A-HPAKX- 380143-K5K5	VJ3601001	25 Mar 2024	12

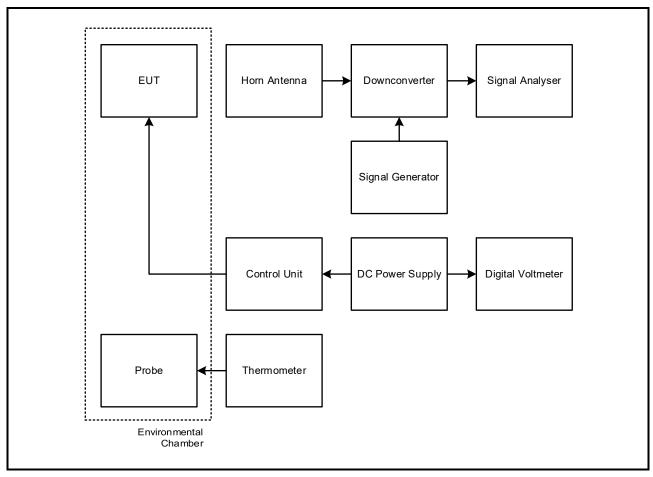
ISSUE DATE: 30 JANUARY 2024

5.2.6. Transmitter Frequency Stability (Temperature Variation)

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Date:	28 December 2023
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.255(f)
Test Method Used:	ANSI C63.10 Section 9.14


Environmental Conditions:

Ambient Temperature (°C):	19
Ambient Relative Humidity (%):	50

Note(s):

- 1. The 20 dB emission bandwidth was recorded on a signal analyser and compared to the lower and upper emission edges.
- 2. Temperature was monitored throughout the test with a calibrated digital thermometer.

Test setup:

Transmitter Frequency Stability (Temperature Variation) (continued)

Results: Profile 2 / Lower Band Edge

Temperature (°C)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Result
-20	57000.000	61200.000	Complied
-10	57000.000	61195.000	Complied
0	57000.000	61205.000	Complied
10	57000.000	61230.000	Complied
20	57000.000	61190.000	Complied
30	57000.000	61230.000	Complied
40	57000.000	61225.000	Complied
50	57000.000	61205.000	Complied
Worst-case I	Margin (MHz)	4190	.000

Results: Profile 2 / Upper Band Edge

Temperature (°C)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Result
-20	64000.000	63365.000	Complied
-10	64000.000	63365.000	Complied
0	64000.000	63365.000	Complied
10	64000.000	63365.000	Complied
20	64000.000	63365.000	Complied
30	64000.000	63365.000	Complied
40	64000.000	63365.000	Complied
50	64000.000	63365.000	Complied
Worst-case	Margin (MHz)	635.	000

Transmitter Frequency Stability (Temperature Variation) (continued)

Results: Profile 3 / Lower Band Edge

Temperature (°C)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Result
-20	57000.000	61230.000	Complied
-10	57000.000	61229.872	Complied
0	57000.000	61205.000	Complied
10	57000.000	61225.000	Complied
20	57000.000	61210.000	Complied
30	57000.000	61205.000	Complied
40	57000.000	61210.000	Complied
50	57000.000	61195.000	Complied
Worst-case I	Margin (MHz)	4195	.000

Results: Profile 3 / Upper Band Edge

Temperature (°C)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Result
-20	64000.000	63360.000	Complied
-10	64000.000	63365.000	Complied
0	64000.000	63360.000	Complied
10	64000.000	63360.000	Complied
20	64000.000	63365.000	Complied
30	64000.000	63360.000	Complied
40	64000.000	63360.000	Complied
50	64000.000	63360.000	Complied
Worst-case	Margin (MHz)	635.	000

ISSUE DATE: 30 JANUARY 2024

<u>Transmitter Frequency Stability (Temperature Variation) (continued)</u>

Test Equipment Used:

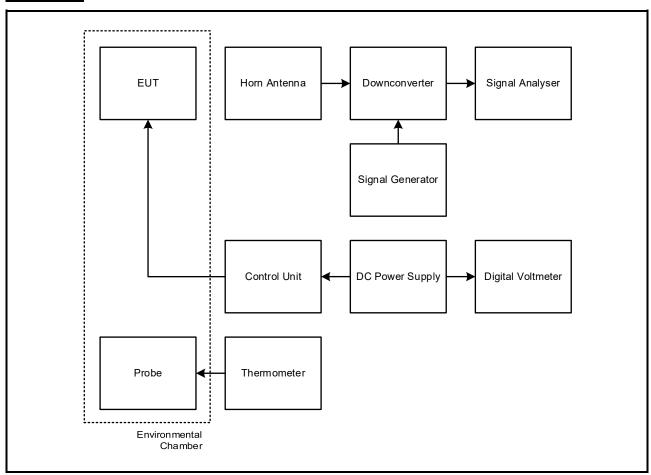
Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2004	Thermohygrometer	Testo	608-H1	45046425	27 Dec 2024	12
M1886	Test Receiver	Rohde & Schwarz	ESU26	100554	02 Aug 2024	12
M2069	Downconverter	Virginia Diodes	WR15SAX	SAX 394	16 Oct 2025	24
M2053	Thermomter	Fluke Corporation	5211	4232071WS	13 Mar 2024	12
M1251	Multimeter	Fluke Corporation	175	89170179	08 Jun 2024	12
G0640	Signal Generator	Keysight Technologies	E8257D	US00000055	10 Jan 2025	24
E235136	Environmental Chamber	Espec	PU-3J	15021355	Calibrated before use	-
A2964	Antenna	Link Microtek.	AM15HA-ULV1	14930	24 Jun 2025	36

5.2.7. Transmitter Frequency Stability (Voltage Variation)

Test Summary:

Test Engineers:	Shamraiz Ashiq & Ben Mercer	Test Date:	28 December 2023
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.255(f)
Test Method Used:	ANSI C63.10 Section 9.14


Environmental Conditions:

Ambient Temperature (°C):	19
Ambient Relative Humidity (%):	50

Note(s):

- 1. The 20 dB emission bandwidth was recorded on a signal analyser and compared to the lower and upper emission edges.
- 2. The DC power supply voltage was set to 85% and 115% of the stated Control Unit input voltage of 24 VDC.
- 3. Voltage was monitored throughout the test with a calibrated digital voltmeter.

Test setup:

Transmitter Frequency Stability (Voltage Variation) (continued)

Results: Profile 2 / Lower Band Edge

Supply Voltage (VDC)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Result
20.4	57000.000	61190.000	Complied
24.0	57000.000	61190.000	Complied
27.6	57000.000	61230.000	Complied
Worst-case Margin (MHz)		4190	.000

Results: Profile 2 / Upper Band Edge

Supply Voltage (VDC)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Result
20.4	64000.000	63365.000	Complied
24.0	64000.000	63365.000	Complied
27.6	64000.000	63365.000	Complied
Worst-case Margin (MHz)		635.	000

Results: Profile 3 / Lower Band Edge

Supply Voltage (VDC)	Lower Band Edge Frequency (MHz)	Lower 20 dB Emission Bandwidth Frequency (MHz)	Result
20.4	57000.000	61230.000	Complied
24.0	57000.000	61210.000	Complied
27.6	57000.000	61230.000	Complied
Worst-case Margin (MHz)		4210	.000

Results: Profile 3 / Upper Band Edge

Supply Voltage (VDC)	Upper Band Edge Frequency (MHz)	Upper 20 dB Emission Bandwidth Frequency (MHz)	Result
20.4	64000.000	63360.000	Complied
24.0	64000.000	63365.000	Complied
27.6	64000.000	63360.000	Complied
Worst-case Margin (MHz)		635.	000

Transmitter Frequency Stability (Voltage Variation) (continued)

Test Equipment Used:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2004	Thermohygrometer	Testo	608-H1	45046425	27 Dec 2024	12
M1886	Test Receiver	Rohde & Schwarz	ESU26	100554	02 Aug 2024	12
M2069	Downconverter	Virginia Diodes	WR15SAX	SAX 394	16 Oct 2025	24
M2053	Thermomter	Fluke Corporation	5211	4232071WS	13 Mar 2024	12
M1251	Multimeter	Fluke Corporation	175	89170179	08 Jun 2024	12
G0640	Signal Generator	Keysight Technologies	E8257D	US00000055	10 Jan 2025	24
E235136	Environmental Chamber	Espec	PU-3J	15021355	Calibrated before use	-
A2964	Antenna	Link Microtek.	AM15HA-ULV1	14930	24 Jun 2025	36
S0557	DC Power supply	Thurlby Thandar	EL303R	395819	Calibrated before use	-

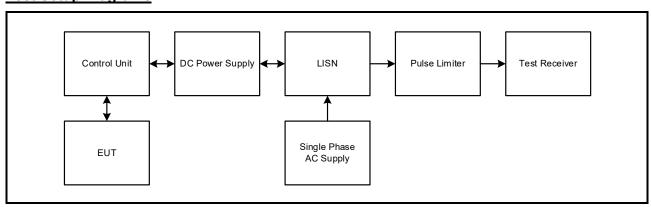
ISSUE DATE: 30 JANUARY 2024

5.2.8. Transmitter AC Conducted Spurious Emissions

Test Summary:

Test Engineer:	Alison Johnston	Test Dates:	09 January 2024 to 16 January 2024
Test Sample Serial Numbers:	PR013 & PR020		

FCC Reference:	Part 15.207
Test Method Used:	ANSI C63.10 Section 6.2, FCC KDB 174176 and notes below


Environmental Conditions:

Temperature (°C):	22
Relative Humidity (%):	40

Note(s):

- 1. The EUT was connected to the Control Unit via CAN cable. The Control Unit supplied 12 VDC to the EUT. The Control Unit was powered from a 24 VDC bench power supply. The bench power supply was connected to a 120 VAC 60 Hz single phase supply via a LISN.
- 2. In accordance with FCC KDB 174176 Q4, all tests above were also performed with a 240 VAC 60 Hz single phase supply.
- 3. Pre-scans were performed and markers placed on the highest live and neutral measured levels. Final measurements were performed on the marker frequencies and the results entered into the tables below.
- 4. A pulse limiter was fitted between the LISN and the test receiver.

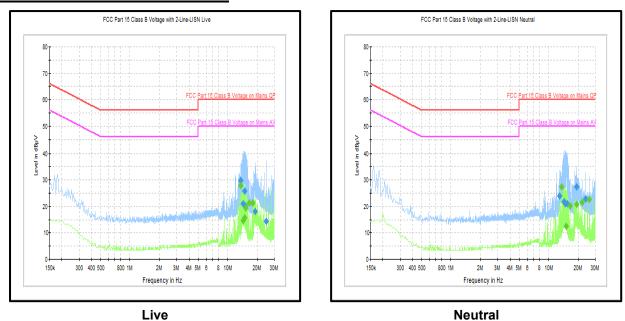
Test Setup Diagrams

Results: Profile 2 / Live / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.560000	Live	29.8	60.0	30.2	Complied
14.365500	Live	21.0	60.0	39.0	Complied
14.896500	Live	25.7	60.0	34.3	Complied
15.198000	Live	20.1	60.0	39.9	Complied
19.113000	Live	18.2	60.0	41.8	Complied
24.895500	Live	14.4	60.0	45.6	Complied

Results: Profile 2 / Live / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.560000	Live	27.8	50.0	22.2	Complied
14.329500	Live	14.6	50.0	35.4	Complied
14.941500	Live	15.6	50.0	34.4	Complied
15.360000	Live	19.3	50.0	30.7	Complied
16.521000	Live	21.3	50.0	28.7	Complied
18.024000	Live	21.2	50.0	28.8	Complied


Results: Profile 2 / Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
12.916500	Neutral	23.9	60.0	36.1	Complied
14.361000	Neutral	21.8	60.0	38.2	Complied
14.820000	Neutral	21.1	60.0	38.9	Complied
15.463500	Neutral	20.9	60.0	39.1	Complied
19.387500	Neutral	27.3	60.0	32.7	Complied
24.000000	Neutral	22.8	60.0	37.2	Complied

Results: Profile 2 / Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
13.560000	Neutral	27.5	50.0	22.5	Complied
15.198000	Neutral	12.4	50.0	37.6	Complied
16.516500	Neutral	20.1	50.0	29.9	Complied
19.392000	Neutral	20.6	50.0	29.4	Complied
22.002000	Neutral	21.6	50.0	28.4	Complied
26.002500	Neutral	22.5	50.0	27.5	Complied

Results: Profile 2 / 120 VAC 60 Hz

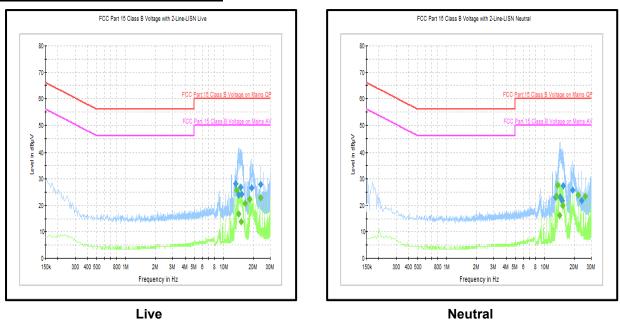
Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

Results: Profile 2 / Live / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.330500	Live	28.3	60.0	31.7	Complied
14.284500	Live	23.8	60.0	36.2	Complied
14.892000	Live	26.9	60.0	33.1	Complied
15.351000	Live	24.1	60.0	35.9	Complied
19.392000	Live	26.7	60.0	33.3	Complied
24.000000	Live	28.0	60.0	32.0	Complied

Results: Profile 2 / Live / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.560000	Live	25.8	50.0	24.2	Complied
14.280000	Live	16.7	50.0	33.3	Complied
15.153000	Live	13.9	50.0	36.1	Complied
16.512000	Live	20.7	50.0	29.3	Complied
18.573000	Live	22.3	50.0	27.7	Complied
24.000000	Live	23.0	50.0	27.0	Complied


Results: Profile 2 / Neutral / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
12.916500	Neutral	23.2	60.0	36.8	Complied
14.370000	Neutral	23.0	60.0	37.0	Complied
15.162000	Neutral	21.7	60.0	38.3	Complied
15.499500	Neutral	27.3	60.0	32.7	Complied
19.392000	Neutral	25.8	60.0	34.2	Complied
24.000000	Neutral	21.7	60.0	38.3	Complied

Results: Profile 2 / Neutral / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBμV)	Margin (dB)	Result
13.330500	Neutral	23.4	50.0	26.6	Complied
13.560000	Neutral	27.6	50.0	22.4	Complied
14.275500	Neutral	16.3	50.0	33.7	Complied
15.342000	Neutral	20.0	50.0	30.0	Complied
22.002000	Neutral	23.9	50.0	26.1	Complied
26.002500	Neutral	23.3	50.0	26.7	Complied

Results: Profile 2 / 240 VAC 60 Hz

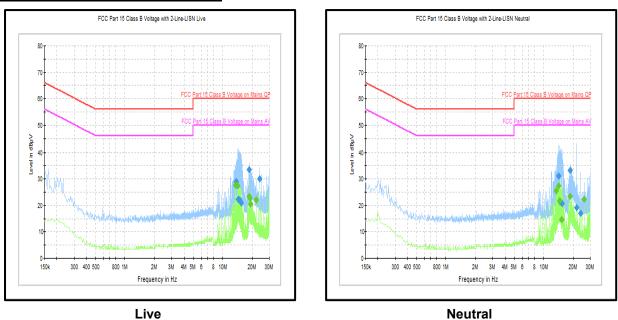
Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

Results: Profile 3 / Live / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.753500	Live	29.0	60.0	31.0	Complied
14.361000	Live	22.3	60.0	37.7	Complied
14.937000	Live	22.1	60.0	37.9	Complied
15.391500	Live	21.1	60.0	38.9	Complied
18.609000	Live	33.5	60.0	26.5	Complied
24.000000	Live	30.0	60.0	30.0	Complied

Results: Profile 3 / Live / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.560000	Live	27.7	50.0	22.3	Complied
14.199000	Live	27.3	50.0	22.7	Complied
18.609000	Live	23.4	50.0	26.6	Complied
19.068000	Live	22.7	50.0	27.3	Complied
19.468500	Live	20.5	50.0	29.5	Complied
22.002000	Live	22.0	50.0	28.0	Complied


Results: Profile 3 / Neutral / Quasi Peak / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dB _µ V)	Limit (dB _µ V)	Margin (dB)	Result
14.208000	Neutral	31.0	60.0	29.0	Complied
14.820000	Neutral	21.3	60.0	38.7	Complied
15.468000	Neutral	20.8	60.0	39.2	Complied
18.604500	Neutral	33.3	60.0	26.7	Complied
21.907500	Neutral	19.3	60.0	40.7	Complied
23.995500	Neutral	17.1	60.0	42.9	Complied

Results: Profile 3 / Neutral / Average / 120 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
13.384500	Neutral	25.6	50.0	24.4	Complied
14.190000	Neutral	27.5	50.0	22.5	Complied
14.608500	Neutral	21.8	50.0	28.2	Complied
15.360000	Neutral	14.7	50.0	35.3	Complied
18.604500	Neutral	23.5	50.0	26.5	Complied
26.002500	Neutral	22.2	50.0	27.8	Complied

Results: Profile 3 / 120 VAC 60 Hz

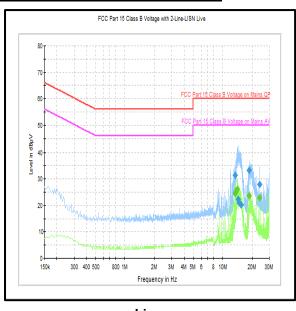
Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

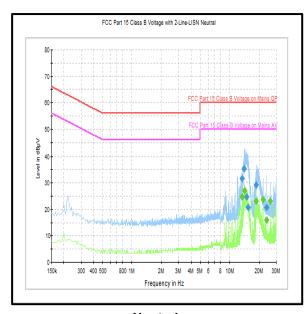
Results: Profile 3 / Live / Quasi Peak / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.384500	Live	31.5	60.0	28.6	Complied
14.361000	Live	22.2	60.0	37.8	Complied
14.829000	Live	21.0	60.0	39.0	Complied
15.468000	Live	20.2	60.0	39.8	Complied
18.591000	Live	33.2	60.0	26.8	Complied
24.000000	Live	28.0	60.0	32.0	Complied

Results: Profile 3 / Live / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.384500	Live	24.4	50.0	25.6	Complied
13.560000	Live	25.1	50.0	24.9	Complied
14.149500	Live	26.0	50.0	24.0	Complied
18.600000	Live	23.6	50.0	26.4	Complied
24.000000	Live	23.0	50.0	27.0	Complied
24.000000	Live	23.0	50.0	27.0	Complied


Results: Profile 3 / Neutral / Quasi Peak / 240 VAC 60 Hz


Frequency (MHz)	Line	Level (dBμV)	Limit (dB _µ V)	Margin (dB)	Result
13.380000	Neutral	31.7	60.0	28.3	Complied
14.149500	Neutral	35.3	60.0	24.7	Complied
14.932500	Neutral	24.7	60.0	35.3	Complied
15.427500	Neutral	20.6	60.0	39.4	Complied
18.604500	Neutral	29.1	60.0	30.9	Complied
24.000000	Neutral	20.7	60.0	39.3	Complied

Results: Profile 3 / Neutral / Average / 240 VAC 60 Hz

Frequency (MHz)	Line	Level (dBμV)	Limit (dBµV)	Margin (dB)	Result
13.375500	Neutral	24.6	50.0	25.4	Complied
14.185500	Neutral	27.0	50.0	23.0	Complied
18.595500	Neutral	23.2	50.0	26.8	Complied
22.002000	Neutral	23.7	50.0	26.3	Complied
24.000000	Neutral	15.9	50.0	34.1	Complied
26.002500	Neutral	23.2	50.0	26.8	Complied

Results: Profile 3 / 240 VAC 60 Hz

Live Neutral

Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying tables.

Test Equipment Used for Transmitter AC Conducted Spurious Emissions:

Asset No.	Instrument	Manufacturer	Type No.	Serial No.	Date Calibration Due	Cal. Interval (Months)
M2037	Thermohygrometer	Testo	608-H1	45124925	27 Dec 2024	12
A649	LISN	Rohde & Schwarz	ESH3-Z5	825562/008	23 Aug 2024	12
A1830	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100668	01 Jun 2024	12
M1124	Test Receiver	Rohde & Schwarz	ESIB 26	100046	02 Oct 2024	12

Test Measurement Software/Firmware Used:

Name	Version	Release Date
Rohde & Schwarz EMC32	6.30.0	2018

6 Measurement Uncertainty & Decision Rule

Overview

No measurement or test can ever be perfect and the imperfections give rise to error of measurement in the results. Consequently the result of a measurement is only an approximation to the value of the measurand (the specific quantity subject to measurement) and is only complete when accompanied by a statement of the uncertainty of the approximation.

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

Decision Rule

Measurement system instrumentation shall be used with an accuracy specification meeting the accuracy specification limits according to IEC/IECEE OD-5014.

As applicable, unless specified otherwise in this report, the compliance "Decision Rule" is based on Simple Acceptance. If the measured value is on the limit, the result is defined as a pass. In this case the risk of a false positive is 50%. For further information regarding risk assessment refer to ILAC G8:09/2019.

Measurement Uncertainty

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Range	Confidence Level (%)	Calculated Uncertainty
Transmitter EIRP	57 to 71 GHz	95%	±2.70 dB
Transmitter Peak Output Power	57 to 71 GHz	95%	±2.70 dB
Transmitter 6 dB Bandwidth	57 to 71 GHz	95%	±4.59 %
Transmitter 20 dB Bandwidth	57 to 71 GHz	95%	±4.59 %
Transmitter 99% Occupied Bandwidth	57 to 71 GHz	95%	±3.92 %
Transmitter Radiated Emissions	30 MHz to 1 GHz	95%	±3.30 dB
Transmitter Radiated Emissions	1 GHz to 40 GHz	95%	±3.13 dB
Transmitter Radiated Emissions	40 GHz to 200 GHz	95%	±5.12 dB
AC Conducted Spurious Emissions	0.15 MHz to 30 MHz	95%	±2.42 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

ISSUE DATE: 30 JANUARY 2024

7. Report Revision History

Version	Revision Details			
Number	Page No(s)	Clause	Details	
1.0	-	-	Initial Version	

--- END OF REPORT ---

Page 57 of 57