TEST REPORT

APPLICANT	$:$ Linkplay Technology Inc.
PRODUCT NAME	$:$ Wireless Smart Audio Module
MODEL NAME	$:$ ASR001
BRAND NAME	$:$ WiiM
FCC ID	$: 2$ 2ANOG-ASR001
STANDARD(S)	$: 47$ CFR Part 15 Subpart C
RECEIPT DATE	$: 2021-07-29$
TEST DATE	$: 2021-08-11$ to 2021-08-31
ISSUE DATE	$: 2021-09-15$

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

1. Technical Information 3
1.1. Applicant and Manufacturer Information 3
1.2. Equipment Under Test (EUT) Description 3
1.3. The Channel Number and Frequency 4
1.4. Test Standards and Results 5
1.5. Environmental Conditions 6
2. 47 CFR Part 15C Requirements 7
2.1. Antenna Requirement 7
2.2. Duty Cycle of Test Signal 8
2.3. Maximum Peak Conducted Output Power 8
2.4. Maximum Average Conducted Output Power 14
2.5. 6 dB Bandwidth 16
2.6. Conducted Spurious Emissions and Band Edge 21
2.7. Power Spectral Density (PSD) 28
2.8. Conducted Emission 33
2.9. Restricted Frequency Bands 37
2.10. Radiated Emission 44
Annex A Test Uncertainty 54
Annex B Testing Laboratory Information 55

Change History		
Version	Date	Reason for change
1.0	$2021-09-15$	First edition

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Linkplay Technology Inc.
Applicant Address:	8F-8036, Qianren Building, No.7, Yingcui Road, Jiangning District, Nanjing, China
Manufacturer:	Linkplay Technology Inc.
Manufacturer Address:	8F-8036, Qianren Building, No.7, Yingcui Road, Jiangning District, Nanjing, China

1.2. Equipment Under Test (EUT) Description

Product Name:	Wireless Smart Audio Module	
Serial No.:	1\#	
Hardware Version:	V03	
Software Version:	Linkplay.4.6.321963	
Equipment Type:	Bluetooth LE	
Bluetooth Version:	5.2	
Modulation Type:	GFSK	
Data Rate:	1Mbps, 2Mbps	
Operating Frequency Range:	2402MHz-2480MHz	
Antenna Type:	PIFA Antenna	
Antenna Gain:	2.77 dBi	
Accessory Information:	AC Adapter	
	Brand Name:	Chenyang
	Model No.:	MDY-09-EE
	Serial No.:	N/A
	Rated Output:	$5 \mathrm{~V}=1 \mathrm{~A}$
	Rated Input:	100-240V~50/60Hz, 0.2A
	Manufacturer:	Jiangsu Chenyang Electron Co.,Ltd.

Note 1: We use the dedicated software to control the EUT continuous transmission.
Note 2: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.3. The Channel Number and Frequency

Channel	Frequency $\mathbf{(M H z)}$	Channel	Frequency $\mathbf{(M H z)}$	Channel	Frequency $\mathbf{(M H z)}$	Channel	Frequency $(\mathbf{M H z})$
$\mathbf{0}$	$\mathbf{2 4 0 2}$	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	$\mathbf{1 9}$	$\mathbf{2 4 4 0}$	29	2460	$\mathbf{3 9}$	$\mathbf{2 4 8 0}$

Note 1: The black bold channels were selected for test.

1.4. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
1	15.203	Antenna Requirement	N/A	N/A	PASS	No deviation
2	N/A	Duty Cycle of Test Signal	Aug 12, 2021	Liu Bo	PASS	No deviation
3	15.247(b)	Maximum Peak Conducted Output Power	Aug 24, 2021	Liu Bo	PASS	No deviation
4	15.247(b)	Maximum Average Conducted Output Power	Aug 24, 2021	Liu Bo	PASS	No deviation
5	15.247(a)	Bandwidth	Aug 17, 2021	Liu Bo	PASS	No deviation
6	15.247(d)	Conducted Spurious Emission and Band Edge	Aug 17, 2021	Liu Bo	PASS	No deviation
7	15.247(e)	Power Spectral Density	Aug 17, 2021	Liu Bo	PASS	No deviation
8	15.207	Conducted Emission	Aug 11, 2021	Su Zhan	PASS	No deviation
9	15.247(d)	Restricted Frequency Bands	Aug 31, 2021	Gao Jianrou	PASS	No deviation
10	$\begin{aligned} & \hline 15.209, \\ & 15.247(\mathrm{~d}) \end{aligned}$	Radiated Emission	Aug 31, 2021	Gao Jianrou	PASS	No deviation
Note 1: The tests were performed according to the method of measurements prescribed in ANSIC63.10-2013 and KDB558074 D01 v05r02.						

Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The Ref offset 1.5 dB means the cable loss is 1.5 dB .
Note 3: Additions to, deviation, or exclusions from the method shall be judged in the "method determination" column of add, deviate or exclude from the specific method shall be explained in the "Remark" of the above table.
Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95\% confidence intervals.

1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature $\left({ }^{\circ} \mathrm{C}\right):$	$15-35$
Relative Humidity (\%):	$30-60$
Atmospheric Pressure $(\mathrm{kPa}):$	$86-106$

2. 47 CFR Part 15C Requirements

2.1. Antenna Requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Test Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Duty Cycle of Test Signal

2.2.1. Requirement

Preferably, all measurements of maximum conducted (average) output power will be performed with the EUT transmitting continuously (i.e., with a duty cycle of greater than or equal to $98 \%)$.When continuous operation cannot be realized, then the use of sweep triggering/signal gating techniques can be used to ensure that measurements are made only during transmissions at the maximum power control level. Such sweep triggering/signal gating techniques will require knowledge of the minimum transmission duration (T) over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation. Sweep triggering/signal gating techniques can then be used if the measurement/sweep time of the analyzer can be set such that it does not exceed T at any time that data are being acquired (i.e.,no transmitter OFF-time is to be considered).
When continuous transmission cannot be achieved and sweep triggering/signal gating cannot be implemented, alternative procedures are provided that can be used to measure the average power; however, they will require an additional measurement of the transmitter duty cycle (D). Within this sub clause, the duty cycle refers to the fraction of time over which the transmitter is ON and is transmitting at its maximum power control level. The duty cycle is considered to be constant if variations are less than $\pm 2 \%$; otherwise, the duty cycle is considered to be non constant.

2.2.2. Test Description

Test Setup:

ANSI C63.10 2013 Clause 11.6 was used in order to prove compliance.

2.2.3. Test Result

Test Mode	Data Rate	Duty Cycle (\%) (D)	Duty Factor $\left(\mathbf{1 0}^{*} \lg [1 / \mathrm{D}]\right)$
GFSK	1 Mbps	62.20	2.06
	2 Mbps	33.01	4.81

2.3. Maximum Peak Conducted Output Power

2.3.1. Requirement

According to FCC section 15.247 (b)(3), For systems using digital modulation in the $902-928 \mathrm{MHz}$, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: The maximum peak conducted output power of the intentional radiator shall not exceed 1 Watt.

2.3.2. Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm ; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

2.3.3. Test Procedure

The measured output power was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for Peak Output Power test on the spectrum analyzer:
a) Set analyzer center frequency to channel center frequency
b) Set RBW to 1 MHz
c) Set VBW to 3 MHz
d) Set span to 3 MHz
e) Sweep time = auto couple
f) Detector = peak
g) Trace mode = max hold
h) Allow trace to fully stabilize
i) Use peak marker function to determine the peak amplitude level

2.3.4. Test Result

1Mbps
A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	4.44	0.0028	30	1	PASS
19	2440	5.53	0.0036			PASS
39	2480	5.24	0.0033			PASS

B. Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440MHz)

(Channel 39, 2480MHz)

2Mbps
A. Test Verdict:

Channel	Frequency (MHz)	Measured Output Peak Power		Limit		Verdict
		dBm	W	dBm	W	
0	2402	5.66	0.0037	30	1	PASS
19	2440	6.34	0.0043			PASS
39	2480	5.92	0.0039			PASS

B. Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440MHz)

(Channel 39, 2480MHz)

2.4. Maximum Average Conducted Output Power

2.4.1. Requirement

According to FCC section 15.247 (b)(3), for systems using digital modulation in the $902-928 \mathrm{MHz}$, $2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands: The maximum average conducted output power of the intentional radiator shall not exceed 1 Watt.

2.4.2. Test Description

The measured output power was calculated by the reading of the spectrum analyzer and calibration.

Test Setup:

The EUT (Equipment under the test) is coupled to the Spectrum analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm ; the path loss as the factor is calibrated to correct the reading, all test result in Spectrum analyzer.

2.4.3. Test Procedure

KDB 558074 Section 8.3.2 was used in order to prove compliance.

2.4.4. Test Result

1Mbps

Channel	Frequency (MHz)	Average Power				Limit		Verdict
		Measured	Duty Factor	Duty Factor Calculated				
		dBm		dBm	W	dBm	W	
0	2402	2.01	2.06	4.07	0.0026	30	1	PASS
19	2440	2.99		5.05	0.0032			PASS
39	2480	2.83		4.89	0.0031			PASS

2Mbps

Channel	Frequency (MHz)	Average Power				Limit		Verdict
		Measured	Duty Factor	Duty Factor Calculated				
		dBm		dBm	W	dBm	W	
0	2402	0.03	4.81	4.84	0.0030	30	1	PASS
19	2440	0.66		5.47	0.0035			PASS
39	2480	0.09		4.90	0.0031			PASS

2.5. 6 dB Bandwidth

2.5.1. Requirement

According to FCC section 15.247(a) (2), systems using digital modulation techniques may operate in the $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$ bands. The minimum 6 dB bandwidth shall be at least 500 kHz .

2.5.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500 hm ; the path loss as the factor is calibrated to correct the reading.
Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) $=100 \mathrm{kHz}$. In order to make an accurate measurement, set the span greater than RBW.

2.5.3. Test Procedure

The steps for the first option are as follows:
a) Set analyzer center frequency to channel center frequency
b) Set RBW to 100 kHz
c) Set VBW to 300 kHz
d) Detector $=$ peak.
e) Trace mode = max hold
f) Sweep time = auto couple
g) Allow the trace to fully stabilize
h) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by6 $d B$ relative to the maximum level measured in the fundamental emission

The automatic bandwidth measurement capability of an instrument may be employed using the $X \mathrm{~dB}$ bandwidth mode with X set to 6 dB , if the functionality described in 11.8 . (i.e., RBW $=100$ kHz, VBW $\geq 3 \times$ RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\geq 6 \mathrm{~dB}$.

2.5.4. Test Result

1Mbps

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
0	2402	0.703	≥ 500	PASS
19	2440	0.692	≥ 500	PASS
39	2480	0.711	≥ 500	PASS

B. Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440 MHz)

(Channel 39, 2480MHz)

2Mbps
A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limits(kHz)	Result
0	2402	0.606	≥ 500	PASS
19	2440	0.607	≥ 500	PASS
39	2480	0.607	≥ 500	PASS

B.Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440 MHz)

(Channel 39, 2480MHz)

2.6. Conducted Spurious Emissions and Band Edge

2.6.1. Requirement

According to FCC section 15.247 (d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.6.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500 hm ; the path loss as the factor is calibrated to correct the reading.
Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) $=100 \mathrm{kHz}$. In order to make an accurate measurement, set the span greater than RBW.

2.6.3. Test Procedure

KDB 558074 Section 8.5 and 8.7 was used in order to prove compliance.

2.6.4. Test Result

1Mbps
A. Test Verdict:

| Channel | Frequency
 (MHz) | Measured Max. Out of
 Band Emission (dBm) | Limit (dBm) | | Carrier Level |
| :---: | :---: | :---: | :---: | :---: | :---: | | Calculated |
| :---: |
| Verdict |
| |
| |
| |
| 0 |

B. Test Plot:

(30 MHz to 25 GHz , Channel 0)

(Band Edge, Channel 0)

(30MHz to 25 GHz , Channel 19)

(30MHz to 25 GHz , Channel 39)

(Band Edge, Channel 39)

2Mbps

A. Test Verdict:

Channel	$\begin{array}{c}\text { Frequency } \\ (\mathrm{MHz})\end{array}$	$\begin{array}{c}\text { Measured Max. Out of } \\ \text { Band Emission (dBm) }\end{array}$	Limit (dBm)		Carrier Level
		$\begin{array}{c}\text { Calculated } \\ \text { Verdict } \\ \\ \end{array}$	20 dBc Limit		

B. Test Plot:

(30MHz to 25 GHz , Channel 0)

(Band Edge, Channel 0)

(30MHz to 25 GHz , Channel 19)

(30MHz to 25 GHz , Channel 39)

(Band Edge, Channel 39)

2.7. Power Spectral Density

2.7.1. Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

2.7.2. Test Description

Test Setup:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500 hm ; the path loss as the factor is calibrated to correct the reading.

2.7.3. Test Procedure

The measured power spectral density was calculated by the reading of the spectrum analyzer and calibration. Following is the test procedure for PSD test:
a) Set analyzer center frequency to channel center frequency
b) Set span to 1.5 times DTS
c) Set RBW to 3 kHz
d) Set VBW to 10 kHz
e) Detector = peak
f) Sweep time = auto couple
g) Trace mode = max hold
h) Allow trace to fully stabilize
i) Use the peak marker function to determine the maximum amplitude level within the RBW

2.7.4. Test Result

1Mbps
A. Test Verdict:

Spectral Power Density (dBm/3kHz)				
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
0	2402	-12.37	8	
19	2440	-10.38	8	PASS
39	2480	-10.60	8	PASS

B. Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440MHz)

(Channel 39, 2480MHz)

2Mbps

A.Test Verdict:

Spectral Power Density (dBm/3kHz)				
Channel	Frequency (MHz)	Measured PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
0	2402	-0.29	8	PASS
19	2440	0.59	8	PASS
39	2480	0.37	8	PASS

B.Test Plot:

(Channel 0, 2402MHz)

(Channel 19, 2440MHz)

(Channel 39, 2480MHz)

2.8. Conducted Emission

2.8.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \mathrm{H} / 50 \Omega$ line impedance stabilization network (LISN).

Frequency Range (MHz)	Conducted Limit (dB $\mu \mathrm{V})$	
	Quai-peak	Average
$0.15-0.50$	66 to 56	56 to 46
$0.50-5$	56	46
$5-30$	60	50

Note:
(a) The lower limit shall apply at the band edges.
(b) The limit decreases linearly with the logarithm of the frequency in the range $0.15-0.50 \mathrm{MHz}$.

2.8.2. Test Description

Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8 m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80 cm from LISN. The set-up and test methods were according to ANSI C63.10: 2013.

2.8.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Set RBW $=9 \mathrm{kHz}$, VBW $=30 \mathrm{kHz}$. Refer to recorded points and plots below.
Note: Both of the test voltage AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$ and $\mathrm{AC} 230 \mathrm{~V} / 50 \mathrm{~Hz}$ were considered and tested respectively, only the results of the worst case AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$ were recorded in this report.

A. Test Setup:

Test Mode: EUT+ Adapter +BT TX
Test voltage: AC $120 \mathrm{~V} / 60 \mathrm{~Hz}$
The measurement results are obtained as below:
$\mathrm{E}[\mathrm{dB} \mu \mathrm{V}]=\mathrm{U}_{\mathrm{R}}+\mathrm{L}_{\text {cable loss }}[\mathrm{dB}]+\mathrm{A}_{\text {Factor }}$
U_{R} : Receiver Reading
A $_{\text {Factor: }}$: Voltage division factor of LISN

B. Test Plot:

(L Phase)

No.	Fre. (MHz)	Emission Level $(\mathrm{dB} \mathrm{\mu V)}$		Limit $(\mathrm{dB} \mu \mathrm{V})$		Power-line	Verdict
		Average	Quai-peak	Average			
1	0.4294	43.24	33.55	57.26	47.26		PASS
2	0.4964	46.11	37.05	56.06	46.06		PASS
3	0.8616	40.59	31.54	56.00	46.00	Line	PASS
4	3.7691	41.01	31.18	56.00	46.00		
5	4.3576	41.74	31.81	56.00	46.00		PASS
6	7.0947	42.67	32.09	60.00	50.00		PASS

(N Phase)

No.	Fre. (MHz)	Emission Level $(\mathrm{dB} \mu \mathrm{V})$		Limit $(\mathrm{dB} \mu \mathrm{V})$		Power-line	Verdict
		Average	Quai-peak	Average			
1	0.1634	48.97	29.58	65.29	55.29		PASS
2	0.4919	45.63	33.16	56.14	46.14		PASS
3	1.6258	37.52	25.02	56.00	46.00	Neutral	PASS
4	4.5613	41.18	25.42	56.00	46.00		PASS
5	5.4492	41.98	23.99	60.00	50.00		PASS
6	7.1163	45.75	29.22	60.00	50.00		PASS

2.9. Restricted Frequency Bands

2.9.1. Requirement

According to FCC section 15.247 (d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.9.2. Test Description

Test Setup

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:
Test Antenna is 3 m away from the EUT. Test Antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength.

2.9.3. Test Procedure

Span = wide enough to fully capture the emission being measured
RBW $=1 \mathrm{MHz}$ for $\mathrm{f} \geq 1 \mathrm{GHz}, 100 \mathrm{kHz}$ for $\mathrm{f}<1 \mathrm{GHz}$
VBW $=3 \mathrm{MHz}$
Sweep = auto
Detector function = peak/average
Trace = max hold
Allow the trace to stabilize

2.9.4. Test Result

The lowest and highest channels are tested to verify the Restricted Frequency Bands.
The measurement results are obtained as below:
$E[\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}]=\mathrm{U}_{\mathrm{R}}+\mathrm{A}_{\mathrm{T}}+\mathrm{A}_{\text {Factor }}[\mathrm{dB}] ; \mathrm{A}_{T}=\mathrm{L}_{\text {cable loss }}[\mathrm{dB}]-\mathrm{G}_{\text {preamp }}[\mathrm{dB}]$
A_{T} : Total correction Factor except Antenna
U_{R} : Receiver Reading
$\mathrm{G}_{\text {preamp: }}$: Preamplifier Gain
A $_{\text {Factor: }}$ Antenna Factor at 3 m
Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

1Mbps

A. Test Verdict:

Channel	Frequency (MHz)	Detector	Receiver Reading U_{R}	A_{T} $(\mathrm{~dB})$	$\mathrm{A}_{\text {factor }}$ $(\mathrm{dB} @ 3 \mathrm{~m})$	Max. Emission E $(\mathrm{dB} \mu \mathrm{V})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m} / \mathrm{m})$	Verdict
	2381.85	PK	26.44	6.74	27.20	60.38	74	PASS
0	2379.14	AV	15.27	6.74	27.20	49.21	54	PASS
39	2484.69	PK	25.95	6.74	27.20	59.89	74	PASS
39	2489.53	AV	16.46	6.74	27.20	50.40	54	PASS

B. Test Plot:

(PEAK, Channel 0)

(AVERAGE, Channel 0)

(PEAK, Channel 39)

(AVERAGE, Channel 39)

2Mbps
A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U_{R} ($\mathrm{dB} \mu \mathrm{V}$)	$\begin{gathered} \mathrm{A}_{\mathrm{T}} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\text {factor }} \\ (\mathrm{dB} @ 3 \mathrm{~m}) \end{gathered}$	Max. Emission E ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Verdict
0	2371.55	PK	26.28	6.74	27.20	60.22	74	PASS
0	2381.30	AV	15.04	6.74	27.20	48.98	54	PASS
39	2486.45	PK	26.00	6.74	27.20	59.94	74	PASS
39	2491.86	AV	16.40	6.74	27.20	50.34	54	PASS

B. Test Plot:

(PEAK, Channel 0)

(AVERAGE, Channel 0)

(PEAK, Channel 39)

(AVERAGE, Channel 39)

2.10. Radiated Emission

2.10.1. Requirement

According to FCC section 15.247 (d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength $(\mu \mathrm{V} / \mathrm{m})$	Measurement Distance (m)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30.0$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Note1: For above 1000 MHz , the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
Note2:For above 1000 MHz , limit field strength of harmonics: $54 \mathrm{dBuV} / \mathrm{m@} 3 \mathrm{~m}(\mathrm{AV})$ and $74 \mathrm{dBuV} / \mathrm{m} @ 3 \mathrm{~m}(\mathrm{PK})$.In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table).

2.10.2. Test Description

Test Setup:

1) For radiated emissions from 9 kHz to 30 MHz

2) For radiated emissions from 30 MHz to 1 GHz

3) For radiated emissions above 1 GHz

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below $1 \mathrm{GHz} ; 1.5 \mathrm{~m}$ above the ground plane for measurement above 1 GHz . The antenna to EUT distance is 3meters. The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

For measurements below 30 MHz , the emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands $9 \mathrm{kHz}-90$ $\mathrm{kHz}, 110 \mathrm{kHz}-490 \mathrm{kHz}$. Radiated emission limits in these two bands are based on measurements employing an average detector.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz , the video band width is set to 3 MHz for peak measurements and as applicable for average measurements.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

2.10.3. Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak (or average) limit, it is unnecessary to perform an quasi-peak measurement (or average).

The measurement results are obtained as below:
$E[d B \mu \mathrm{~V} / \mathrm{m}]=\mathrm{U}_{\mathrm{R}}+\mathrm{A}_{\mathrm{T}}+\mathrm{A}_{\text {Factor }}[\mathrm{dB}] ; \mathrm{A}_{T}=\mathrm{L}_{\text {Cable loss }}[\mathrm{dB}]-\mathrm{G}_{\text {preamp }}[\mathrm{dB}]$
A_{T} : Total correction Factor except Antenna
U_{R} : Receiver Reading
$G_{\text {preamp: }}$ Preamplifier Gain
$\mathrm{A}_{\text {Factor: }}$ Antenna Factor at 3 m
During the test, the total correction Factor A_{T} and $A_{\text {Factor }}$ were built in test software.
Note1: All radiated emission tests were performed in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axis direction. And only the worst axis test condition was recorded in this test report.
Note2: For the frequency, which started from 9 kHz to 30 MHz , was pre-scanned and the result which was 20 dB lower than the limit was not recorded.
Note3: For the frequency, which started from 18 GHz to 40 GHz , was pre-scanned and the result which was 20 dB lower than the limit was not recorded.

1Mbps

Plot for Channel 0

			Nimpum	N N W N				
Fre. (MHz)	PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	QP $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-QP ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Antenna	Verdict
94.990	28.92	N/A	N/A	N/A	43.50	N/A	Horizontal	PASS
1331.733	45.62	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
3003.480	41.84	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
4229.320	45.56	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
5778.560	46.89	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
12184.960	47.03	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Tel: 86-755-36698555	Fax: 86-755-36698525
Http://www.morlab.cn	E-mail: service@morlab.cn

Plot for Channel 19

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Plot for Channel 39

Fre. (MHz)		\square						Verdict
	PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	$\begin{gathered} \mathrm{QP} \\ (\mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}) \end{gathered}$	AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-QP ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Antenna	
75.590	28.28	N/A	N/A	N/A	40.00	N/A	Horizontal	PASS
288.990	28.42	N/A	N/A	N/A	46.00	N/A	Horizontal	PASS
2000.000	44.82	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
4475.720	45.45	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
8427.360	48.42	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
12523.760	47.76	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

2Mbps

Plot for Channel 0

	\square							Verdict
Fre. (MHz)	PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	QP $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-QP ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Antenna	
89.170	28.57	N/A	N/A	N/A	43.50	N/A	Horizontal	PASS
1620.267	44.55	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
3702.640	43.07	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
5636.880	46.37	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
7993.080	44.75	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
13783.480	46.18	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Plot for Channel 19

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Tel: 86-755-36698555	Fax: 86-755-36698525
Http://www.morlab.cn	E-mail: service@morlab.cn

Plot for Channel 39

Fre. (MHz)								Verdict
	PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	QP $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-PK ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-QP ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Limit-AV ($\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$)	Antenna	
75.590	27.69	N/A	N/A	N/A	40.00	N/A	Horizontal	PASS
268.620	26.79	N/A	N/A	N/A	46.00	N/A	Horizontal	PASS
2479.467	43.25	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
4515.760	45.89	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
6967.440	44.11	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS
12671.600	47.31	N/A	N/A	74.00	N/A	54.00	Horizontal	PASS

(Antenna Horizontal, 30 MHz to 18 GHz)

(Antenna Vertical, 30 MHz to 18 GHz)

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test Items	Uncertainty
Peak Output Power	$\pm 2.22 \mathrm{~dB}$
Power Spectral Density	$\pm 2.22 \mathrm{~dB}$
Bandwidth	$\pm 5 \%$
Conducted Spurious Emission	$\pm 2.77 \mathrm{~dB}$
Restricted Frequency Bands	$\pm 5 \%$
Radiated Emission	$\pm 2.95 \mathrm{~dB}$
Conducted Emission	$\pm 2.44 \mathrm{~dB}$

This uncertainty represent an expanded uncertainty expressed at approximately the 95\% confidence level using a coverage factor of $\mathrm{k}=2$.

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Laboratory Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Laboratory Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
	+8675536698555
Facsimile:	+8675536698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
EXA Signal Analzyer	MY53470836	N9010A	Agilent	2021.03 .25	2022.03 .24
RF Cable $(30 \mathrm{MHz}-26 \mathrm{GHz})$	CB01	RF01	Morlab	N/A	N/A
Coaxial Cable	CB02	RF02	Morlab	N/A	N/A
SMA Connector	CN01	RF03	HUBER-SUHNE R	N/A	N/A
Computer	T430i	Think Pad	Lenovo	N/A	N/A

4.2 Conducted Emission Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Receiver	MY5640009 3	N9038A	KEYSIGHT	2021.03 .09	2022.03 .08
LISN	8127449	NSLK 8127	Schwarzbeck	2021.03 .09	2022.03 .08
Pulse Limiter $(10 \mathrm{~dB})$	VTSD 9561 F-B \#206	VTSD $9561-F$	Schwarzbeck	2021.07 .21	2022.07 .20
Coaxial Cable(BNC) $(30 M H z-26 G H z)$	CB01	EMC01	Morlab	N/A	N/A
Laptop	2016 AP5012	ThinkPad E470c	Lenovo (Beijing) Co., Ltd.	N/A	N/A
Laptop Adapter	N/A	ADLX45DL C3A	Lite-On Technology Co., Ltd.	N/A	N/A

4.3 List of Software Used

Description	Manufacturer	Software Version
Test System	Tonscend	V2.6
Power Panel	Agilent	V3.8
Morlab EMCR V1.2	Morlab	V1.0
TS+ -[JS32-CE]	Tonscend	V2.5.0.0

4.4 Radiated Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Due Date
Receiver	MY54130016	N9038A	Agilent	2021.07.16	2022.07.15
Test Antenna -Bi-Log	9163-520	VULB 9163	Schwarzbeck	2019.05.24	2022.05.23
Test Antenna Loop	1520-022	FMZB1520	Schwarzbeck	2019.02.14	2022.02.13
Test Antenna Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna Horn	$\begin{gathered} \hline \text { BBHA9170 } \\ \# 774 \end{gathered}$	BBHA 9170	Schwarzbeck	2019.07.26	2022.07.25
Coaxial Cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial Cable (N male) $(30 \mathrm{MHz}-26 \mathrm{GHz})$	CB02	EMC02	Morlab	N/A	N/A
$\begin{gathered} \text { Coaxial Cable } \\ (\mathrm{N} \text { male) } \\ (30 \mathrm{MHz}-26 \mathrm{GHz}) \end{gathered}$	CB03	EMC03	Morlab	N/A	N/A
$\begin{gathered} \text { Coaxial Cable } \\ (\mathrm{N} \text { male }) \\ (30 \mathrm{MHz}-40 \mathrm{GHz}) \\ \hline \end{gathered}$	CB05	EMC05	Morlab	N/A	N/A
1-18GHz pre-Amplifier	61171/61172	$\begin{gathered} \text { S020180L32 } \\ 03 \\ \hline \end{gathered}$	Tonscend	2021.07.15	2022.07.14
$18-26.5 \mathrm{GHz}$ pre-Amplifier	46732	$\begin{gathered} \text { S10M100L38 } \\ 02 \end{gathered}$	Tonscend	2021.07.15	2022.07.14
$26-40 \mathrm{GHz}$ pre-Amplifier	56774	$\begin{gathered} \hline \text { S40M400L40 } \\ 02 \end{gathered}$	Tonscend	2021.07.15	2022.07.14
Notch Filter	N/A	WRCG-2400-2483.5-60SS	Wainwright	2021.07.15	2022.07.14
Anechoic Chamber	N/A	9 m * 6 * 6 m	CRT	2020.01.06	2023.01.05

\qquad

