

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

Compiled by

(position+printed name+signature)..: File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)..: RF Manager Eric Wang

Date of issue...... Feb. 22, 2022

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Tengsai Technology Co., LTD

Community, Guanhu Street, Longhua District, Shenzhen, China

Test specification:

FCC Rules and Regulations Part 15 Subpart C (Section 15.209),

ANSI C63.10: 2013

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Car Wireless Charger

Trade Mark N/A

Manufacturer Shenzhen Tengsai Technology Co., LTD

Model/Type reference..... X11

V8, X8, X9, X10, X12, X13, X15, X16, X17, X18, X19, X20, X21,

X22, X23, X25, X26, X27, X28, X29

Modulation Type: ASK

Operation Frequency...... From 110KHz~205KHz

Input: DC 5V/2A, DC 9V/1.67A

Output: Wireless Charging: 15W Max.

Result..... PASS

Report No.: CTA22022800201 Page 2 of 22

TEST REPORT

Equipment under Test : Car Wireless Charger

Model /Type : X11

Listed Models : V8, X8, X9, X10, X12, X13, X15, X16, X17, X18, X19, X20, X21, X22,

X23, X25, X26, X27, X28, X29

Applicant : Shenzhen Tengsai Technology Co., LTD

Address : Room 203, Building A, No. 12, Xiawei Industrial Zone, Zhangxi

Community, Guanhu Street, Longhua District, Shenzhen, China

Manufacturer : Shenzhen Tengsai Technology Co., LTD

Address : Room 203, Building A, No. 12, Xiawei Industrial Zone, Zhangxi

Community, Guanhu Street, Longhua District, Shenzhen, China

Test Result:

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA22022800201 Page 3 of 22

Contents

SUMMARY	<u> 5</u>
General Remarks	5
Product Description	5
Description of the test mode	5
Special Accessories	6
Modifications	6
TEST ENVIRONMENT	7
Address of the test laboratory	7
Test Facility	7
Environmental conditions	7
Summary of measurement results	7
Statement of the measurement uncertainty	7
Equipments Used during the Test	8
	•
GCLV	
TEST CONDITIONS AND RESULTS	<u> 9</u>
AC Power Conducted Emission	9
Radiated Emission	12
Occupied Bandwidth	16
Antenna Requirement	17
€ CIA TESTING	
TEST SETUP PHOTOS OF THE EUT	18

Report No.: CTA22022800201 Page 4 of 22

1 TEST STANDARDS

The tests were performed according to following standards:

<u>FCC Rules and Regulations Part 15 Subpart C (Section 15.207):</u> Conducted limits. <u>FCC Rules and Regulations Part 15 Subpart C (Section 15.209):</u> Radiated emission limits; general requirements.

ANSI C63.10: 2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: CTA22022800201 Page 5 of 22

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Feb. 13, 2022
Testing commenced on	:	Feb. 14, 2022
Testing concluded on	:	Feb. 21, 2022

2.2 Product Description

Product Name:	Car Wireless Charger
Model/Type reference:	X11
Power supply:	DC 5V/2A or 9V/1.67A
Hardware version	X11-3105B-15W-V1.2
Software version	V1.0
Testing sample ID:	CTA220228002-1#
Wireless Charger	CIA TESTADO
Antenna Type	Coil Antenna
Antenna Gain	0.0dBi
Operation frequency	110KHz~205KHz
Modulation Type	ASK @CONTESTOR

2.3 Description of the test mode

Equipment under test was operated during the measurement under the following conditions:

	<u> </u>		communication	
$-1\times$	(:harding	and	communication	mode

Test Mo	Test Modes:			
Mode 1	AC/DC Adapter (9V/1.67A) + EUT + Wireless Charger tester (Load 15W)	Recorded		
Mode 2	AC/DC Adapter (9V/1.67A) + EUT + Wireless Charger tester (Load 10W)	Pre-tested		
Mode 3	AC/DC Adapter (9V/1.67A) + EUT + Wireless Charger tester (Load 5W)	Pre-tested		
Mode 4	AC/DC Adapter (5V/2A) + EUT + Wireless Charger tester (Load 15W)	Pre-tested		
Mode 5	AC/DC Adapter (5V/2A) + EUT + Wireless Charger tester (Load 10W)	Pre-tested		
Mode 6	AC/DC Adapter (5V/2A) + EUT + Wireless Charger tester (Load 5W)	Pre-tested		
Note: All	Note: All test modes were pre-tested, but we only recorded the worst case in this report.			

Report No.: CTA22022800201 Page 6 of 22

2.4 Special Accessories

Follow auxiliary equipment(s) test with EUT that provided by the manufacturer or laboratory is listed as follow:

Description	Manufacturer	Model	Technical Parameters	Certificate	Provided by
Adapter	UGREEN	CD137	Input: 100-240V~, 50/60Hz, 0.5A Output: 5V===2A / 9V===2A / 12V ====2A	CE/FCC	laboratory
Wireless Charger tester	1	SW-MK- 89898	Full Protocol Wireless Chager Tester, 5W / 7.5W / 10W / 15W four gear switchable	CE/FCC	laboratory
/	/	/	/	/	/
/	/	/	/	/	/

2.5 **Modifications**

No modifications were implemented to meet testing criteria.

Report No.: CTA22022800201 Page 7 of 22

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
	TESTING
Humidity:	30-60 %
	@°
Atmospheric pressure:	950-1050mbar

3.4 Summary of measurement results

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)

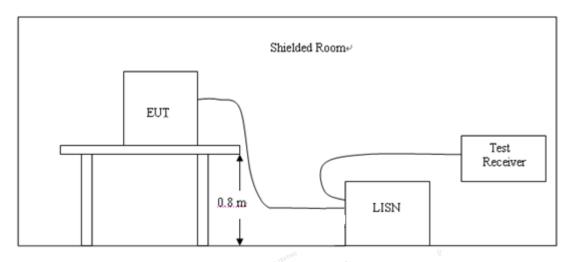
Report No.: CTA22022800201 Page 8 of 22

Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08/05
LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08/05
EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08/05
EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08/05
Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08/05
Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08/05
Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08/05
Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08/05
Universal Radio Communication	CMW500 [©]	R&S	CTA-302	2021/08/06	2022/08/05
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08/05
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08/06
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08/06
Loop Antenna	Zhinan 🧑	ZN30900C	CTA-311	2021/08/07	2022/08/06
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08/05
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08/05
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08/05
Directional coupler	NARDA 🥝	4226-10	CTA-303	2021/08/06	2022/08/05
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08/05
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08/05
Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08/05
Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08/05
Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08/05


Note: The Cal.Interval was one year.

Report No.: CTA22022800201 Page 9 of 22

4 TEST CONDITIONS AND RESULTS

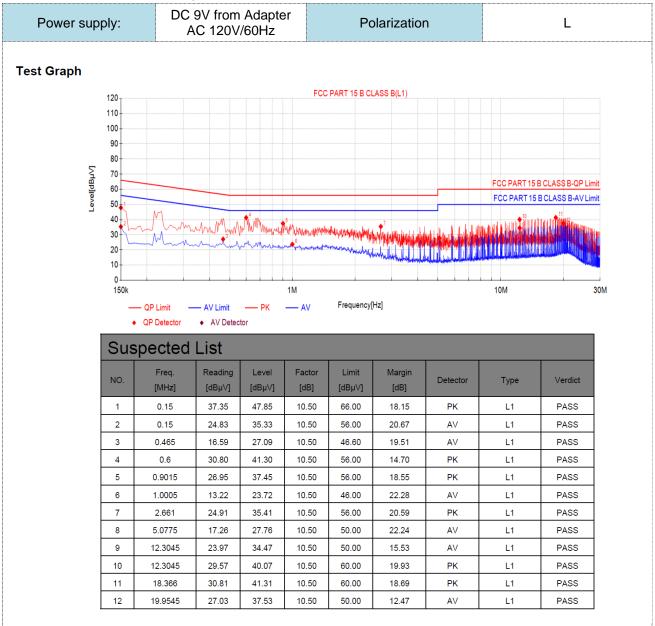
4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

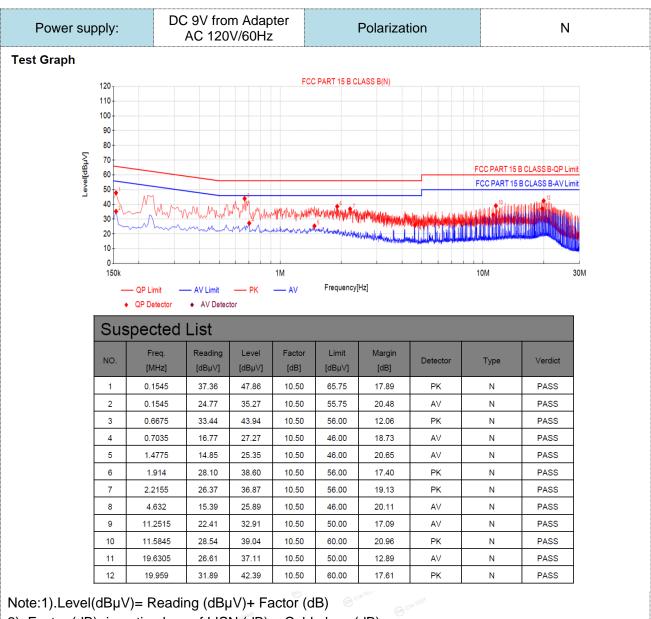
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit


For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Eroguanov rango (MHz)	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	
* Decreases with the logarithm of the frequency.			

Report No.: CTA22022800201 Page 10 of 22


TEST RESULTS

Remark: Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

Note:1).Level($dB\mu V$)= Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) =Limit (dB μ V) -Level(dB μ V)

2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

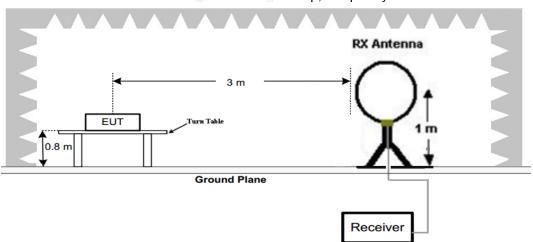
3). Margin(dB) =Limit (dB μ V) -Level(dB μ V)

Report No.: CTA22022800201 Page 12 of 22

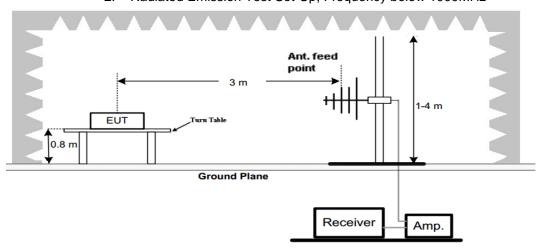
4.2 Radiated Emission

Limit

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission out of authorized band shall not exceed the following table at a 3 meters measurement distance.


In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

D 11 / 1		1
Radiated	amiccian	limite
Naulaicu	CHIOSIOH	111111113


Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	

TEST CONFIGURATION

1. Radiated Emission Test Set-Up, Frequency Below 30MHz

2. Radiated Emission Test Set-Up, Frequency below 1000MHz

Report No.: CTA22022800201 Page 13 of 22

Test Procedure

- 1. Below 1GHz measurement the EUT is placed on a turntable which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0℃ to 360℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 1000MHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Bilog Antenna	3

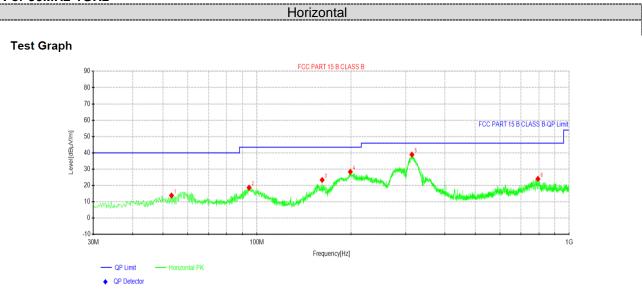
7. Setting test receiver/spectrum as following table states:

Test Frequency range		Frequency range Test Receiver/Spectrum Setting			
	9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP		
	150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP		
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP		

TEST RESULTS

For 9 KHz-30MHz

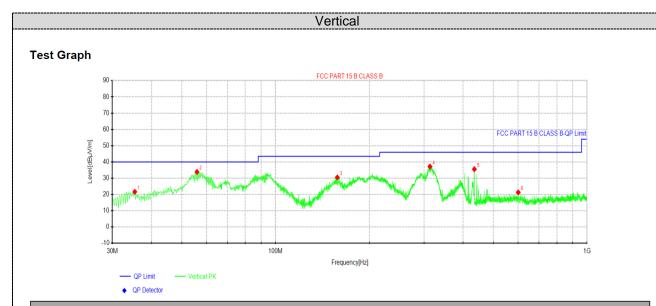
WORST-CASE RADIATED EMISSION BELOW 30 MHz


Frequency	Reading	Polar	Antenna Factor	Cable Loss	Emission Levels	Limits at 3m	Margin	Detector Mode
(MHz)	(dBµV/m)	Loop	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
0.116(F)	56.81	Loop	23.64	0.01	80.46	106.32	25.86	PK
0.116(F)	47.93	Loop	23.64	0.01	71.58	86.32	14.74	AV
0.110	38.02	Loop	23.55	0.01	61.58	106.78	45.20	PK
0.110	29.89	Loop	23.55	0.01	53.45	86.78	33.33	AV
0.232	33.67	Loop	25.07	-0.17	58.57	100.29	41.72	QP
1.16	12.68	Loop	27.12	-0.25 [©]	39.55	66.32	26.77	QP
5.95	17.92	Loop	23.91	-0.24	41.59	69.54	27.95	QP

Remark:

- 1. Data of measurement within this frequency range shown "-- in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits and not recorded.
- 2. The test limit distance is 3m limit.
- 3. PK means Peak Value, QP means Quasi Peak Value, AV means Average Value.
- 4. F means Fundamental Frequency.
- 5. Emission level (dBuV/m) = Reading + Antenna Factor + Cable Loss.
- 6. Margin value = Limit value- Emission level.

Report No.: CTA22022800201 Page 14 of 22

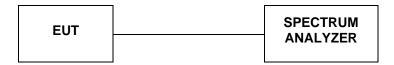

For 30MHz-1GHz

Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delevity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	53.28	30.66	13.89	-16.77	40.00	26.11	100	180	Horizontal	
2	94.3838	37.92	18.68	-19.24	43.50	24.82	100	0	Horizontal	
3	161.798	44.94	23.42	-21.52	43.50	20.08	100	75	Horizontal	
4	199.143	47.74	28.40	-19.34	43.50	15.10	100	59	Horizontal	
5	313.603	56.04	38.94	-17.10	46.00	7.06	100	245	Horizontal	
6	794.238	34.86	24.06	-10.80	46.00	21.94	100	59	Horizontal	

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Suspe	Suspected Data List								
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polority
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	35.335	39.47	21.67	-17.80	40.00	18.33	100	179	Vertical
2	55.9475	51.25	33.91	-17.34	40.00	6.09	100	203	Vertical
3	157.918	52.16	30.51	-21.65	43.50	12.99	100	359	Vertical
4	313.118	54.30	37.19	-17.11	46.00	8.81	100	147	Vertical
5	434.853	50.75	35.57	-15.18	46.00	10.43	100	3	Vertical
6	601.33	33.53	21.32	-12.21	46.00	24.68	100	138	Vertical


Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V/m$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA22022800201 Page 16 of 22

4.3 Occupied Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

LIMIT

The 20dB bandwidth shall be less than 80% of the permitted frequency band.

TEST RESULTS

Mode	Freq (KHz)	20dB Bandwidth (KHz)	99% OBW (KHz)	Conclusion
Tx Mode	116	2.908 CTATE	2.477	PASS

Report No.: CTA22022800201 Page 17 of 22

4.4 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Antenna Information

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

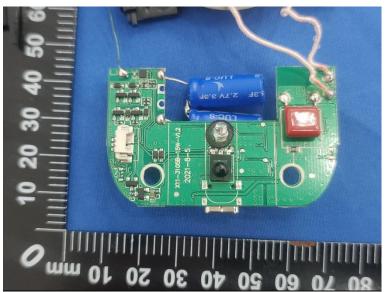
Report No.: CTA22022800201 Page 18 of 22

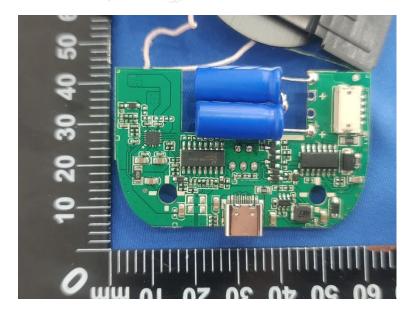
Test Setup Photos of the EUT 5

Report No.: CTA22022800201 Page 19 of 22

6 PHOTOS OF THE EUT

Page 21 of 22 Report No.: CTA22022800201




Report No.: CTA22022800201 Page 22 of 22

Internal Photos

Antenna

