

FCC RADIO TEST REPORT FCC ID: 2ANMU-WP9

Product: Smart Phone Trade Mark: OUKITEL Model Name: WP9 Family Model: N/A Report No.: S20102701403007

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA, SHENZHEN, 518XXX, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-3699 5508 Website: http://www.ntek.org.cn

TEST RESULT CERTIFICATION

Applicant's name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address
INDUSTRIALZONE, GUANLAN, LONGHUA, SHENZHEN,
518XXX, China Manufacturer's Name:: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address
INDUSTRIAL ZONE, GUANLAN, LONGHUA, SHENZHEN,
518XXX, China
Product description
Product name: Smart Phone
Model and/or type reference : WP9
Family Model N/A
Standards FCC Part15.407
Test procedure ANSI C63.10-2013 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01
This device described above has been tested by NTEK, and the test results show that the
equipment under test (EUT) is in compliance with the FCC requirements/ the Industry Canada
requirements And it is applicable only to the tested sample identified in the report.
This report shall not be reproduced except in full, without the written approval of NTEK, this
document may be altered or revised by NTEK, personnel only, and shall be noted in the revision of the document.
Date of Test
Date (s) of performance of tests 28 Oct. 2020 ~18 Nov. 2020
Date of Issue 18 Nov. 2020
Test Result Pass
Testing Engineer :
(Cheng jiawen)
1
Technical Manager : Jason Chen
(Jason Chen)
Here
Authorized Signatory :
(Alex Li)

Table of Contents

	Page
1. SUMMARY OF TEST RESULTS	6
1.1 FACILITIES AND ACCREDITATIONS	7
1.2 MEASUREMENT UNCERTAINTY	7
2 . GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTEI	D 11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	12
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	13
3. TEST REQUIREMENTS	15
3.1 CONDUCTED EMISSION MEASUREMENT	15
3.2 RADIATED EMISSION MEASUREMENT	20
3.3 POWER SPECTRAL DENSITY TEST	35
3.4 26DB & 99% EMISSION BANDWIDTH	38
3.5 MINIMUM 6 DB BANDWIDTH	40
3.6 MAXIMUM CONDUCTED OUTPUT POWER	42
3.7 OUT OF BAND EMISSIONS	46
3.8 SPURIOUS RF CONDUCTED EMISSIONS	48
3.9 FREQUENCY STABILITY MEASUREMENT	49
4. ANTENNA REQUIREMENT	56
4.1 STANDARD REQUIREMENT	56
4.2 EUT ANTENNA	56
5. TEST RESULTS	57
5.2G	57
DUTY CYCLE	57
	62 62
OCCUPIED CHANNEL BANDWIDTH MAXIMUM POWER SPECTRAL DENSITY LEVEL	63 68
BAND EDGE	73
CONDUCTED RF SPURIOUS EMISSION	77
5.8G	82
	82
MAXIMUM CONDUCTED OUTPUT POWER -6DB EMISSION BANDWIDTH	87 88
OCCUPIED CHANNEL BANDWIDTH	93

Table of Contents

	Page
MAXIMUM POWER SPECTRAL DENSITY LEVEL	98
BAND EDGE	103
CONDUCTED RF SPURIOUS EMISSION	107

Revision History							
Report No.	Version	Description	Issued Date				
S20102701403007	Rev.01	Initial issue of report	18 Nov. 2020				
			L				

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E							
Standard Section	Test Item	Judgment	Remark				
15.207	AC Power Line Conducted Emissions	PASS					
15.209(a), 15.407 (b)(1) 15.407 (b)(4)	Spurious Radiated Emissions	PASS					
15.407 (a)(1) 15.407 (a)(3)	26 dB and 99% Emission Bandwidth	PASS					
15.407(e)	Minimum 6 dB bandwidth	PASS					
15.407 (a)(1) 15.407 (a)(3)	Maximum Conducted Output Power	PASS					
15.407(b)(1) 15.407(b)(4)	Band Edge	PASS					
15.407 (a)(1) 15.407 (a)(3)	Power Spectral Density	PASS					
15.407(b)	Spurious Emissions at Antenna Terminals	PASS					
15.203	Antenna Requirement	PASS					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

The Laboratory has been assessed and proved to be in compliance with
CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
The Certificate Registration Number is L5516.
The Certificate Registration Number is 9270A.
CAB identifier:CN0074
Test Firm Registration Number: 463705.
Designation Number: CN1184
The Certificate Registration Number is 4298.01
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Shenzhen NTEK Testing Technology Co., Ltd.
1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street,
Bao'an District, Shenzhen 518126 P.R. China.

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Smart Phone					
Trade Mark	OUKITEL					
Model Name	WP9					
Family Model	N/A					
Model Difference	N/A					
FCC ID	2ANMU-WP9					
Product Description	Mode Supported Data Rate Modulation Operating Frequency Range Number of Channels Antenna Type Antenna Gain Based on the applic Manual, More detai User's Manual.	N ⊠802.11a/n (20MHz channel bandwidth) ⊠802.11n (40MHz channel bandwidth) 802.11a: 6,9,12,18,24,36,48,54Mbps; 802.11n(HT20/HT40):MCS0-MCS15; OFDM with BPSK/QPSK/16QAM/64QAM/256QAM for 802.11a/n S180-5240MHz for 802.11a/n(HT20); 5745-5825 MHz for 802.11a/n(HT40); S4 channels for 802.11a/n20 in the 5180-5240MHz band ; 2 channels for 802.11 n40 in the 5190-5230MHz band ; 2 channels for 802.11 n40 in the 5755-5795MHz band ; 2 channels for 802.11 n40 in the 5755-5795MHz band ; 2 channels for 802.11 n40 in the 5755-5795MHz band ; FPC Antenna -1.2dBi cation, features, or specification exhibited in User's Is of EUT technical specification, please refer to the				
Raunys	Model:HJ-FC017K7					
Adapter	Input: 100-240V~50/60Hz 0.6A Output: 5.0V2000mA or 7.0V2000mA or 9.0V2000mA or 12.0V1500mA ,18.0W					
Connecting I/O Port(s)	Please refer to the User's Manual					
HW Version	TE988U_MAIN_PCB_V1.0					
SW Version	OUKITEL_WP9_E	EA_V01_202001016				

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- ^{2.} Frequency and Channel list for 802.11a/n(20MHz) band I (5180-5240MHz):

	802.11a/n(20MHz) Carrier Frequency Channel							
Frequen ChannelFrequen ChannelFrequen cyFrequen ChannelFrequen cyFrequen ChannelFrequen cy(MHz)(MHz)(MHz)(MHz)(MHz)(MHz)						,		
36	5180	44	5220	-	-	-	-	
40	5200	48	5240	-	-	-	-	

Frequency and Channel list for 802.11n(40MHz) band I (5190-5230MHz):

	802.11n(40MHz) Carrier Frequency Channel						
Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)	Channel	Frequen cy (MHz)
38	5190	-	-	-	-	-	-
46	5230	-	-	-	-	-	-

Frequency and Channel list for 802.11a/n(20 MHz) band IV (5745-5825MHz):

802.11a/n(20 MHz) Carrier Frequency Channel							
Channel cy Channel cy Channel cy Channel cy					Frequen cy (MHz)		
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-
			0 44 - (401)		//		

Frequency and Channel list for 802.11n(40MHz) band IV (5755-5795MHz):

	802.11n(40MHz) Carrier Frequency Channel							
Channel Frequency (MHz) Channel Frequency (MHz) Frequency (MHz) Channel (MHz)								
151	5755	159	5795	-	-			

2.2 DESCRIPTION OF TEST MODES

NTEK北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The EUT has a built-in engineering mode, click the settings, and click the software version 6 times to enter the engineering mode. The power level is set by default.

Pretest Mode	Description	
Mode 1 Normal Link Mode		
Mode 2	802.11a / n20 CH36/ CH40/ CH 48 802.11a / n20 CH149/ CH157/ CH 165	
Mode 3	802.11n40 CH38/ CH 46 802.11n40 CH 151 / CH 159	

ACCREDITED Certificate #4298.01

For Radiated Emission				
Final Test Mode Description				
Mode 1	Normal Link Mode			
Mode 2	802.11a / n20 CH36/ CH40/ CH 48 802.11a / n20 CH149/ CH157/ CH 165			
Mode 3	802.11n40 CH38/ CH 46 802.11n40 CH 151 / CH 159			

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

NTEK北测 🎬

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ACCREDITED Certificate #4298.01

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-FC017K7-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.1m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-MR

ACCREDITED Certificate #4298.01

Radiation& Conducted Test equipment

NTEK北测

lucic	tiona Conducted	lest equipment					
Ite	m Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
1(Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
1′	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
1	High Test 5 Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	6 Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	, temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

lote:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment

4(C Conduction Test equipment									
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period		
	1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year		
	2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year		
	3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year		
	4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year		
	5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year		
	6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year		
	7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year		

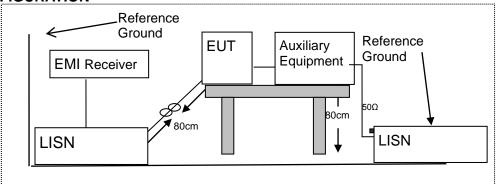
Note: Each piece of equipment is scheduled for calibration once a year except the Test Cable& Aux Equipment which is scheduled for calibration every 3 years.

3. TEST REQUIREMENTS

3.1CONDUCTED EMISSION MEASUREMENT

3.1.1 APPLICABLE STANDARD

According to FCC Part 15.207(a)


3.1.2 CONFORMANCE LIMIT

	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.1.3 TEST CONFIGURATION

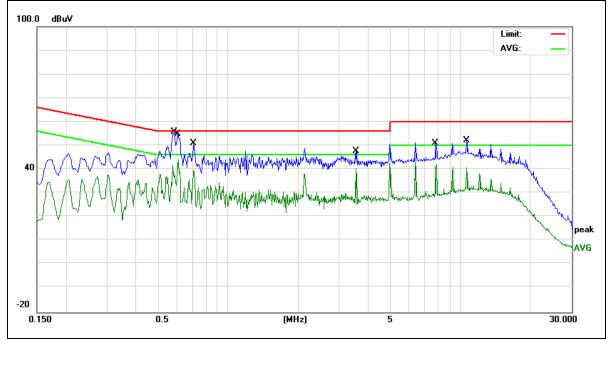
3.1.4 TEST PROCEDURE

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

NTEKJLW

3.1.5 TEST RESULTS

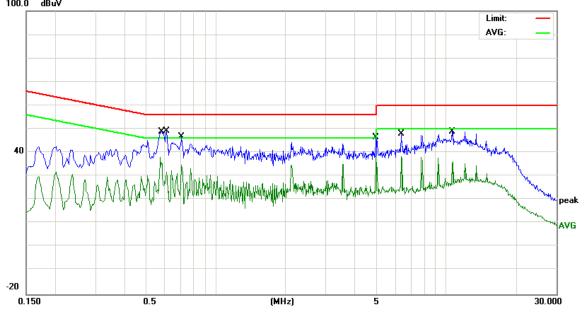

EUT:	Smart Phone	Model Name :	WP9			
Tamparatura	25 °C	Relative	49%			
Temperature:	25 C	Humidity:	49%			
Pressure:	1010hPa	Phase :	L			
Test Voltage :	DC 9V from Adapter AC 120V/60Hz	Test Mode:	Mode 1(5.2G)			

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Dement
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.5860	44.25	9.55	53.80	56.00	-2.20	QP
0.5860	32.09	9.55	41.64	46.00	-4.36	AVG
0.6060	41.35	9.55	50.90	56.00	-5.10	QP
0.6060	32.95	9.55	42.50	46.00	-3.50	AVG
0.7100	41.25	9.55	50.80	56.00	-5.20	QP
0.7100	29.87	9.55	39.42	46.00	-6.58	AVG
3.5340	38.00	9.60	47.60	56.00	-8.40	QP
3.5340	30.72	9.60	40.32	46.00	-5.68	AVG
7.7739	41.19	9.67	50.86	60.00	-9.14	QP
7.7739	31.54	9.67	41.21	50.00	-8.79	AVG
10.5979	42.35	9.71	52.06	60.00	-7.94	QP
10.5979	31.16	9.71	40.87	50.00	-9.13	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

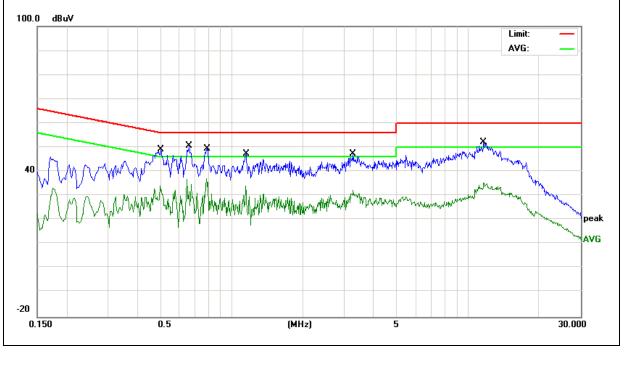

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domoria
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	- Remark
0.5820	39.30	9.54	48.84	56.00	-7.16	QP
0.5820	28.58	9.54	38.12	46.00	-7.88	AVG
0.6100	39.73	9.54	49.27	56.00	-6.73	QP
0.6100	22.24	9.54	31.78	46.00	-14.22	AVG
0.7100	37.30	9.54	46.84	56.00	-9.16	QP
0.7100	25.28	9.54	34.82	46.00	-11.18	AVG
5.0019	36.00	9.61	45.61	60.00	-14.39	QP
5.0019	28.87	9.61	38.48	50.00	-11.52	AVG
6.3620	38.28	9.63	47.91	60.00	-12.09	QP
6.3620	28.75	9.63	38.38	50.00	-11.62	AVG
10.5980	39.25	9.69	48.94	60.00	-11.06	QP
10.5980	26.47	9.69	36.16	50.00	-13.84	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

100.0 dBuV

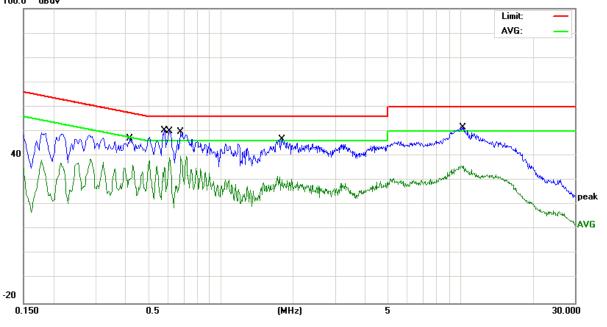


EUT:	Smart Phone	Model Name :	WP9
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 9V from Adapter AC 120V/60Hz	Test Mode:	Mode 1(5.8G)

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domorik
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5020	39.66	9.54	49.20	56.00	-6.80	QP
0.5020	24.51	9.54	34.05	46.00	-11.95	AVG
0.6580	41.14	9.54	50.68	56.00	-5.32	QP
0.6580	27.40	9.54	36.94	46.00	-9.06	AVG
0.7860	39.96	9.54	49.50	56.00	-6.50	QP
0.7860	25.97	9.54	35.51	46.00	-10.49	AVG
1.1499	37.82	9.55	47.37	56.00	-8.63	QP
1.1499	24.64	9.55	34.19	46.00	-11.81	AVG
3.2659	37.74	9.59	47.33	56.00	-8.67	QP
3.2659	22.63	9.59	32.22	46.00	-13.78	AVG
11.6578	42.53	9.71	52.24	60.00	-7.76	QP
11.6578	25.55	9.71	35.26	50.00	-14.74	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.


Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	- Remark
(MHz)	(MHz) (dBµV)		(dBµV)	(dBµV)	(dB)	Remark
0.4179	37.58	9.55	47.13	57.49	-10.36	QP
0.4179	21.21	9.55	30.76	47.49	-16.73	AVG
0.5819	40.93	9.55	50.48	56.00	-5.52	QP
0.5819	25.76	9.55	35.31	46.00	-10.69	AVG
0.6099	40.51	9.55	50.06	56.00	-5.94	QP
0.6099	29.68	9.55	39.23	46.00	-6.77	AVG
0.6820	40.27	9.55	49.82	56.00	-6.18	QP
0.6820	30.37	9.55	39.92	46.00	-6.08	AVG
1.7980	37.17	9.58	46.75	56.00	-9.25	QP
1.7980	22.08	9.58	31.66	46.00	-14.34	AVG
10.2979	42.09	9.70	51.79	60.00	-8.21	QP
10.2979	26.37	9.70	36.07	50.00	-13.93	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(b) and 15.209

3.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(8)(9): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz
0.090-0.110	0 16.42-16.423 399.9-410		4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

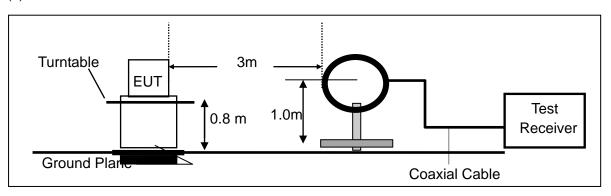
3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

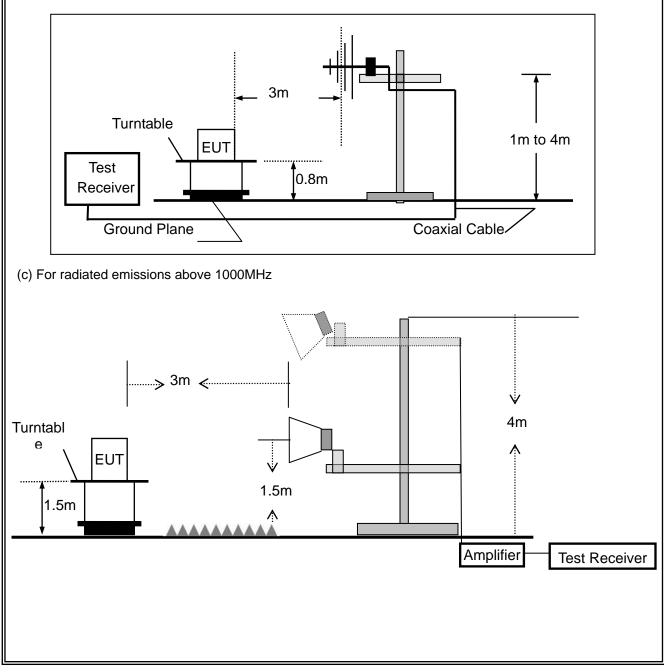
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.


3.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 6.3 of this test report.



3.2.4 TEST CONFIGURATION

(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

3.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting		
Attenuation	Auto		
Start Frequency	1000 MHz		
Stop Frequency	10th carrier harmonic		
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average		

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
AL	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

3.2.6 TEST RESULTS (9KHz - 30 MHz)

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	20 °C	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	DC 3.7V
Test Mode :	ТХ	Polarization :	

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				N/A
				N/A

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

3.2.7 TEST RESULTS (30MHz - 1GHz)

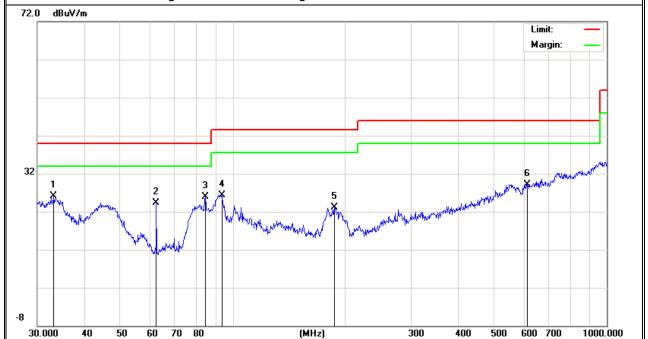
EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX(5.2G)- 802.11a (Low CH)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.9618	7.11	18.33	25.44	40.00	-14.56	QP
V	33.3279	8.23	17.48	25.71	40.00	-14.29	QP
V	43.9658	11.97	11.96	23.93	40.00	-16.07	QP
V	91.8163	16.23	10.09	26.32	43.50	-17.18	QP
V	187.7530	14.06	9.41	23.47	43.50	-20.03	QP
V	539.4774	7.68	21.57	29.25	46.00	-16.75	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtomant
Н	30.8535	5.90	18.39	24.29	40.00	-15.71	QP
Н	93.4402	10.59	10.36	20.95	43.50	-22.55	QP
Н	126.7723	10.35	12.30	22.65	43.50	-20.85	QP
Η	169.0054	17.33	10.78	28.11	43.50	-15.39	QP
Η	214.5142	12.59	9.86	22.45	43.50	-21.05	QP
Η	545.1826	7.80	22.14	29.94	46.00	-16.06	QP
	e Level= Readi uv/m					Limit:	
						Margin:	
							F
32						6	all and and and the
				4 X		And without a	uhuhu ^{n m}
* mm	164	2	3 	5 X	to the company have been with	, www.	
	Marrie Marrie Marrie Land	weeks Aug	montheter	Mr. Mundan	WHO COM MANNER		
	inter your	warder when have					
B							
30.000	40 50 60	70 80	(MI	1-)	300 400	500 600 700	1000.000



EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX(5.8G)- 802.11a (Low CH)		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	33.2112	8.69	17.50	26.19	40.00	-13.81	QP
V	62.4313	18.37	5.98	24.35	40.00	-15.65	QP
V	84.4054	17.18	8.76	25.94	40.00	-14.06	QP
V	93.4402	15.98	10.36	26.34	43.50	-17.16	QP
V	187.0958	13.71	9.48	23.19	43.50	-20.31	QP
V	612.0642	7.21	21.97	29.18	46.00	-16.82	QP

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

3.2.8 TEST RESULTS (1GHz-18GHz)

		•	-						
EUT:		Smart Phone	Э		Model Na	me. :	WP9		
Temperatur	e: 2	20 ℃			Relative H	lumidity:	48%		
Pressure:	-	1010 hPa			Test Volta	ge:	DC 3.85	V	
Test Mode		ΓX(5.2G) - 8	02 11a 5	180~5240		0			
1000 mode	•	17((0.20) 0	02.11u_0	100 0210					
	Freque	nc Meter	Cable	Antenna	Preamp	Emission			Detector
Polar	v v	Reading	loss	Factor	Factor	Level	Limits	Margin	Туре
(H/V)	(MHz)	(dBuV)	(dB)	dB/m	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
			Low Char	nnel (518	0 MHz)-Abo	ove 1G			
Vertical	3015	62.85	5.94	35.40	44.00	60.19	68.20	-8.01	Pk
Vertical	10360	60.01	8.46	39.75	44.50	63.72	68.20	-4.48	Pk
Vertical	15540	55.74	10.12	38.80	44.10	60.56	74.00	-13.44	Pk
Vertical	15540	36.87	10.12	38.80	42.70	43.09	54.00	-10.91	AV
Horizontal	2981	61.33	5.94	35.18	44.00	58.45	68.20	-9.75	Pk
Horizontal	10360	58.92	8.46	38.71	44.50	61.59	68.20	-6.61	Pk
Horizontal	15540	54.72	10.12	38.38	44.10	59.12	74.00	-14.88	Pk
Horizontal	15540	39.80	10.12	38.38	44.10	44.20	54.00	-9.80	AV
	1		middle Ch		200 MHz)-A			•	•
Vertical	3561	62.92	6.48	36.35	44.05	61.70	68.20	-6.50	Pk
Vertical	10400	59.45	8.47	37.88	44.51	61.29	68.20	-6.91	Pk
Vertical	15600	54.71	10.12	38.80	44.10	59.53	74.00	-14.47	Pk
Vertical	15600	39.06	10.12	38.80	42.70	45.28	54.00	-8.72	AV
Horizontal	3363	58.80	6.48	36.37	44.05	57.60	68.20	-10.60	Pk
Horizontal	10400	55.44	8.47	38.64	44.50	58.05	68.20	-10.15	Pk
Horizontal	15600	58.61	10.12	38.38	44.10	63.01	74.00	-10.99	Pk
Horizontal	15600	41.34	10.12	38.38	44.10	45.74	54.00	-8.26	AV
	1		High Cha	1		7		1	<u> </u>
Vertical	3926	56.85	7.10	37.24	43.50	57.69	74.0	-16.31	Pk
Vertical	3926	43.74	7.10	37.24	43.50	44.58	54.0	-9.42	AV
Vertical	10480	62.12	8.46	37.68	44.50	63.76	68.2	-4.44	Pk
Vertical	15720	58.64	10.12	38.80	44.10	63.46	74.0	-10.54	Pk
Vertical	15720	36.72	10.12	38.80	42.70	42.94	54.0	-11.06	AV
Horizontal	3885	63.51	7.10	37.24	43.50	64.35	74.0	-9.65	Pk
Horizontal	3885	39.55	7.10	37.24	43.50	40.39	54.0	-13.61	AV
Horizontal	10480	54.50	8.46	38.57	44.50	57.03	68.2	-11.17	Pk Dl-
Horizontal	15720	58.98	10.12	38.38	44.10	63.38	74.0	-10.62	Pk
Horizontal	15720	36.00	10.12	38.38	44.10	40.40	54.0	-13.60	AV

Note:"802.11a (5G)" mode is the worst mode.

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

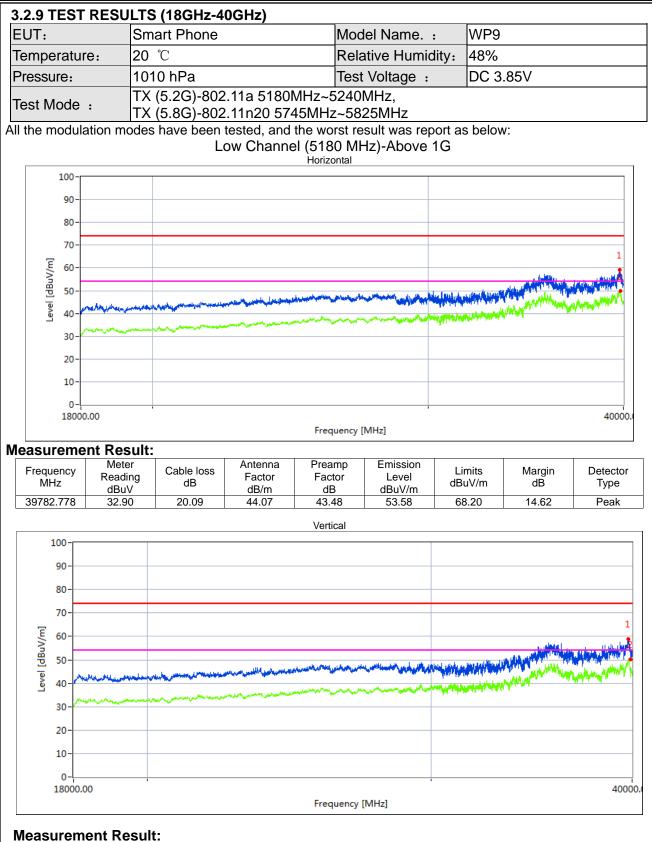
has no need to be reported.

Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

EUT:	Sma	art Phone			Model Nar	ne. :	WP9				
Temperature	20	Ĉ			Relative H	umidity:	48%	48%			
Pressure:	101	0 hPa			Test Voltag	1e :	DC 3.85\	/			
Test Mode :	-		02.11a20								
		(0.00) 0	02.11020	_07+0~0							
Polar	Frequency	Meter	Cable loss	Antenna	Preamp	Emission	Limits	Margin	Detector		
(H/V)	(MHz)	Reading (dBuV)	(dB)	Factor dB/m	Factor (dB)	Level (dBuV/m)	(dBuV/m)	(dB)	Туре		
Low				ub/iii				(UD)			
Vertical	2806	60.99	5.94	35.40	44.00	58.33	74.00	-15.67	Pk		
Vertical	2806	43.32	5.94	35.40	44.00	40.66	54.00	-13.34	AV		
Vertical	11490	58.40	8.46	39.75	44.50	62.11	74.00	-11.89	Pk		
Vertical	11490	39.43	8.46	39.75	44.50	43.14	54.00	-10.86	AV		
Vertical	17235	54.83	10.12	38.80	44.10	59.65	68.20	-8.55	Pk		
Horizontal	2911	64.07	5.94	35.18	44.00	61.19	68.20	-7.01	Pk		
Horizontal	11490	39.38	8.46	38.71	44.50	42.05	54.00	-11.95	AV		
Horizontal	17235	58.85	10.12	38.38	44.10	63.25	68.20	-4.95	Pk		
Channel							-				
Vertical	3763	61.18	6.48	36.35	44.05	59.96	74.00	-14.04	Pk		
Vertical	11570	62.30	8.47	37.88	44.51	64.14	74.00	-9.86	Pk		
Vertical	11570	40.85	8.47	37.88	44.51	42.69	54.00	-11.31	AV		
Vertical	17355	61.02	10.12	38.8	44.10	65.84	68.20	-2.36	Pk		
Horizontal	3561	61.56	6.48	36.37	44.05	60.36	68.20	-7.84	Pk		
Horizontal	11570	55.88	8.47	38.64	44.50	58.49	74.00	-15.51	Pk		
Horizontal	11570	41.29	8.47	38.64	44.50	43.90	54.00	-10.10	AV		
Horizontal	17355	62.58	10.12	38.38	44.10	66.98	68.20	-1.22	Pk		
High								1			
Vertical	3907	56.85	7.10	37.24	43.50	57.69	74.00	-16.31	Pk		
Vertical	3907	42.12	7.10	37.24	43.50	42.96	54.00	-11.04	AV		
Vertical	11650	60.54	8.46	37.68	44.50	62.18	74.00	-11.82	Pk		
Vertical	11650	40.98	8.46	37.68	44.50	42.62	54.00	-11.38	AV		
Vertical	17475	55.65	10.12	38.8	44.10	60.47	68.20	-7.73	Pk		
Horizontal	3912	59.50	7.10	37.24	43.50	60.34	74.00	-13.66	Pk		
Horizontal	3912	42.48	7.10	37.24	43.50	43.32	54.00	-10.68	AV		
Horizontal	11650	62.19	8.46	38.57	44.50	64.72	74.00	-9.28	Pk		
Horizontal	11650	42.75	8.46	38.57	44.50	45.28	54.00	-8.72	AV		
Horizontal	17475	57.78	10.12	38.38	44.10	62.18	68.20	-6.02	Pk		

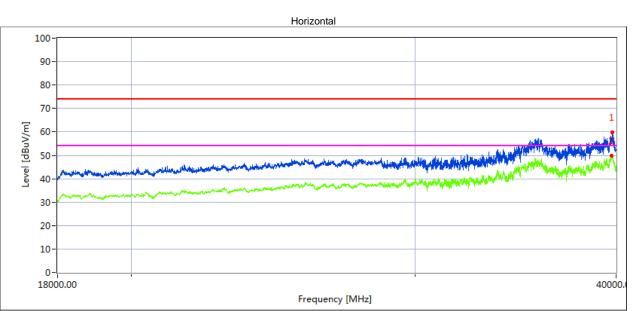
Note:"802.11a20 (5G)" mode is the worst mode.


The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value

has no need to be reported.

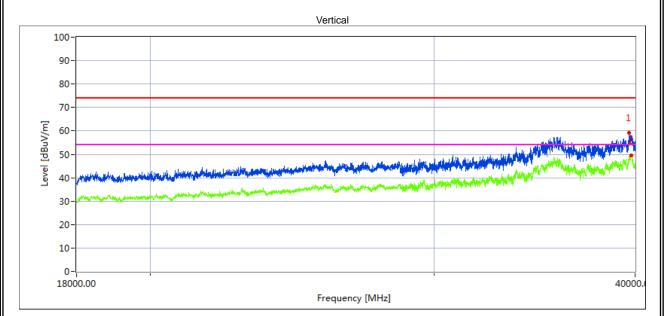
Emission level (dBuV/m) = 20 log Emission level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.



High Channel (5240 MHz)-Above 1G

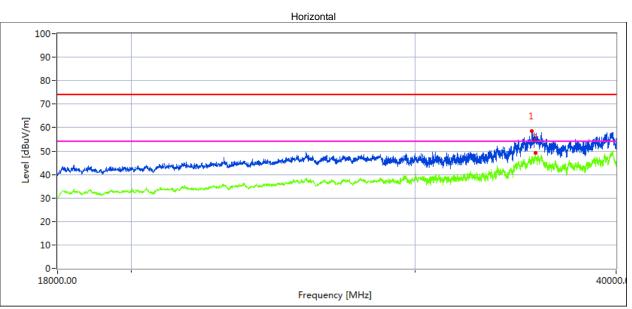
ACCREDITED Certificate #4298.01


ilac-MR

Measurement Result:

NTEK北测

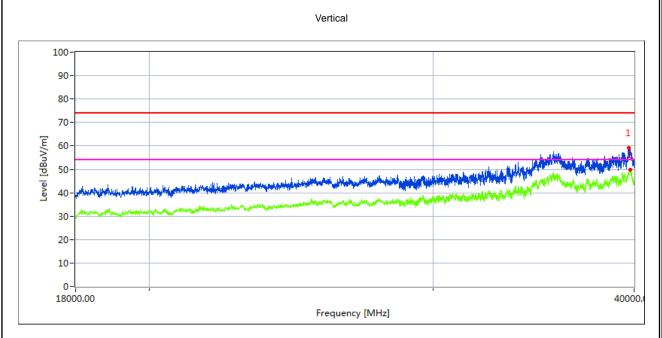
Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39799.442	33.41	20.09	44.07	43.48	54.09	68.20	14.11	Peak


Measurement Result:

F	requency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
3	9672.258	31.91	20.09	44.07	43.48	52.59	68.20	15.61	Peak

Low Channel (5745 MHz)-Above 1G

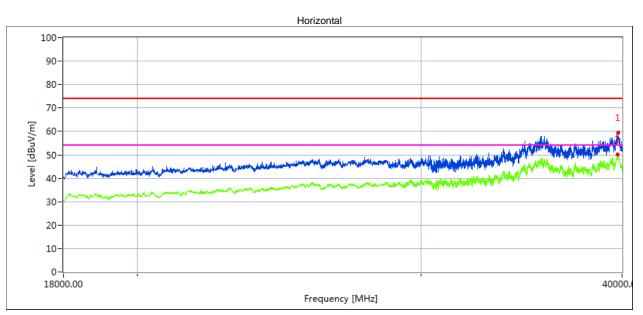
ACCREDITED Certificate #4298.01


ilac-MR

Measurement Result:

NTEK北测

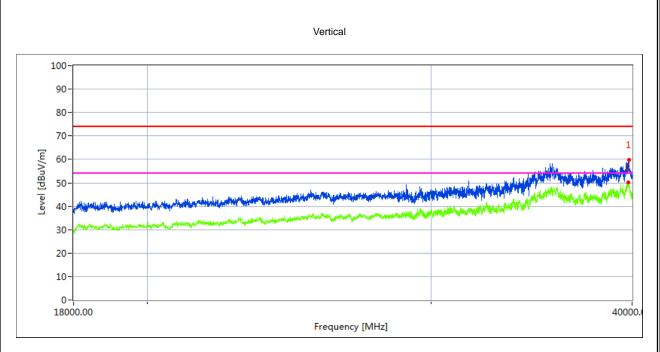
Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
35459.427	30.28	20.09	44.16	43.48	51.05	68.20	17.15	Peak


Measurement Result:

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39716.170	33.18	20.06	44.07	43.21	54.10	68.20	14.10	Peak

High Channel (5825 MHz)-Above 1G

ACCREDITED Certificate #4298.01


ilac-MR

Measurement Result:

NTEK北测

Freque MHz		Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39765.	06 35.71	19.11	42.63	43.48	53.97	68.20	14.23	Peak

Measurement Result:

Frequency MHz	Meter Reading dBuV	Cable loss dB	Antenna Factor dB/m	Preamp Factor dB	Emission Level dBuV/m	Limits dBuV/m	Margin dB	Detector Type
39815.245	33.42	20.10	44.10	43.22	54.40	68.20	13.80	Peak

.2.10 Spurious Emission in Restricted Band 4.5GHz~5.150 GHz& 5.350GHz~5460GHz							
EUT:	Smart Phone Model Name. : WP9						
Temperature:	20 ℃	Relative Humidity:	48%				
Pressure:	1010 hPa	Test Voltage :	DC 3.85V				
Test Mode : TX (5.2G)-802.11a 5150MHz~5250MHz,							

All the modulation modes have been tested, The report just record the worst data mode.

Air the modulation modes have been tested, the report just record the worst data mode.									
Frequen	Meter	Cable	Antenna	Preamp	Emission	Limits	Margin	Detec	Comment
су	Reading	Loss	Factor	Factor	Level			tor	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
5.2G WIFI-802.11a Mode									
4500	60.28	5.20	35.60	44.20	56.88	74	-17.12	Pk	Horizontal
4500	43.38	5.20	35.60	44.20	39.98	54	-14.02	AV	Horizontal
4500	59.92	5.20	35.60	44.20	56.52	74	-17.48	Pk	Vertical
4500	39.38	5.20	35.60	44.20	35.98	54	-18.02	AV	Vertical
5150	60.44	5.36	35.66	44.22	57.24	74	-16.76	Pk	Horizontal
5150	40.20	5.36	35.66	44.22	37.00	54	-17.00	AV	Horizontal
5150	60.28	5.36	35.66	44.22	57.08	74	-16.92	Pk	Vertical
5150	39.42	5.36	35.66	44.22	36.22	54	-17.78	AV	Vertical
5350	57.09	5.68	35.68	44.22	54.23	74	-19.77	Pk	Vertical
5350	39.02	5.68	35.68	44.22	36.16	54	-17.84	AV	Vertical
5350	54.25	5.68	35.68	44.22	51.39	74	-22.61	Pk	Horizontal
5350	36.89	5.68	35.68	44.22	34.03	54	-19.97	AV	Horizontal

Note: (1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2) "802.11a " mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

3.3 POWER SPECTRAL DENSITY TEST

3.3.1 Applied procedures / limit

According to FCC §15.407(a)(3)

For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz

(3)For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 TEST PROCEDURE

For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW \geq 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add

10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add
 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

3.3.3 DEVIATION FROM STANDARD

No deviation.

3.3.4 TEST SETUP

3.3.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

3.3.6 TEST RESULTS

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1015 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Frequency Band I (5150-52	50MHz), Band IV (5	725-5850MHz)

Test data reference attachment.

β.4 26DB & 99% EMISSION BANDWIDTH

3.4.1 Applied procedures / limit

NTEK北测

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

3.4.2 TEST PROCEDURE

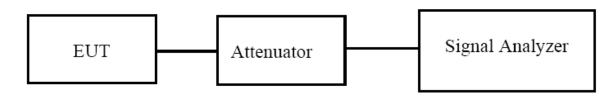
a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.


The following procedure shall be used for measuring (99 %) power bandwidth:

- 1. Set center frequency to the nominal EUT channel center frequency.
- 2. Set span = 1.5 times to 5.0 times the OBW.
- 3. Set RBW = 1 % to 5 % of the OBW
- 4. Set VBW \geq 3 \cdot RBW

5. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

6. Use the 99 % power bandwidth function of the instrument (if available).

7. If the instrument does not have a 99 % power bandwidth function, the trace data points are recovered and directly summed in power units. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 % of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5 % of the total is reached; that frequency is recorded as the upper frequency. The 99% occupied bandwidth is the difference between these two frequencies.

3.4.3 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.4.4 TEST RESULTS

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Frequency Band I (5150-52	250MHz), Band IV (5	725-5850MHz)

Test data reference attachment.

β.5 MINIMUM 6 DB BANDWIDTH

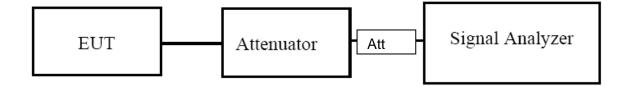
3.5.1 Applied procedures / limit

According to FCC §15.407(e)

(e) Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

3.5.2 TEST PROCEDURE

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.715-5.85 GHz. The following procedure shall be used for measuring this bandwidth:


- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 x RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3.5.3 DEVIATION FROM STANDARD

No deviation.

3.5.4 TEST SETUP

3.5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.5.6 TEST RESULTS

EUT:	Smart Phone	Model Name. :	WP9				
Temperature:	25 ℃	Relative Humidity:	60%				
Pressure:	1012 hPa	Test Voltage :	DC 3.85V				
Test Mode :	TX (5G) Mode Frequency Band	TX (5G) Mode Frequency Band IV (5725-5850MHz)					

Test data reference attachment.

β.6 MAXIMUM CONDUCTED OUTPUT POWER

3.6.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407

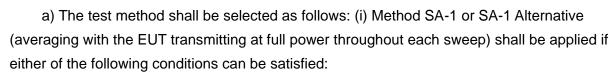
The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5150~5250	250mW
5725~5850	1W

3.6.2 TEST PROCEDURE

• Maximum conducted output power may be measured using a spectrum analyzer/EMI receiver or an RF power meter.

1. Device Configuration


If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

• The EUT transmits continuously (or with a duty cycle \geq 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

NTEK北测

(iii) Set VBW \geq 3 MHz.

(iv) Number of points in sweep ≥ 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

3. Measurement using a Power Meter (PM)

a) Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

The EUT is configured to transmit continuously or to transmit with a constant duty cycle. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.

(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25%).

b) Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.6.3 DEVIATION FROM STANDARD

No deviation.

3.6.4 TEST SETUP

3.6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.6.6 TEST RESULTS

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX (5G) Mode Frequency Band	d I (5150-5250MHz),	Band IV (5725-5850MHz)

Test data reference attachment.

3.7 OUT OF BAND EMISSIONS

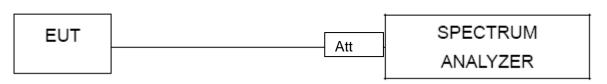
3.7.1 Applicable Standard

According to FCC §15.407(b)

Undesirable emission limits. Except as shown in paragraph (b)(8) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

(1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at 5 MHz above or below the band edge.


3.7.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

3.7.3 DEVIATION FROM STANDARD

No deviation.

3.7.4 TEST SETUP

3.7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.7.6 TEST RESULTS

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1012 hPa	Test Voltage :	DC 3.85V

Test data reference attachment.

3.8 SPURIOUS RF CONDUCTED EMISSIONS

3.8.1Conformance Limit

According to FCC §15.407(b)(1) (2) (3) (4)

3.8.2Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

3.8.3Test Setup

Please refer to Section 6.1 of this test report.

3.8.4Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the peak power, and measure frequency range from 30MHz to 40GHz.

3.8.5Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

3.9 FREQUENCY STABILITY MEASUREMENT

β.9.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

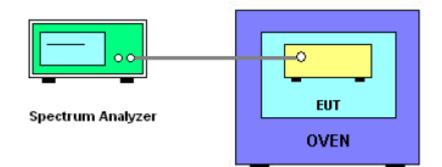
β.9.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.

4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.


5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10_6 \text{ ppm}$.

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the

nominal value

7. Extreme temperature is -20°C~70°C.

β.9.3 TEST SETUP LAYOUT

3.9.4 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

3.9.5 TEST RESULTS EUT: Smart Phone Model Name. : WP9 Temperature: 25 °C Relative Humidity: 56% Pressure: 1012 hPa Test Voltage : DC 3.85V Test Mode : TX Frequency Band I (5150-5250MHz)

Voltage vs. Frequency Stability

				Reference Frequency: 5180MHz			
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°		V nom (V)	3.85	5180.0549	5180	0.0549	-10.5923
	20	V max (V)	4.20	5180.0099	5180	0.0099	-1.9203
C)		V min (V)	3.40	5180.0610	5180	0.0610	-11.7718
	Limits			Within 5150-5250MHz			
Result			Complies				

				Refe	erence Fred	quency: 51	80MHz
TEST CONDITIONS				f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5180.0219	5180	0.0219	-4.2340
		T (°C)	-10	5180.0641	5180	0.0641	-12.3805
		T (°C)	0	5180.0490	5180	0.0490	-9.4604
		T (°C)	10	5180.0050	5180	0.0050	-0.9607
V nom	3.7	T (°C)	20	5180.0492	5180	0.0492	-9.5021
(V)	3.7	T (°C)	30	5180.0709	5180	0.0709	-13.6866
		T (°C)	40	5180.0261	5180	0.0261	-5.0337
		T (°C)	50	5180.0187	5180	0.0187	-3.6190
		T (°C)	60	5180.0017	5180	0.0017	-0.3336
		T (°C)	70	5180.0032	5180	0.0032	-0.6119
Limits			Within 5150-5250MHz				
	Re	sult			Complies		

				Reference Frequency: 5200MHz																	
TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)															
T nom (°		V nom (V)	3.85	5200.0385	5200	0.0385	-7.4079														
```	20	V max (V)	4.20	5200.0579	5200	0.0579	-11.1343														
C)																V min (V)	3.40	5200.0537	5200	0.0537	-10.3291
	Limits			Within 5150-5250MHz																	
Result				Complies																	

				Refer	ence Fred	quency: 52	200MHz
ТІ	TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5200.0196	5200	0.0196	-3.7649
		T (°C)	-10	5200.0103	5200	0.0103	-1.9720
		T (°C)	0	5200.0259	5200	0.0259	-4.9852
		T (°C)	10	5200.0220	5200	0.0220	-4.2320
V nom	3.7	T (°C)	20	5200.0529	5200	0.0529	-10.1710
(V)	3.7	T (°C)	30	5200.0272	5200	0.0272	-5.2247
		T (°C)	40	5200.0415	5200	0.0415	-7.9773
		T (°C)	50	5200.0453	5200	0.0453	-8.7186
		T (°C)	60	5200.0560	5200	0.0560	-10.7724
		T (°C)	70	5200.0777	5200	0.0777	-14.9516
	Limits			Within 5150-5250MHz			Hz
	Re	sult		Complies			



				Reference Frequency: 5240MHz				
۲ ۱	TEST CC	NDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
T nom (°		V nom (V)	3.85	5240.0362	5240	0.0362	-6.9148	
```	20	V max (V)	4.20	5240.0151	5240	0.0151	-2.8735	
0)		V min (V)	3.40	5240.0012	5240	0.0012	-0.2385	
Limits			Within 5150-5250MHz			lz		
Result				Complies				
T nom (° C)	20 Lir	V nom (V) V max (V) V min (V) nits	4.20	5240.0151	5240 5240 5240 Within 51	Deviation (MHz) 0.0362 0.0151 0.0012 50-5250MH	(ppm) -6.9148 -2.8735 -0.2385	

				Refei	ence Fred	quency: 52	240MHz
TI	TEST CONDITIONS			f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5240.0742	5240	0.0742	-14.1597
		T (°C)	-10	5240.0053	5240	0.0053	-1.0132
		T (°C)	0	5240.0582	5240	0.0582	-11.1123
		T (°C)	10	5240.0537	5240	0.0537	-10.2422
V nom	3.7	T (°C)	20	5240.0392	5240	0.0392	-7.4891
(V)	5.7	T (°C)	30	5240.0087	5240	0.0087	-1.6655
		T (°C)	40	5240.0559	5240	0.0559	-10.6645
		T (°C)	50	5240.0521	5240	0.0521	-9.9465
		T (°C)	60	5240.0738	5240	0.0738	-14.0857
		T (°C)	70	5240.0579	5240	0.0579	-11.0483
	Limits			Within 5150-5250MHz			
	Re	sult			Complies		

EUT:	Smart Phone	Model Name. :	WP9
Temperature:	25 ℃	Relative Humidity:	56%
Pressure:	1012 hPa	Test Voltage :	DC 3.85V
Test Mode :	TX Frequency(5745-5825MHz))	

				Reference Frequency: 5745MHz						
-	TEST	CONDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)			
Tnom (°		V nom (V)	3.85	5745.029	5745	0.02947	-5.1296			
T nom (° C)	20	V max (V)	4.20	5745.069	5745	0.06888	-11.9889			
0)						Vmin(V)	3.40	5745.065	5745	0.06460
		Limits		Within 5745-5850MHz						
		Result		Complies						

				Refe	erence Free	quency: 57	45MHz	
۲ ۱	TEST CO	NDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-20	5745.0782	5745	0.07822	-13.6159	
		T (°C)	-10	5745.0633	5745	0.06325	-11.0103	
			T (°C)	0	5745.0693	5745	0.06934	-12.0704
		T (°C)	10	5745.0517	5745	0.05166	-8.9924	
V nom	3.7	T (°C)	20	5745.0789	5745	0.07889	-13.7325	
(V)	5.7	T (°C)	30	5745.0522	5745	0.05225	-9.0946	
		T (°C)	40	5745.0527	5745	0.05269	-9.1714	
		T (°C)	50	5745.0677	5745	0.06770	-11.7843	
		T (°C)	60	5745.0303	5745	0.03031	-5.2757	
		T (°C)	70	5745.0357	5745	0.03574	-6.2202	
	Limits			Within 5745-5850MHz				
	Re	sult		Complies				

				Reference Frequency: 5785MHz			
	STC	ONDITIONS				Max.	Max.
					fc	Deviation	Deviation
						(MHz)	(ppm)
T nom (°		V nom (V)	3.85	5785.0780	5785	0.07799	-13.4820
C)	20	V max (V)	4.20	5785.0178	5785	0.01778	-3.0742
0)		V min (V)	3.40	5785.0473	5785	0.04731	-8.1775
	Limits			Within 5745-5850MHz			
	R	esult		Complies			

				Refe	rence Fred	quency: 5	785MHz
ТІ	EST CO	NDITIONS	5	f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)
		T (°C)	-20	5785.0081	5785	0.00807	-1.3954
		T (°C)	-10	5785.0385	5785	0.03850	-6.6560
	3.7	T (°C)	0	5785.0477	5785	0.04775	-8.2535
		T (°C)	10	5785.0616	5785	0.06158	-10.6440
V nom		T (°C)	20	5785.0754	5785	0.07540	-13.0330
(V)	5.7	T (°C)	30	5785.0553	5785	0.05526	-9.5528
		T (°C)	40	5785.0245	5785	0.02445	-4.2273
		T (°C)	50	5785.0144	5785	0.01444	-2.4969
		T (°C)	60	5785.0677	5785	0.06772	-11.7069
		T (°C)	70	5785.0223	5785	0.02227	-3.8497
	Limits			Within 5745-5850MHz			
	Re	sult			Co	mplies	

Voltage vs. Frequency Stability Reference Frequency: 5825MHz Max. **TEST CONDITIONS** Max. Deviation f fc Deviation (ppm) (MHz) 3.85 5825.0176 5825 -3.0264 V nom (V) 0.01763 T nom (° 20 4.20 -4.5614 V max (V) 5825.0266 5825 0.02657 C) V min (V) -5.7154 5825.0333 0.03329 3.40 5825 Limits Within 5745-5850MHz Result Complies

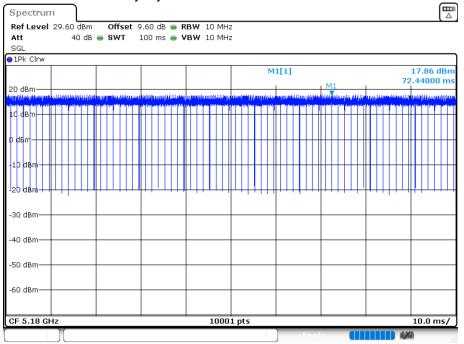
				Refer	ence Fred	quency: 58	325MHz	
Г	EST CC	NDITIONS		f	fc	Max. Deviation (MHz)	Max. Deviation (ppm)	
		T (°C)	-20	5825.0044	5825	0.00438	-0.7514	
		T (°C)	-10	5825.0705	5825	0.07045	-12.0947	
	3.7	T (°C)	0	5825.0589	5825	0.05889	-10.1103	
		T (°C)	10	5825.0159	5825	0.01588	-2.7258	
V nom		T (°C)	20	5825.0211	5825	0.02113	-3.6279	
(V)	3.7	T (°C)	30	5825.0356	5825	0.03559	-6.1093	
		T (°C)	40	5825.0099	5825	0.00995	-1.7081	
		T (°C)	50	5825.0263	5825	0.02630	-4.5145	
		T (°C)	60	5825.0590	5825	0.05896	-10.1226	
		T (°C)	70	5825.0668	5825	0.06680	-11.4685	
	Limits				Within 5745-5850MHz			
	Re	sult		Complies				

4. ANTENNA REQUIREMENT

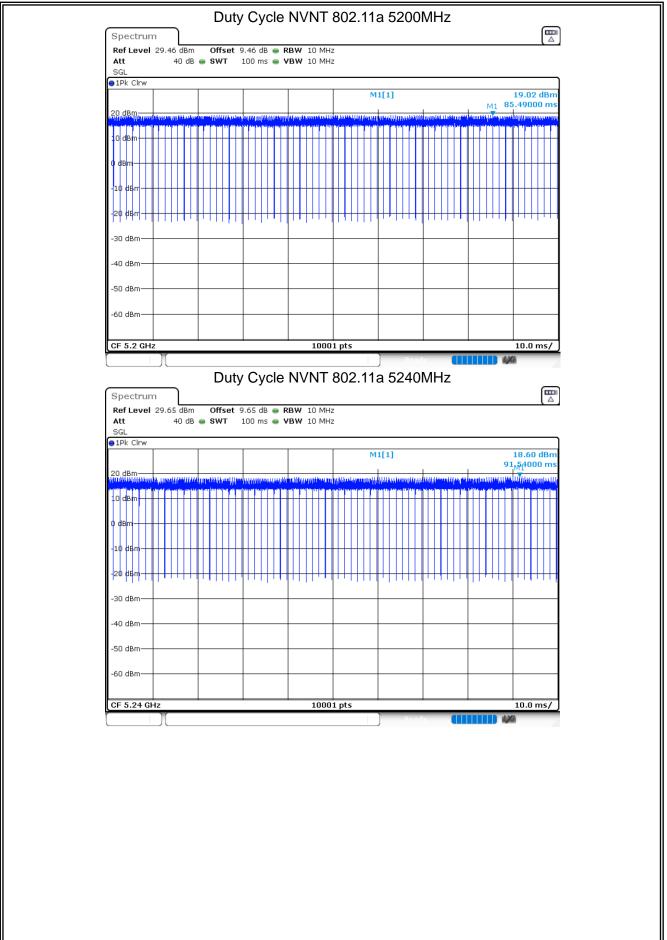
4.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

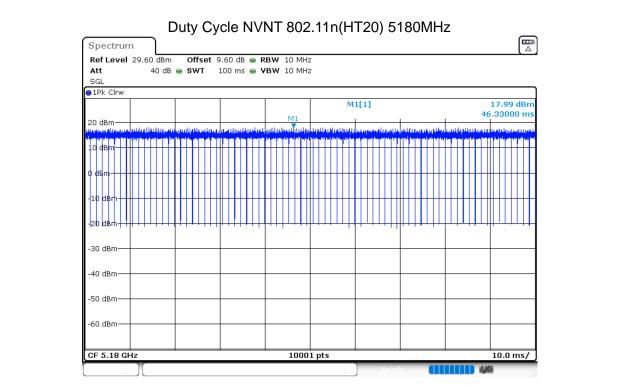
4.2 EUT ANTENNA


The EUT antenna is permanent attached FPC antenna (antenna gain: -1.2dBi). It comply with the standard requirement.

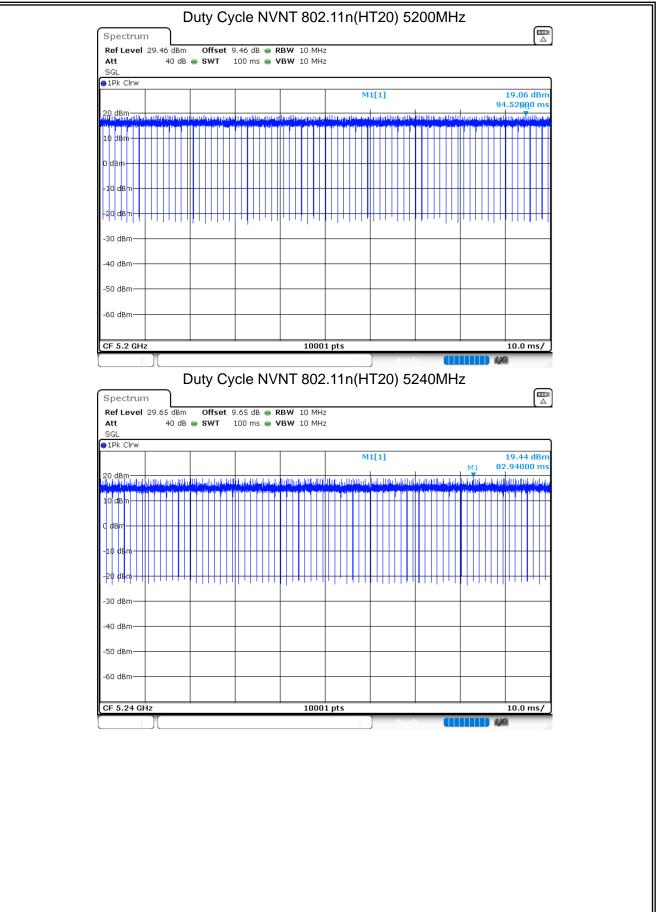
5. TEST RESULTS 5.2G

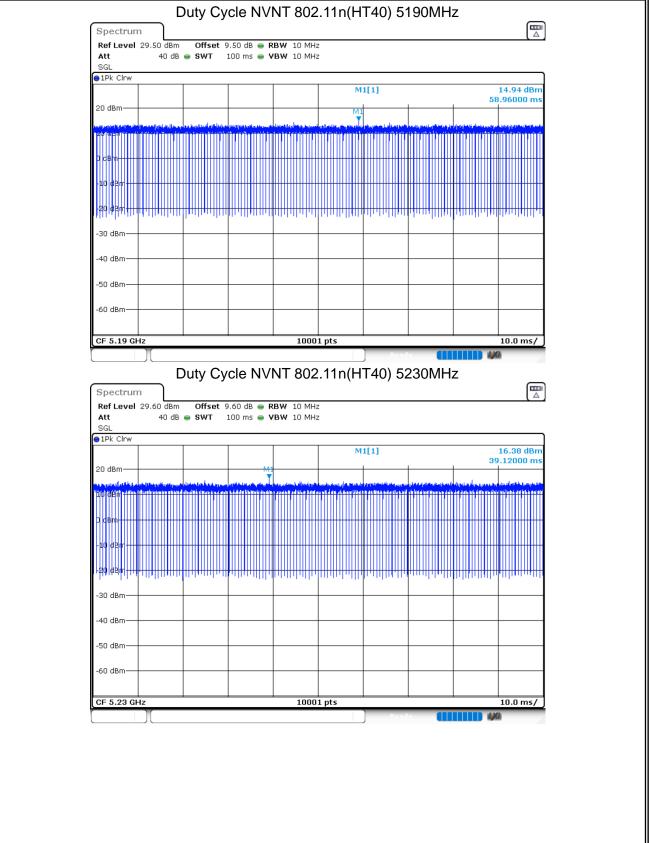

DUTY CYCLE

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	802.11a	5180	100	0
NVNT	802.11a	5200	100	0
NVNT	802.11a	5240	100	0
NVNT	802.11n(HT20)	5180	100	0
NVNT	802.11n(HT20)	5200	100	0
NVNT	802.11n(HT20)	5240	100	0
NVNT	802.11n(HT40)	5190	100	0
NVNT	802.11n(HT40)	5230	100	0

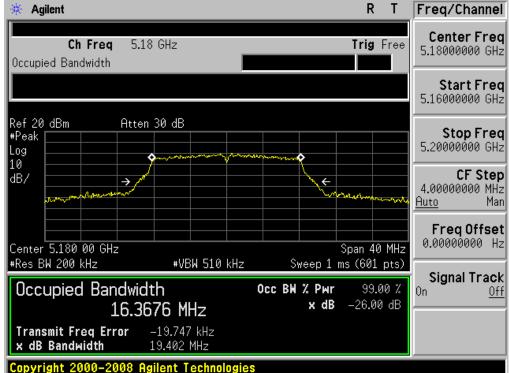


Duty Cycle NVNT 802.11a 5180MHz



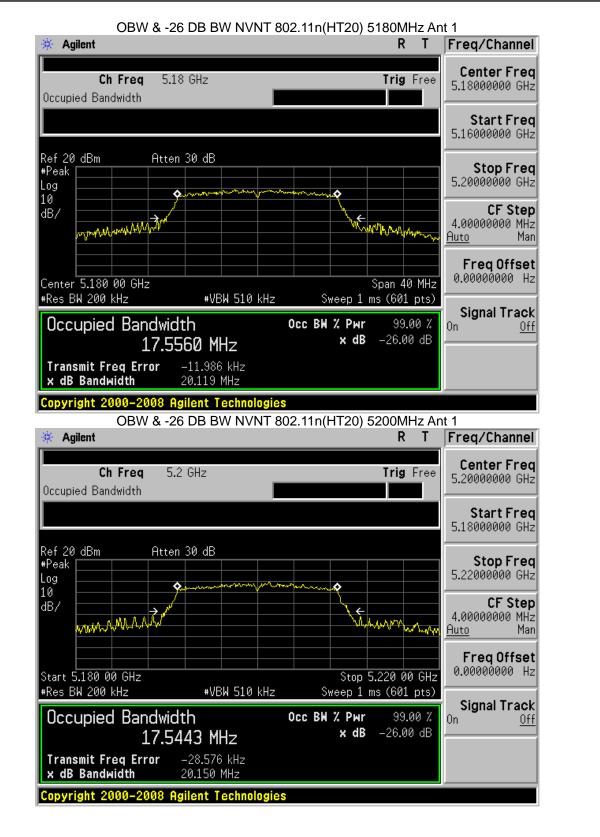


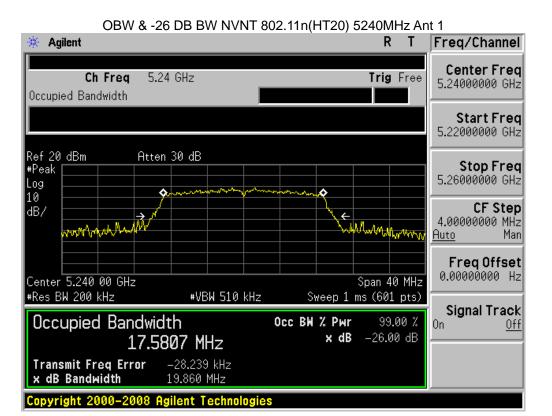
MAXIMUM CONDUCTED OUTPUT POWER

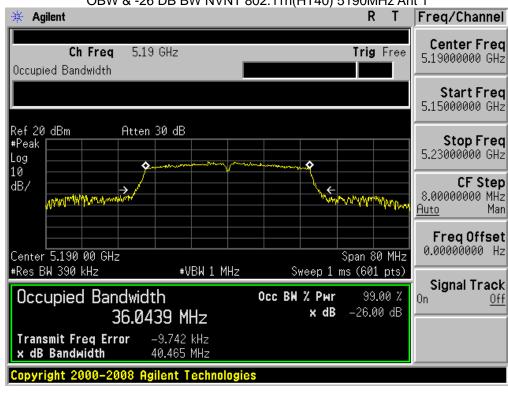

MAXIMUM CO												
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power	Duty Factor	Total Power	Limit (dBm)	Verdict				
	902.110	· · ·	A not 1	(dBm)	(dB)	(dBm)		Deer				
NVNT	802.11a	5180	Ant 1	9	0	9	24	Pass				
NVNT	802.11a	5200	Ant 1	10.11	0	10.11	24	Pass				
NVNT	802.11a	5240	Ant 1	9.09	0	9.09	24	Pass				
NVNT	802.11n(HT20)	5180	Ant 1	9.17	0	9.17	24	Pass				
NVNT	802.11n(HT20)	5200	Ant 1	10.3	0	10.3	24	Pass				
NVNT	802.11n(HT20)	5240	Ant 1	9.10	0	9.10	24	Pass				
NVNT	802.11n(HT40)	5190	Ant 1	7.41	0	7.41	24	Pass				
NVNT	802.11n(HT40)	5230	Ant 1	8.82	0	8.82	24	Pass				

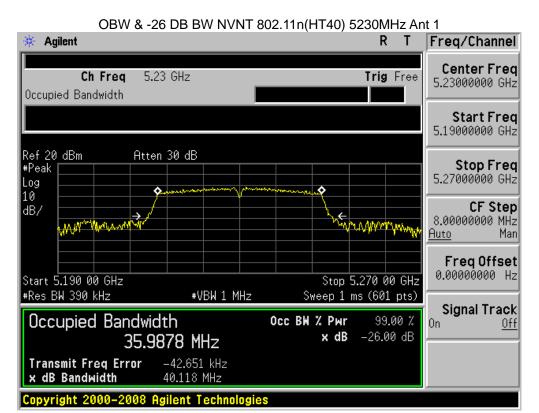
OCCUPIED CHANNEL BANDWIDTH

Condition	Mode	Frequency	Antenna	99% OBW	-26 dB Bandwidth	Verdict
		(MHz)		(MHz)	(MHz)	
NVNT	802.11a	5180	Ant 1	16.3676	19.402	Pass
NVNT	802.11a	5200	Ant 1	16.3386	19.574	Pass
NVNT	802.11a	5240	Ant 1	16.3776	19.447	Pass
NVNT	802.11n(HT20)	5180	Ant 1	17.5560	20.119	Pass
NVNT	802.11n(HT20)	5200	Ant 1	17.5443	20.150	Pass
NVNT	802.11n(HT20)	5240	Ant 1	17.5807	19.860	Pass
NVNT	802.11n(HT40)	5190	Ant 1	36.0439	40.465	Pass
NVNT	802.11n(HT40)	5230	Ant 1	35.9878	40.118	Pass

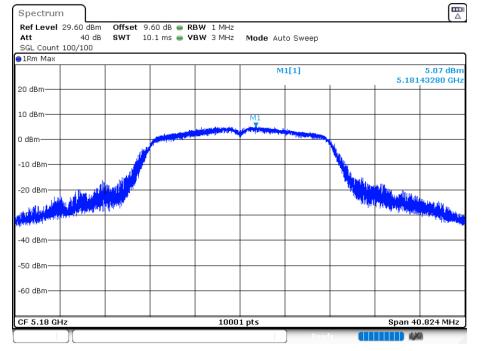


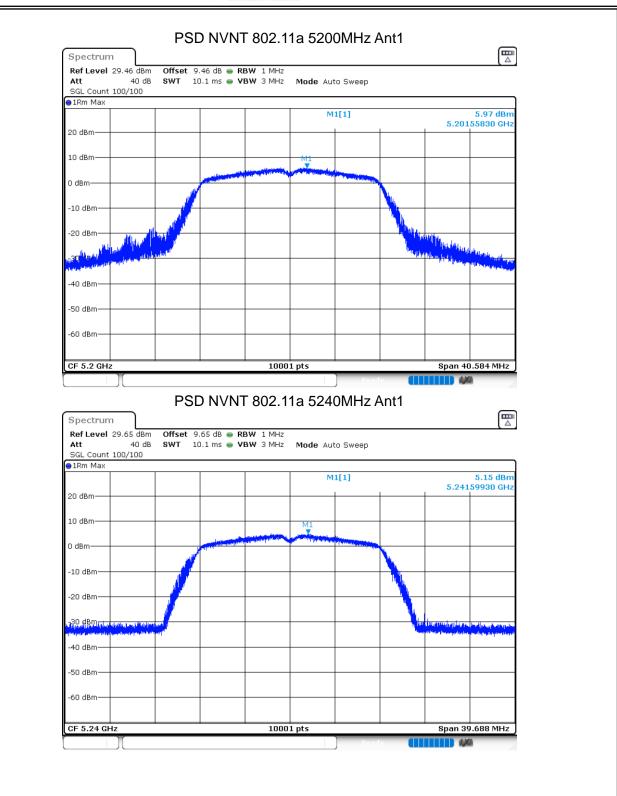



Agilent		RT	Freq/Channel
Ch Freq 5. Occupied Bandwidth	.2 GHz	Trig Fre	e Center Freq 5.20000000 GHz
			Start Freq 5.18000000 GHz
Peak	n 30 dB		Stop Freq 5.22000000 GHz
Ø B∕ → o ^{or}			CF Step 4.00000000 MHz <u>Auto</u> Man
enter 5.200 00 GHz Res BW 200 kHz		Span 40 MH Sweep 1 ms (601 pts	FreqOffset 0.00000000 Hz
Occupied Bandwid		Осс ВЖ % Рыг 99.00 % х dB -26.00 dB	Signal Track
Transmit Freq Error x dB Bandwidth			
opyright 2000–2008 f			
OBW/	& -26 DB BW NVN		
		NT 802.11a 5240MHz Ant R T	
Agilent			Freq/Channel
★ Agilent Ch Freq 5.3	24 GHz		Freq/Channel
★ Agilent Ch Freq 5.3		RT	Freq/Channel Center Freq 5.24000000 GHz Start Freq
Ch Freq 5.2 Occupied Bandwidth	24 GHz	RT	e Center Freq 5.24000000 GHz
Agilent Ch Freq 5.2 Decupied Bandwidth ef 20 dBm Atte Peak g		RT	Freq/Channel Center Freq 5.24000000 GHz Start Freq
Agilent Ch Freq 5.2 Occupied Bandwidth ef 20 dBm Atte	24 GHz n 30 dB	RT	Freq/Channel Center Freq 5.24000000 GHz Start Freq 5.22000000 GHz Stop Freq 5.26000000 GHz CF Step 4.00000000 MHz
Agilent Ch Freq 5.2 Decupied Bandwidth ef 20 dBm Atte Peak og 0 B/ Atte Peak og 0 B/ Atte Peak og 0 B/ Atte Peak og 0 B/ Atte	24 GHz n 30 dB	R T	Freq/Channel Center Freq 5.24000000 GHz Start Freq 5.22000000 GHz Stop Freq 5.26000000 GHz CF Step 4.00000000 MHz Auto Freq Offset 0.0000000 Hz
Agilent Ch Freq 5.2 Decupied Bandwidth ef 20 dBm Atte Peak og 0 B/	24 GHz n 30 dB ◆	R T Trig Fre	Freq/Channel Center Freq 5.24000000 GHz Start Freq 5.22000000 GHz Stop Freq 5.26000000 GHz CF Step 4.00000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Signal Track On Off
Agilent Ch Freq 5.2 Decupied Bandwidth ef 20 dBm Atte Peak og 0 B/ enter 5.240 00 GHz Res BW 200 kHz Occupied Bandwid 16.3	24 GHz n 30 dB WBW 510 kHz th 776 MHz	R T Trig Fre	Freq/Channel Center Freq 5.24000000 GHz Start Freq 5.22000000 GHz Stop Freq 5.26000000 GHz CF Step 4.00000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Signal Track On Off
Agilent Ch Freq 5.2 Decupied Bandwidth ef 20 dBm Atte Peak og 0 B/ B/ enter 5.240 00 GHz Res BW 200 kHz Occupied Bandwid	24 GHz In 30 dB In 30 dB	R T Trig Fre	Freq/Channel Center Freq 5.24000000 GHz Start Freq 5.22000000 GHz Stop Freq 5.26000000 GHz CF Step 4.00000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Signal Track On Off

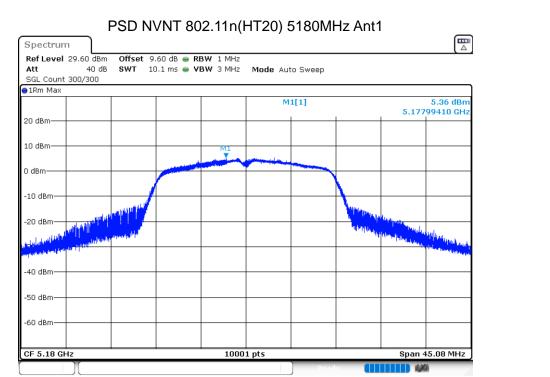


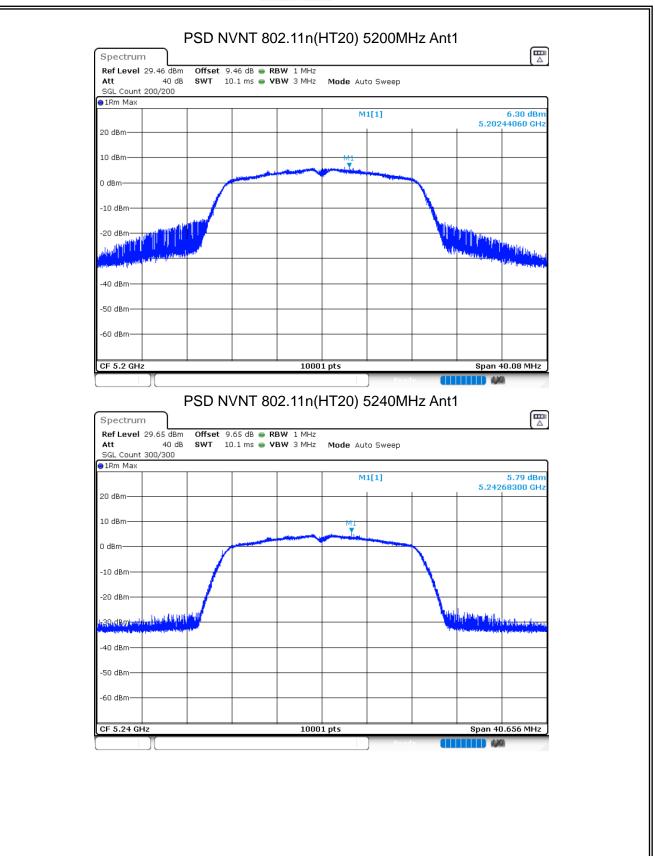
OBW & -26 DB BW NVNT 802.11n(HT40) 5190MHz Ant 1

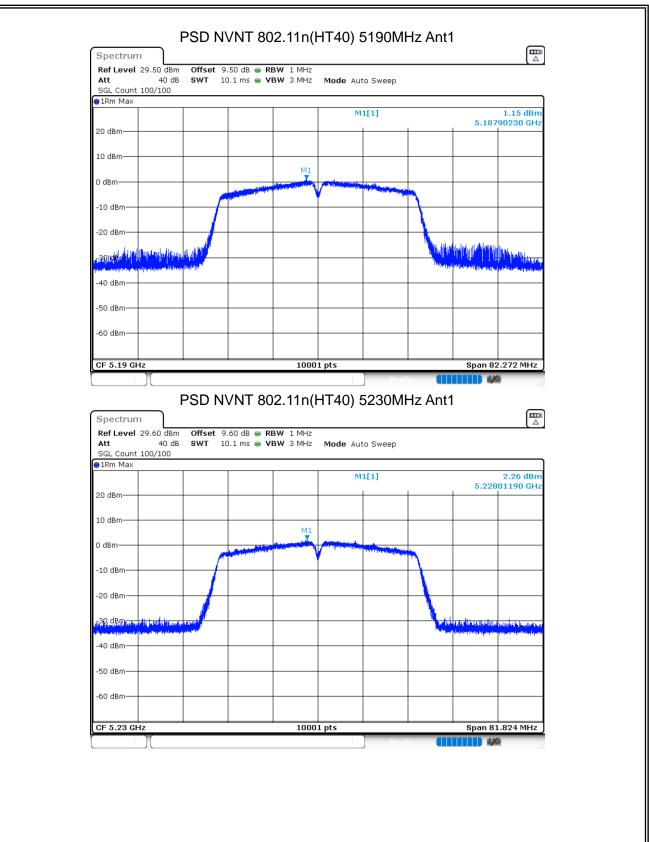



MAXIMUM POWER SPECTRAL DENSITY LEVEL

••											
	Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm/MHz)	Limit (dBm/MHz)	Verdict				
	NVNT	802.11a	5180	Ant 1	5.068	11	Pass				
	NVNT	802.11a	5200	Ant 1	5.97	11	Pass				
	NVNT	802.11a	5240	Ant 1	5.154	11	Pass				
	NVNT	802.11n(HT20)	5180	Ant 1	5.36	11	Pass				
	NVNT	802.11n(HT20)	5200	Ant 1	6.3	11	Pass				
	NVNT	802.11n(HT20)	5240	Ant 1	5.789	11	Pass				
	NVNT	802.11n(HT40)	5190	Ant 1	1.153	11	Pass				
	NVNT	802.11n(HT40)	5230	Ant 1	2.257	11	Pass				


PSD NVNT 802.11a 5180MHz Ant1



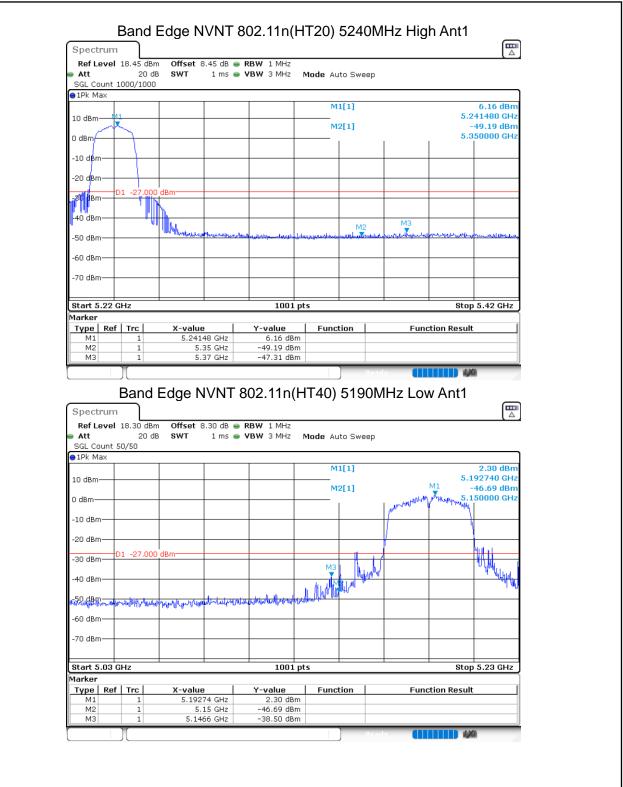


NTEKJLIM

Report No.: S20102701403007

BAND EDGE

BAND EDGE						
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBm)	Limit (dBm)	Verdict
NVNT	802.11a	5180	Ant 1	-44.63	-27	Pass
NVNT	802.11a	5240	Ant 1	-47.15	-27	Pass
NVNT	802.11n(HT20)	5180	Ant 1	-40.01	-27	Pass
NVNT	802.11n(HT20)	5240	Ant 1	-47.3	-27	Pass
NVNT	802.11n(HT40)	5190	Ant 1	-38.5	-27	Pass Pass Pass Pass Pass
NVNT	802.11n(HT40)	5230	Ant 1	-47.01	-27	Pass



Spectr	um										
Ref Le	vel 1				• RBW 1 M						
Att SGL Cou	int 10	20 00/100	dB SWT	1 ms	ув₩ ЗМ	Hz M	lode A	uto Swee	эр		
1Pk Ma											
-							N	11[1]			6.66 dBm
10 dBm-						_		12[1]			181520 GHz
0 dBm—								12[1]		M5.1	150000 GHz
-10 dBm-											
-10 dBm-											
-20 dBm-											Mu
-30 dBm-	D1	1 -27.0	00 dBm						_		<u> </u>
10 10										r ^o	
-40 dBm-									TH.		
^w 2014	400 70	Muqanth	your top and the second	wooderhald	in station is not the state of	MANNA	pellowithmy	al faith and	where the property set of the set		
-60 dBm-											
-70 dBm-											
Start 5.						001 pts				Ct.	op 5.2 GHz
Marker	U GH	2			10	or he	`			อแ	лр 3.2 GHZ
	Ref	Trc	X-value		Y-valu	e	Eun	ction	Fund	tion Result	
M1		1		52 GHz		dBm			T diffe	cion nosul	
M2		1		15 GHz	-44.64						
M3		1		96 GHz	-44.64						
							-	1	keady 🚺		0

Spectrum)								
Ref Level 18.4	L 5 dBm	Offset 8.4ª	5 dB 👄 I	RBW 1 MHz					(A
Att				BW 3 MHz	Mode Auto	o Sweep			
SGL Count 100/1	.00					-			
●1Pk Max				, , , , , , , , , , , , , , , , , , ,	6.4 × 1	[1]			6 91 db
10 dBm					M1	[1]		5	6.31 dBm .238480 GHz
TO UBIL					M2	[1]			-51.24 dBm
0 dBm					ı			5	.350000 GHz
-10 d8m									
-10 usin									
-20 d <mark>8</mark> m									
-30 dBm D1 -2	7.000 dBr	m							
. N	l nik 🗌 👘								
-4 G vdBm	M.								M3
-50 dBm	"WHU	State William	Mar Marriella	and the second		M2	Humberger	diment working	HI WWW MERLAND
				L'an adala	and the second s				0 0
-60 dBm									
-70 dBm									
Start 5.22 GHz				1001	pts			Sto	pp 5.42 GHz
Marker									
Type Ref Tro		X-value	011-	Y-value	Functi	on	Func	tion Resu	lt
	1	5.23848 (6.31 dBm -51.24 dBm					
	1	5.4134 (-47.16 dBm					
	_								
						Read	dy 🚺		X
Bo	nd Ec			02 11 p/l		Rea			//
Ba	nd Ec	dge NV	'NT 8	02.11n(l	HT20) క		/Hz Lov		
Ba	nd Ec	dge NV	'NT 8	02.11n(l	HT20) క	5180N	/Hz Lov		//
Spectrum Ref Level 18.4	0 dBm	Offset 8.40) dB 👄 I	RBW 1 MHz			/Hz Lov		
Spectrum Ref Level 18.4 Att	0 dBm 20 dB	Offset 8.40) dB 👄 I				/Hz Low		
Spectrum Ref Level 18.4	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz			/Hz Lov		
Spectrum Ref Level 18.4 Att SGL Count 50/50	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz		o Sweep	/Hz Lov	v Ant1	6.12 dBm
Spectrum Ref Level 18.4 Att SGL Count 50/50	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Lov	v Ant1	6.12 dBm 1#01720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Low	v Ant1	6.12 dBm
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm 0 dBm	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Low	v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 P1Pk Max 10 dBm	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Low	v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm 0 dBm	0 dBm 20 dB	Offset 8.40) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Low	v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm 20 dB	Offset 8.40 SWT 1) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	/Hz Low	v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm 20 dB	Offset 8.40 SWT 1) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm 20 dB	Offset 8.40 SWT 1) dB 👄 I	RBW 1 MHz	Mode Auto	o Sweep	AHz Lov	v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto M1 	o Sweep [1] [1]		v Ant1	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm -70 dBm Start 5.0 GHz	0 dBm 20 dB 	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto []	o Sweep [1] [1]		s , we	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	7.000 dBr	Offset 8.40 SWT 1	0 dB	RBW 1 MHz VBW 3 MHz	Mode Auto	o Sweep [1] [1]		s s	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 5.0 GHz Marker Type Ref	7.000 dBr	Offset 8.40 SWT 1	D dB	RBW 1 MHz VBW 3 MHz	Mode Auto	o Sweep [1] [1]		s , we	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm -70 dBm Start 5.0 GHz Marker Type Ref Tri M1	0 dBm 20 dB 7.000 dB 7.000 dB 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Offset 8.40 SWT 1	0 dB • 1	RBW 1 MHz VBW 3 MHz Image: state st	Mode Auto M1] M2] M2] M2] M2] M2] M2] M2] M2	o Sweep [1] [1]		s s	6.12 dBm 181720 GHz
Spectrum Ref Level 18.4 Att SGL Count 50/50 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -40 dBm -60 dBm -70 dBm Start 5.0 GHz Marker Type Ref Tri M1	20 dB 20 dB 7.000 dB 7.000 dB	Offset 8.40 SWT 1	D dB P 1	RBW 1 MHz VBW 3 MHz Image: Contract of the second se	Mode Auto M1] M2] M2] M2] M2] M2] M2] M2] M2	o Sweep [1] [1]	M3 M3 Func	s s	6.12 dBm .181720 GHz .73,76 dBm .150000 GHz

Band Edge NVNT 802.11n(HT40) 5230MHz High Ant1 Spectrum Ref Level 18.40 dBm Att 20 dB Att 20 SGL Count 100/100 91Pk Max Mode Auto Sweep M1[1] 3.09 dBm 5.231660 GHz -52.19 dBm 10 dBm-M1 J. M2[1] 5.350000 GHz 0 dBm--10 dBm -20 dBm Mun -50 dBm -60 dBm -70 dBm 1001 pts Start 5.19 GHz Stop 5.39 GHz Marker X-value 5.23166 GHz 5.35 GHz 5.3692 GHz Y-value 3.09 dBm -52.19 dBm -47.02 dBm Type | Ref | Trc | Function Function Result M1 M2 M3 1

CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11a	5180	Ant 1	-37.98	-27	Pass
NVNT	802.11a	5200	Ant 1	-38.59	-27	Pass
NVNT	802.11a	5240	Ant 1	-38.36	-27	Pass
NVNT	802.11n(HT20)	5180	Ant 1	-39.02	-27	Pass
NVNT	802.11n(HT20)	5200	Ant 1	-39.02	-27	Pass
NVNT	802.11n(HT20)	5240	Ant 1	-38.28	-27	Pass
NVNT	802.11n(HT40)	5190	Ant 1	-38.93	-27	Pass
NVNT	802.11n(HT40)	5230	Ant 1	-38.45	-27	Pass

Tx. Spurious NVNT 802.11a 5180MHz Ant1 Emission

Ref Le	evel	18.40 dB	m Offset 8	3.40 dB 🧉	RBW 1 MH:	z							
Att		20 0	IB SWT	160 ms 🥃	• VBW 3 МН:	z M	ode Au	ito Swe	ер				
SGL Co	unt 2	0/20											
∋1Pk Ma	эх												
							M	1[1]					6.16 dBr
10 dBm·		M1				-							.17860 GH
0 dBm—		I					M	2[1]					-37.99 dBr
о авті—												39	.60829 GH
-10 dBm			_								_		
-20 dBm	-					+							
-30 dBm		1 -27.00	IO dBm										
00 0011													M
-40 dBm		-									_		
		L. March	MB		M4 M4 Hole Indu or	1M5	يبتدر أراست	والمعادية والم	بالمرادري	أعال وعبيك الروس	مريق أقتعاه	والسيبية فس	
-50 dBm		a series of		and marked where	and provident of the	a series of	and the second	the desident		prine printer dan da Arres	"The second		
-60 dBm	_					_							
-70 dBm	-					+			-				
Start 3	0.0 M	Hz			300	01 pt:	s				- 1	Stop	40.0 GHz
/larker													
Type	Ref	Trc	X-value	•	Y-value	1	Func	tion	1	Fi	inctior	Result	t
M1		1	5.17	86 GHz	6.16 c	lBm							
M2		1	39.608		-37.99 c								
M3		1		36 GHz	-51.69 c								
M4 M5		1		54 GHz 72 GHz	-49.17 c -50.59 c								

Ref Level Att SGL Count S	20			RBW 1 MHz VBW 3 MHz	Mode Aut	o Sweep			
●1Pk Max						[4]			7.00.40
10 dBm	M1				M1	[1]		5	7.22 dBm .19860 GHz
0 dBm	_				M2	[1]			-38.60 dBm .60829 GHz
-10 dBm									
r)1 -27.0	00.dBm							
-30 dBm				M4					M2
-50 dBm	-	M3		A Martine and	5		and the second second		
-60 dBm									
-70 dBm									
Start 30.0 N	4Hz			30001 p	ats			Stor	0 40.0 GHz
Marker				30001				3.0	, 10.0 GHz
Type Ref		X-value		Y-value	Funct	ion	Func	tion Result	t
M1 M2	1	5.198	36 GHz 29 GHz	7.22 dBm -38.60 dBm					
	1		4 GHz	-51.16 dBm					
M3									
M3 M4 M5	1	15	.6 GHz .8 GHz	-48.41 dBm -51.60 dBm					
M4 M5 Spectrum	1 1 Tx. \$	5purious	NVN	-48.41 dBm -51.60 dBm		MHz A	nt1 Emi	ission	
M4 M5	1 Tx. \$ 18.45 d 20	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz			nt1 Em	ission	
M4 M5 Spectrum Ref Level	1 Tx. \$ 18.45 d 20	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Em	ission	
M4 M5 Spectrum Ref Level Att SGL Count 5 SGL Count 5	1 Tx. \$ 18.45 d 20	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut		nt1 Em		6.29 dBm
M4 M5 Spectrum Ref Level Att SGL Count 5 OL	1 Tx. \$ 18.45 d 20 50/50	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count S O 1Pk Max 10 dBm 0 dBm	1 Tx. \$ 18.45 d 20 50/50	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz
M4 M5 Spectrum Ref Level Att SGL Count 5 OL	1 Tx. \$ 18.45 d 20 50/50	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count S O 1Pk Max 10 dBm 0 dBm	1 Tx. \$ 18.45 d 20 50/50	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Em	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 5 SGL Count 5 O dBm -10 dBm -10 dBm -20 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious 8m Offset 8	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Em	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count S 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious Bm Offset 8 dB swr :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz	52401 Mode Aut	o Sweep	nt1 Em	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 9 SGL Count 9 SGL Count 9 O dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious Bm Offset 8 dB swr :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401 Mode Aut	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count S 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 9 SGL Count 9 SGL Count 9 O dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 5 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1 1 1 1 1 8.45 d 20 50/50	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	o Sweep	nt1 Emi	5	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 3 110 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	o Sweep	nt1 Emi	5 	6.29 dBm .24120 GHz -38.36 dBm .58165 GHz
M4 M5 Spectrum Ref Level Att SGL Count S 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm Stott 30.0 M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVN	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	o Sweep	nt1 Emi	5 	6.29 dBm .24120 GHz -38.36 dBm
M4 M5 Spectrum Ref Level Att SGL Count 3 110 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -60 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT :	.6 GHz .8 GHz NVNT .45 dB .60 ms	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401	.o Sweep [1] [1]		5 	6.29 dBm .24120 GHz -38.36 dBm .58165 GHz M2 M2 40.0 GHz
M4 M5 Ref Level Att SGL Count 3 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -50 dBm Start 30.0 N Marker Type Ref	1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT : 00 dBm 00 dBm 00 dBm	.6 GHz .8 GHz NVNT :.45 dB .60 ms	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401 Mode Aut 	.o Sweep [1] [1]		5 	6.29 dBm .24120 GHz -38.36 dBm .58165 GHz M2 M2 40.0 GHz
M4 M5 Ref Level Att SGL Count S ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm Start 30.0 N Marker Type	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT 2 00 dBm 00 dBm 00 dBm	.6 GHz .8 GHz NVNT :.45 dB .60 ms	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz	52401 Mode Aut 	.o Sweep [1] [1]		5 	6.29 dBm .24120 GHz -38.36 dBm .58165 GHz M2 M2 40.0 GHz
M4 M5 Ref Level Att SGL Count 5 O dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -70 dBm	1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 20 Spurious Bm Offset 8 dB SWT : 00 dBm 00 dBm	.6 GHz .8 GHz .45 dB .160 ms	-48.41 dBm -51.60 dBm T 802.11a RBW 1 MHz yBW 3 MHz WBW 3 MHz 3 MHz S 3 MHZ S	52401	.o Sweep [1] [1]		5 	6.29 dBm .24120 GHz -38.36 dBm .58165 GHz M2 M2 40.0 GHz

Spect		18.40 d		frot	1 40 do	- P	W 1 MHz								
Att	ever					_	SWI 3 MHZ		do 🗤	uto Swe					
SGL Co	unt 2		ub an		100 1115	• •	3 WY 3 MINZ	MU	ue Al	IO SWE	ер				
1Pk M		0/20													
									M	1[1]					5.58
10 dBm·		M1								-1-1					5.18400
		T							M	2[1]					-39.03
) dBm—	-	_													39.63627
-10 dBm															
-10 aBm															
20 dBm			_					<u> </u>							
		1 -27 0)00 dBm-												
-30 dBm		- 27.0									-				
40 dBm															
-40 UBII	'			Mą		M4		ME							المقتقسي
-50 dBm	, <mark>, , , , , , , , , , , , , , , , , , </mark>		- and - and -	and the second	a di sa si	s (Mil)	a na sa na sa na sa sa sa sa Na sa	M5 .							and the second second
			The produce	and the state of the											
-60 dBm															
70 dBm	<u> </u>														_
Start 3	U.U M	HZ					3000	1 pts						St	op 40.0 G
1arker	D (T				1		1					-		
Type M1	Ref	Trc 1	X	-value	9 B4 GHz	-	<u>Y-value</u> 5.58 dB	200	Fund	tion			Func	tion Res	uit
M2		1			27 GHz		-39.03 di								
M3		1			36 GHz		-51.06 di								
M4		1			54 GHz		-48.39 dt								
M5		1		20.	72 GHz		-51.47 dB	3m							
M5				20.	72 GHz		-51.47 dł	3m			Dead	-			4.344

Spectrum		oc Jr					
Ref Level 18.26 c Att 20			RBW 1 MHz VBW 3 MHz	Mode Auto Sweer	n		
SGL Count 20/20				,	-		
●1Pk Max				544543			c oc dow
10 dBm1				M1[1]		5.2	6.36 dBm 20130 GHz
0 dBm				M2[1]		-3	39.02 dBm
						39.5	59497 GHz
-10 dBm							
-20 dBm							
-30 dBm D1 -27.0	00 dBm						
-40 dBm							M2
	МЗ	M	a har and hear bear by	Sure - Lange	and the state state street	والمعالية والمناريق	
-50 dBm		and a second			And the owned by the	A CALCULAR DE C	
-60 dBm							
-70 dBm			+				
Start 30.0 MHz			30001	ots		Stop	40.0 GHz
Marker Type Ref Trc	X-value	1	Y-value	Function	Fund	tion Result	
M1 1	5.2013		6.36 dBm				
M2 1	39.59497		-39.02 dBm				
M3 1	10.4	4 GHz	-51.35 dBm				
M4 1	15.6	6 GHz	-48.40 dBm				
	15.6				adv 💷		
M4 1 M5 1	15.6 20.8	6 GHz 8 GHz	-48.40 dBm -51.54 dBm	Re	ady 🕕		. ///
M4 1 M5 1	15.6 20.8	6 GHz 8 GHz	-48.40 dBm -51.54 dBm	20) 5240M	edv 🚺		on
M4 1 M5 1	15.6 20.8	6 GHz 8 GHz	-48.40 dBm -51.54 dBm	20) 5240M	ide (11 IHz Ant1		. ///
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz				on
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	20) 5240M			on
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz				on
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 SGL Count 20/20 1Pk Max	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz			Emissio	5.92 dBm
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 SGL Count 20/20 IPk Max 10 M1	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Sweep		Emissic	on 😰
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 SGL Count 20/20 1Pk Max	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 SGL Count 20/20 IPk Max 10 M1	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz 38.29 dBm
M4 1 M5 1 Tx. Spu Ref Level 18.45 co Att 20 SGL Count 20/20 PIPK Max 10 dBm M1 0 dBm M1	15.6 20.8 rious NVN Bm Offset 8	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz 38.29 dBm
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 O HPK Max 10 dBm M1 -10 dBm -20 dBm	15.6 20.6 rious NVN Bm Offset 8.7 dB SWT 16	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz 38.29 dBm
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 200 SGL Count 20/20 1Pk Max 10 dBm M1 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm D1 -27.0	15.6 20.6 rious NVN Bm Offset 8.7 dB SWT 16	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz 38.29 dBm
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 o Att 20/20 • 1Pk Max 10 dBm -10 dBm -20 dBm	15.6 20.6 rious NVN Bm Offset 8.7 dB SWT 16	6 GHZ 8 GHZ NT 802 45 dB • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Sweep M1[1] M2[1]		Emissic	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 200 SGL Count 20/20 1Pk Max 10 dBm M1 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm D1 -27.0	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Swee; M1[1]		Emissic	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 SGL Count 20/20 1Pk Max 10 dBm M1 0 dBm 0 -10 dBm 01 -20 dBm 01 -30 dBm 01	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Sweep M1[1] M2[1]		Emissic	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 TX. Spu Spectrum Ref Level 18.45 c 20 20 IPk Max 20 10 dBm M1 0 dBm -10 dBm -20 dBm D1 -27.0 -30 dBm -50 dBm	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Sweep M1[1] M2[1]		Emissic	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Ref Level 18.45 c Att 20 SGL Count 20/20 IPk Max 10 dBm M1 0 dBm - -10 dBm - -30 dBm - -40 dBm - -50 dBm -	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Sweep M1[1] M2[1]		Emissic	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Ref Level 18.45 c Att 20 SGL Count 20/20 IPk Max 10 dBm M1 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -1.27.0 -40 dBm -60 dBm	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz	Mode Auto Sweer		5.2 -3 39.6	5.92 dBm 24120 GHz 88.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c other 20 SQL 20/20 IPk Max 10 0 dBm 11 -20 dBm 11 -20 dBm 11 -30 dBm 11 -50 dBm 11 -60 dBm -70 dBm -70 dBm -70 dBm	15.6 20.6 rious NVN Bm Offset 8 dB swT 16	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz VBW 3 MHz	Mode Auto Sweep M1[1] M2[1] 150.000 00000000000000000000000000000000		5.2 -3 39.6 	5.92 dBm 24120 GHz 38.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c 20 SGL Count 20/20 1Pk Max 10 dBm M1 0 dBm -10 dBm -20 dBm -27.0 -30 dBm -1.27.0 -60 dBm -60 dBm -70 dBm -55 dBm -70 dBm -70 dBm	15.6 20.6 rious NVN Bm Offset 8 dB SWT 16	6 GHz 8 GHz NT 80: 45 dB • 1 60 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz VBW 3 MHz	Mode Auto Sweep M1[1] M2[1] 15n M2[1] 15n M2[1] Dts		5.2 -3 39.6	5.92 dBm 24120 GHz 38.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c 20 20 IPk Max 20 ID dBm 1 -20 dBm -10 dBm -20 dBm -21 -27.0 -30 dBm -10 -27.0 -60 dBm -70 dBm -70 dBm -70 dBm Marker Type Ref Trc M1 1 M2 1	15.6 20.6 20.6 7 20.6 8 20.6 8 3 20.6 2 20.6	6 GHz 8 GHz NT 802 45 dB • 1 60 ms • 1 60 ms • 1 8 GHz 1 GHz	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz yBW 3 MHz 3 MHz 3 MHz 3 MHz 	Mode Auto Sweep M1[1] M2[1] A50 M1 (1) M2[1] M		5.2 -3 39.6 	5.92 dBm 24120 GHz 38.29 dBm 57891 GHz
M4 1 M5 1 Tx. Spu Spectrum Ref Level 18.45 c Att 20 •Att 20/20 •IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm Start 30.0 MHz Marker Type Ref Trc M1 1	15.6 20.6 20.6 20.6 20.6 20.6 20.6 20.6 20	6 GHz 8 GHz NT 802 45 dB • 1 50 ms • 1 50 ms • 1	-48.40 dBm -51.54 dBm 2.11n(HT RBW 1 MHz VBW 3 MHz	Mode Auto Sweep M1[1] M2[1] A50 M1 (1) M2[1] M		5.2 -3 39.6 	5.92 dBm 24120 GHz 38.29 dBm 57891 GHz

ACCREDITED Certificate #4298.01

NTEK北测