

RADIO TEST REPORT FCC ID: 2ANMU-WP8PRO

Product:	Smart Phone	
Trade Mark:	OUKITEL	
Model No.:	WP8 Pro	
Family Model:	N/A	
Report No.:	S20092302803001	
Issue Date:	13 Oct.2020	

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1	TES	ST RESULT CERTIFICATION	3
2	SUN	AMARY OF TEST RESULTS	4
	Frequ	ENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1	FACILITIES	5
	3.2	LABORATORY ACCREDITATIONS AND LISTINGS	
	3.3	MEASUREMENT UNCERTAINTY	
4		NERAL DESCRIPTION OF EUT	
5	DES	SCRIPTION OF TEST MODES	8
6	SET	TUP OF EQUIPMENT UNDER TEST	9
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	9
	6.2	SUPPORT EQUIPMENT	
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TES	ST REQUIREMENTS	.13
	7.1	CONDUCTED EMISSIONS TEST	
	7.2	RADIATED SPURIOUS EMISSION	
	7.3	NUMBER OF HOPPING CHANNEL	
	7.4	HOPPING CHANNEL SEPARATION MEASUREMENT	
	7.5	AVERAGE TIME OF OCCUPANCY (DWELL TIME)	
	7.6 7.7	20DB BANDWIDTH TEST PEAK OUTPUT POWER	
	7.8	CONDUCTED BAND EDGE MEASUREMENT	
	7.9	SPURIOUS RF CONDUCTED EMISSION	
	7.10	ANTENNA APPLICATION	
		REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	
8	TES	ST RESULTS	.35
	8.1	Dwell Time	.35
	8.2	MAXIMUM CONDUCTED OUTPUT POWER	
	8.3	Occupied Channel Bandwidth	.45
	8.4	CARRIER FREQUENCIES SEPARATION	
	8.5	NUMBER OF HOPPING CHANNEL	
	8.6	BAND EDGE	
	8.7	CONDUCTED RF SPURIOUS EMISSION	. 69

NTEKJL测

1 TEST RESULT CERTIFICATION

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Smart Phone
WP8 Pro
N/A

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	23 Sep. 2020 ~ 13 Oct 2020
Testing Engineer	:	hrang. Hu
		(Mary Hu)
Technical Manager		Jason chen
roomioa managoi	•	(Jason Chen)
		Alex
Authorized Signatory	:	(Alex Li)

ilac-NTEK北测

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C				
Standard Section	Test Item	Verdict	Remark	
15.207 Conducted Emission PASS				
15.209 (a)Radiated Spurious EmissionPASS				
15.247(a)(1)	Hopping Channel Separation	PASS		
15.247(b)(1)	Peak Output Power	PASS		
15.247(a)(iii)	Number of Hopping Frequency	PASS		
15.247(a)(iii)	Dwell Time	PASS		
15.247(a)(1)	Bandwidth	PASS		
15.247 (d)	Band Edge Emission	PASS		
15.247 (d)	Spurious RF Conducted Emission	PASS		
15.247 (g) (h) Frequency hopping system (FHSS) PASS equipment requirements				
15.203	Antenna Requirement	PASS		

ACCI

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District

Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description CNAS-Lab.	: The Laboratory has been assessed and proved to be in compliance with CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A. CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705. Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01 This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park Sanwei, Xixiang, Bao'an District Shenzhen, Guangdong, China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

ilac-

ACC

Certificate #4298.01

Product Feature and Specification		
Equipment	Smart Phone	
Trade Mark	OUKITEL	
FCC ID	2ANMU-WP8PRO	
Model No.	WP8 Pro	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Bluetooth Version	BT V4.0	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.67 dBi	
	☑DC supply: DC 3.85V/5000mAh from Battery or DC 5V from Adapter.	
Power supply	Adapter supply: Model: HJ-0502000N2-US Input: AC 100~240V 50/60Hz 0.3A Output: 5.0V2.0A	
HW Version	TE598_MAIN_PCB_V1.1	
SW Version	OUKITEL_WP8Pro_NOEEA_V01	

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

Report No.	Version	Description	Issued Date
S20092302803001	Rev.01	Initial issue of report	Oct 13, 2020

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

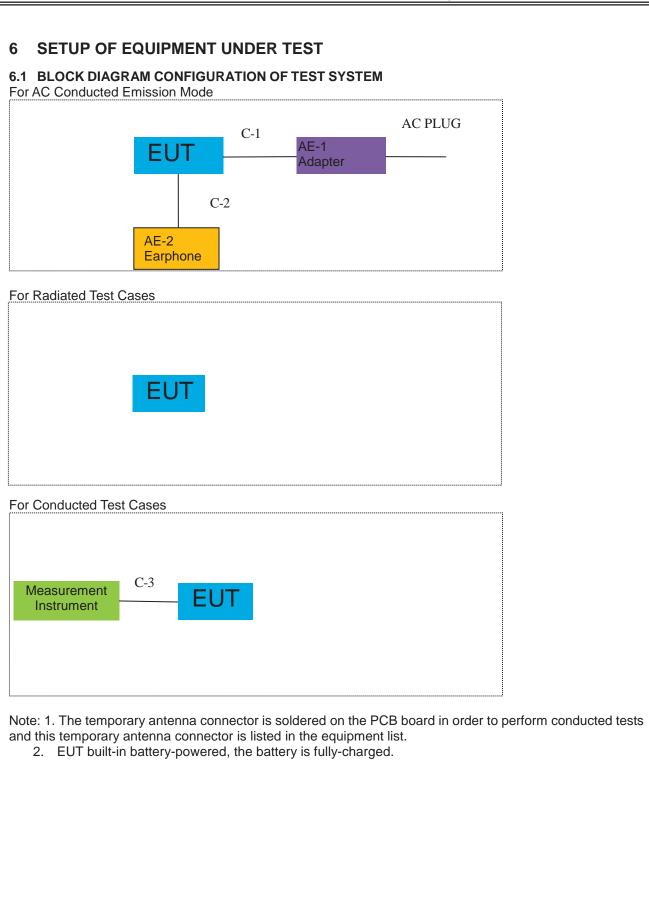
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78(k is the Channel)

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	For AC Conducted Emission	
Final Test Mode Description		
Mode 1 normal link mode		
Note: AC newer line Conducted Emission was tested under maximum autout newer		

Note: AC power line Conducted Emission was tested under maximum output power.


	For Radiated Test Cases			
Final Test Mode	Description			
Mode 1	normal link mode			
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases			
Final Test Mode	Description		
Mode 2	CH00(2402MHz)		
Mode 3	CH39(2441MHz)		
Mode 4	CH78(2480MHz)		
Mode 5	Hopping mode		

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	HJ-050100E1-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

(1) The support equipment was authorized by Declaration of Confirmation.

(2) For detachable type I/O cable should be specified the length in cm in [Length] column.

(3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	ona Conducted I	estequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.05.11	2021.05.10	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.05.11	2021.05.10	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.05.11	2021.05.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.05.11	2021.05.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.11	2020.12.10	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.12	2021.07.11	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.12	2021.07.11	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2020.05.11	2023.05.10	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.05.11	2023.05.10	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2020.05.11	2023.05.10	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.05.11	2023.05.10	3 year
16	Filter	TRILTHIC	2400MHz	29	2020.05.11	2023.05.10	3 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

ACC

Certificate #4298.01

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.15	2021.04.14	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2023.05.10	3 year

ACCREI

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIM CERTIFICATE #4298.01

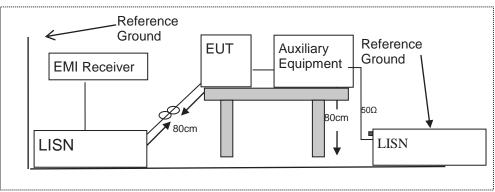
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Frequency (MHz)	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

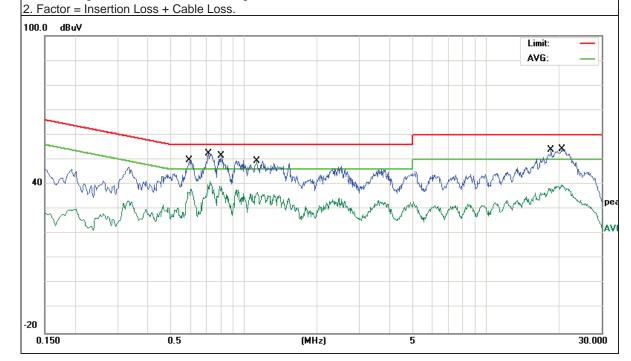
7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

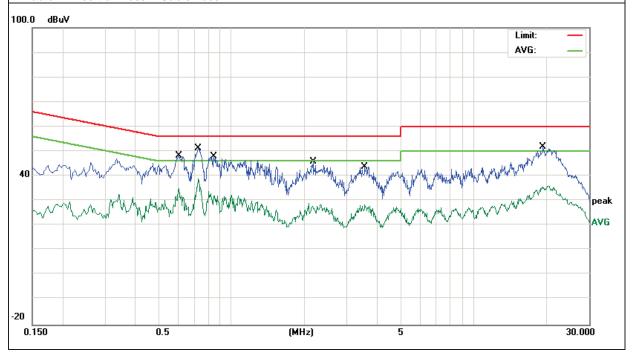
EUT:	Smart Phone	Model Name :	WP8 Pro
Temperature:	22 ℃	Relative Humidity:	59%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

r	1	1	1			1
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.5940	40.05	9.55	49.60	56.00	-6.40	QP
0.5940	28.58	9.55	38.13	46.00	-7.87	AVG
0.7140	42.95	9.55	52.50	56.00	-3.50	QP
0.7140	31.89	9.55	41.44	46.00	-4.56	AVG
0.8020	42.04	9.55	51.59	56.00	-4.41	QP
0.8020	29.71	9.55	39.26	46.00	-6.74	AVG
1.1340	39.82	9.56	49.38	56.00	-6.62	QP
1.1340	27.18	9.56	36.74	46.00	-9.26	AVG
18.6219	43.93	9.89	53.82	60.00	-6.18	QP
18.6219	28.39	9.89	38.28	50.00	-11.72	AVG
20.5740	44.33	9.94	54.27	60.00	-5.73	QP
20.5740	29.87	9.94	39.81	50.00	-10.19	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

EUT:	Smart Phone	Model Name :	WP8 Pro
Temperature:	22 ℃	Relative Humidity:	59%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1


ACCRED

Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.6060	38.67	9.54	48.21	56.00	-7.79	QP
0.6060	25.66	9.54	35.20	46.00	-10.80	AVG
0.7300	41.66	9.54	51.20	56.00	-4.80	QP
0.7300	29.44	9.54	38.98	46.00	-7.02	AVG
0.8460	38.52	9.54	48.06	56.00	-7.94	QP
0.8460	24.28	9.54	33.82	46.00	-12.18	AVG
2.1700	36.16	9.57	45.73	56.00	-10.27	QP
2.1700	19.61	9.57	29.18	46.00	-16.82	AVG
3.5540	34.26	9.59	43.85	56.00	-12.15	QP
3.5540	18.94	9.59	28.53	46.00	-17.47	AVG
19.4259	41.82	9.90	51.72	60.00	-8.28	QP
19.4259	26.04	9.90	35.94	50.00	-14.06	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 00 1 art 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)						
Frequency(IVII12)	PEAK	AVERAGE					
Above 1000	74	54					

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

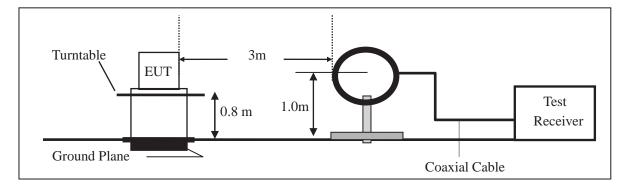
Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

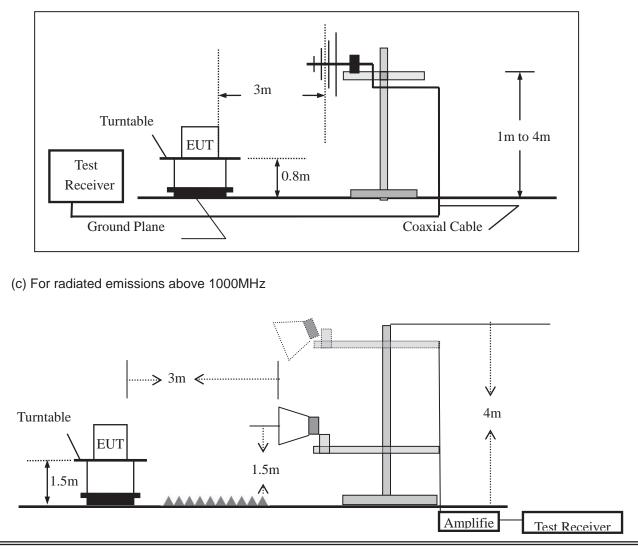
Limit line=Specific limits(dBuV) + distance extrapolation factor.


NTEK北测

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

ACC

Certificate #4298.01

(b) For radiated emissions from 30MHz to 1000MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

	· ·						
Spectrum Parameter	Setting						
Attenuation	Auto						
Start Frequency	1000 MHz						
Stop Frequency	10th carrier harmonic						
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average						

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission t	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:											
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth									
30 to 1000	QP	120 kHz	300 kHz									
Ab aug 4000	Peak	1 MHz	1 MHz									
Above 1000	Average	1 MHz	10 Hz									

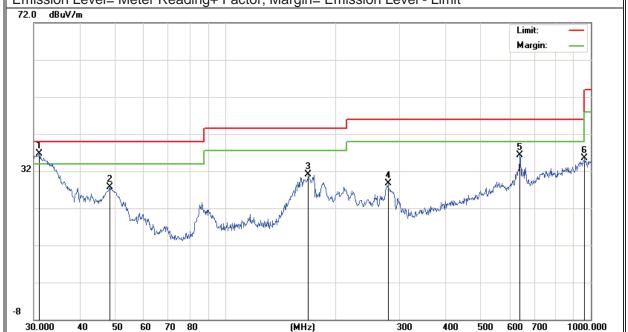
Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)			
(MHz)	H/V	PK	AV	PK	AV	PK	AV		

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	WP8 Pro
Temperature:	25 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	31.0706	18.37	18.27	36.64	40.00	-3.36	QP
V	48.5016	17.24	10.43	27.67	40.00	-12.33	QP
V	169.0054	20.42	10.78	31.20	43.50	-12.30	QP
V	279.0436	12.90	15.72	28.62	46.00	-17.38	QP
V	640.6110	13.81	22.48	36.29	46.00	-9.71	QP
V	962.1622	7.03	28.40	35.43	54.00	-18.57	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Pola		Freq	uenc	у		Mete eadi			Fact	tor		nissio Level	n	Li	mits		Ма	rgi	n	R	ema
(H/V)		(M	Hz)		(dBu	V)		(dE	3)	(d	BuV/m	ו)	(dB	uV/m)	(0	B)			onna
Η		93.	1132			18.9	9		10.3	31		29.30		43	3.50		-14	4.20	0		QP
Η		199.	.9856			23.4	0		9.1	0		32.50		43	3.50		-11	1.00)		QP
Η		283.	.9791			11.9	2		14.6	66		26.58		46	6.00		-19	9.42	2		QP
Η		597.	.2232			8.58	8		21.6	63		30.21		46	6.00		-1	5.79	9		QP
Η		737.	.0714			6.86	6		25.1	13		31.99		46	6.00		-14	4.0	1		QP
Н		965.	.5421			7.17	7		28.3	36		35.53		54	1.00		-18	8.47	7		QP
-																		Mar	gin:	\square	
72.0	dBu	Level: //m					,			largi								Limi	it-		
_																		Mar	rgin:	-	
_																					f
																			-	<u> </u>	-11
														Murm							6 X
32					-		1										4		5	4 marsh	Mag-
						ø	Ŵ					M.	3				protection of	an chur	¥.		
h.	maple	Wardhub and				Į.	N.			M	n Mr.	him	WY W	All work	us much	ANNO					
		We what have a way	A AL	hm	March	M		Wanthal	<i>Ayrubran</i>	ant.	γ			a series of the							
			MANIN &	Y	• · ·																1
8																					
30.0	nnn	40	50	60	70	80				(MH	2]			300	400	50	1 6	00	700	10	00.000

EUT:		Smart Ph	none		Mode	el No.:		WP8 Pro						
Femperature	:	20 ℃			Relat	ive Humidit	ty:	48	48%					
Fest Mode:		Mode2/M	lode3/Moc	ode3/Mode4 Test By: Mary Hu										
Il the modulation modes have been tested, and the worst result was report as below:														
Frequenc y	Read Level	Cable loss	Antenn a Factor		amp ctor	Emission Level	Limi	ts	Margin	Domork	Commont			
(MHz)	(dBµV)	(dB)	dB/m	(d	IB)	(dBµ V/m)	(dB V/m		(dB)	Remark	Comment			
Low Channel (2402 MHz)(GFSK)Above 1G														
4804.01	63.78	5.21	35.59	44	.30	60.28	74.0	0	-13.72	Pk	Vertical			
4804.01	43.63	5.21	35.59	44	.30	40.13	54.0	0	-13.87	AV	Vertical			
7206.32	60.01	6.48	36.27	44	.60	58.16	74.0	0	-15.84	Pk	Vertical			
7206.32	43.19	6.48	36.27	44	.60	41.34	54.00		-12.66	AV	Vertical			
4804.68	63.53	5.21	35.55	44	.30	59.99	74.00		-14.01	Pk	Horizonta			
4804.68	40.51	5.21	35.55	44	.30	36.97	54.00		-17.03	AV	Horizonta			
7206.04	62.66	6.48	36.27	44	.52	60.89	74.00		-13.11	Pk	Horizonta			
7206.04	43.51	6.48	36.27		.52	41.74	54.0		-12.26	AV	Horizonta			
Mid Channel (2441 MHz)(GFSK)Above 1G														
4882.16	63.65	5.21	35.66	44	.20	60.32	74.0	0	-13.68	Pk	Vertical			
4882.16	43.97	5.21	35.66	44	.20	40.64	54.0	0	-13.36	AV	Vertical			
7323.92	63.43	7.10	36.50	44	.43	62.60	74.0	0	-11.40	Pk	Vertical			
7323.92	42.06	7.10	36.50	44	.43	41.23	54.0	0	-12.77	AV	Vertical			
4882.73	62.35	5.21	35.66	44	.20	59.02	74.0	0	-14.98	Pk	Horizonta			
4882.73	43.66	5.21	35.66	44	.20	40.33	54.0	0	-13.67	AV	Horizontal			
7324.37	59.27	7.10	36.50	44	.43	58.44	74.0	0	-15.56	Pk	Horizonta			
7324.37	41.79	7.10	36.50	44	.43	40.96	54.0	0	-13.04	AV	Horizontal			
		H	gh Chanr	nel (2	2480 İ	MHz)(GFS	K) A	bo	ve 1G					
4959.70	64.68	5.21	35.52	44	.21	61.20	74.0	0	-12.80	Pk	Vertical			
4959.70	43.04	5.21	35.52	44	.21	39.56	54.0	0	-14.44	AV	Vertical			
7439.10	60.28	7.10	36.53	44	.60	59.31	74.0	0	-14.69	Pk	Vertical			
7439.10	42.92	7.10	36.53	44	.60	41.95	54.0	0	-12.05	AV	Vertical			
4960.07	60.55	5.21	35.52	44	.21	57.07	74.0	0	-16.93	Pk	Horizontal			
4960.07	43.81	5.21	35.52	44	.21	40.33	54.0	0	-13.67	AV	Horizontal			
7440.39	61.70	7.10	36.53	44	.60	60.73	74.0	0	-13.27	Pk	Horizontal			
7440.39	40.99	7.10	36.53	44	.60	40.02	54.0	0	-13.98	AV	Horizonta			

ACCRE

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S20092302803001

JT:		Sm	art Phoi	ne	Mod	lel No.:		WF	98 Pro		
Гетр	perature:	20	20 ℃ Relative Humidity: 48%								
Test	Mode:	Mc	de2/ Mo	de4	Tes	Fest By: Mary Hu					
All th	ne modulat	ion mode	s have b	een teste	d, and t	he worst res	ult wa	s re	port as b	elow:	
	Frequenc	Meter	Cable	Antenna	Pream		Limi	ts	Margin	Detector	
	У	Reading	Loss	Factor	Factor				-		Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	· ·	′/m)	(dB)	Туре	
		- / 4-				GFSK)-hoppi	-				
	2310.00	54.07	2.97	27.80	43.80	41.04	74		-32.96	Pk	Horizontal
	2310.00	44.58	2.97	27.80	43.80	31.55	54		-22.45	AV	Horizontal
	2310.00	53.58	2.97	27.80	43.80	40.55	74		-33.45	Pk	Vertical
	2310.00	43.76	2.97	27.80	43.80	30.73	54		-23.27	AV	Vertical
	2390.00	53.30	3.14	27.21	43.80	39.85	74		-34.15	Pk	Vertical
	2390.00	41.36	3.14	27.21	43.80	27.91	54		-26.09	AV	Vertical
	2390.00	50.83	3.14	27.21	43.80	37.38	74		-36.62	Pk	Horizontal
	2390.00	43.68	3.14	27.21	43.80	30.23	54		-23.77	AV	Horizontal
	2483.50	54.55	3.58	27.70	44.00	41.83	74		-32.17	Pk	Vertical
	2483.50	41.34	3.58	27.70	44.00	28.62	54		-25.38	AV	Vertical
	2483.50	53.02	3.58	27.70	44.00	40.30	74		-33.70	Pk	Horizontal
	2483.50	40.70	3.58	27.70	44.00	27.98	54		-26.02	AV	Horizontal
				1M	bps(GF\$	SK)- Non-hop	oping				
	2310.00	51.67	2.97	27.80	43.80	38.64	74		-35.36	Pk	Horizontal
	2310.00	43.38	2.97	27.80	43.80	30.35	54		-23.65	AV	Horizontal
	2310.00	50.83	2.97	27.80	43.80	37.80	74		-36.20	Pk	Vertical
	2310.00	42.71	2.97	27.80	43.80	29.68	54		-24.32	AV	Vertical
	2390.00	53.09	3.14	27.21	43.80	39.64	74		-34.36	Pk	Vertical
	2390.00	40.55	3.14	27.21	43.80	27.10	54		-26.90	AV	Vertical
	2390.00	51.18	3.14	27.21	43.80	37.73	74		-36.27	Pk	Horizontal
	2390.00	40.99	3.14	27.21	43.80	27.54	54		-26.46	AV	Horizontal
	2483.50	52.70	3.58	27.70	44.00	39.98	74		-34.02	Pk	Vertical
	2483.50	41.36	3.58	27.70	44.00	28.64	54		-25.36	AV	Vertical
	2483.50	50.21	3.58	27.70	44.00	37.49	74		-36.51	Pk	Horizontal
	2483.50	41.54	3.58	27.70	44.00	28.82	54		-25.18	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

UT:		Sma	art Phone	e	Model N	Model No.:			WP8 Pro			
Tempe	erature:	20 °	С		Relative	Humidity:	48	48%				
Test Mode: Mode2/ Mode4					Test By	:	Ma	ary Hu				
All the	e modulatio	n modes	have be	en tested	, and the v	worst resul	t was r	eport as b	elow:			
	Frequenc y	Readin g Level	Cable Loss	Antenn a	Preamp Factor	Emission Level	Limits	Margin	Detecto r	0		
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµ V/m)	(dBµ V/m)	(dB)	Туре	Comment		
ľ	3260	58.23	4.04	29.57	44.70	47.14	74	-26.86	Pk	Vertical		
[3260	48.29	4.04	29.57	44.70	37.20	54	-16.80	AV	Vertical		
[3260	55.09	4.04	29.57	44.70	44.70 44.00 74 -30.00 Pk	Pk	Horizontal				
[3260	45.11	4.04	29.57	44.70	34.02	54	-19.98	AV	Horizontal		
[3332	63.75	3.75 4.26 29.8	29.87	44.40	53.48	74	74 -20.52	Pk	Vertical		
[3332	46.15	4.26	29.87	44.40	35.88	54	-18.12	AV	Vertical		
[3332	3332	63.73	4.26	29.87	44.40	53.46	74	-20.54	Pk	Horizontal	
[3332	47.27	4.26	29.87	44.40	37.00	54	-17.00	AV	Horizontal		
[17797	50.69	10.99	43.95	43.50	62.13	74	-11.87	Pk	Vertical		
[17797	36.20	10.99	43.95	43.50	47.64	54	-6.36	AV	Vertical		
[17788	52.49	11.81	43.69	44.60	63.39	74	-10.61	Pk	Horizontal		
ſ	17788	37.12	11.81	43.69	44.60	48.02	54	-5.98	AV	Horizontal		

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Smart Phone	Model No.:	WP8 Pro
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.67 dBi). It comply with the standard requirement.

ACCRED

Certificate #4298.01

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298.01

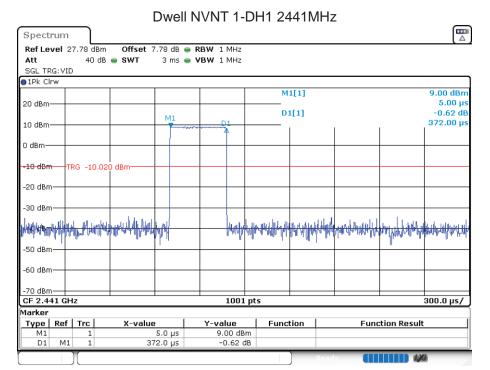
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

8.1 DWELL TIME

0.1 DWELL							
Condition	Mode	Frequency	Pulse Time	Total Dwell	Period Time	Limit	Verdict
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.372	119.04	31600	400	Pass
Condition NVNT NVNT NVNT	1-DH3	2441	1.65	264	31600	400	Pass
NVNT	1-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	2-DH1	2441	0.378	120.96	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT NVNT NVNT NVNT NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass
	3-DH3	2441	1.62	259.2	31600	400	Pass
NVNT	3-DH5	2441	2.872	306.347	31600	400	Pass

Date: 26.SEP.2020 09:37:04

Dwell NVNT 1-DH3 2441MHz

Report No.: S20092302803001

:0 dBm				M1[1]		8.96 dBr 5.00 μ
.0 dBm		M1		D1[1]	I	-0.56 dl 1.65000 m
I dBm						
10 dBm T	RG -10.0	020 dBm				
20 dBm						
30 dBm						
aleandiaterrate	halle allow	W.			isiliti militani	
50 dBm		·				
60 dBm						
70 dBm						
CF 2.441 GH	Iz		1001 p	ts		500.0 μs/
arker Type Ref	Trc	X-value	Y-value	Function	l Eun	ction Result
M1	1	5.0 µs	8.96 dBm			
D1 M1	1	1.65 ms	-0.56 dB			
					Ready	4,40
	2020	09:38:00				

ACCRED

Certificate #4298.01

Att SGL TRO	:VID		dB 👄 SWT	8 ms 🧉	VBW 1 MHz						
●1Pk Clrv	v										
						M	1[1]				9.20 dBn
20 dBm—	+										8.00 µ
	N	/1			D1	D	1[1]				0.00 dE
10 dBm—	+	·					1	1		2	2.87200 m I
0 dBm—	_										
-10 dBm-	+										
-20 dBm	TR	G -20	.020 dBm								
-30 dBm-	+										
HARA AREAN	\$rohy}	 	_			halltonythal	annutur	HULL	udul protocol line of the second	a Barder 1949 Mary market	Maphilitard
-50 dBm-	_										
-60 dBm-	+										
-70 dBm-											
CF 2.44	1 GH	z			1001	. pts					800.0 µs/
Marker											
	Ref	Trc	X-value		Y-value	Func	tion		Fund	ction Result	
M1 D1	M1	1		8.0 µs 372 ms	9.20 dB 0.00 d						
		-	2.0		0.001			Read			9

Date: 26.SEP.2020 09:11:08

Dwell NVNT 2-DH1 2441MHz

			M1[1]		-1.21 dBm
20 dBm			(int[1]		-1.21 αΒΠ 5.00 μs
			D1[1]		-2.58 dB
10 dBm			I		378.00 µs
0 dBm	M1	1410-200491191			
		And a sullar star			
-10 dBm TRG -10.0	20 dBm				
-20 dBm					
-30 dBm					
PHELOPERTY CARDING MICHINE	hind and a state of the state o	- Wald Bar	Hilling the plant water	http://www.upper/www.apper/	
	utage the len	. sugar li	and ~ Mandalk	Television of the last of the	, at take tille
-50 dBm					
-60 dBm					
-70 dBm					
CF 2.441 GHz		1001 pt	s		300.0 µs/
Marker	¥	Y-value	Function	Function Resu	t
Type Ref Trc	X-value	-1 01 dBm			
	5.0 μs 378.0 μs	-1.21 dBm -2.58 dB			
TypeRefTrcM11	5.0 µs		R	eady	KA

ACCREDI

Certificate #4298.01

Ref Level 2	7 78 dBa	Offset 7	78 dB 👝	RBW 1 MHz							<u> </u>
Att		s SWT		VBW 1 MHz							
SGL TRG: VII		3W1	5 115 🖷	YDYY I MHZ							
1Pk Clrw	·										
TEK CIIW					1	M	1[1]				8.14 dBm
20 dBm							1[1]				10.00 µs
20 0811						D	1[1]				-2.92 dB
10 dBm		M1								1	.63000 ms
10 0.0		hender		u manyan mayare	h	1					
0 dBm											
-10 dBm											
-20 dBm T	RG -20.0	20 dBm		-							
-30 dBm											
NARCHENT		<u>.</u>				Left i And Manal	No. Million	ndit.		Alles Almerica	ւ եթվին ին հետ
Lacher M Alalle	Aller aller	0				Andno hi	المفهمة بال	uN	hlb. Admin t	الحميمات المناميا	and realized
-50 dBm							Ť			·	
-50 0.011											
-60 dBm											
-70 dBm				_							
CF 2.441 GH	łz			100	1 pt	s					500.0 µs/
Marker											
	Trc	X-value		Y-value		Func	tion		Func	tion Result	
M1	1).0 μs	8.14 di							
D1 M1	1	1.0	63 ms	-2.92	dB						
							R	e a d	· •		7

Date: 26.SEP.2020 09:39:13

Dwell NVNT 2-DH5 2441MHz

●1Pk Clrw									
				M	1[1]			-0.93 dBm	
20 dBm				D	1[1]			8.00 µs 0.04 dB	
10 dBm					1	1	2	.87200 ms	
0 dBm M1	nto a plana, i di programaria	Antonoines Antonoi	at a the second second second	D1					
	Bo de la diser	n i Avin nu Av	. i the tree	1 the second sec					
-10 dBm TRG	-10.020 dBm								
-20 dBm									
-30 dBm									
				In person we have been by	Mundhamud	طلخ باللال سطلال	al HAMAL MARKY	warmahinkaku	
				Lad Lad	.	ավերությունը։	ال من الم من		
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz			1	001 pts				800.0 µs/	
Marker Type Ref T	rc V	value	Y-valu	ie Fund	tion	Eupo	tion Result]	
M1	1	8.0 µs	-0.93	3 dBm		- Tull			
D1 M1	1	2.872 ms	0.	04 dB					
					Read			• ///	
Spectrum Ref Level 27.7	78 dBm Of	Dwe	● RBW 1 M		441MH2	<u>Z</u>			
Spectrum Ref Level 27.7 Att SGL TRG: VID	٦	Dwe		1Hz	441MH2	Z			
Spectrum Ref Level 27.7 Att	78 dBm Of	Dwe	● RBW 1 M	ИНZ ИНZ	141MH2	Z		8.20 dBm	
Spectrum Ref Level 27.7 Att SGL TRG: VID	78 dBm Of	Dwel	● RBW 1 M	1Hz 1Hz M	1[1]	Z		8.20 dBm 2.00 μs	
Ref Level 27.7 Att SGL TRG:VID 1Pk Clrw	78 dBm Of	Dwe	RBW 1 M VBW 1 M	1Hz 1Hz M		z		8.20 dBm	
Spectrum Ref Level 27.7 Att SGL TRG:VID 1Pk Clrw 20 dBm 10 dBm	78 dBm Of	Dwel	● RBW 1 M	1Hz 1Hz M	1[1]	z		8.20 dBm 2.00 μs -2.72 dB	
Spectrum Ref Level 27.7 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	28 dBm Of 40 dB ● SV	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz M	1[1]	z		8.20 dBm 2.00 μs -2.72 dB	
Spectrum Ref Level 27.7 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	78 dBm Of	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz M	1[1]	z		8.20 dBm 2.00 μs -2.72 dB	
Spectrum Ref Level 27.7 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm	28 dBm Of 40 dB ● SV	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz M	1[1]	z		8.20 dBm 2.00 μs -2.72 dB	
Spectrum Ref Level 27.7 Att SGL TRG: VID ●1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm	28 dBm Of 40 dB ● SV	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz M	1[1]	Z		8.20 dBm 2.00 μs -2.72 dB	
Spectrum Ref Level 27.7 Att SGL TRG:VID ● 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz D	1[1] 1[1]		been, do, bl at 111 a	8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -30 dBm	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz M	1[1] 1[1]		phene fight right to	8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG:VID ● 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz D	1[1] 1[1]		phone of the first state of the	8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG: VID 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm TRG -20 dBm -30 dBm	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz D	1[1] 1[1]		here figt filte	8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz D	1[1] 1[1]		phease of the first of the firs	8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG: VID • 1Pk Cirw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	-10.020 dBm	Dwel	RBW 1 M VBW 1 M	1Hz 1Hz D	1[1] 1[1]			8.20 dBm 2.00 μs -2.72 dB 384.00 μs	
Spectrum Ref Level 27.7 Att SGL TRG: VID • 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz	-10.020 dBm	Set 7.78 dB T 3 ms	RBW 1 N VBW 1 N VBW 1 N VBW 1 N 1 N	1Hz 1Hz M D D 001 pts	1[1] 1[1]			8.20 dBm 2.00 µs -2.72 dB 384.00 µs 384.00 µs	
Spectrum Ref Level 27.7 Att SGL TRG:VID • 1Pk Cirw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.441 GHz Marker Type Ma1	-10.020 dBm	Dwe	RBW 1 M VBW 1 M VBW 1 M 1	1Hz 1Hz 0 <td>1[1] 1[1]</td> <td></td> <td></td> <td>8.20 dBm 2.00 µs -2.72 dB 384.00 µs 384.00 µs</td> <td></td>	1[1] 1[1]			8.20 dBm 2.00 µs -2.72 dB 384.00 µs 384.00 µs	
Spectrum Ref Level 27.7 Att SGL TRG: VID ● 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm Type Type	-10.020 dBm	Value	RBW 1 M VBW 1 M VBW 1 M 1	IHz	1[1] 1[1]			8.20 dBm 2.00 µs -2.72 dB 384.00 µs 384.00 µs	

ACCREDITED

			SWT	5 ms 🧉	• VBW 1 MHz							
SGL TRG 1Pk Clrv												
DIPK CIN	·		1					1[1]				-0.61 dBm
20 dBm—								1[1]				-0.81 uBm 10.00 µs
20 ubiii-							D	L[1]				0.02 dB
10 dBm—											1	1.62000 ms
10 0.0			w11									
0 dBm—	+		-	TRANSFER TH	um-quanpanpanp	D. Inua	1		_			
			in the late of	A and pro-	a colline off and							
-10 dBm	-TF	RG -10.02	0 dBm						-			
-20 dBm-												
-30 dBm-												
-30 ubiii-												
Add Hiterard	<u>illina</u>	Archiph will fau	ц				. And the latest statest state	L. Levelen	1.04		the appropriate hill	والبرية ألبع ببالاتهرية
ا ما الله عمل	4.40.4	10 · W O 10 14	1				of Const	an h nakat	8 00 · · ·	Revie Ledel	e Ottown form	, in dramation
-50 dBm-	+								-			
-60 dBm-	+								-			
-70 dBm- CF 2.44:		-			1001	nt	-					500.0 µs/
Marker	I GH	Z			1001	. pc	>					300.0 µs7
	Ref	Trc	X-value	<u> </u>	Y-value	- 1	Func	tion 1		Eupo	tion Result	. 1
M1	(el	1		; LO.Ο μs	-0.61 dB	m	Func			Func	LION RESUL	<u> </u>
D1	M1	1		.62 ms	0.02							

ACCRED

Certificate #4298.01

Date: 26.SEP.2020 09:41:26

Dwell NVNT 3-DH5 2441MHz

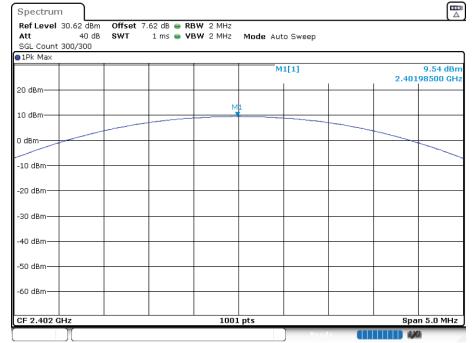
Spectrum							
Ref Level 27.78 dBm Offset	7.78 dB 👄 F	RBW 1 MHz					
Att 40 dB 🖷 SWT	8 ms 😑	/BW 1 MHz					
SGL TRG: VID							
1Pk Clrw							
			M	1[1]			-0.59 dBm
20 dBm							8.00 µs
			D.	l[1]			-3.86 dB 2.87200 ms
10 dBm					1	1	
0 dBm							
n anu and a substantion of the	an Abhahaha	And a contraction of the					
-10 dBm TRG -10.020 dBm		Ť					
-20 dBm							
-30 dBm					+		
الخديد المؤلماتين			Anness to Talmatich B	مليستمان	u haddhadaannadhadaa	dualdaa.w	المعادل المعدا
hulldheldhulldhe			to day de Mise have	- And Brank	NUM-TO MANUTATION	Minister Mit Albanza	the and the set of the
-50 dBm							
-60 dBm							
-oo ubiii							
-70 dBm							
CF 2.441 GHz		1001	pts		•	•	800.0 µs/
Marker							
Type Ref Trc X-value		Y-value	Func	tion	Fund	ction Result	
M1 1	8.0 µs	-0.59 dB					
D1 M1 1 2.	872 ms	-3.86 0	iB				
				Rea	(y 🛛 🚺		2

Date: 26.SEP.2020 09:31:02

NTEK北测

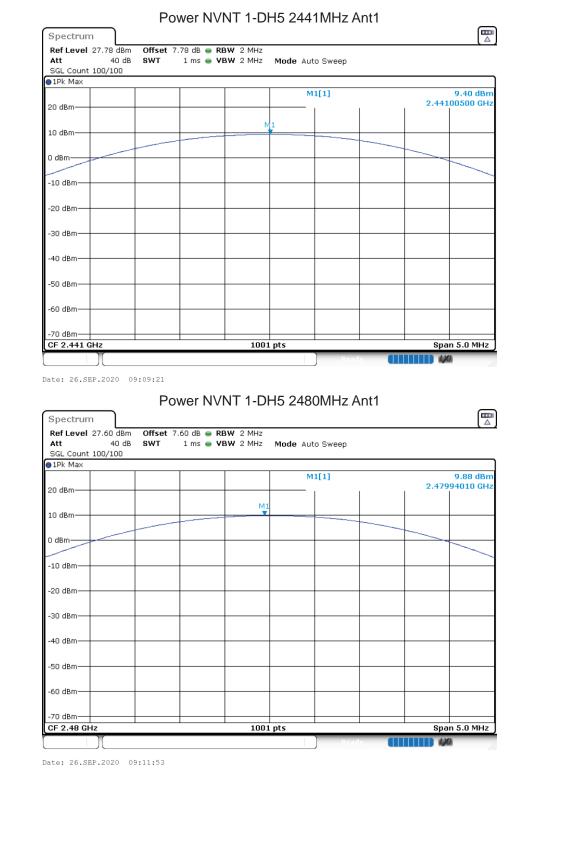
Report No.: S20092302803001

8.2 MAXIMUM CONDUCTED OUTPUT POWER


_						
Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	9.544	30	Pass
NVNT	1-DH5	2441	Ant 1	9.404	30	Pass
NVNT	1-DH5	2480	Ant 1	9.884	30	Pass
NVNT	2-DH5	2402	Ant 1	8.136	20.97	Pass
NVNT	2-DH5	2441	Ant 1	8.32	20.97	Pass
NVNT	2-DH5	2480	Ant 1	8.977	20.97	Pass
NVNT	3-DH5	2402	Ant 1	8.026	20.97	Pass
NVNT	3-DH5	2441	Ant 1	8.231	20.97	Pass
NVNT	3-DH5	2480	Ant 1	8.94	20.97	Pass

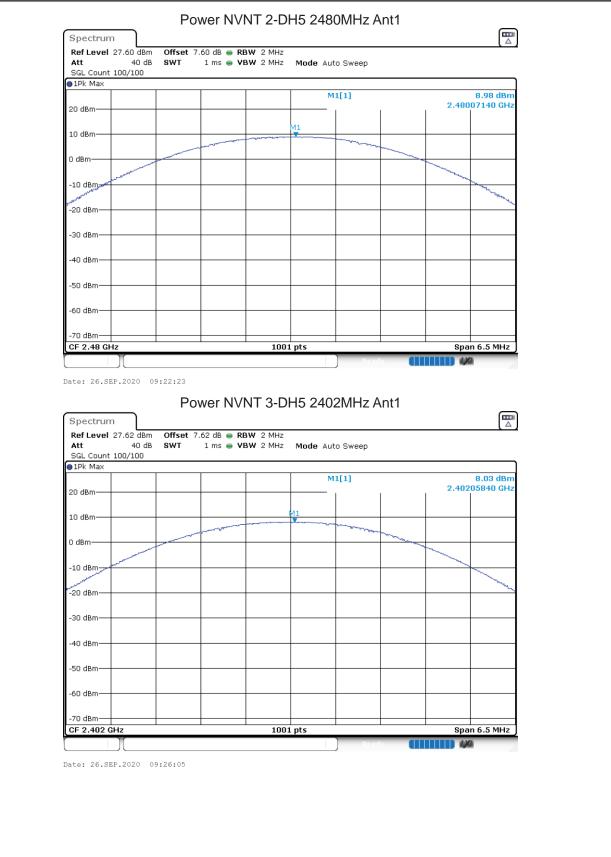
ACCREDITED

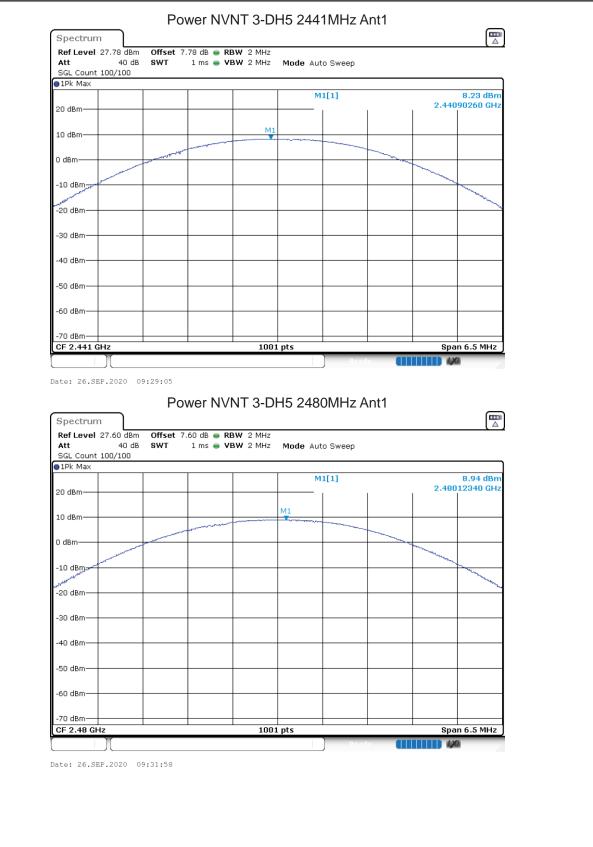
Certificate #4298.01


ilac-MR

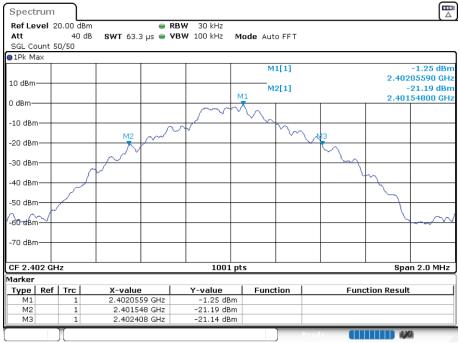
Power NVNT 1-DH5 2402MHz Ant1

Date: 26.SEP.2020 09:04:03


ACCREDITED

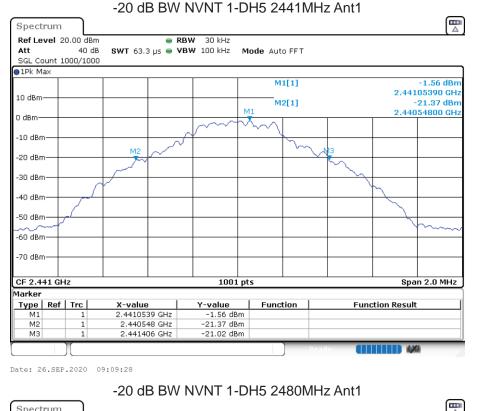

ACCREDITED

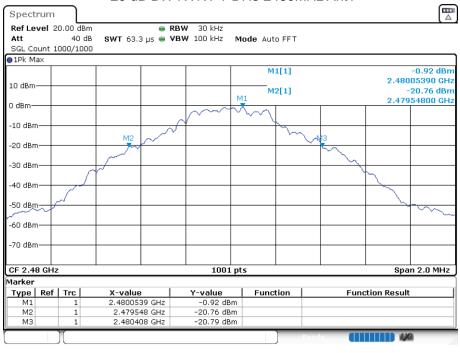
ACCREDITED


ACCREDITED

NTEK北测

8.3 OCCUPIED CHANNEL BANDWIDTH


0.0 0000					
Condition NVNT NVNT NVNT NVNT NVNT NVNT	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.86	Pass
NVNT	1-DH5	2441	Ant 1	0.858	Pass
NVNT	1-DH5	2480	Ant 1	0.86	Pass
NVNT	2-DH5	2402	Ant 1	1.252	Pass
NVNT	2-DH5	2441	Ant 1	1.252	Pass
NVNT	2-DH5	2480	Ant 1	1.256	Pass
NVNT	3-DH5	2402	Ant 1	1.246	Pass
NVNT NVNT NVNT	3-DH5	2441	Ant 1	1.25	Pass
NVNT	3-DH5	2480	Ant 1	1.252	Pass


-20 dB BW NVNT 1-DH5 2402MHz Ant1

Date: 26.SEP.2020 09:04:08

ACCREDITED

Date: 26.SEP.2020 09:12:01

1001 pts

Y-value

-2.63 dBm

-22.48 dBm

-22.54 dBm

Function

ACCREDITED

Date: 26.SEP.2020 09:19:19

1

1

X-value

2.4411598 GHz

2.44037 GHz

2.441622 GHz

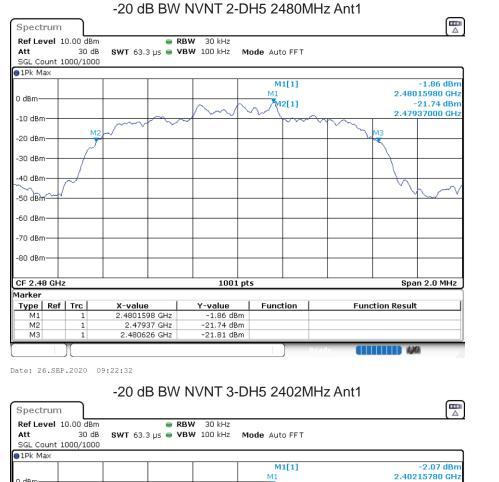
-50 dBm= -60 dBm--70 dBm -80 dBm-

CF 2.441 GHz

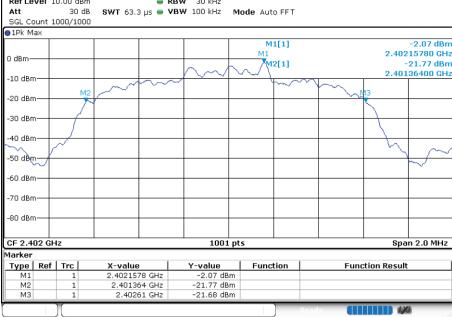
Type Ref Trc

Marker

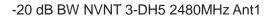
M1 M2

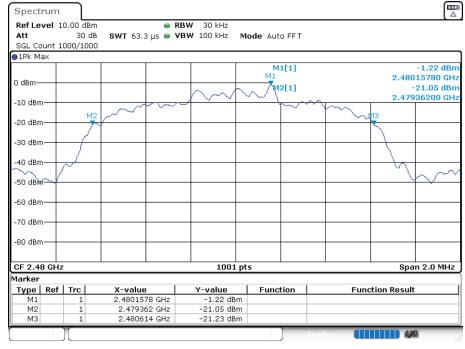

ΜЗ

Span 2.0 MHz


Function Result

•••


ACCREDITED

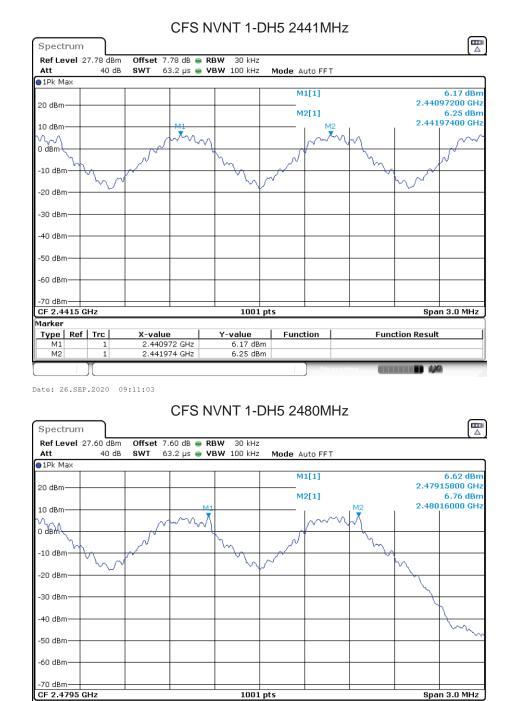


Date: 26.SEP.2020 09:26:14

Ref Level 1		-	RBW 30 kHz			
Att	30 d		VBW 100 kHz	Mode Auto FFT		
SGL Count 1	.000/100	10				
1Pk Max						
				M1[1]		-2.11 dBm
D dBm				M1		2.44115780 GHz -21.95 dBm
			n ml	M2[1]		-21.95 uBm 2.44036200 GHz
-10 dBm			\sim	h		2.44030200 0112
	м	2			МЗ	
-20 dBm)					
-30 dBm						
-30 UBIII					,	
-40 dBm						
	\sim					M and
-50 dBm						~~~
~~						~
-60 dBm						
-70 dBm						
-80 dBm						
CF 2.441 Gł	łz		1001	. pts		Span 2.0 MHz
1arker						
Type Ref		X-value	Y-value	Function	Function	Result
M1	1	2.4411578 GHz	-2.11 dB			
M2	1	2.440362 GHz	-21.95 dB			
M3	1	2.441612 GHz	-22.01 dB	m		

Date: 26.SEP.2020 09:32:08

8.4 CARRIER FREQUENCIES SEPARATION


OIT OAILIN						
Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2402.158	2403.16	1.002	0.86	Pass
NVNT	1-DH5	2440.972	2441.974	1.002	0.858	Pass
NVNT	1-DH5	2479.158	2480.16	1.002	0.86	Pass
NVNT	2-DH5	2402.158	2403.16	1.002	0.835	Pass
NVNT	2-DH5	2441.158	2442.16	1.002	0.835	Pass
NVNT	2-DH5	2479.158	2480.16	1.002	0.837	Pass
NVNT	3-DH5	2402.158	2403.16	1.002	0.831	Pass
NVNT	3-DH5	2441.158	2442.16	1.002	0.833	Pass
NVNT	3-DH5	2479.158	2480.157	0.999	0.835	Pass

Date: 26.SEP.2020 09:06:08

Date: 26.SEP.2020 09:14:59

1

X-value

2.479158 GHz

2.48016 GHz

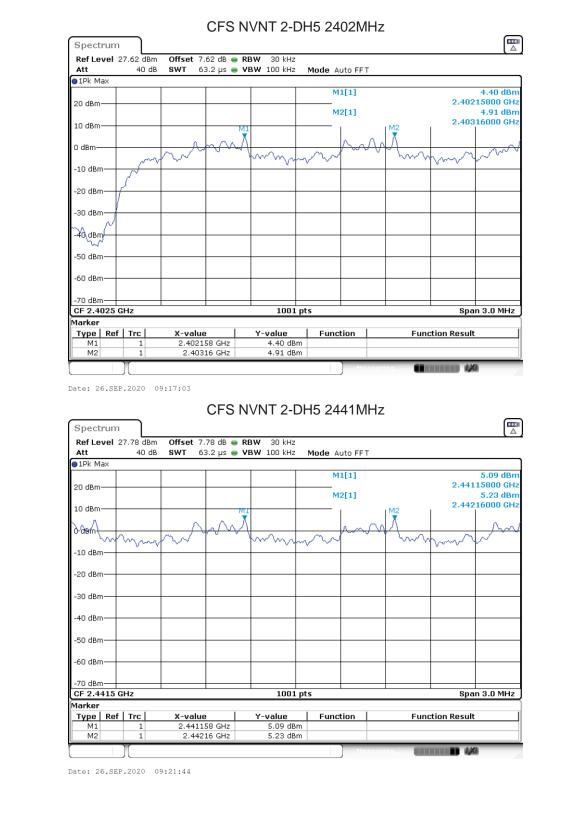
Y-value

6.62 dBm

6.76 dBm

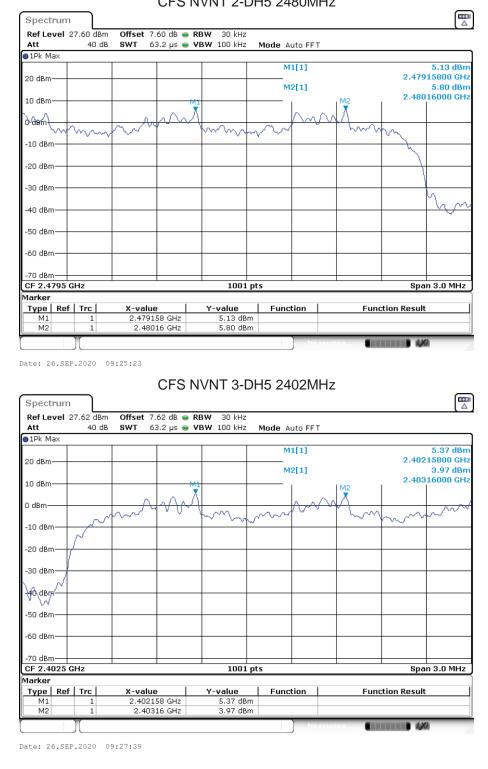
Function

Function Result

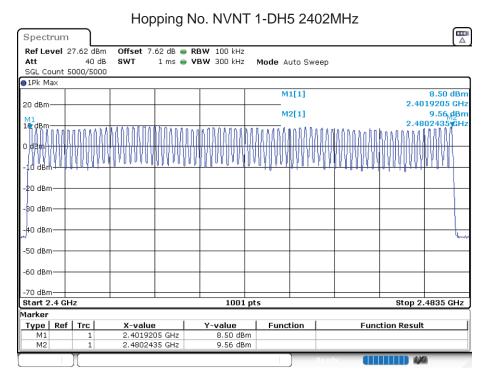

Marker Type Ref Trc

M1

M2



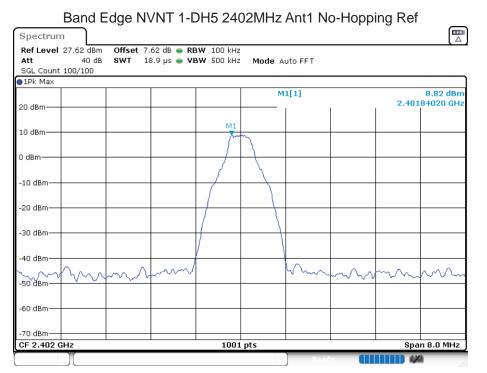
CFS NVNT 2-DH5 2480MHz



8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH5	79	15	Pass

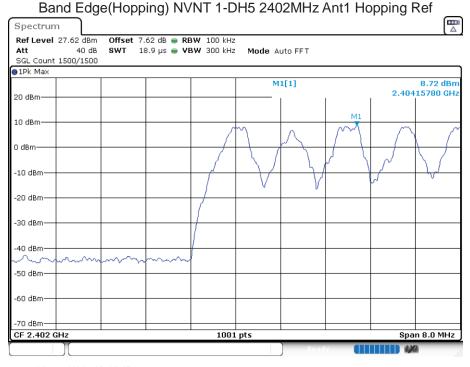
ACCREDITED


Certificate #4298.01

Date: 26.SEP.2020 09:06:23

9.6 BAND EDGE

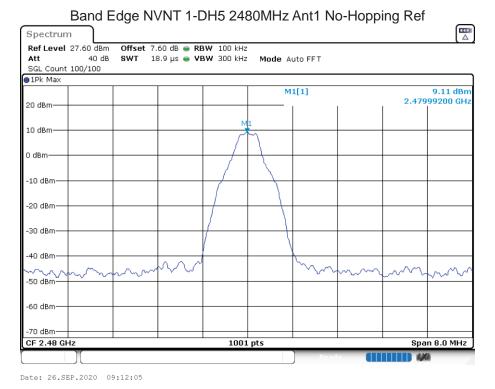
8.6 BANDI	EDGE						
Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-50	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-49.61	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-52.74	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-51.48	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-49.52	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-47.79	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-51.06	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-47.64	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-48.52	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-47.9	-20	Pass
NVNT	3-DH5	2480	Ant 1	No-Hopping	-52.45	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-49.04	-20	Pass



Date: 26.SEP.2020 09:04:11

Spect Ref Le Att SGL Co	vel 2	7.62 dBm 40 dB 00/100		 RBW 100 VBW 500 		Mode A	uto FFT				
∎1Pk M			1 1								
20 dBm						M1	[1]		2.40	8.76 195000	
20 000						M2	[1]		2.40	-46.89	
10 dBm	-+				_		1		2.40	000000	
o											ñ –
0 dBm—											1
-10 dBr		1 -11.18:									
		1 -11.10.									
-20 dBr	ا (
-30 dBr											
00 401	·			M4							
-40 dBm	∩— -		. 1.					-	, M3	M2	
<i>ափե</i> նո [#] -50 dBm	monalh	Manaduluu	wheel war whether	ala Printer Barran Maria	mun	when they when	when when	an adat Milligeneeus	Mull Bruker	- AND WORK	Leve
-30 ubii	-										
-60 dBm	∩—				_						
-70 dBm Start 2		сц <u>а</u>		10	01 pts	-			Stor	2.406	2112
Marker	.300	GHZ		10	orpe	,			atu	52.400	anz
Type	Ref	Trc	X-value	Y-value	1	Functi	on I	Eun	ction Resu	ılt	1
M1	1101	1	2.40195 GHz			- unoci			0000000000		_
M2		1	2.4 GHz								
M3		1	2.39 GHz								
M4		1	2.3486 GHz	-41.18	dBm						

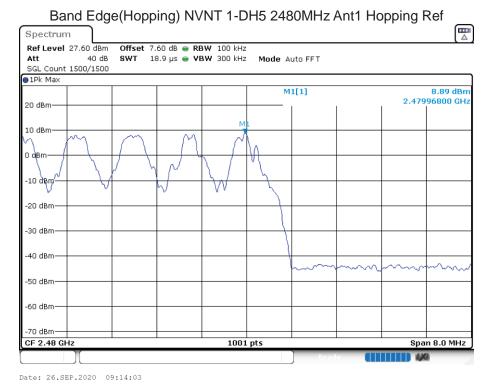
Date: 26.SEP.2020 09:04:15

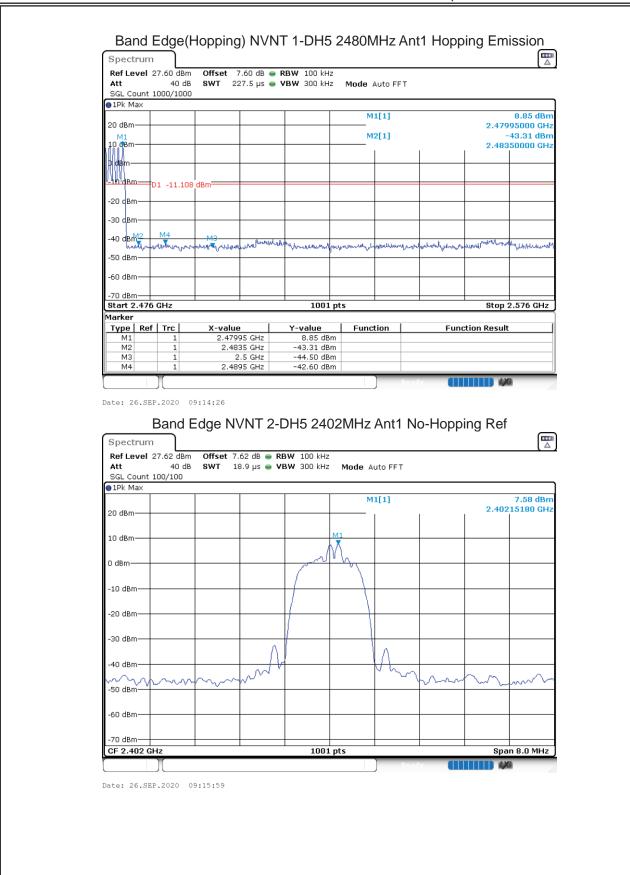

Date: 26.SEP.2020 09:06:27

TEK北测	ACCREDITED Certificate #4298.01	Report No.: S2009
Band Edge(Hop	ping) NVNT 1-DH5 2402MHz A	nt1 Hopping Emission

N

Spectrum							
Ref Level 2	7.62 dB	m Offset 7.6	62 dB 👄	RBW 100 kHz			
Att	40 0		'.5 µs 😑	VBW 300 kHz	Mode Auto Fi	Т	
SGL Count 1	.000/10	00					
∎1Pk Max							
					M1[1]		8.86 dBm
20 dBm							2.40285000 GHz
10 49					M2[1]		-44.48 🟚 m
10 dBm						1	2.4000000 G Hz
							ANU
-10 dBm	1 .11 2	83 dBm					100
	1 -11.2						
-20 dBm							
-30 dBm							
-40 dBm			M4				M7 M2
Munupunalyung	a. and My	manunter	montalistas	round allow showing was	www.where washed the	yumper way with	waren y the of hypertry put the
-50 dBm		· ·				* · · ·	• · · ·
-60 dBm							
-70 dBm				1001			
Start 2.306	GHZ			1001 pt	s		Stop 2.406 GHz
Marker					-		
	Trc	X-value		Y-value	Function	Fun	ction Result
M1	1	2.40285		8.86 dBm			
M2 M3	1		4 GHz 9 GHz	-44.48 dBm -44.74 dBm			
M3 M4	1	2.39		-44.74 dBm -40.90 dBm			
141-4		2.343		40.90 UBIII			
	Л					Ready	

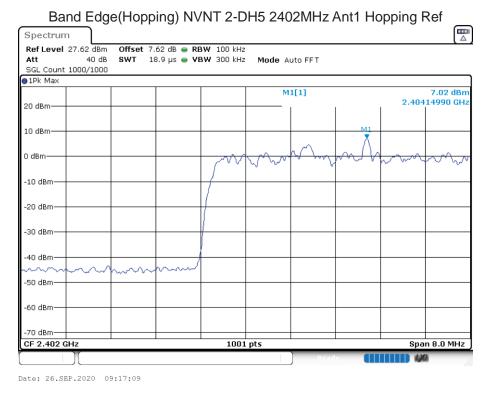

Date: 26.SEP.2020 09:06:49



Spect Ref Le Att SGL Co	vel 2	7.60 dBr 40 d 00/100		 RBW 100 kHz VBW 300 kHz 	Mode Auto F	Ŧ		
1Pk M	ax				M1[1]			8.80 dBm
20 dBm	\rightarrow						2.480	05000 GHz
M1					M2[1]			46.02 dBm
10 (8m							2.483	50000 GHz
0 dBm-								
- 11 -								
10 dBn	ᢇ᠆	1 -10.88	36 dBm				_	
-20 dBn	<u> </u>							
2000	·							
-30 dBn	ν 							
-40 dBr			M4					
MT W	72 🖲 манчы	and the ho	un have water my m	Mr. M. marshe de	under by Labolallo	mannehild	all we have bus marked	Wannaharmart
-50 dBn	1	WID . ().			or a strated or	- 0 - 0 - 10		
co do								
-60 dBn	ד י							
-70 dBn	η						_	
Start 2	.476	GHz		1001 pt	ts	•	Stop 2	2.576 GHz
1arker								
Туре	Ref		X-value	Y-value	Function	Fu Fu	inction Result	
M1		1	2.48005 GHz	8.80 dBm				
M2 M3		1	2.4835 GHz 2.5 GHz	-46.02 dBm -45.07 dBm				
M4		1	2.4975 GHz	-43.63 dBm				

Date: 26.SEP.2020 09:12:08

ilac-MR


ACCREDITED

Certificate #4298.01

NTEK北测

Spectru Ref Leve	m I 27.62 dBm	Offset 7.62 dB	🖷 RBW 100 kHz			
Att	40 dE	8 SWT 227.5 µs	🔵 VBW 300 kHz	Mode Auto FF	т	
SGL Coun	t 100/100					
●1Pk Max		1				
20 dBm				M1[1]		6.05 dBm 2.40205000 GHz
20 0011				M2[1]		-45.40 dBm
10 dBm				m2[1]		2.40000000 ^M GHz
				1		
0 dBm						
10 10-						
-10 dBm—	D1 -12.42	2 dBm				
-20 dBm—						
20 0011						
-30 dBm—						
			M4			1 11
-40 dBm—						M3 M2
ւսպիս/«Ակի -50 dBm—	-there of the states	within the here with the second of the second s	multimultingen	Not-Interfully and and with such	when many ways	manundry Mo
-50 aBm—						
-60 dBm—						
00 00						
-70 dBm—						
Start 2.30)6 GHz		1001 pt	s		Stop 2.406 GHz
Marker						
Type R	ef Trc	X-value	Y-value	Function	Func	tion Result
M1	1	2.40205 GHz	6.05 dBm			
M2	1	2.4 GHz				
M3	1	2.39 GHz	-45.56 dBm			
M4	1	2.3529 GHz	-41.95 dBm			

Spectrum Ref Level		Offset 7	7.62 dB 👄	RBW 100 kH	17				
Att	40 dB			VBW 300 kH		Auto FFT			
SGL Count	1000/1000								
-					M	1[1]			3.45 dB
20 dBm					м	2[1]			15000 GH
10 dBm									00000Q/j&F
0 dBm									, Jui
-10 dBm									
	D1 -12.980	dBm							
-20 dBm									
-30 dBm									
-40 dBm		. In the second	M4	nupportentitien		L 41.0.		M3	M2
-50 dBm	mahalala	marchelypohonou	and the state of t	and the second second	howman	and a consider shows	monorpation	Janen Britishad	nyma
-60 dBm									
-70 dBm Start 2.306	GHz			1001	L pts			Stop	2.406 GHz
Marker									
Type Ref	1 Trc	X-value	9	Y-value 3.45 de	Func	tion	Fund	ction Result	:
M2	1	2	.4 GHz	-45.20 dE	3m				
M3 M4	1		39 GHz	-44.95 dE					
	1	2.340	J2 GHZ I	-40.77 dB	sm				
Date: 26.SE	Band E	9:17:31 Edge N\		-40.77 dE	80MHz) Read	o-Hopp	ing Ref	
Spectrum Ref Level Att	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-		80MHz		o-Hopp	ing Ref	
Spectrum Ref Level Att SGL Count	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz		o-Hopp	ing Ref	
Spectrum Ref Level Att	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz	uto FFT	o-Hopp	ing Ref	
Spectrum Ref Level Att SGL Count	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz		o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count IPk Max 20 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count ●1Pk Max	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count IPk Max 20 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		
Spectrum Ref Level Att SGL Count P1Pk Max 20 dBm 10 dBm 0 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count IN Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Date: 26.SE Spectrum Ref Level Att SGL Count IN Max 20 dBm 0 dBm -10 dBm -10 dBm -20 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Spectrum Ref Level Att SGL Count IN Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT	o-Hopp		7.93 dBi
Date: 26.SE Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT			7.93 dBi
Date: 26.SE Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT			7.93 dBi
Date: 26.SE Spectrum Ref Level Att SQL Count • IPk Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	P.2020 09 Band E 27.60 dBm 40 dB	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz ² Mode A	uto FFT			7.93 dBi
Date: 26.SE Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	P.2020 01	9:17:31 Edge N\ Offset 7.	/NT 2-	•DH5 24	80MHz	uto FFT		2.480	7.93 dB

Spectrum Ref Level 27.6	0 dBm	Offset 7	.60 dB =	• RBW 100 kH	z				
Att SGL Count 100/	40 dB			• VBW 300 kH		Auto FFT			
●1Pk Max	100								
20 dBm						1[1] 2[1]			8.57 dBn 985000 GH: -45.50 dBn
10 dBm									350000 GH:
-10 dBm-									
- 101 -	12.066 dE	3m							
-20 dBm									
-30 dBm		M4							
	MANNA	www.	ruhum	you what have a	Muunumunu	mature	mahrana	and Monthson	Morrison
-50 dBm									
-60 dBm									
-70 dBm Start 2.476 GH	z			1001	. pts			Stop	2.576 GHz
Marker									
					· -				
Type Ref Tr		2 4798		Y-value	- Func	tion	Fund	ction Result	t
M1 M2	rc 1 1	2.4798	85 GHz 35 GHz	Y-value 8.57 dB -45.50 dB	m	tion	Fund	ction Result	t
M1 M2 M3	1 1 1	2.4798 2.483 2	35 GHz 35 GHz .5 GHz	8.57 dB -45.50 dB -45.78 dB	m m m		Fund	ction Result	
M1 M2 M3 M4	1 1 1 1	2.4798 2.483 2 2.499	35 GHz 35 GHz	8.57 dB -45.50 dB	m m m	tion	Fund	ction Result	0
M1 M2 M3 M4 Date: 26.SEP.20	1 1 1 20 09:	2.4798 2.483 2 2.499 22:41	35 GHz 35 GHz .5 GHz 96 GHz	8.57 dB -45.50 dB -45.78 dB	m m m m) Read	ly 🕕		0
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE	m m m 0H5 248) Prod	ly 🕕		a Ref
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A	BOMHZ J	ly 🕕		Ref
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att SGL Count 1000	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A) Prod	ly 🕕	opping l	a Ref
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att SGL Count 1000 •1Pk Max	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A	BOMHZ J	ly 🕕	opping l	Ref
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att SGL Count 1000 •1Pk Max 20 dBm	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A	BOMHZ J	ly 🕕	opping l	Ref
M1 M2 M4 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att SGL Count 1000 9 IPk Max 20 dBm 10 dBm M1	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A	BOMHZ J	ly 🕕	opping l	Ref
M1 M2 M3 M4 Date: 26.SEP.20 Band Spectrum Ref Level 27.6 Att SGL Count 1000 • 1Pk Max 20 dBm 10 dBm 0 dBm	1 1 1 1 20 09: Edge 0 dBm 40 dB	2.4798 2.483 2.499 22:41 (Hopp Offset 7.	35 GHZ 35 GHZ .5 GHZ 96 GHZ ing) N	8.57 dE -45.50 dE -45.78 dE -43.13 dE NVNT 2-C	m m 0H5 248 Mode A	BOMHZ J	ly 🕕	opping l	Ref

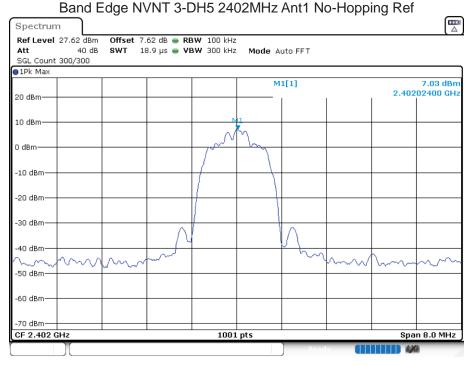
1001 pts

Version.1.3

-60 dBm--70 dBm-

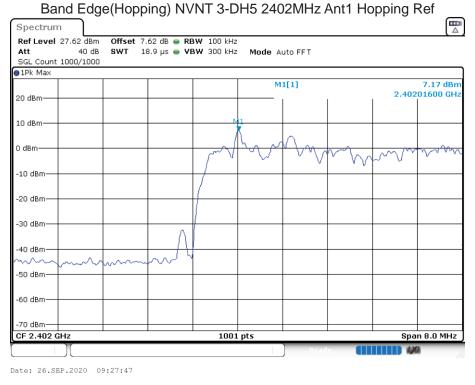
CF 2.48 GHz

Date: 26.SEP.2020 09:24:11


Span 8.0 MHz

42

					7.60 d	Ref Level 2
	-	Mode Auto FF1	• VBW 300 kHz	dB SWT 227.5 µs 🤅	40	Att
				00	000/10	SGL Count 1
						1Pk Max
6.41 dBn		M1[1]				
2.47615000 GH						20 dBm —
-44.16 dBn		M2[1]				
2.48350000 GH						.0 dBm
						ivefaitn
						rabili
						10 cBm
				755 dBm	1 -14.	
						20 dBm
						30 dBm —
				M4		
mouse provident water water	MANNE WILME LUM	a rente was donent	atresting with marsh the	N3	man	
		te triffende i f	1000	and the first firs		50 dBm
						60 dBm
						70 dBm —
Stop 2.576 GHz		5	1001 pt		GHz	Start 2.476 (
						larker
Function Result	Fu	Function	Y-value	X-value	Trc	Type Ref
			6.41 dBm	2.47615 GHz	1	M1
			-44.16 dBm	2.4835 GHz	1	M2
			-45.18 dBm	2.5 GHz	1	M3
			-42.40 dBm	2.4963 GHz	1	M4


Date: 26.SEP.2020 09:24:34

Date: 26.SEP.2020 09:26:20

Ref Level 2	7 62 dpm	Offset 7	62 dB -	RBW 100 kHz				
Att	40 dB		_	VBW 300 kHz	Mode Auto Fi	т		
SGL Count 1		0 22		1011 000 MIL	House Autorn			
1Pk Max								
					M1[1]			6.01 dBm
20 dBm —							2.401	195000 GHz
					M2[1]			-43.33 dBm
LO dBm						1	2.400	оооофенг
) dBm								
10 dBm	1 -12.970	dD ex-						
	1 -12.970	ивш						
20 dBm								
30 dBm								
				M4				
40 dBm							MI3	Ma
wellow when it	muliphan	spare all property	-phaneter three	mapphille friender	withing my from	www.www.www.	Mary Randon	opposed here
50 dBm								
60 dBm								
70 dBm								
Start 2.306 (GHz			1001 pt	s		Stop	2.406 GHz
larker								
		X-value		Y-value	Function	Fun	ction Result	<u> </u>
Type Ref	1		95 GHz	6.01 dBm				
Type Ref M1	1		.4 GHz 39 GHz	-43.33 dBm -45.64 dBm				
M1 M2	1	۷.۰						
Type Ref M1	1	2,349	96 GHz	-41.50 dBm				

Ref Leve Att	40 dB	Offset 7.62 dB (SWT 227.5 µs (RBW 100 kHz VBW 300 kHz	Mode Auto FFT		
SGL Coun 1Pk Max	t 1000/1000					
20 dBm—				M1[1]	2 403	4.62 dB 85000 GI
10 dBm-				M2[1]	-	44.25 dB
					2.400	00000 @
0 dBm						(N)
-10 dBm—	D1 -12.826	dBm				
-20 dBm—						
-30 dBm—		м	4			
-40 dBm-	when your		have the extend strategy is a	prosenter	mallinger where many the work	M2
-50 dBm—						
-60 dBm—						
-70 dBm— Start 2.30	6 GH2		1001 p	nts		2.406 GH
Marker						
Type R M1	ef Trc 1	2.40385 GHz	Y-value 4.62 dBm	Function	Function Result	
M2	1	2.4 GHz	-44.25 dBm			
M3			-44 90 dBm			
Spectru Ref Leve Att	m I 27.60 dBm 40 dB	Offset 7.60 dB		Re	No-Hopping Ref	
M4 Date: 26.5 Spectrue Ref Leve Att SGL Coun	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 248	0MHz Ant1 I	No-Hopping Ref	
M4 Date: 26.5 Spectrue Ref Leve Att	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 248	0MHz Ant1 I		8.60 dB
M4 Date: 26.5 Spectrue Ref Leve Att SGL Coun	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 248	OMHz Ant1 I		
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun ● 1Pk Max	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun IPk Max 20 dBm- 10 dBm-	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun IPk Max 20 dBm-	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun IPk Max 20 dBm- 10 dBm-	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun IPk Max 20 dBm- 10 dBm- 0 dBm-	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectru Ref Leve Att SGL Coun ● 1Pk Max 20 dBm— 10 dBm— -10 dBm— -20 dBm—	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectru Ref Leve Att SGL Coun IPK Max 20 dBm 10 dBm 0 dBm -10 dBm	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectru Ref Leve Att SGL Coun ● 1Pk Max 20 dBm— 10 dBm— -10 dBm— -20 dBm—	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun P1Pk Max 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun 10 dBm- 10 dBm- -10 dBm- -20 dBm- -30 dBm-	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun P1Pk Max 20 dBm— 10 dBm— -10 dBm— -20 dBm— -30 dBm— -40 dBm—	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1 Bep.2020 0 Band E 1 27.60 dBm 40 dB	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I Mode Auto FFT		8.60 dB
M4 Date: 26.5 Spectrui Ref Leve Att SGL Coun ID dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 EP.2020 0 Band E 27.60 dBm 40 dB t 100/100	2.343 GHz 9:28:09 Edge NVNT 3 Offset 7.60 dB	-40.74 dBm 3-DH5 2480 9 RBW 100 kHz 9 VBW 300 kHz	OMHz Ant1 I	2.480	8.60 dB 15180 G

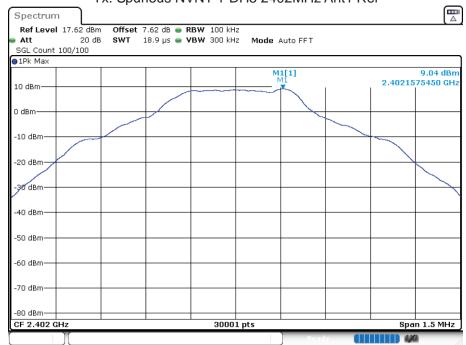
2.48015000 GHz -44.07 dBm 2.48350000 GHz
and marker and the south and the second
where we wanted and a second and the second
Stop 2.576 GHz
Function Result
Function Result
dy Marine (
Ant1 Hopping Ref

Date: 26.SEP.2020 09:36:00

NTEK北测	ACCREDITED Certificate #4298.01

Spectrum				.4001011 12 7	чит порр	ing Emission
Ref Level 2	7.60 dBr	m Offset 7.60 dB	RBW 100 kHz			
Att	40 d		VBW 300 kHz	Mode Auto FF	т	
SGL Count 1	000/100			nato nato n		
1Pk Max		-				
				M1[1]		5.51 dBm
20 dBm —						2.47795000 GHz
				M2[1]		-44.25 dBm
M dBm						2.48350000 GHz
gleithm						
-10 cBm	1 -12.77	77 d8m				
	1 -12.77	ubiii				
-20 aBm						
-30 dBm						
	M4					
-40 dbm2		M3 moundation	Munda		A construction of the state	montermoneyourness
-50 dBm	Mar Carlo	when a start with the second	and a second sec	manager Janes Manager	Newson and have been and the second	Manar - Ditrogram
-50 UBIII						
-60 dBm						
-70 dBm						
Start 2.476	GHz		1001 pt	5		Stop 2.576 GHz
larker		•				
Type Ref M1	Trc	2.47795 GHz	Y-value 5.51 dBm	Function	Fund	tion Result
M1 M2	1	2.47795 GHZ 2.4835 GHz	-44.25 dBm			
M3	1	2.4000 GHz	-44.94 dBm			
M4	1	2.4912 GHz	-41.83 dBm			

ate: 26.SEP.2020 09:36:22



8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-59.08	-20	Pass
NVNT	1-DH5	2441	Ant 1	-58.79	-20	Pass
NVNT	1-DH5	2480	Ant 1	-62.48	-20	Pass
NVNT	2-DH5	2402	Ant 1	-62.31	-20	Pass
NVNT	2-DH5	2441	Ant 1	-58.66	-20	Pass
NVNT	2-DH5	2480	Ant 1	-63.12	-20	Pass
NVNT	3-DH5	2402	Ant 1	-56.58	-20	Pass
NVNT	3-DH5	2441	Ant 1	-61.86	-20	Pass
NVNT	3-DH5	2480	Ant 1	-62.66	-20	Pass

ACCREDITED

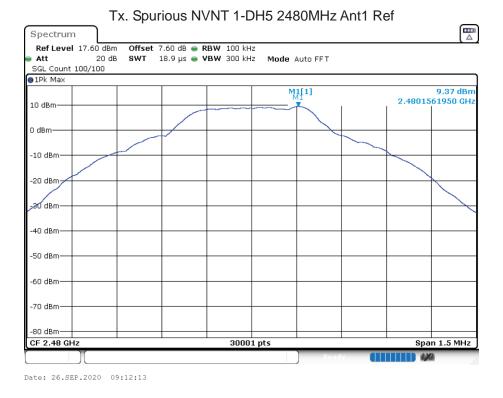
Certificate #4298.01

Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref

Date: 26.SEP.2020 09:04:18

01 -10.956 d8m m - m - m - M2 - m - M2 - M4 M5 M5	10 dBm 01 -10.956 dBm 01 -10.956 dBm 0 20 dBm 0 0 0 30 dBm 0 0 0 40 dBm M2 0 0 50 dBm 0 M4 M5 50 dBm 0 0 0 40 dBm M4 M5 50 dBm 0 0 0 10 dBm 0 0 0 11 1 2.40165 GHz 9.05 dBm 1 M1 1 2.40165 GHz 9.05 dBm 1 M3 1 4.803432 GHz -50.04 dBm 1 M3 1 4.803432 GHz -50.04 dBm 1 M3 1 4.803432 GHz -50.04 dBm 1 M4 1 7.036582 GHz -59.94 dBm 1
Marcola	01 10.500 ddm 1 <td< th=""></td<>
Mathematical M	30 dBm M4 M5 40 dBm M4 M5 50 dBm Stop 25.0 GHz 30 dBm Stop 25.0 GHz arker Stop 25.0 GHz M1 1 2.40165 GHz 9.05 dBm M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm M5 1 9.710037 GHz -59.94 dBm M5 1 9.710037 GHz -59.94 dBm
Met X-value Y-value Function Result 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz -50.04 dBm - 1 1.403432 GHz -50.04 dBm - 1 7.036582 GHz -59.01 dBm -	HO dBm ME MS MS 50 dBm M4 M5 50 dBm M4 M5 50 dBm M4 M5 50 dBm Point M4 M6 30 dBm Point M4 Point M4 30 dBm Point M4 Point M4 30 dBm Point M4 Point M4 Text 30001 pts Stop 25.0 GHz arker Point M4 Point M4 Point M4 M1 1 2.40165 GHz Point M4 M2 1 4.803432 GHz -50.04 dBm Point M4 M3 1 4.803432 GHz -50.04 dBm Point M4 M3 1 4.803432 GHz -50.04 dBm Point M4 M4 1 7.036582 GHz -59.01 dBm Point M4 M5 1 9.710037 GHz -59.94 dBm <
Met X-value Y-value Function Result 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz 9.05 dBm - 1 2.40165 GHz -50.04 dBm - 1 1.403432 GHz -50.04 dBm - 1 7.036582 GHz -59.01 dBm -	HO dBm ME MS MS 50 dBm M4 M5 50 dBm M4 M5 50 dBm M4 M5 50 dBm Point M4 M6 30 dBm Point M4 Point M4 30 dBm Point M4 Point M4 30 dBm Point M4 Point M4 Text 30001 pts Stop 25.0 GHz arker Point M4 Point M4 Point M4 M1 1 2.40165 GHz Point M4 M2 1 4.803432 GHz -50.04 dBm Point M4 M3 1 4.803432 GHz -50.04 dBm Point M4 M3 1 4.803432 GHz -50.04 dBm Point M4 M4 1 7.036582 GHz -59.01 dBm Point M4 M5 1 9.710037 GHz -59.94 dBm <
M2 M4 M5 m M4 M5 m M4 M5 m M4 M5 m M4 M5 M5 M5 M5 M5 M5 M5 M5 M5 M6 Trc X-value Y-value Function Function Result 1 4.803432 GH2 M5 M6 1 4.803432 GH2 M6 M6	S0 dBm M4 M5 50 dBm M4 M5 50 dBm M4 M5 70 dBm M4 M5 80 dBm M4 M5 70 dBm M4 M5 80 dBm M4 M5 80 dBm M4 M5 80 dBm M4 M6 80 dBm M6 M6 1 2.40165 GH2 9.05 dBm M1 1 2.40165 GH2 -50.04 dBm M3 1 4.803432 GH2 -50.04 dBm M3 1 4.803432 GH2 -50.04 dBm M4 1 7.036582 GH2 -59.94 dBm M5 1 9.710037 GH2 -59.94 dBm
Mile Mile <th< td=""><td>S0 dBm M4 M5 S0 dBm Image: S0 dBm</td></th<>	S0 dBm M4 M5 S0 dBm Image: S0 dBm
Mark Mark <th< td=""><td>Stop dBm Image: Constraint of the second s</td></th<>	Stop dBm Image: Constraint of the second s
Nmm 3000 pts Stop 25.0 GHz 30.0 MHz 30001 pts Stop 25.0 GHz Ref Trc X-value Y-value Function Function Result 1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 1 4.803432 GHz -50.04 dBm 1 7.036582 GHz -59.01 dBm 1	Yo dBm Yo dBm Yo dBm 80 dBm 30001 pts Stop 25.0 GHz arker You arker You arker M1 1 2.40165 GHz 9.05 dBm M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.03652 GHz -59.04 dBm M5 1 9.710037 GHz -59.94 dBm
M 3000 Hz Stop 25.0 GHz Ref Trc X-value Y-value Function Function Result 1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 4.803432 GHz -50.04 dBm 1 7.036582 GHz -59.01 dBm	B0 dBm 30001 pts Stop 25.0 GHz arker 30001 pts Stop 25.0 GHz arker 72 minimum 9.05 dBm M1 1 2.40165 GHz 9.05 dBm M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.04 dBm M5 1 9.710037 GHz -59.94 dBm
30.0 MHz 30001 pts Stop 25.0 GHz Ref Trc X-value Y-value Function Function Result 1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 1 4.803432 GHz -50.04 dBm 1 -50.04 dBm 1 1 7.036582 GHz -59.01 dBm -59.01 dBm 1 -59.01 dBm	tart 30.0 MHz Stop 25.0 GHz arker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40165 GHz 9.05 dBm Mage: Colspan="2">Stop 25.0 GHz M1 1 2.40165 GHz 9.05 dBm Mage: Colspan="2">Function M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
30.0 MHz 30001 pts Stop 25.0 GHz Ref Trc X-value Y-value Function Function Result 1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 1 4.803432 GHz -50.04 dBm 1 -50.04 dBm 1 1 7.036582 GHz -59.01 dBm -59.01 dBm 1 -59.01 dBm	tart 30.0 MHz Stop 25.0 GHz arker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40165 GHz 9.05 dBm Mage: Colspan="2">Stop 25.0 GHz M1 1 2.40165 GHz 9.05 dBm Mage: Colspan="2">Function M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
Ref Trc X-value Y-value Function Function Result 1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 1 4.803432 GHz -50.04 dBm 1 -50.04 dBm 1 1 7.036582 GHz -59.01 dBm 1 1 1 -59.01 dBm 1 1 -59.01 dBm 1 1 1 1 1 1 1 1 1 1 1<	Arker Fype Ref Trc X-value Y-value Function Function Result M1 1 2.40165 GHz 9.05 dBm M2 1 4.803432 GHz -50.04 dBm <
1 2.40165 GHz 9.05 dBm 1 4.803432 GHz -50.04 dBm 1 4.803432 GHz -50.04 dBm 1 7.036582 GHz -50.01 dBm	M1 1 2.40165 GHz 9.05 dBm M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
1 4.803432 GHz -50.04 dBm 1 4.803432 GHz -50.04 dBm 1 7.036582 GHz -59.01 dBm	M2 1 4.803432 GHz -50.04 dBm M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
1 4.803432 GHz -50.04 dBm 1 7.036582 GHz -59.01 dBm	M3 1 4.803432 GHz -50.04 dBm M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
1 7.036582 GHz -59.01 dBm	M4 1 7.036582 GHz -59.01 dBm M5 1 9.710037 GHz -59.94 dBm
	M5 1 9.710037 GHz -59.94 dBm Ready
Ready	Peady (
26.SEP.2020 09:04:53	e: 20.3BF.2020 09:04:33
Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref	Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref
Tx. Spurious NVNT 1-DH5 2441MHz Ant1 Ref	
6.SEP.2020 09:04:53	e: 20.5EF.2020 09:04:55

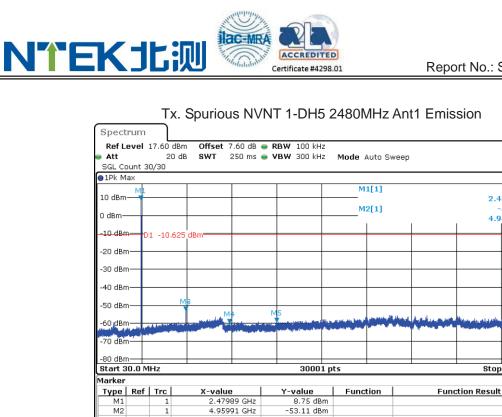
					Read	y di		1
CF 2.441 0	Hz	1	3000	1 pts	1	1	Spa	n 1.5 MHz
-80 dBm								
-70 dBm								
-60 dBm								
-50 dBm								
-40 dBm								
-38 dBm-								\searrow
-20 dBm								
-10 dBm		 /						
10 dBm								
10 dBm							2.11101	10330 0112


Date: 26.SEP.2020 09:09:32

ITEK北 测	Certificate #4298.01

Ref Le Att SGL Co	unt 3	2	dBm 0 dB			_	BW 100 kH BW 300 kH		Mode /	Auto St	weep			
1Pk Ma	ж								M	1[1]				8.50 dBm
10 dBm·			_										2.4	40770 GHz
0 dBm—									M	2[1]				50.23 dBm
, abiii										I	1		4.8	81671 GHz
10 dBm	ф о	1 -11	.440 di	Bm		_								
20 dBm														
30 dBm	-													
40 dBm	-													
50 dBm			MB											
эџ авт				,M4		м	5			a alt				
60 dBm	1	alar a second	┈┯╢┯		a de ana de la competencia de		الأفادانية الم <u>حياة الم</u> الية المحمد المحياة المحالية	h hadan Marina		1			Coloring Coloring	Automa
70 dBm	Sec. 1	And a state of the			and the second se	200		-						
Start 3	0.0 M	Hz					3000	1 pt	s				Stop	25.0 GHz
1arker														
Туре	Ref	Trc		X-value			Y-value		Fund	tion		Fun	ction Result	
M1		1		2.440			8.50 dB							
M2 M3		1		4.8816			-50.23 dB							
M3 M4		1		4.88167			-50.23 dB -59.27 dB							
M5		1		9.94142			-59.38 dB							

Date: 26.SEP.2020 09:10:06



8.75 dBm 2.479890 GHz

4.959910 GH

Stop 25.0 GHz

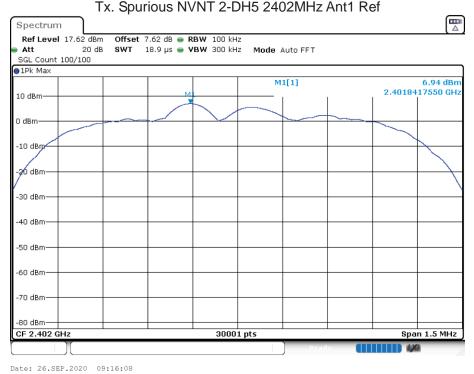
-53.11 dBm

4.95991 GHz

7.384497 GHz

10.019665 GHz

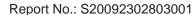
Date: 26.SEP.2020 09:12:47


1

1

ΜЗ

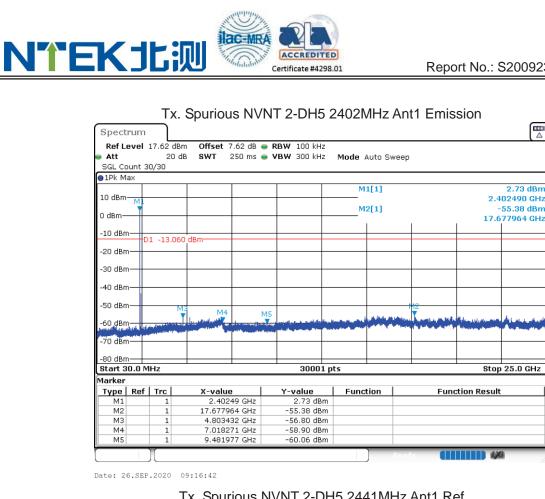
M4

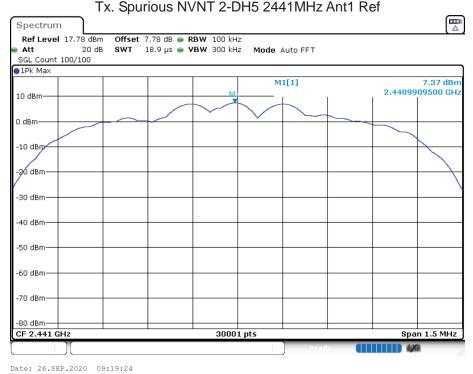

M5

-53.11 dBm

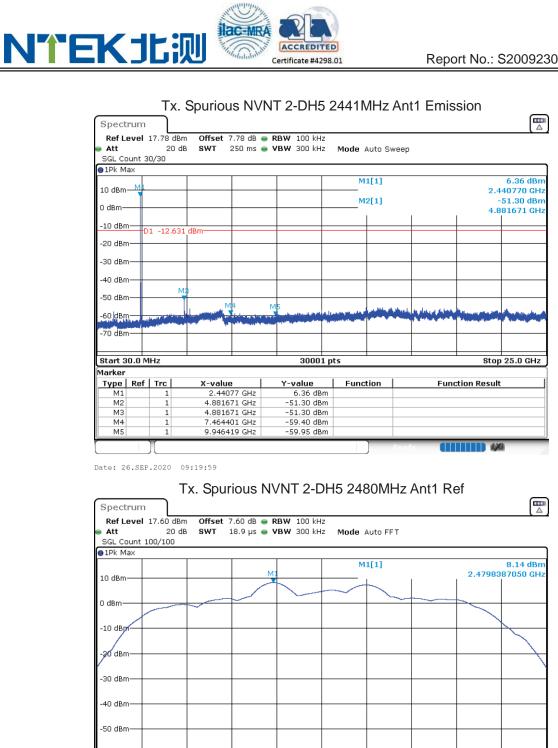
-59.99 dBm

-59.24 dBm




2.73 dBr

-55.38 dBm


2.402490 GH

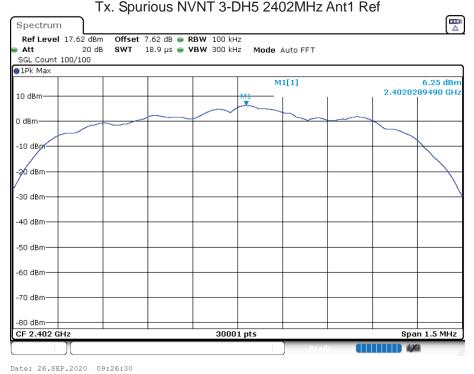
17.677964 GH

30001 pts

Version.1.3

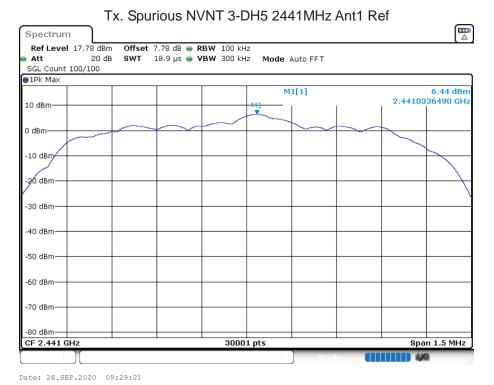
-60 dBm -70 dBm -80 dBm-CF 2.48 GHz

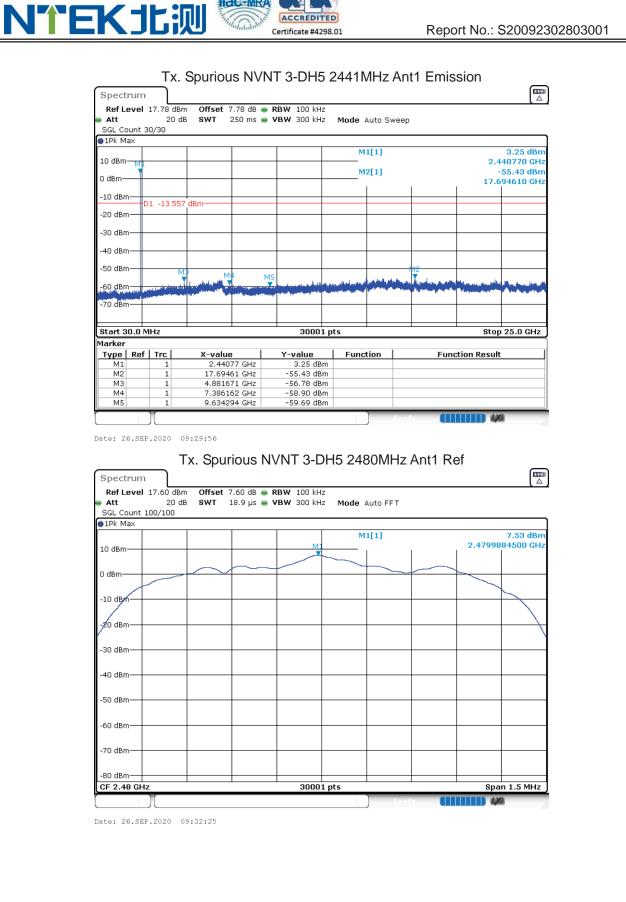
Date: 26.SEP.2020 09:22:47


Span 1.5 MHz

	<u>, x.</u>	Spunou	5 11 0		5 2	4001		AIII		51011	_
pectrum											
Ref Level 17.	60 dBm	Offset 7	'.60 dB 📢	RBW 100 kH	Ιz						
Att	20 dB	SWT :	250 ms (🖢 VBW 300 kH	Ιz	Mode /	luto Sv	/еер			
GL Count 30/3	:0										
1Pk Max											
M1						M	1[1]				7.51 dBm
IdBm										2.	479890 GHz
dBm						M	2[1]				-54.99 dBm
										20.	097557 GHz
0 dBm	11.864	d0 m									
	11.804	uBIII									
0 dBm											
0 dBm											
J UBIII											
) dBm											
0 dBm	м	3 м.							4	2	
0.40-0			ľ	M5		أمريحا والعراب	الديا الأحماري	And	والالتحار ورودور	And the second second	يبعد العندية العلمي 📥 الله
D.dBm			and a substance of the second s		1	and the second	WARKS	.	And a state	first many finish	
dBm											
0 dBm											_
art 30.0 MHz				3000	1 pt	s				Sta	p 25.0 GHz
rker											
ype Ref T	rc	X-value	.	Y-value		Funct	ion		Fund	tion Resu	lt 🛛
M1	1		89 GHz	7.51 d							
M2	1	20.0975		-54.99 dl							
M3	1		91 GHz	-57.13 di							
M4 M5	1	7.3894		-58.80 di -59.87 di							

Date: 26.SEP.2020 09:23:21


Ty Spurious NV/NT 2 DUE 2402MUz Apt1 Dof


℃EK北测	Certificate #4298.01

Ref Le Att SGL Co	unt 3					W 100 kHz W 300 kHz	Mode /	Auto Swe	еер		
	10						м	1[1]			3.15 dBm
10 dBm-	ML										01650 GHz
0 dBm—	1						M	2[1]			50.33 dBm
								I	1	4.8	03432 GHz
-10 dBm		1 10	750 dBm								
-20 dBm	11-	1 -15.	/ 30 UBIII								
20 000											
-30 dBm	-				-						
-40 dBm											
-40 ubili			ма								
-50 dBm	_		M4							-	
CO. 40					M5		and see 1981 allowed	الرقي ويصادى	المعربة إلى ويعمد والأصاب وا	and the second sec	فيربق ومبرقة
-60 dBm	ع السر	And Address		and design of the second s	international de la constitución de		دوددر والمتحمية	phile AV	Sector States and sector	- Contraction of the last	
70 dBm		(M			_						
80 dBm Start 3		U -7				30001	nte			Ptor	25.0 GHz
larker	5.0 14	112				30001	prs			3(0)	20.0 GH2
	Ref	Tre	X-value		,	r-value	Func	tion	Eup	ction Result	1
M1	KOI	1		55 GHz		3.15 dBm			i un	ction Result	
M2		1	4.80343			-50.33 dBm					
MЗ		1	4.80343	32 GHz		-50.33 dBm					
M4		1	7.02076			-58.31 dBm					
M5		1	9.60349	98 GHz		-60.42 dBm					

Date: 26.SEP.2020 09:27:04

ilac-MR

ACCREDITED

	rum	L	10				Distance in the						
Att	evel	17.60	dBm 0 dB			_	BW 100 kHz BW 300 kHz	Mada	Auto Sv				
SGL Co	unt 3	-	U UB	3111	230 115	• •	DVV 300 KH2	Moue	AULU SY	veep			
1Pk M		-/											
								IM	1[1]				6.36 dBm
10 dBm			-+			-						2.	479890 GHz
0 dBm-								M	12[1]				-55.13 dBm
u ubiii-											I	17.	711257 GHz
-10 dBn		1 -12	472 4	Bm									
-20 dBn		1 12											
20 UBI													
-30 dBn	א-ר								<u> </u>				
-40 dBn													
-40 UBI													
-50 dBn	η 		мв								42		
co do-			1	-	4	MS V		a a de actual	الارجاميل	Halani	Lands of the little	Marker Rough	A state of sources
-60 dBn	and the state		analian In airin ai			ala di la di			1.000	19 miles	Same and	Construction of the second	
-70 dBn													
-80 dBn Start 3		Hz					30001	nts				Sto	p 25.0 GHz
1arker	0.0 14	112					30001	pt3				300	p 20.0 GH2
Type	Ref	Trc	1	X-valu	e		Y-value	Fund	tion	1	Fund	tion Resu	lt l
M1		1		2.479	89 GHz		6.36 dBm						
M2		1		17.7112			-55.13 dBm						
M3		1			91 GHz		-57.18 dBm						
M4 M5		1			08 GHz 42 GHz		-58.74 dBm -59.24 dBm						

Date: 26.SEP.2020 09:33:00

END OF REPORT