

RF Test Report

For

Applicant Name:

Address:

EUT Name:

Brand Name:

Model Number:

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China Smart Phone OUKITEL **WP32** Series Model Number: Refer to section 2

Issued By

Company Name:

Address:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: Test Standards:

BTF230913R00704-1 47 CFR Part 15E

Test Conclusion: FCC ID: Test Date: Date of Issue:

Pass 2ANMU-WP32SPUT 2023-09-15 to 2024-05-29 2024-05-30

Prepared By:

Date:

Approved By:

Date:

Shenzh hris Chris Liu / Project Engine 2024-05-30 ken?

Ryan.CJ / EMC Manager 2024-05-30

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 128

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History		
Issue Date	Revisions Content	
2023-10-10 Original		
2024-05-30	This report is base on the report No. BTF230913R00704. Only the U-NII Band 3 test was added, everything else was the same	
	Issue Date 2023-10-10	

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 2 of 128

Table of Contents

1	INTRODUCTION			. 5
	1.1		tion of Testing Laboratory	
	1.2		tion of the Responsible Testing Location	
	1.3		ement	
2			ORMATION	
	2.1		on Information	
	2.2 2.3		turer Information	
	2.4	General I	Description of Equipment under Test (EUT)	. 6
	2.5	Technica	I Information	. 6
3	SUM	MARY OF	TEST RESULTS	. 7
	3.1	Test Stan	ndards	. 7
	3.2		nty of Test	
	3.3		y of Test Result	
4	TEST	CONFIGU	JRATION	. 8
	4.1		ipment List	
	4.2		iliary Equipment	
	4.3		les	
5			RESULTS (EVALUATION)	
	5.1		requirement	
6	RAD		RUM MATTER TEST RESULTS (RF)	
	6.1	Conducte	ed Emission at AC power line	15
			U.T. Operation:	
			est Setup Diagram:	
	6.2		est Data:	
	0.2		leU.T. Operation:	
			est Data:	
	6.3		n conducted output power	
			U.T. Operation:	
			st Data:	
	6.4	Power sp	pectral density	21
			U.T. Operation:	
			st Data:	
	6.5		bandwidth and occupied bandwidth	
			U.T. Operation: est Data:	
	6.6		ge emissions (Radiated)	
	010	-	U.T. Operation:	
			est Setup Diagram:	
			st Data:	
	6.7		ble emission limits (below 1GHz)	
			U.T. Operation:	
			est Setup Diagram: est Data:	
	6.8		ble emission limits (above 1GHz)	
	0.0		U.T. Operation:	
		0.0.1 L.		50

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230913R00704-1

	6.8.2 Test Data:	
7 TEST	I SETUP PHOTOS	40
8 EUT C	CONSTRUCTIONAL DETAILS (EUT PHOTOS)	
APPENDIX		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 4 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

1 Introduction

1.1 Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130		
Fax Number:	+86-0755-23146130		
FCC Registration Number:	518915		
Designation Number:	CN1330		

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2 **Product Information**

Application Information 2.1

Company Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD	
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.2 Manufacturer Information

Company Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD	
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Factory Information 2.3

Company Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD	
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

General Description of Equipment under Test (EUT) 2.4

EUT Name:	Smart Phone
Test Model Number:	WP32
Series Model Number:	WP32 S, WP32 Pro, WP32 TITAN
Description of Model name differentiation:	Only the model name is different, the others are the same.
Hardware Version:	SC6012_MB_V1.1.0
Software Version:	OUKITEL_WP32_EEA_V04

Technical Information 2.5

Power Supply:	DC 3.87V form battery
Operation Frequency	U-NII Band 1: 5.18~5.24 GHz
Range	U-NII Band 3: 5.745~5.825 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
	U-NII Band 3: 5.725~5.85 GHz
Channel Bandwidth	802.11a: 20 MHz
	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	0.33 dBi
Note:	

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty			
Conducted Emission (150 kHz-30 MHz) ±2.64dB				
The following measurement uncertainty levels have been estimated for tests performed on the EUT as				
specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately				
the 95% confidence level using a coverage factor of k=2.				

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

3.3 Summary of Test Result

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Configuration 4

Test Equipment List 4.1

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2024-11-15			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2024-11-15			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2024-11-15			
LISN	AFJ	LS16/110VAC	16010020076	2023-11-16	2024-11-15			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2024-11-15			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Emission bandwidth and occupied bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 128

MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			
U-NII Detection Bandwidth								

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	/	/	
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15	
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15	

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Move Time, Channel Closing Transmission Time									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15				
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15				

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230913R00704-1

WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

DFS Detection Thresholds								
Equipment	Manufacturer Model No Inventory No		Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15			

Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-11-16	2024-11-15			
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230913R00704-1

REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
SKET	PCI-GPIB	1	1	1
SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
SKET	PCI-GPIB	1	/	/
SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15
SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15
Frad	FA-03A2 RE+	/	/	/
SKET	PCI-GPIB	/	/	/
SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15
	REBES Talent SKET SCHWARZBECK ROHDE&SCHWA RZ ROHDE&SCHWA RZ SKET SCHWARZBECK SCHWARZBECK Frad SKET	REBES TalentUF2-NMNM-2.5mSKETPCI-GPIBSCHWARZBECKBBHA9170ROHDE&SCHWA RZESCI7ROHDE&SCHWA RZFSQ40SKETPCI-GPIBSCHWARZBECKBBHA9120DSCHWARZBECKBBHA9120DFradFA-03A2 RE+SKETPCI-GPIB	REBES TalentUF2-NMNM-2.5m21101573SKETPCI-GPIB/SCHWARZBECKBBHA917001157ROHDE&SCHWA RZESCI7101032ROHDE&SCHWA RZFSQ40100010SKETPCI-GPIB/SCHWARZBECKBBHA9120D2597FradFA-03A2 RE+/SKETPCI-GPIB/	REBES Talent UF2-NMNM-2.5m 21101573 2023-11-16 SKET PCI-GPIB / / SCHWARZBECK BBHA9170 01157 2023-11-16 ROHDE&SCHWA RZ ESCI7 101032 2023-11-16 ROHDE&SCHWA RZ FSQ40 100010 2023-11-16 SKET PCI-GPIB / / SCHWARZBECK BBV9718D 00008 2023-11-16 SCHWARZBECK BBHA9120D 2597 2023-11-16 Frad FA-03A2 RE+ / / SKET PCI-GPIB / /

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-11-16	2024-11-15			
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER			1	1	1			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Undesirable emission limits (above 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-11-16	2024-11-15			
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	1			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-11-16	2024-11-15			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2023-11-16	2024-11-15			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	1			
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15			

4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

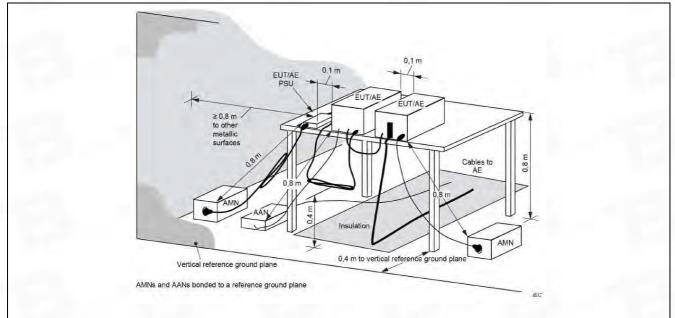
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

e responsible party shall be used with the device. The use of a
ttached antenna or of an antenna that uses a unique coupling to the iator shall be considered sufficient to comply with the provisions of

6 Radio Spectrum Matter Test Results (RF)

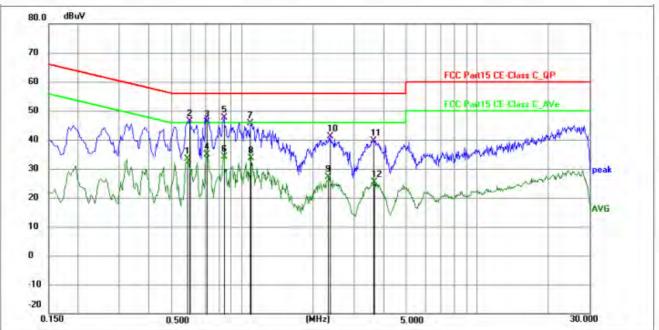

6.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	47 CFR Part 15.207(a)					
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (df	BμV)				
		Quasi-peak	Average				
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*				
Test Limit:	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 C		
Humidity:	50.6 %		1.000
Atmospheric Pressure:	1010 mbar		

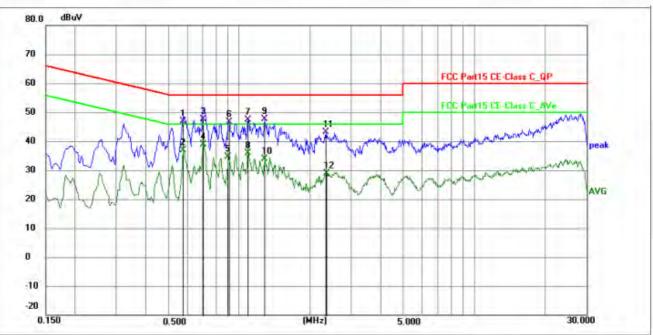
6.1.2 Test Setup Diagram:


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 15 of 128

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.5865	22.74	10.66	33.40	46.00	-12.60	AVG	P	
2	0.5955	35.67	10.67	46.34	56.00	-9.66	QP	P	
3	0.7080	35.47	10.73	46.20	56.00	-9.80	QP	P	
4	0.7080	24.18	10.73	34.91	46.00	-11.09	AVG	P	
5 *	0.8385	36.81	10.75	47.56	56.00	-8.44	QP	P	
6	0.8385	23.34	10.75	34.09	46.00	-11.91	AVG	P	
7	1.0859	34.77	10.77	45.54	56.00	-10.46	QP	P	
8	1.0905	22.96	10.77	33.73	46.00	-12.27	AVG	P	
9	2.3325	16.35	10.70	27.05	46.00	-18.95	AVG	P	
10	2.3640	30.39	10.70	41.09	56.00	-14.91	QP	P	
11	3.6105	29.00	10.72	39.72	56.00	-16.28	QP	P	
12	3.6420	14.68	10.72	25.40	46.00	-20.60	AVG	P	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 16 of 128

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.5775	36.24	10.66	46.90	56.00	-9.10	QP	P	
2	0.5775	26.30	10.66	36.96	46.00	-9.04	AVG	P	
3	0.7035	36.97	10.73	47.70	56.00	-8.30	QP	P	
4 *	0.7035	28.13	10.73	38.86	46.00	-7.14	AVG	P	
5	0.8970	23.97	10.76	34.73	46.00	-11.27	AVG	P	
6	0.9060	35.76	10.76	46.52	56.00	-9.48	QP	P	
7	1.0905	36.68	10.77	47.45	56.00	-8.55	QP	P	
8	1.0905	25.08	10.77	35.85	46.00	-10.15	AVG	P	
9	1.2795	37.00	10.75	47.75	56.00	-8.25	QP	P	
10	1.2885	23.25	10.75	34.00	46.00	-12.00	AVG	P	
11	2.3415	32.43	10.70	43.13	56.00	-12.87	QP	P	
12	2.3550	18.19	10.70	28.89	46.00	-17.11	AVG	P	9

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 17 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:

Please Refer to Appendix for Details.

6.3 Maximum conducted output power

0.5 Maximum conducted output power						
	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii)					
To at Da muinant ant	47 CFR Part 15.407(a)(1)(iii)					
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)					
	47 CFR Part 15.407(a)(2)					
	47 CFR Part 15.407(a)(3)(i)					
Test Method:	ANSI C63.10-2013, section 12.3					
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).					
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.					
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems					
	employing high gain directional antennas are used exclusively for fixed, point-to-point operations.					
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the					
	maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	For the hand 5 705 5 950 CHz, the maximum conducted output neuron ever the
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample
	detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to
	enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control
	level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	EBW or 99%
	OBW of the spectrum.
631 EUT Operation	

6.3.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral density

	47 CFR Part 15.407(a)(1)(i)					
	47 CFR Part 15.407(a)(1)(ii)					
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)					
	47 CFR Part 15.407(a)(1)(iv)					
	47 CFR Part 15.407(a)(2)					
	47 CFR Part 15.407(a)(3)(i)					
Test Method:	ANSI C63.10-2013, section 12.5					
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.					
Test Limit:	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.					
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.					
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the					
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.					
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the					
	directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter					

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 21 of 128

 Procedure: Conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, ormidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) if method SA-2 or SA-2 was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. c) If method SA-3 was used and the linear mode was used in step h) of 12.3.2.7, add d B to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth, the following adjustments to the procedures apply: 1) Set EMV > 1.1 Wetz Taberovided that the followin		conducted new or
 Procedure: following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measurement bandwidth "(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 		Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed,
 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle. 	Procedure:	 a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power" (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum. 2) If method SA-3 was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging. d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a). 3) Care shall be taken such that the measurements are performed during a period

6.4.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 22 of 128

6.5 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
lost Linnt.	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified
	by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectra
	envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are recovered and directly summed in linear power terms. The recovered amplitude
	data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%
	f this document without permission of the Laboratory is not allowed Page 23 of 12

Page 23 of 128 Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth:
a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:

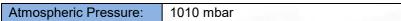
Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

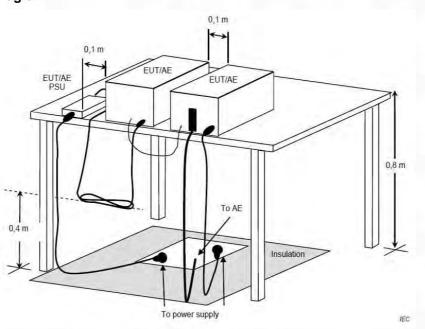
	47 CFR Part 15.407(b)						
Test Requirement:	47 CFR Part 15.407(b)(2)						
lest Requirement.	47 CFR Part 15.407(b)	(4)					
	47 CFR Part 15.407(b)	47 CFR Part 15.407(b)(10)					
Test Method:	ANSI C63.10-2013, se	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6					
	For transmitters operat	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the					
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.			
	For transmitters operat	ing in the 5.25-5.35 GF	Iz band: All emis	ssions outside of the			
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/N	1Hz.			
	For transmitters operat						
	All emissions shall be l						
	or below the band edge						
	below the band edge, a						
	linearly to a level of 15						
	from 5 MHz above or b	elow the band edge inc	creasing linearly	to a level of 27			
	dBm/MHz at the band	edge.					
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427				
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5			
	4.20120-4.20110	10-14.0	5	0.0-0.0			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4			
	0.20113-0.20023	100-121.94	2	10.20-10.4			
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4			
	9 27625 9 29675	25 156.7-156.9	2600 2000	22 04 22 42			
	8.37625-8.38675		2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(²)			
	13.36-13.41						
	¹ Until February 1, 1990	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.					
	² Above 38.6	² Above 38.6					
	The field strength of er	The field strength of emissions appearing within these frequency bands shall not					
	exceed the limits show						
		MHz, compliance with the limits in § 15.209shall be demonstrated using					
		measurement instrumentation employing a CISPR quasi-peak detector. Above					
		1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated					
		based on the average value of the measured emissions. The provisions in §					
		15.35apply to these measurements.					
		10.00appiy to measurementa.					
	Except as provided elsewhere in this subpart, the emissions from an intentional						

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 25 of 128

	radiator shall not exceed	the field strength levels spec	cified in the following table:			
	Frequency (MHz)	Field strength	Measurement			
		(microvolts/meter)	distance			
		(interestence, interest)	(meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
		100 **				
	30-88		3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	Above 1GHz:					
	a. For above 1GHz, the	EUT was placed on the top o	f a rotating table 1.5 meters			
	above the ground at a 3	meter fully-anechoic chambe	er. The table was rotated 360			
	degrees to determine th	e position of the highest radia	ation.			
	b. The EUT was set 3 m	eters away from the interfere	nce-receiving antenna, which			
		of a variable-height antenna				
			r meters above the ground to			
		value of the field strength. B	•			
		nna are set to make the mean				
			ed to its worst case and then			
		the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be				
_	re-tested one by one using peak or average method as specified and then reported					
Procedure:		in a data sheet.				
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.					
	h. The radiation measur	ements are performed in X, Y	, Z axis positioning for			
	Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.					
	Remark:					
	1. Level= Read Level+ (Cable Loss+ Antenna Factor-	Preamp Factor			
	2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when					
		testing, so only above points had been displayed. The amplitude of spurious				
	emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits					
			strength of any emission shall			
			ecified above by more than 20			
			ons whose peak level is lower			
		nly the peak measurement is				
		e 18GHz were very low and t				
		ound when testing, so only the	e above harmonics had been			
	displayed.					
661 EUT Operatio						


6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 26 of 128

6.6.2 Test Setup Diagram:

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report UNII-1 20M_5180MHz_Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5146.400	80.27	-27.25	53.02	74.00	-20.98	peak	Р
2 *	5150.000	80.96	-27.24	53.72	74.00	-20.28	peak	Р

UNII-1 20M_5180MHz_Vertical:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5148.000	81.15	-27.25	53.90	74.00	-20.10	peak	Р
2	5150.000	81.51	-27.24	54.27	74.00	-19.73	peak	Р
3 *	5150.000	67.31	-27.24	40.07	54.00	-13.93	AVG	Р

UNII-1 20M_5240MHz_Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1*	5350.000	46.74	6.37	53.11	74.00	-20.89	peak	Р
2	5460.000	34.57	6.57	41.14	74.00	-32.86	peak	P

UNII-1 20M_5240MHz_Vertical:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1*	5350.000	42.64	4.63	47.27	74.00	-26.73	peak	Р
2	5460.000	36.04	4.79	40.83	74.00	-33.17	peak	Р

UNII-3 20M_5745MHz_Horizontal:

_									
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	110.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F
	1	5650.000	45.97	5.63	51.60	68.20	-16.60	peak	Р
	2	5700.000	46.43	5.70	52.13	105.20	-53.07	peak	Ρ
	3	5720.000	47.17	5.66	52.83	110.80	-57.97	peak	Ρ

UNII-3 20M_5745MHz_Vertical:

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
110.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F
1	5650.000	45.23	5.63	50.86	68.20	-17.34	peak	Ρ
2	5700.000	46.49	5.70	52.19	105.20	-53.01	peak	Ρ
3	5720.000	47.09	5.66	52.75	110.80	-58.05	peak	Ρ

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 28 of 128

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Ρ

peak

3

5925.000

46.07

5.66

			UNII-3 2			lai.		
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F
1	5855.000	46.87	5.73	52.60	110.80	-58.20	peak	Р
2	5875.000	46.11	5.74	51.85	105.20	-53.35	peak	Р
3	5925.000	45.56	5.66	51.22	68.20	-16.98	peak	Р
UNII-3 20M_5825MHz_Vertical:								
	Frequency	Reading	Factor	Level	Limit	Margin		

UNII-3 20M_5825MHz_Horizontal:

Detector P/F No. (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) (MHz) 1 5855.000 47.15 5.73 52.88 110.80 -57.92 Ρ peak 2 5875.000 47.00 5.74 52.74 105.20 -52.46 Ρ peak

51.73

68.20

-16.47

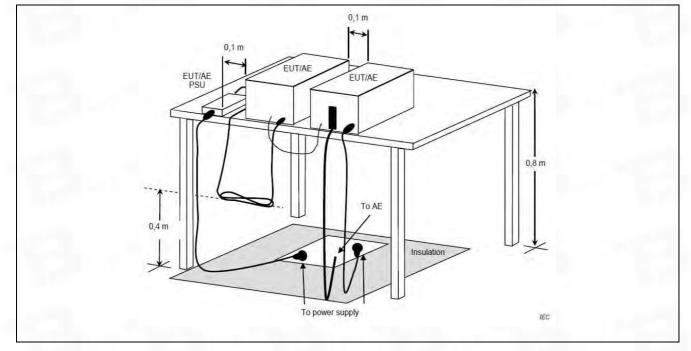
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 29 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)		
Test Method:	ANSI C63.10-2013, sectio	n 12.7.4, 12.7.5, 12.7.6	
	Unwanted emissions belo limits set forth in § 15.209	w 1 GHz must comply with t	he general field strength
		nere in this subpart, the emis he field strength levels spec Field strength	
		(microvolts/meter)	distance
Test Limit:	the second se	(Interevene)	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
Procedure:	above the ground at a 3 m degrees to determine the b. The EUT was set 3 or 1 which was mounted on the c. The antenna height is v determine the maximum v polarizations of the antenn d. For each suspected em the antenna was tuned to of below 30MHz, the anten was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum f. If the emission level of th specified, then testing cour reported. Otherwise the en re-tested one by one using data sheet. g. Test the EUT in the low h. The radiation measurem Transmitting mode, and for i. Repeat above procedure Remark: 1. Level= Read Level+ Ca 2. Scan from 9kHz to 30M points marked on above p testing, so only above point emissions from the radiaton need not be reported. 3. The disturbance below	position of the highest radiat 0 meters away from the inte- e top of a variable-height and aried from one meter to four alue of the field strength. Bo na are set to make the meas ission, the EUT was arrange heights from 1 meter to 4 me na was tuned to heights 1 m is to 360 degrees to find the mass set to Peak Detect Fu Hold Mode. The EUT in peak mode was 1 Id be stopped and the peak missions that did not have 10 g quasi-peak method as spe est channel, the middle char nents are performed in X, Y, und the X axis positioning w es until all frequencies meas ble Loss+ Antenna Factor- F Hz, the disturbance below 3 lots are the highest emission the highest emission to had been displayed. The or which are attenuated more	er. The table was rotated 360 ion. Inference-receiving antenna, tenna tower. Inters above the ground to oth horizontal and vertical urement. The to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. Inction and Specified OdB lower than the limit values of the EUT would be OdB margin would be cified and then reported in a annel, the Highest channel. Z axis positioning for which it is the worst case. ured was complete. Preamp Factor OMHz was very low. The na could be found when amplitude of spurious than 20dB below the limit harmonics were the highest

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

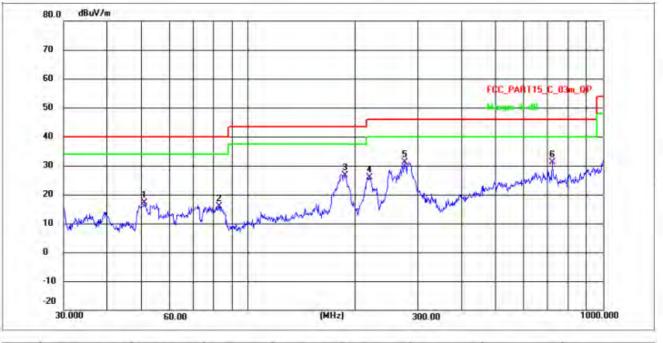
a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters
above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360
degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which
was mounted on the top of a variable-height antenna tower.
c. The antenna height is varied from one meter to four meters above the ground to
determine the maximum value of the field strength. Both horizontal and vertical
polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then
the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency
of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table
was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to Peak Detect Function and Specified
Bandwidth with Maximum Hold Mode.
f. If the emission level of the EUT in peak mode was 10dB lower than the limit
specified, then testing could be stopped and the peak values of the EUT would be
reported. Otherwise the emissions that did not have 10dB margin would be
re-tested one by one using peak or average method as specified and then reported
in a data sheet.
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for
Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete.
Remark:
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
points marked on above plots are the highest emissions could be found when
testing, so only above points had been displayed. The amplitude of spurious
emissions from the radiator which are attenuated more than 20dB below the limit
need not be reported.
3. As shown in this section, for frequencies above 1GHz, the field strength limits
are based on average limits. However, the peak field strength of any emission shall
not exceed the maximum permitted average limits specified above by more than 20
dB under any condition of modulation. For the emissions whose peak level is lower
than the average limit, only the peak measurement is shown in the report.
4. The disturbance above 18GHz were very low and the harmonics were the
highest point could be found when testing, so only the above harmonics had been
displayed.


6.7.1 E.U.T. Operation:

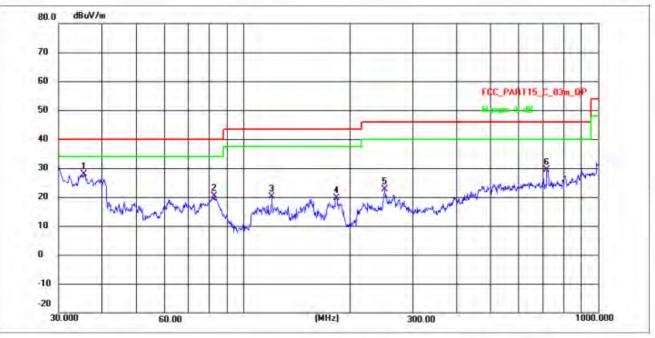
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.7.2 Test Setup Diagram:



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


6.7.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	50.7636	35.45	-18.27	17.18	40.00	-22.82	QP	Р
2	82.5033	47.05	-31.11	15.94	40.00	-24.06	QP	P
3	187.7530	54.10	-27.44	26.66	43.50	-16.84	QP	P
4	219.8448	52.43	-26.46	25.97	46.00	-20.03	QP	P
5 *	277.0935	56.81	-25.62	31.19	46.00	-14.81	QP	P
6	720.4615	54.85	-23.66	31.19	46.00	-14.81	QP	Р

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	35.4370	48.38	-20.62	27.76	40.00	-12.24	QP	P
2	82.5033	51.46	-31.11	20.35	40.00	-19.65	QP	P
3	120.0660	48.15	-28.05	20.10	43.50	-23.40	QP	P
4	183.2005	47.19	-27.48	19.71	43.50	-23.79	QP	P
5	250.7404	48.51	-25.84	22.67	46.00	-23.33	QP	P
6	719.1995	52.96	-23.65	29.31	46.00	-16.69	QP	P

6.8 Undesirable emission limits (above 1GHz)

0.0 Ondesirable								
	47 CFR Part 15.407(b)	(1)						
Test Deguirement	47 CFR Part 15.407(b)(2)							
Test Requirement:	47 CFR Part 15.407(b)(4)							
	47 CFR Part 15.407(b)	(10)						
Test Method:			76					
	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6 For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the							
		nall not exceed an e.i.r.						
	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside or 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.							
	5.15-5.35 GHZ band si	hall not exceed an e.i.r.	p. of -27 dBm/lv	IHZ.				
	F							
	For transmitters operating solely in the 5.725-5.850 GHz band:							
	All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing							
	linearly to a level of 15	.6 dBm/MHz at 5 MHz a	above or below t	the band edge, and				
	from 5 MHz above or below the band edge increasing linearly to a level of 27							
	dBm/MHz at the band		• •					
	MHz	мнz	MHz	GHz				
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46				
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75				
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
		37.5-38.25						
	4.17725-4.17775		1435-1626.5	9.0-9.2				
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5				
			5					
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4				
			2					
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5				
lest Linit.	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2				
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4				
		25						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12				
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
	12.57675-12.57725	322-335.4	3600-4400	(²)				
	13.36-13.41	522-555.4	3000-4400	()				
	13.30-13.41							
		9, this restricted band s	nall be 0.490-0.3					
	² Above 38.6							
		nissions appearing with						
	exceed the limits show							
	MHz, compliance with	the limits in § 15.209sh	all be demonstra	ated using				
		entation employing a CI						
	1000 MHz, compliance	with the emission limit	s in § 15.209sha	all be demonstrated				
		value of the measured						
	15.35apply to these me							
	Except as provided els	Except as provided elsewhere in this subpart, the emissions from an intentional						
	radiator shall not exceed the field strength levels specified in the following table:							
	Frequency (MHz)	Field strength		Measurement				
				measurement				

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230913R00704-1

		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
		100 **	
	30-88		3
	88-216	150 **	3
	216-960	200 **	3
	Above 960 Above 1GHz:	500	3
Procedure:	 above the ground at a 3 degrees to determine the b. The EUT was set 3 m was mounted on the top c. The antenna height is determine the maximum polarizations of the anten at the antenna was tuned of below 30MHz, the am was turned from 0 degree. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing of reported. Otherwise the re-tested one by one us in a data sheet. g. Test the EUT in the loch. The radiation measured the mark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above premissions from the radiation than the average limit, of the test-receiver at the test are based on average limit, of the test and the test at the test at the test at the test at test at test at the test at test at test at test at the test at test at the test at test at test at the test at test at the test at test at test at test at the test at test at the test at test at test at test at the test at test at	EUT was placed on the top of a meter fully-anechoic chamber he position of the highest radiat neters away from the interferen of a variable-height antenna to a varied from one meter to four in value of the field strength. Bo emission, the EUT was arrange to heights from 1 meter to 4 me tenna was tuned to heights 1 m ees to 360 degrees to find the net tenna was tuned to heights 1 m ees to 360 degrees to find the net ten was set to Peak Detect Fu im Hold Mode. If the EUT in peak mode was 10 ould be stopped and the peak emissions that did not have 10 ing peak or average method as powest channel, the middle cham- rements are performed in X, Y, found the X axis positioning w ures until all frequencies measi- coints had been displayed. The ator which are attenuated more ion, for frequencies above 1GF mits. However, the peak field s m permitted average limits spec- of modulation. For the emission pointy the peak measurement is spec- only the peak measurement is spec- to and when testing, so only the	 The table was rotated 360 ion. ce-receiving antenna, which ower. meters above the ground to th horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. inction and Specified OdB lower than the limit values of the EUT would be 0dB margin would be specified and then reported incl, the Highest channel. Z axis positioning for hich it is the worst case. ured was complete. Preamp Factor 18GHz was very low. The namplitude of spurious e than 20dB below the limit tz, the field strength limits trength of any emission shall cified above by more than 20 ns whose peak level is lower shown in the report.

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

6.8.2 Test Data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3196.094	66.19	-29.33	36.86	74.00	-37.14	peak	Р
2	3801.333	65.72	-29.02	36.70	74.00	-37.30	peak	Р
3	5194.040	85.62	-27.21	58.41	74.00	-15.59	peak	Р
4	5194.040	71.42	-27.21	44.21	54.00	-9.79	AVG	Р
5	7305.122	69.47	-24.84	44.63	74.00	-29.37	peak	Р
6	9366.577	71.98	-23.50	48.48	74.00	-25.52	peak	Р
7	10393.713	90.74	-24.46	66.28	74.00	-7.72	peak	Р
8 *	10393.713	72.43	-24.46	47.97	54.00	-6.03	AVG	P

UNII-1_20M_5180MHz_Horizontal

UNII-1_20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3308.894	66.42	-29.23	37.19	74.00	-36.81	peak	Р
2	4218.186	65.51	-28.90	36.61	74.00	-37.39	peak	Р
3	5194.040	91.89	-27.21	64.68	74.00	-9.32	peak	Р
4 *	5194.040	76.73	-27.21	49.52	54.00	-4.48	AVG	Р
5	7476.006	69.55	-24.79	44.76	74.00	-29.24	peak	Р
6	10393.713	73.79	-24.46	49.33	74.00	-24.67	peak	Р
7	12505.705	72.45	-21.61	50.84	74.00	-23.16	peak	P

UNII-1_20M_5200MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2625.796	71.02	-30.15	40.87	74.00	-33.13	peak	Р
2	2625.796	55.98	-30.15	25.83	54.00	-28.17	AVG	Р
3	3405.929	67.02	-29.14	37.88	74.00	-36.12	peak	Р
4	5224.153	94.81	-27.19	67.62	74.00	-6.38	peak	P
5 *	5224.153	79.52	-27.19	52.33	54.00	-1.67	AVG	P
6	7347.474	68.21	-24.83	43.38	74.00	-30.62	peak	P
7	9585.684	72.89	-23.38	49.51	74.00	-24.49	peak	P
8	10453.971	88.22	-24.49	63.73	74.00	-10.27	peak	Р
9	10453.971	71.26	-24.49	46.77	54.00	-7.23	AVG	P

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 37 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

			-	1				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2999.187	65.70	-29.51	36.19	74.00	-37.81	peak	Р
2	3587.818	65.73	-29.04	36.69	74.00	-37.31	peak	Р
3	5224.153	92.67	-27.19	65.48	74.00	-8.52	peak	Р
4 *	5224.153	78.95	-27.19	51.76	54.00	-2.24	AVG	Р
5	7056.092	69.14	-24.91	44.23	74.00	-29.77	peak	P
6	9585.684	71.32	-23.38	47.94	74.00	-26.06	peak	Р
7	10453.971	75.50	-24.49	51.01	74.00	-22.99	peak	Р

UNII-1 20M 5200MHz Vertical

UNII-1_20M_5240MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3270.858	66.76	-29.27	37.49	74.00	-36.51	peak	P
2	4004.339	65.94	-29.00	36.94	74.00	-37.06	peak	Р
3	5254.440	91.75	-27.16	64.59	74.00	-9.41	peak	Р
4 *	5254.440	74.97	-27.16	47.81	54.00	-6.19	AVG	Р
5	7015.420	68.86	-24.93	43.93	74.00	-30.07	peak	P
6	8943.274	72.51	-24.42	48.09	74.00	-25.91	peak	Р
7	10514.577	84.48	-24.49	59.99	74.00	-14.01	peak	Р
8	10514.577	67.22	-24.49	42.73	54.00	-11.27	AVG	Р

UNII-1_20M_5240MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2610.661	69.37	-30.18	39.19	74.00	-34.81	peak	Р
2	3425.674	66.99	-29.12	37.87	74.00	-36.13	peak	Р
3	5254.440	91.43	-27.16	64.27	74.00	-9.73	peak	Р
4 *	5254.440	75.74	-27.16	48.58	54.00	-5.42	AVG	P
5	8106.200	69.83	-25.49	44.34	74.00	-29.66	peak	Р
6	10514.577	75.77	-24.49	51.28	74.00	-22.72	peak	Р
7	12433.621	72.44	-21.69	50.75	74.00	-23.25	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 38 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 38 of 128

-								
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INU.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F
1	11490.000	92.36	-44.70	47.66	74.00	-26.34	peak	Р
2	17235.000	88.36	-40.61	47.75	74.00	-26.25	peak	Р
			UNII-3_2	20M_5745MHz_	Vertical			
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
1	11490.000	80.35	-44.70	35.65	74.00	-38.35	peak	Р
2	17235.000	78.88	-40.61	38.27	74.00	-35.73	peak	Р

UNII-3_20M_5745MHz_Horizontal

UNII-3_20M_5785MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11570.000	93.32	-44.64	48.68	74.00	-25.32	peak	Р
2	17355.000	89.32	-40.55	48.77	74.00	-25.23	peak	Р

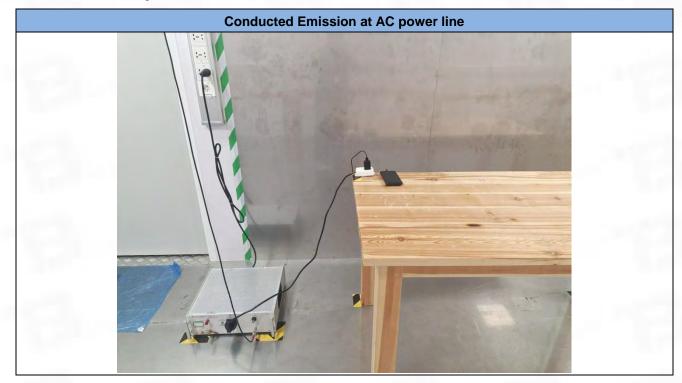
UNII-3_20M_5785MHz_Vertical

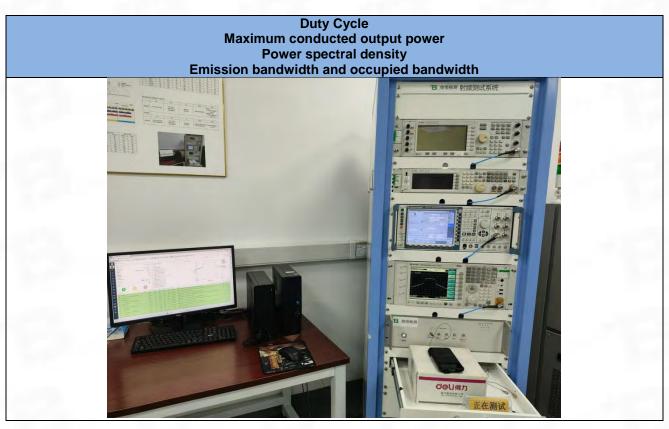
- L									
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	NU.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Delector	F/F
	1	11570.000	81.77	-44.64	37.13	74.00	-36.87	peak	Р
	2	17355.000	80.30	-40.55	39.75	74.00	-34.25	peak	Р

UNII-3_20M_5825MHz_Horizontal

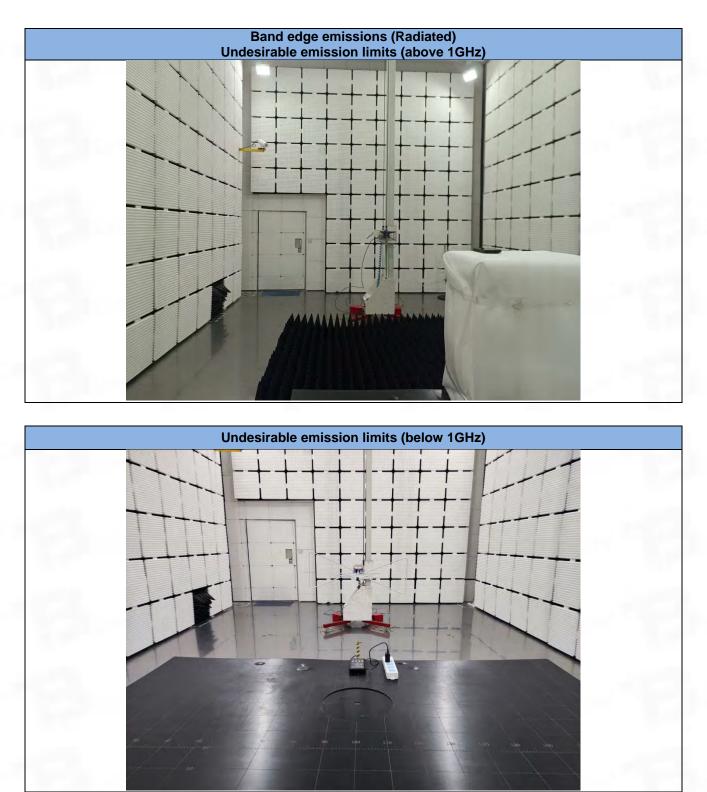
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	11650.000	93.91	-44.59	49.32	74.00	-24.68	peak	Р
2	17475.000	89.91	-40.50	49.41	74.00	-24.59	peak	Р

UNII-3_20M_5825MHz_Vertical


Ľ	No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	
Ľ	No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	P/F
	1	11650.000	82.25	-44.59	37.66	74.00	-36.34	peak	Р
	2	17475.000	80.78	-40.50	40.28	74.00	-33.72	peak	Ρ


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 39 of 128


7 Test Setup Photos

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 40 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF230913R00704

8 EUT Constructional Details (EUT Photos)

Please refer to the report No.BTF230913R00701

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

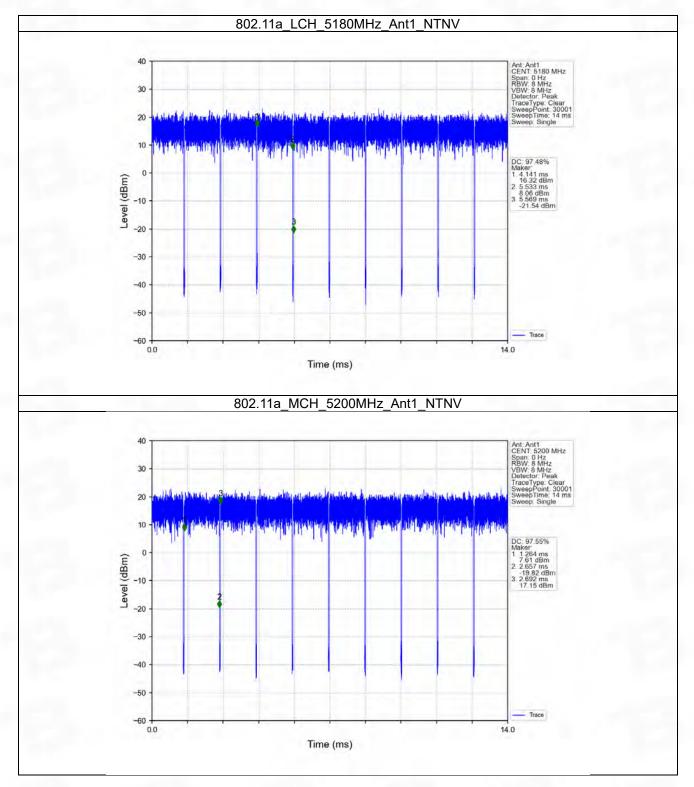
Test Report Number: BTF230913R00704

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

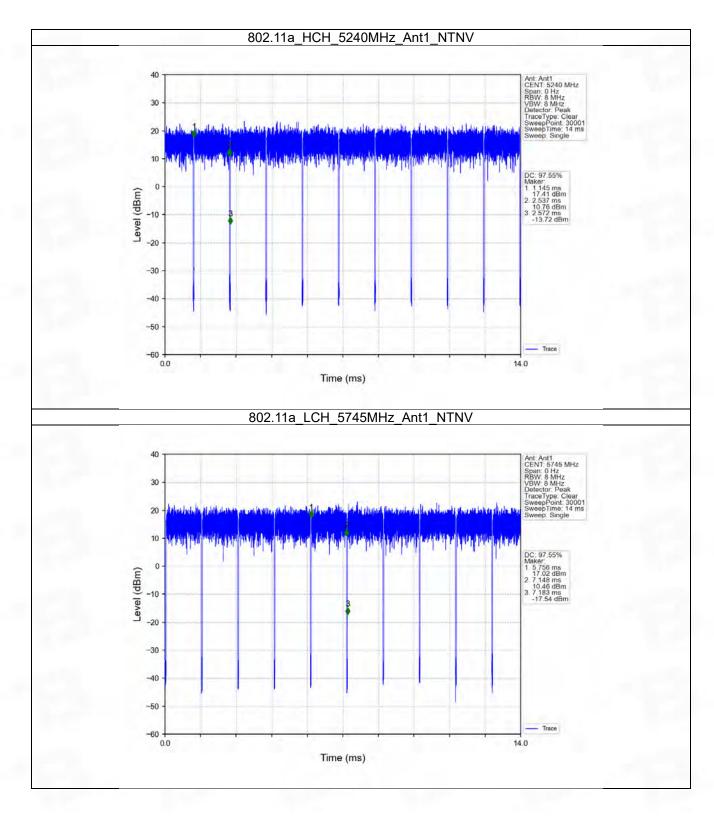
1. Duty Cycle

1.1 Ant1

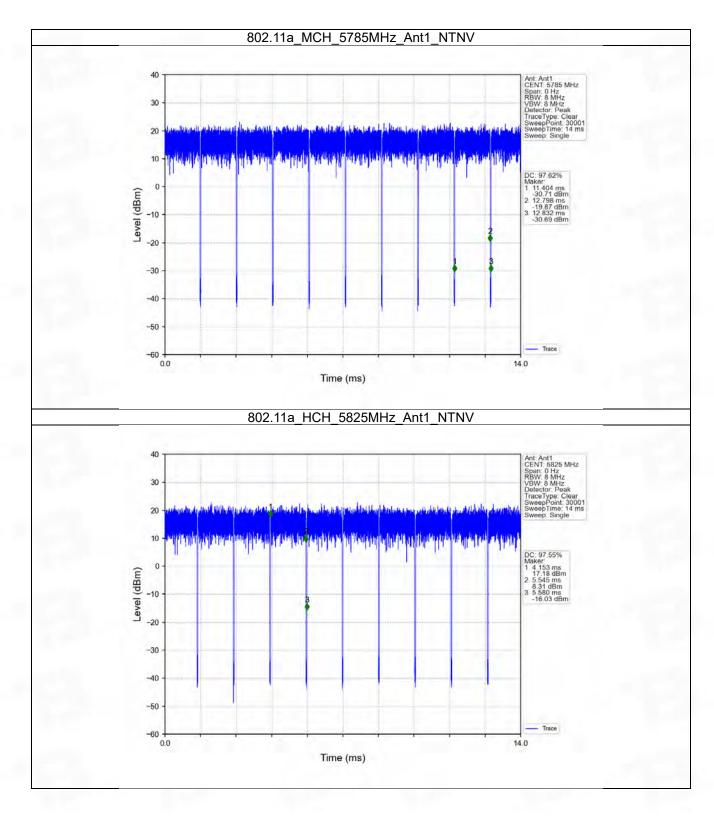

1.1.1 Test Result

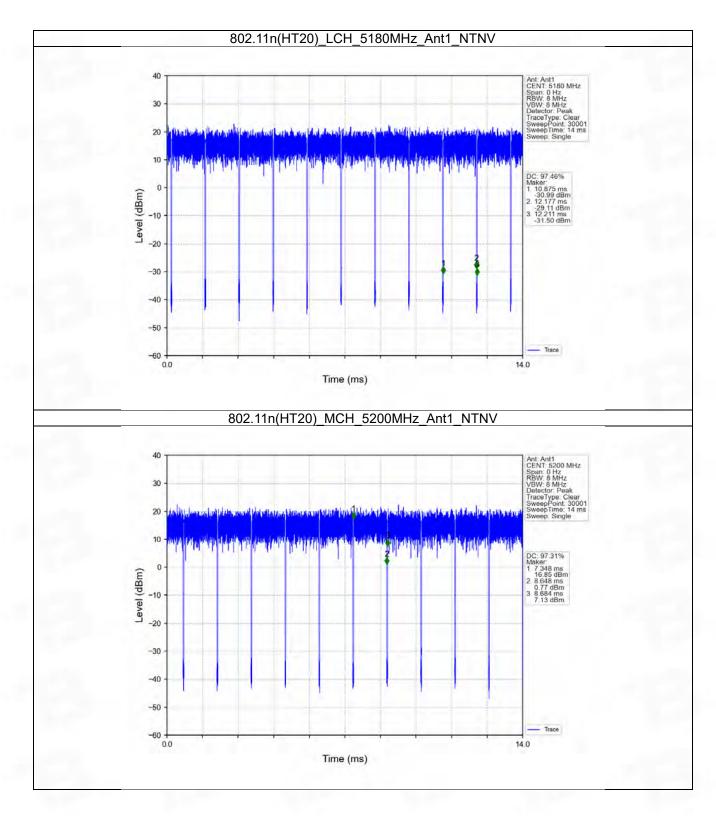
					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Туре	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.392	1.428	97.48	0.11	0.03
		5200	1.393	1.428	97.55	0.11	0.06
802.11a	SISO	5240	1.392	1.427	97.55	0.11	0.03
002.11a	3130	5745	1.392	1.427	97.55	0.11	0.03
1000		5785	1.394	1.428	97.62	0.10	0.07
		5825	1.392	1.427	97.55	0.11	0.00
		5180	1.302	1.336	97.46	0.11	0.07
		5200	1.300	1.336	97.31	0.12	0.03
802.11n	SISO	5240	1.302	1.337	97.38	0.12	0.07
(HT20)	3130	5745	1.300	1.336	97.31	0.12	0.03
		5785	1.302	1.336	97.46	0.11	0.10
		5825	1.300	1.335	97.38	0.12	0.07
100-57		5190	0.648	0.683	94.88	0.23	0.03
802.11n	SISO	5230	0.648	0.683	94.88	0.23	0.03
(HT40)	3130	5755	0.654	0.687	95.20	0.21	0.03
		5795	0.649	0.683	95.02	0.22	0.07
		5180	1.314	1.348	97.48	0.11	0.03
		5200	1.314	1.348	97.48	0.11	0.10
802.11ac	SISO	5240	1.314	1.348	97.48	0.11	0.03
(VHT20)	3130	5745	1.314	1.348	97.48	0.11	0.07
		5785	1.312	1.348	97.33	0.12	0.03
		5825	1.313	1.348	97.40	0.11	0.10
		5190	0.652	0.687	94.91	0.23	0.07
802.11ac	SISO	5230	0.653	0.687	95.05	0.22	0.03
(VHT40)	3130	5755	0.652	0.687	94.91	0.23	0.03
		5795	0.654	0.688	95.06	0.22	0.07
802.11ac	SISO	5210	0.324	0.358	90.50	0.43	0.07
(VHT80)	3130	5775	0.324	0.359	90.25	0.45	0.03

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 44 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

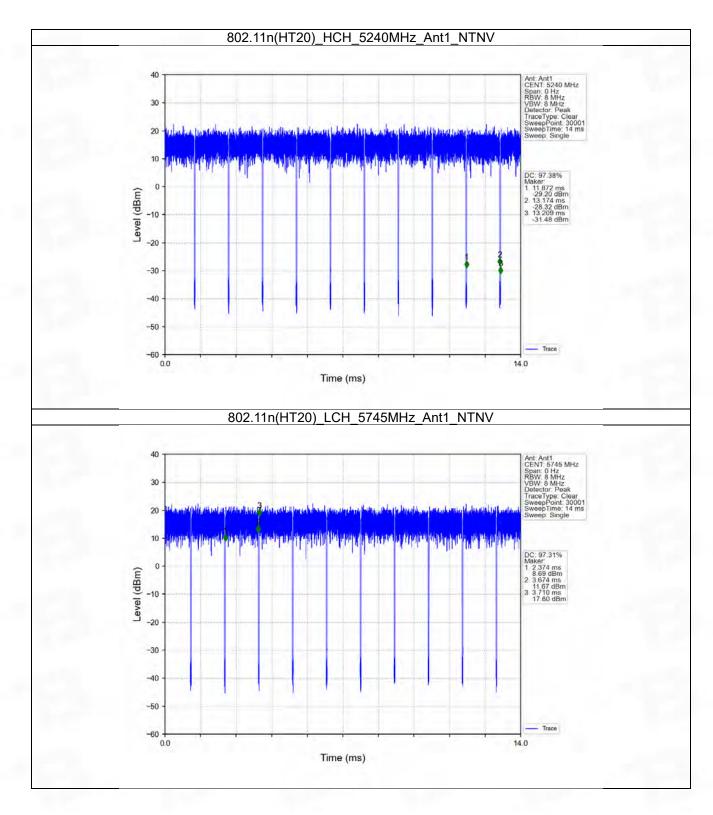


1.1.2 Test Graph


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

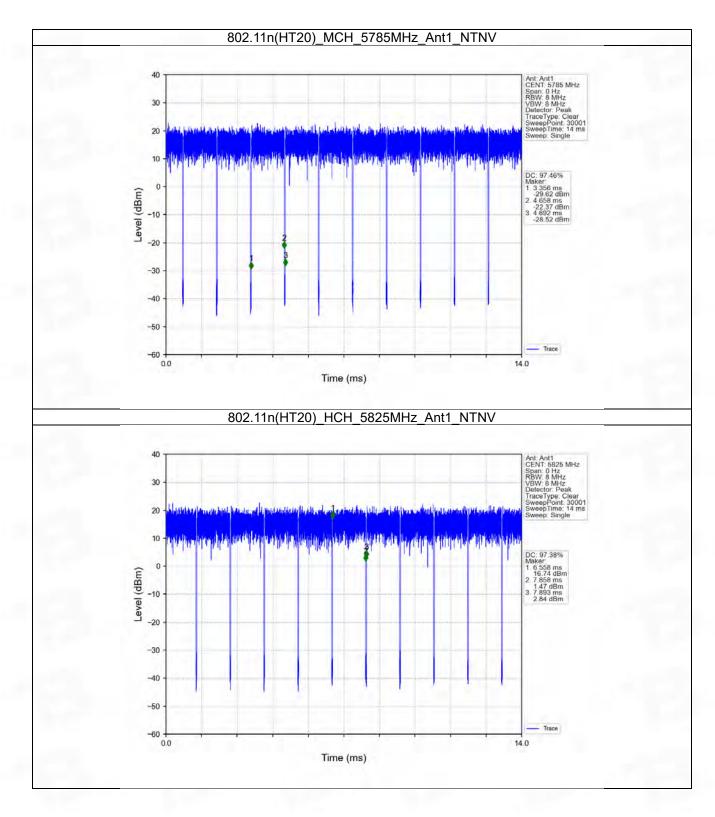

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



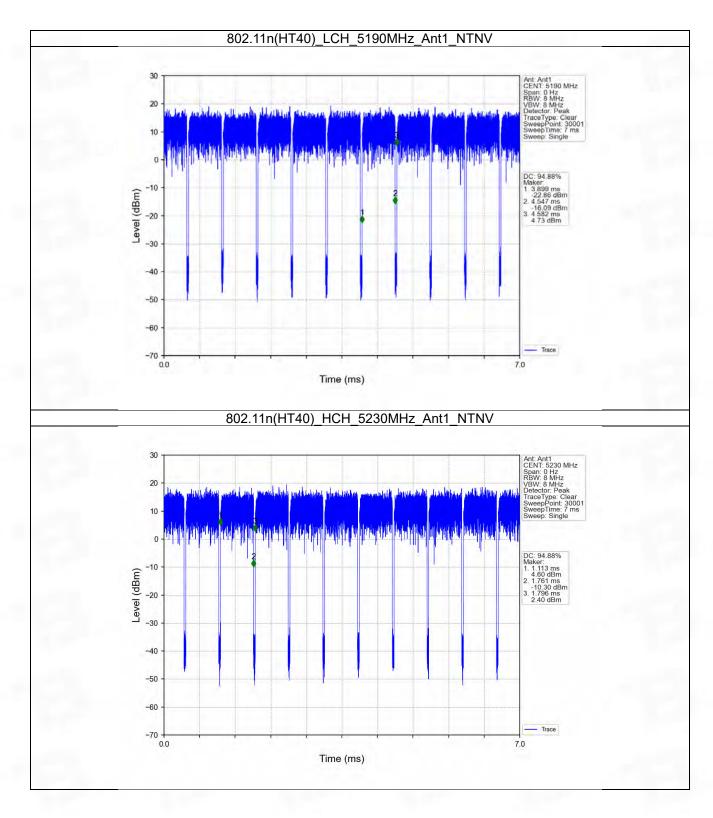
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 48 of 128

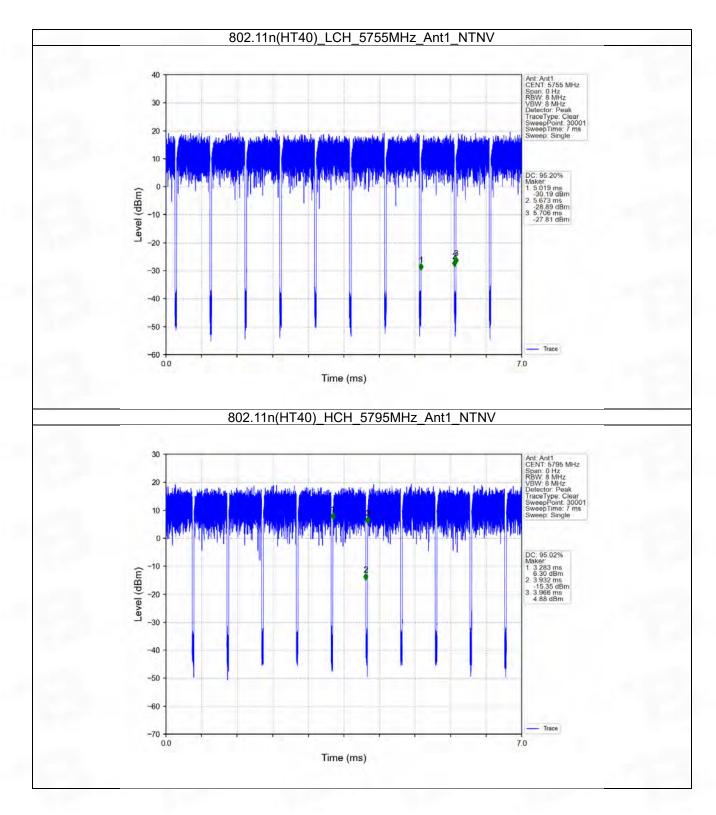


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 49 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

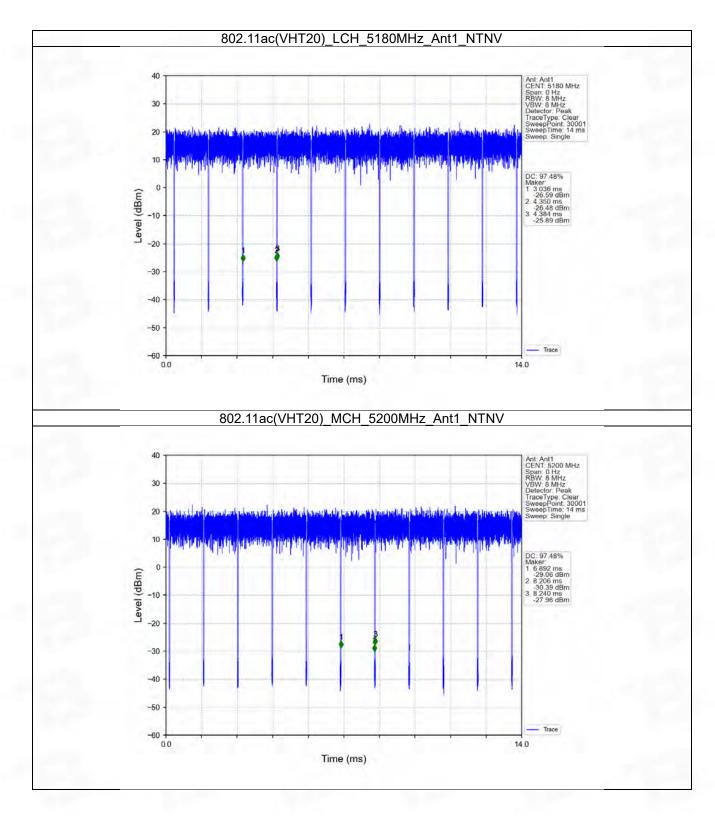
Page 49 of 128

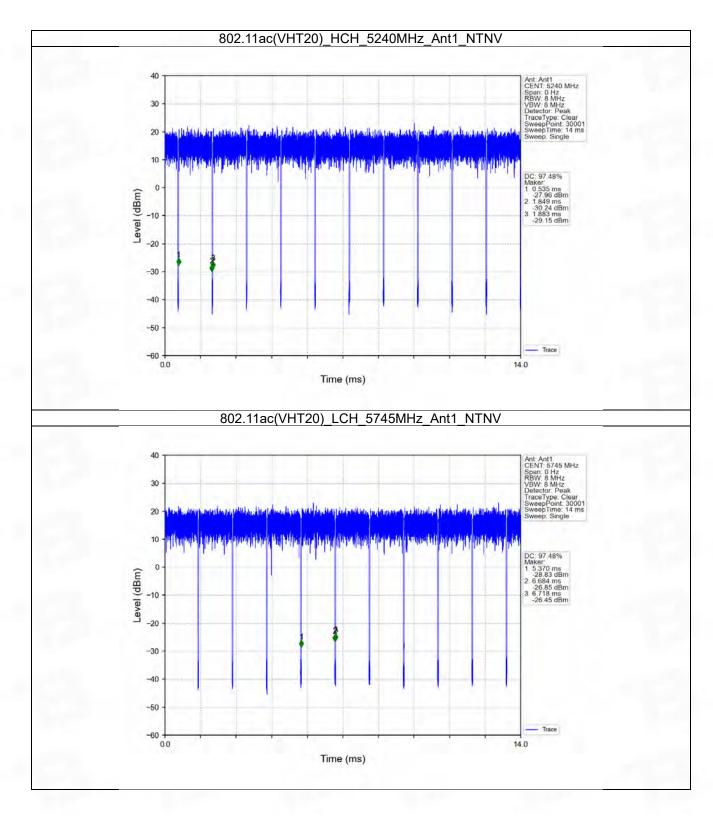


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

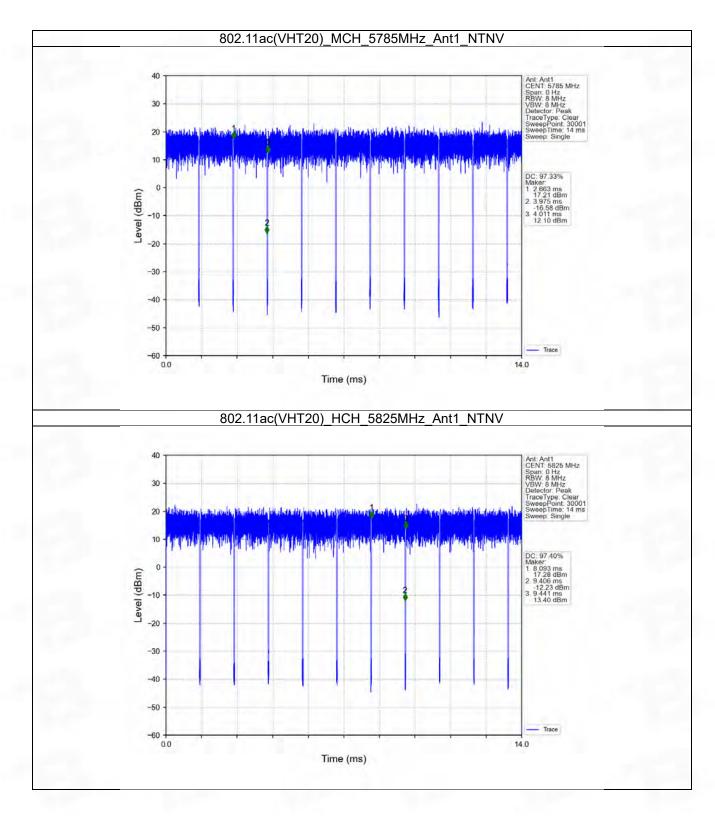

Page 50 of 128

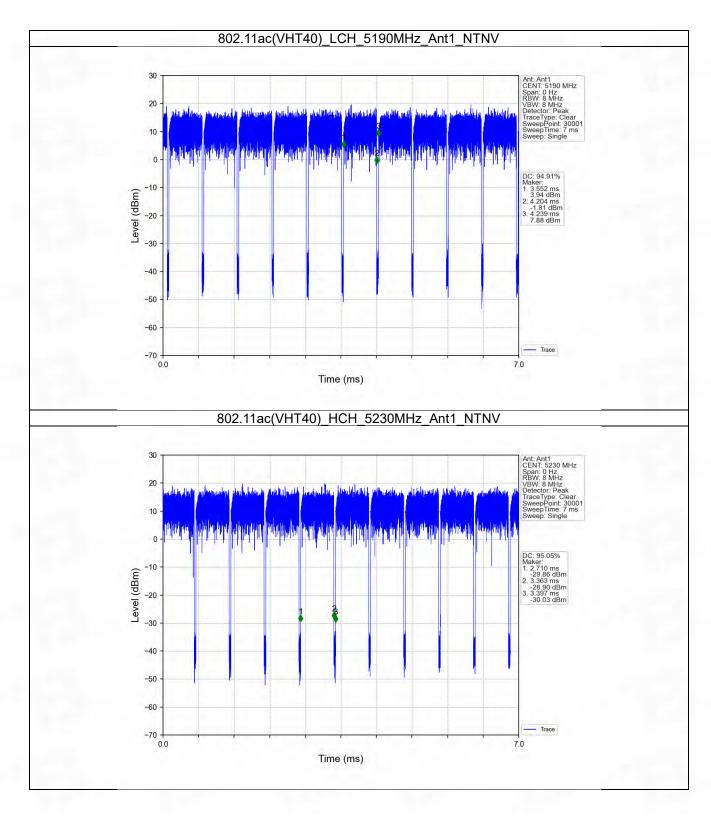
Page 51 of 128

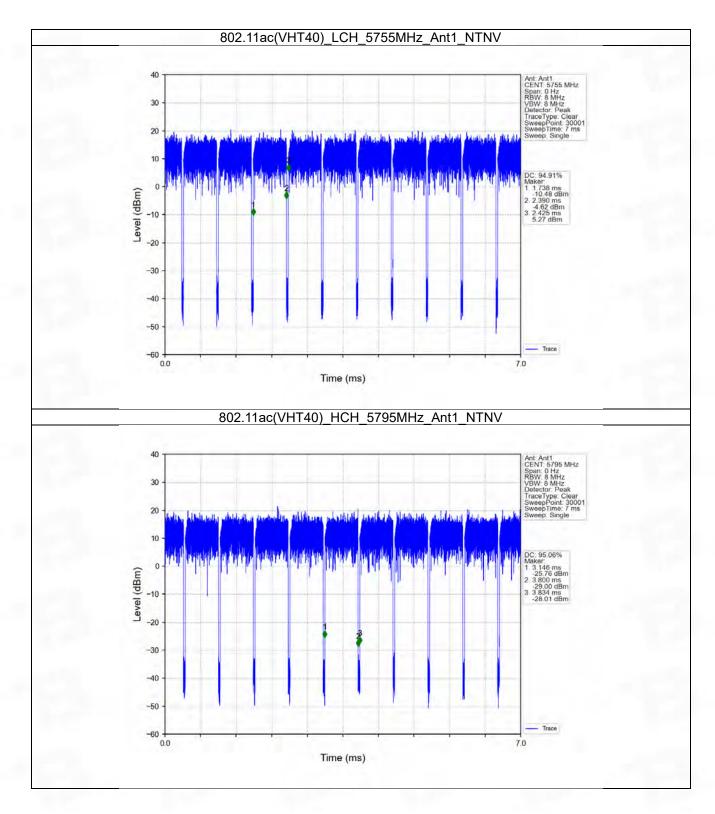



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 52 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

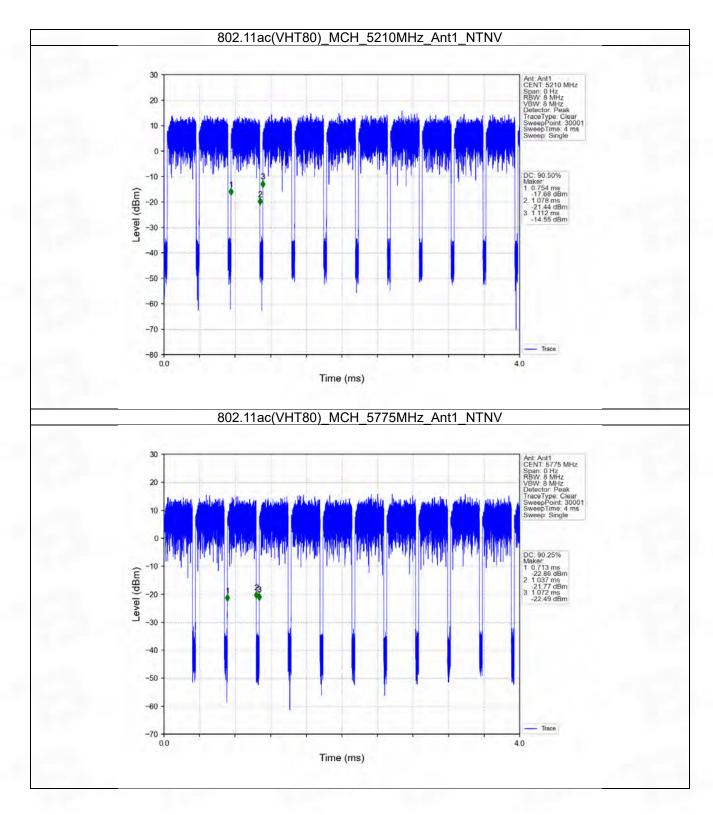
Page 52 of 128







Page 55 of 128



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

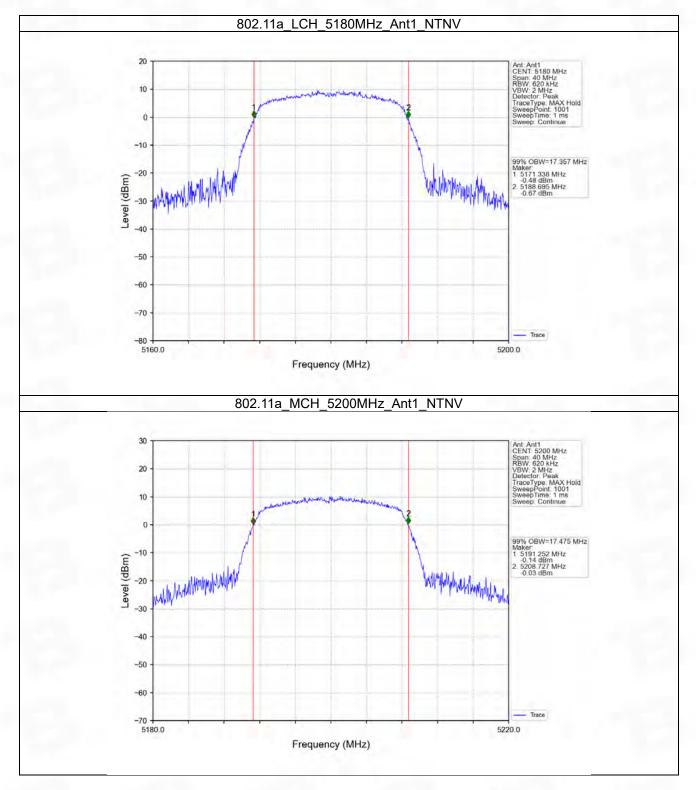
Page 57 of 128

Page 58 of 128

2. Bandwidth

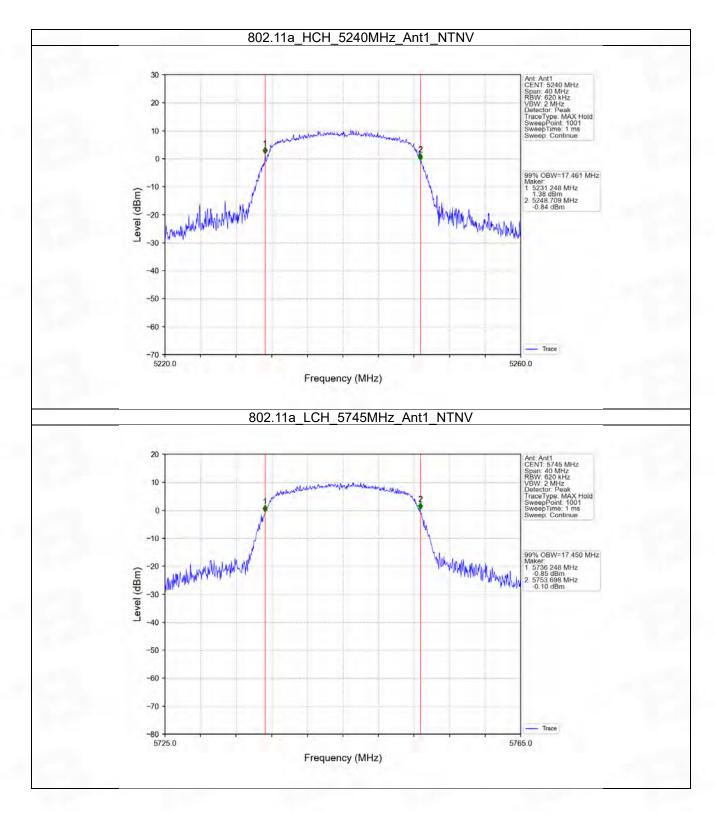
2.1 OBW

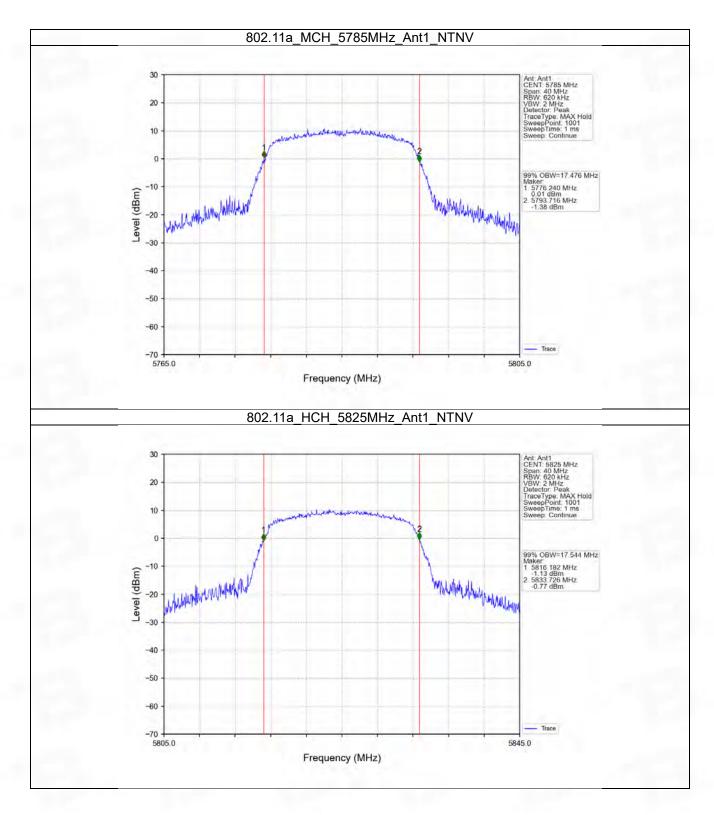
2.1.1 Test Result


Mode	TX Type	Frequency (MHz)	ANT	99% Occupied Bandwidth (MHz)		Vordist
				Result	Limit	Verdict
802.11a	SISO	5180	1	17.357	1	Pass
		5200	1	17.475	/	Pass
		5240	1	17.461	1	Pass
		5745	1	17.450	1	Pass
		5785	1	17.476	/	Pass
		5825	1	17.544	1	Pass
802.11n (HT20)	SISO	5180	1	18.461	/	Pass
		5200	1	18.378	1	Pass
		5240	1	18.391	/	Pass
		5745	1	18.539	/	Pass
		5785	1	18.573	/	Pass
		5825	1	18.524	/	Pass
802.11n (HT40)	SISO	5190	1	36.828	/	Pass
		5230	1	36.794	1	Pass
		5755	1	36.670	/	Pass
		5795	1	36.939	/	Pass
802.11ac (VHT20)	SISO	5180	1	18.272	/	Pass
		5200	1	18.236	/	Pass
		5240	1	18.215	1	Pass
		5745	1	18.346	/	Pass
		5785	1	18.348	/	Pass
		5825	1	18.374	/	Pass
802.11ac (VHT40)	SISO	5190	1	36.490	/	Pass
		5230	1	36.496	/	Pass
		5755	1	36.440	/	Pass
		5795	1	36.556	/	Pass
802.11ac (VHT80)	SISO	5210	1	75.670	/	Pass
		5775	1	75.775	1	Pass

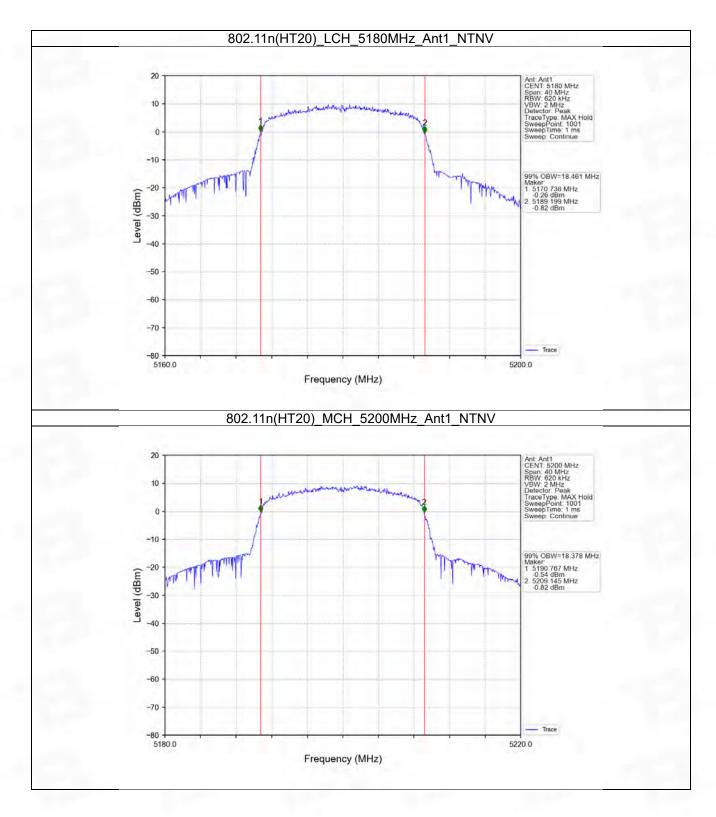
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 59 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

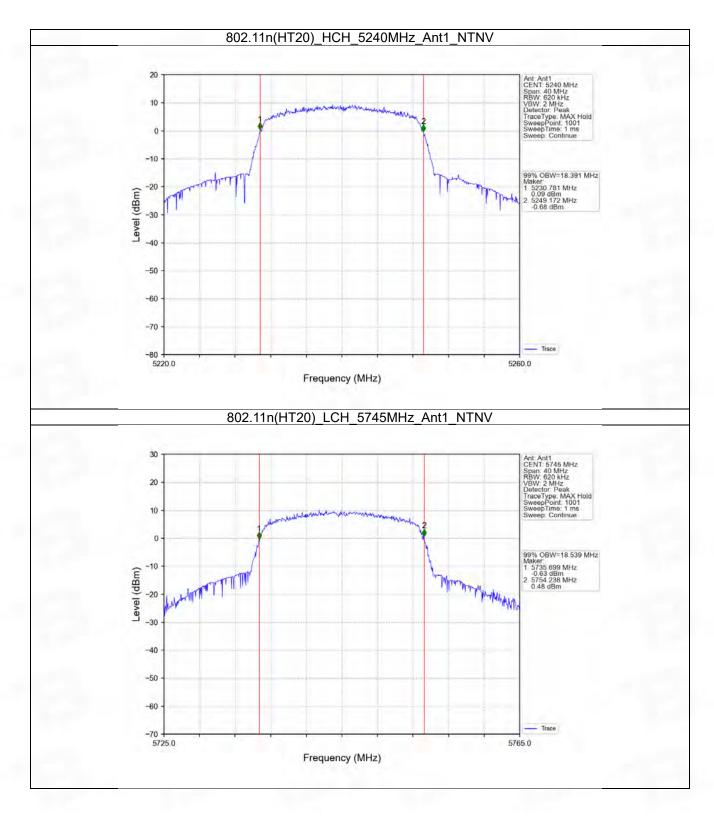
Page 59 of 128

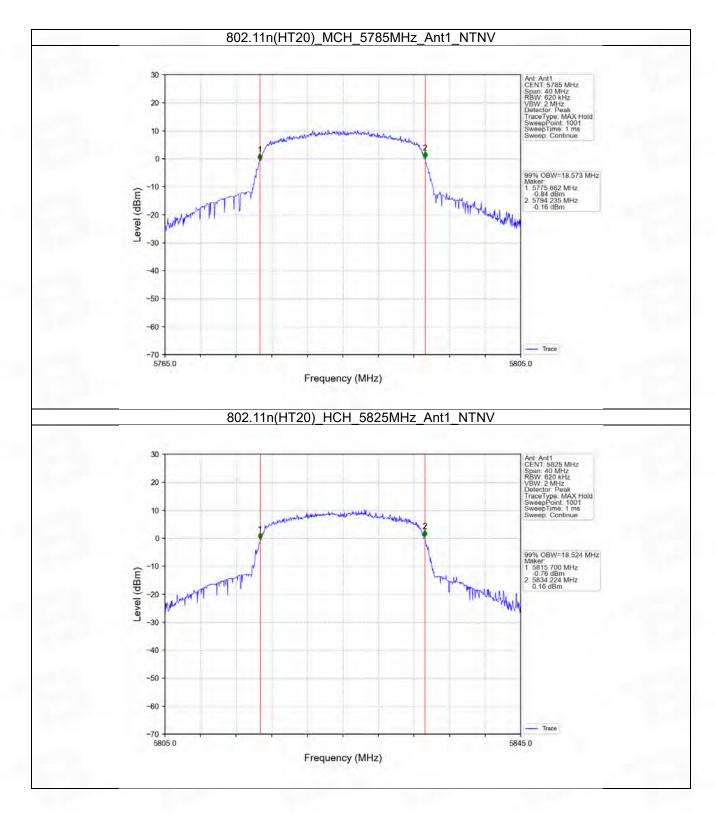

2.1.2 Test Graph

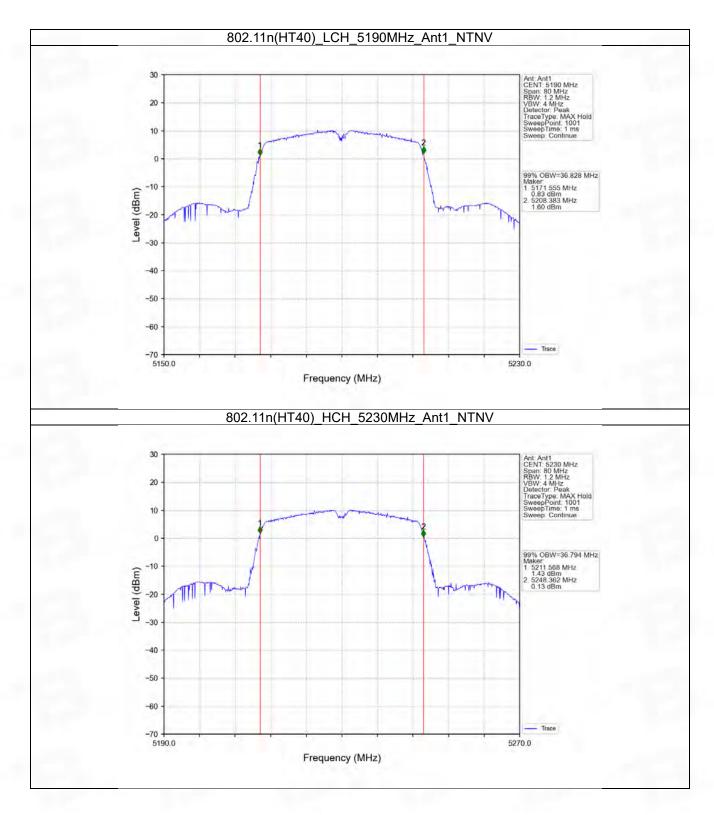

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page BTF Testing Lab (Shenzhen) Co., Ltd.

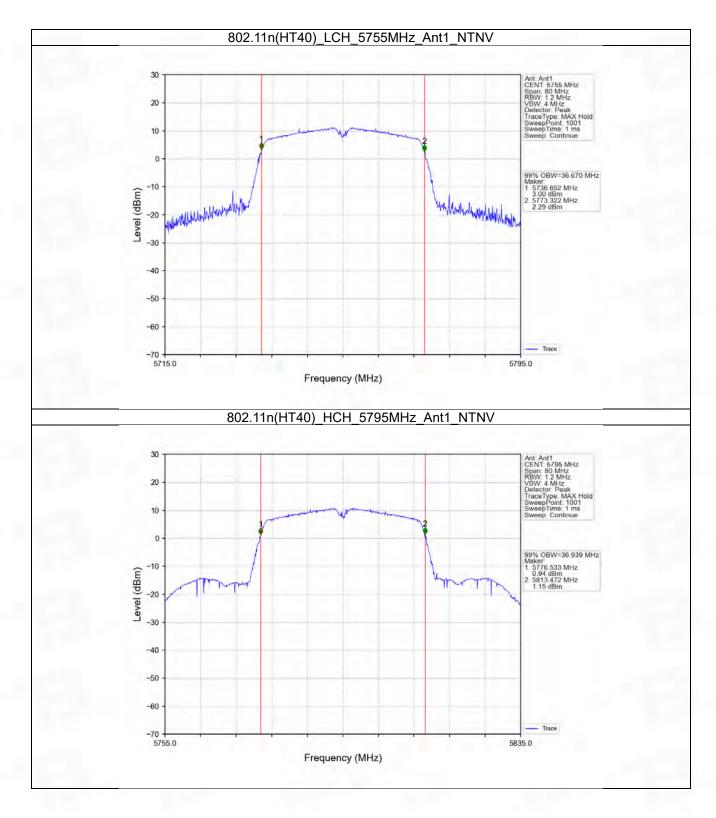
Page 60 of 128

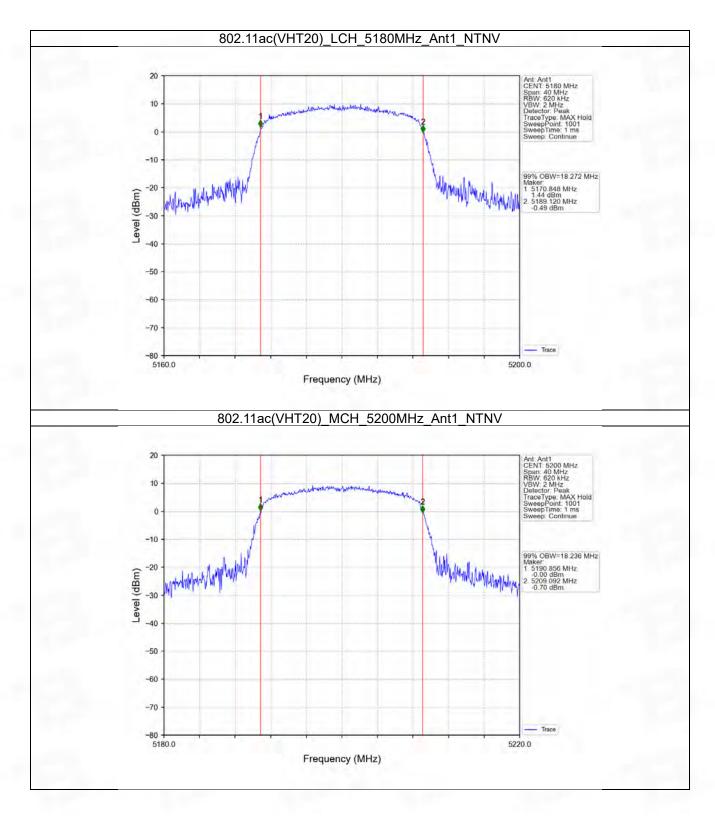




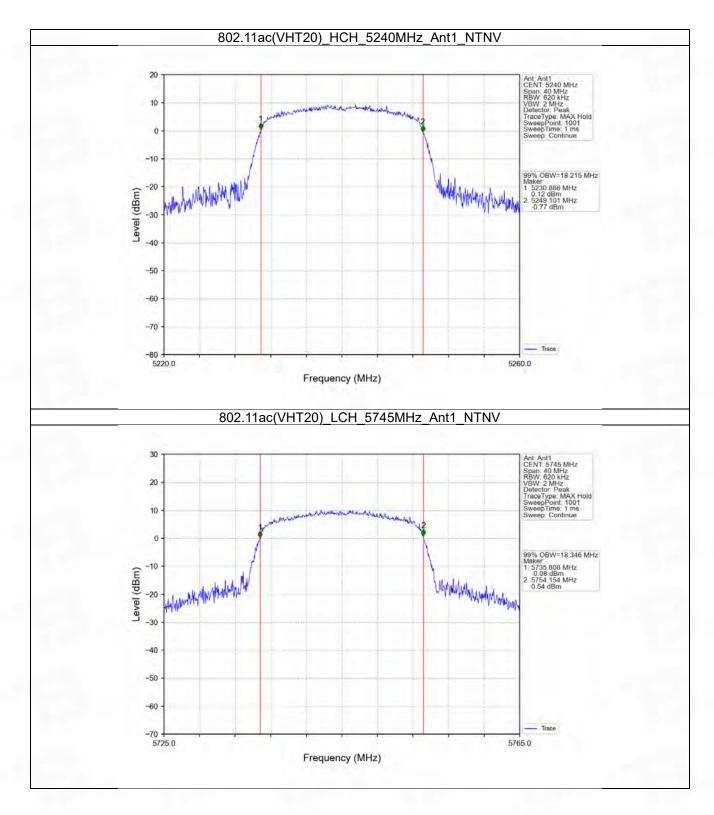

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

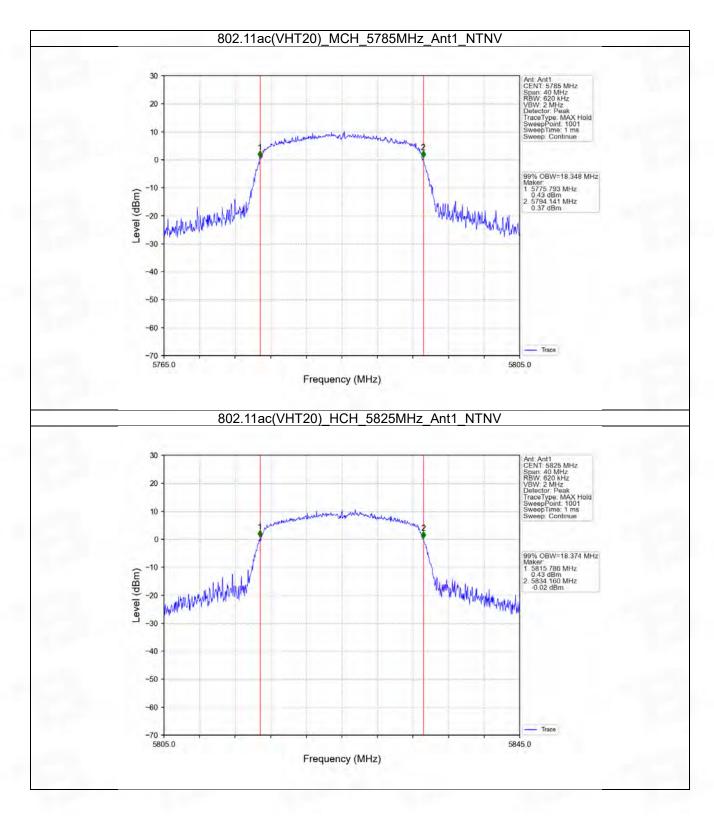

Page 64 of 128


Page 65 of 128

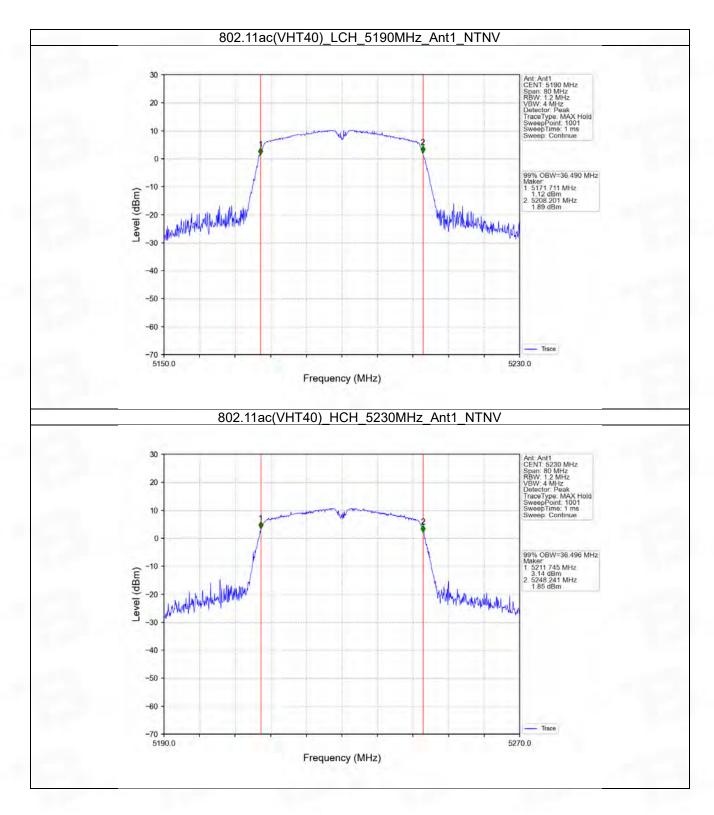


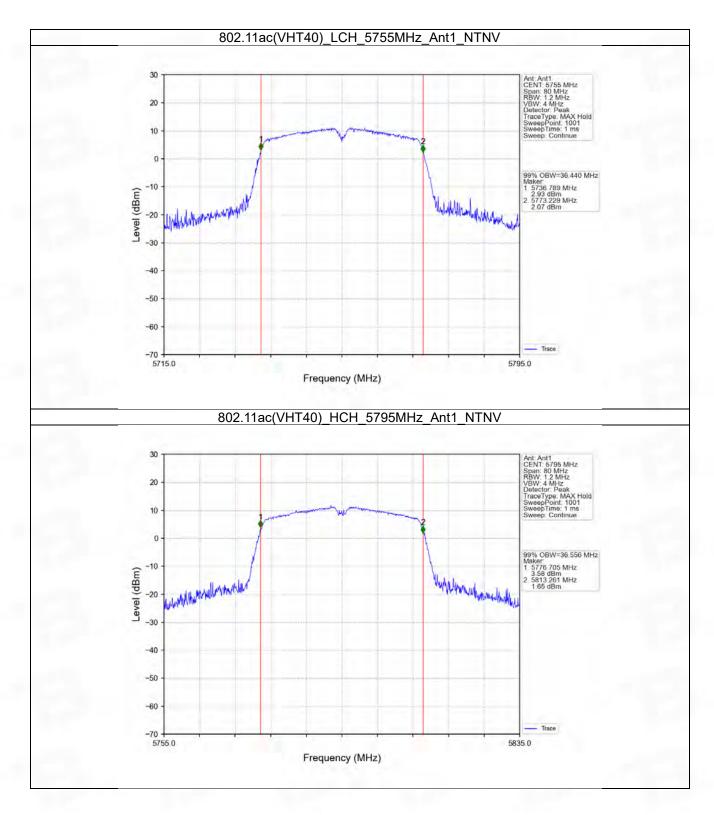
Page 66 of 128



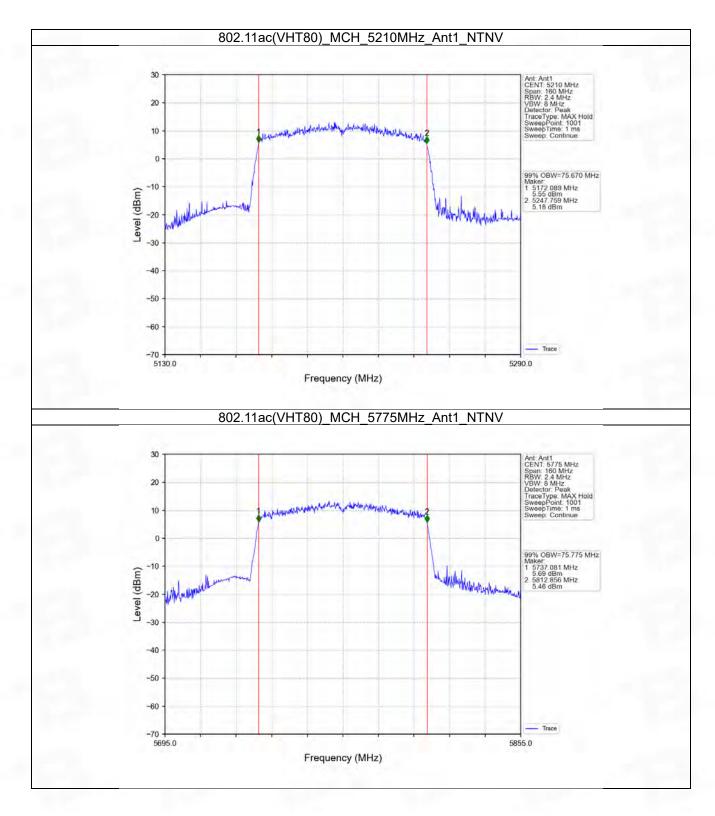


Page 68 of 128





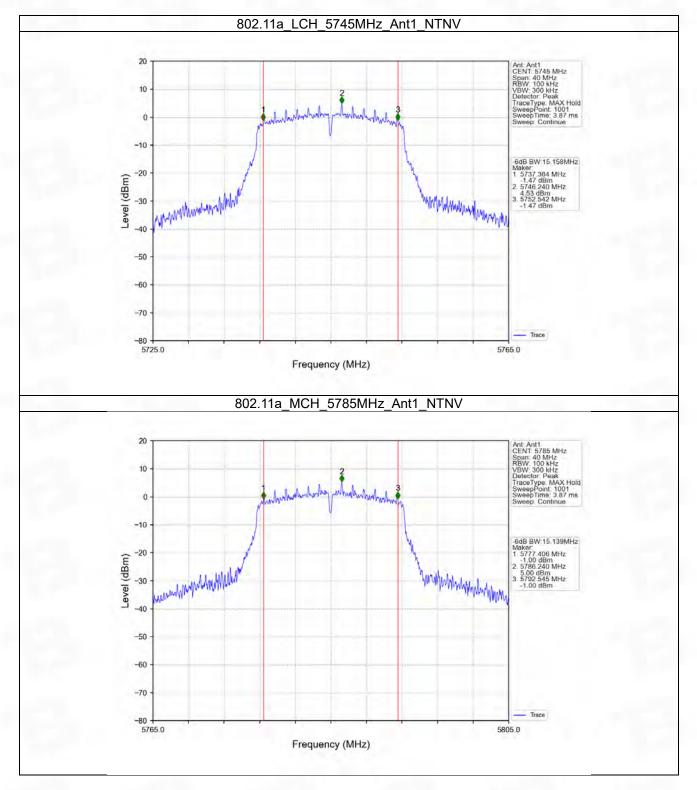
Page 70 of 128



Page 72 of 128

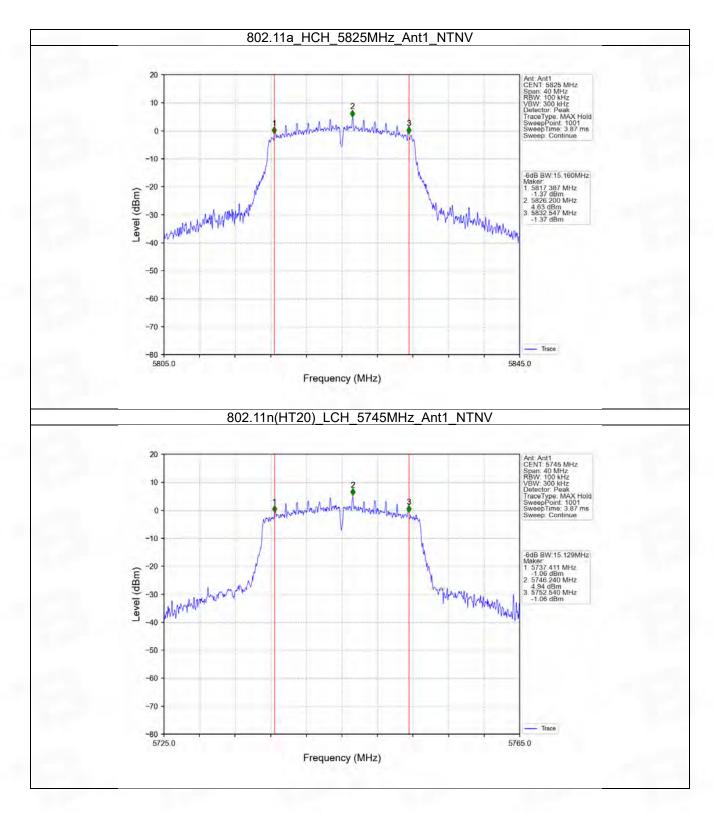
Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

2.2 6dB BW

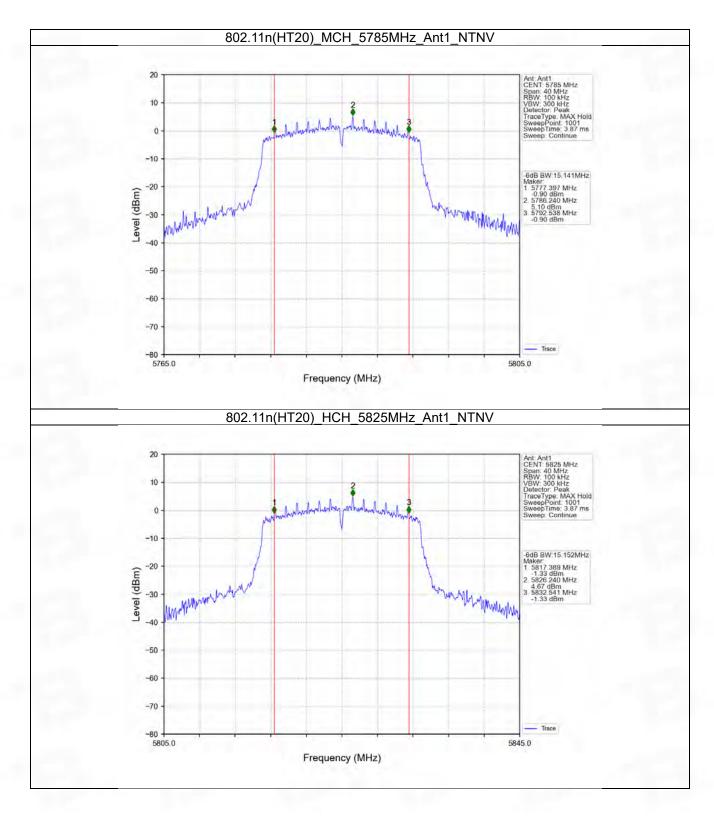

2.2.1 Test Result

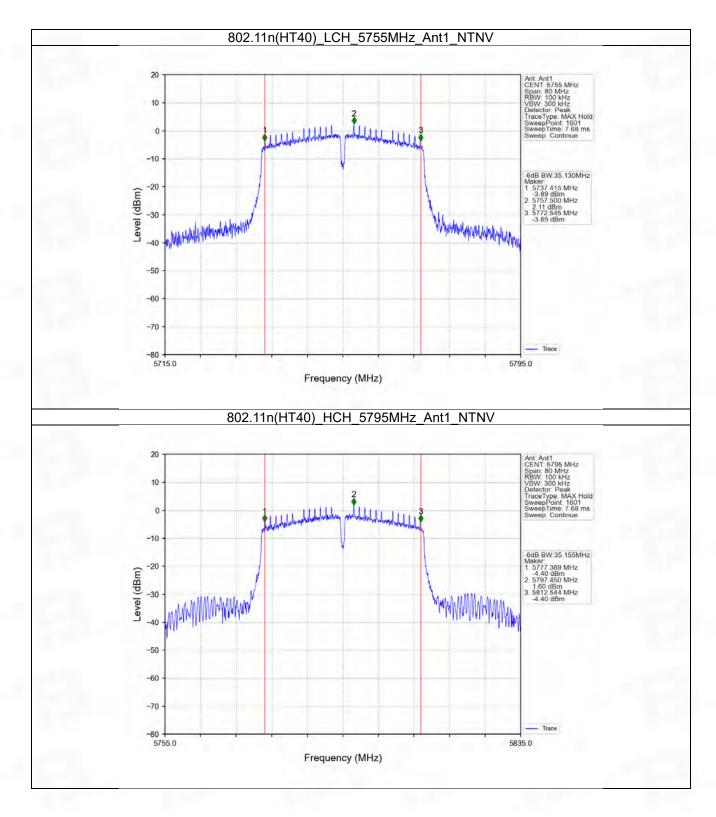
Mode	TX Type	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		V (a seli at
				Result	Limit	Verdict
802.11a	SISO	5745	1	15.158	>=0.5	Pass
		5785	1	15.139	>=0.5	Pass
		5825	1	15.160	>=0.5	Pass
802.11n (HT20)	SISO	5745	1	15.129	>=0.5	Pass
		5785	1	15.141	>=0.5	Pass
		5825	1	15.152	>=0.5	Pass
802.11n (HT40)	SISO	5755	1	35.130	>=0.5	Pass
		5795	1	35.155	>=0.5	Pass
802.11ac (VHT20)	SISO	5745	1	15.155	>=0.5	Pass
		5785	1	15.152	>=0.5	Pass
		5825	1	15.158	>=0.5	Pass
802.11ac (VHT40)	SISO	5755	1	35.158	>=0.5	Pass
		5795	1	35.154	>=0.5	Pass
802.11ac (VHT80)	SISO	5775	1	75.156	>=0.5	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 74 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

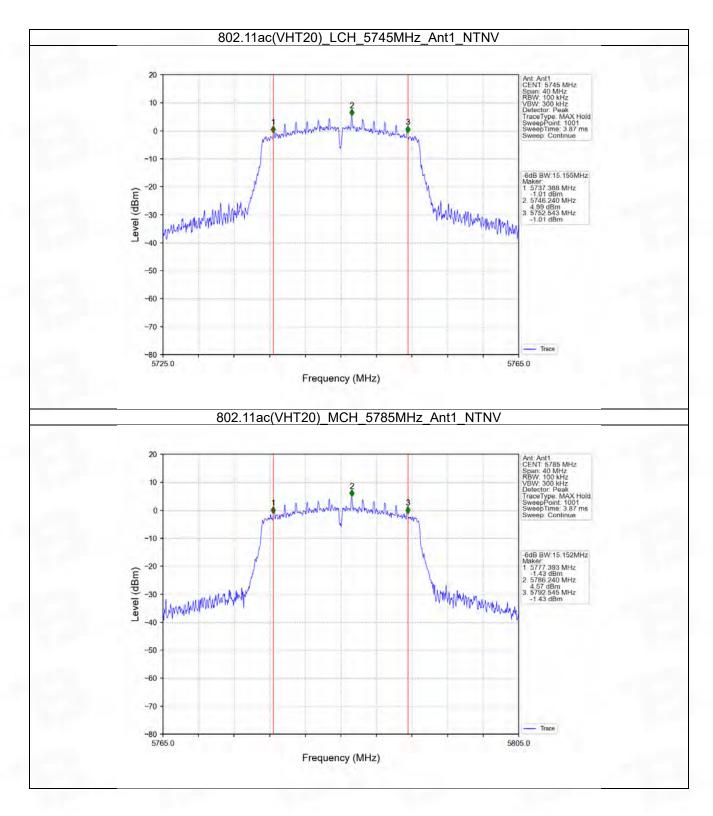


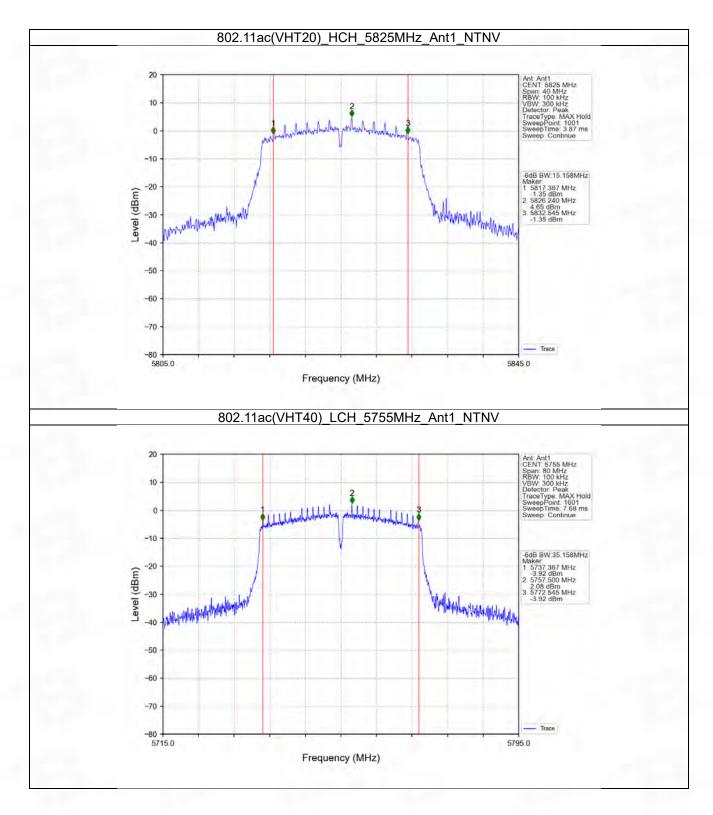
2.2.2 Test Graph

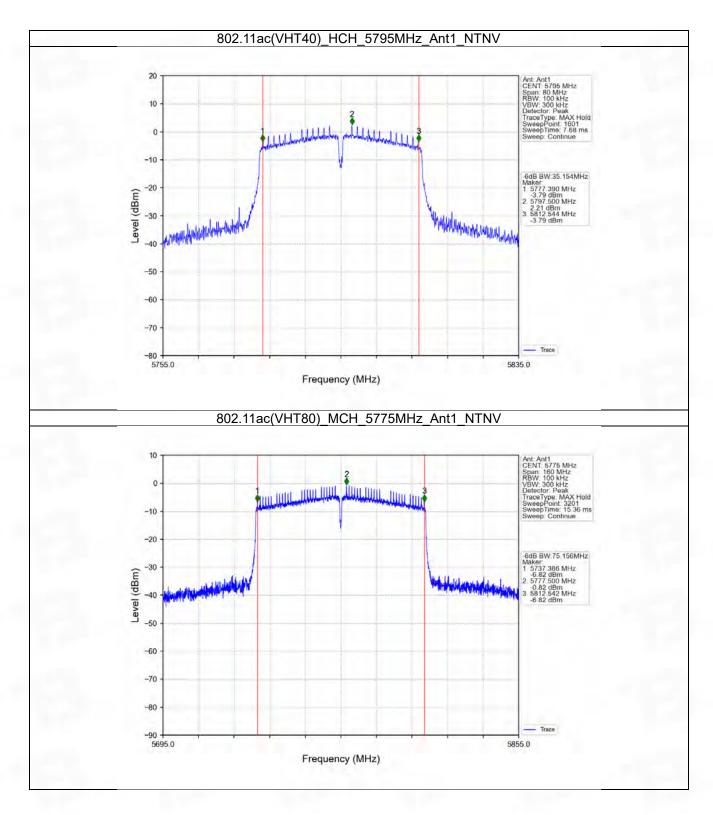

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



Page 76 of 128

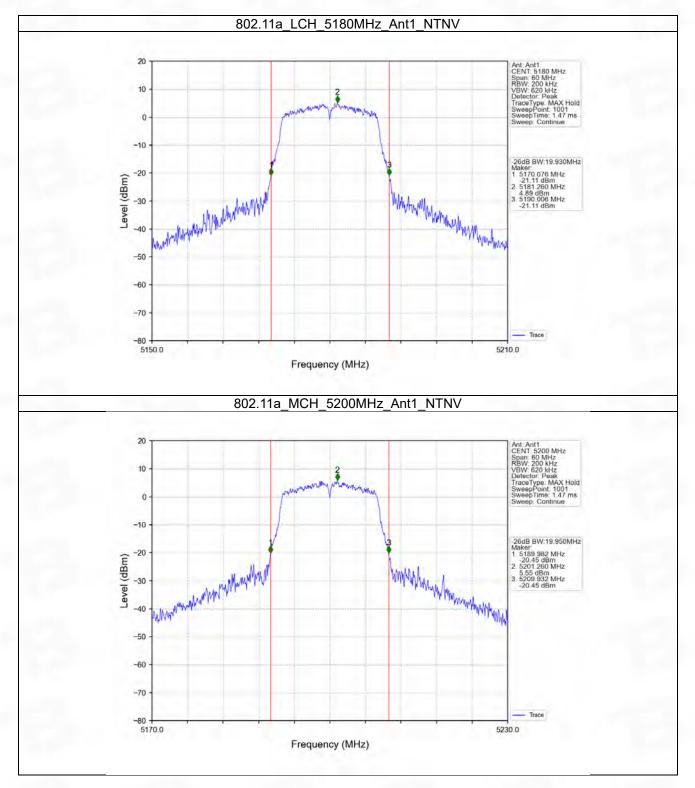



Page 78 of 128



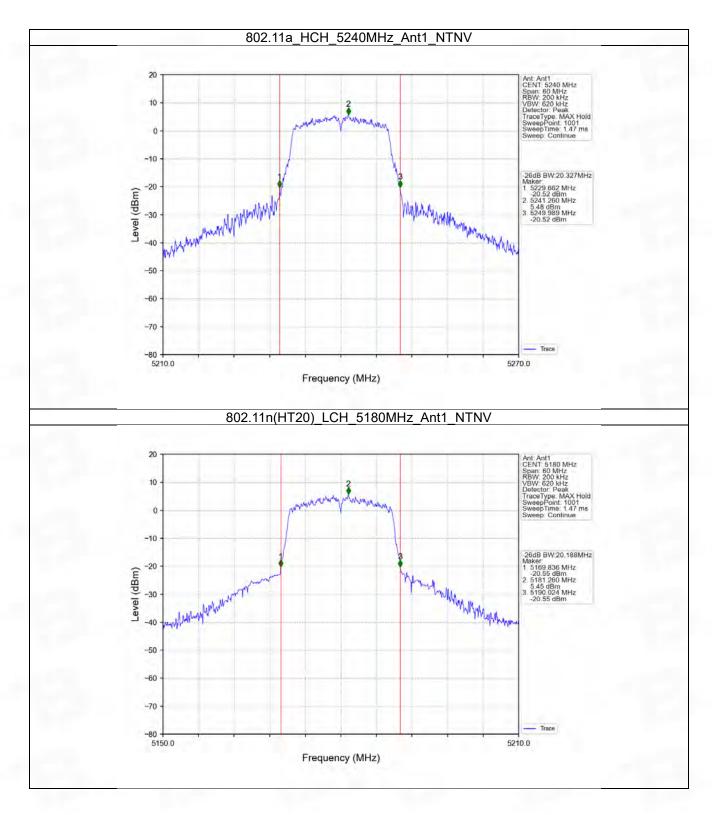
Page 79 of 128

2.3 26dB BW

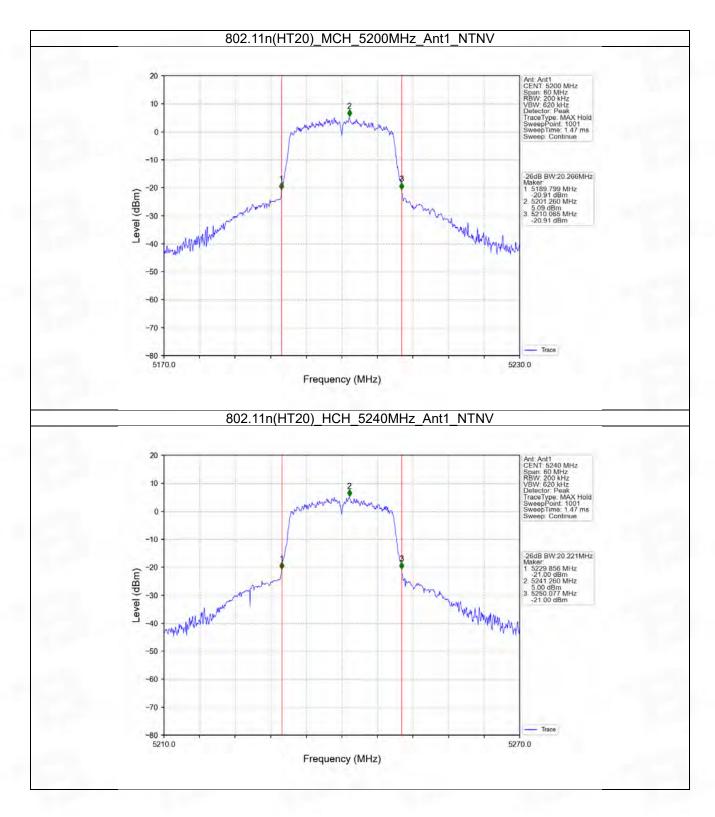

2.3.1 Test Result

Mode	TX Type	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Vendist
				Result	Limit	Verdict
802.11a	SISO	5180	1	19.930	/	Pass
		5200	1	19.950	/	Pass
		5240	1	20.327	/	Pass
000 11-	SISO	5180	1	20.188	/	Pass
802.11n		5200	1	20.266	/	Pass
(HT20)		5240	1	20.221	/	Pass
802.11n (HT40)	SISO	5190	1	40.360	/	Pass
		5230	1	40.455	/	Pass
000 11	SISO	5180	1	20.365	/	Pass
802.11ac		5200	1	20.304	/	Pass
(VHT20)		5240	1	20.239	/	Pass
802.11ac	SISO	5190	1	40.499	/	Pass
(VHT40)		5230	1	40.735	/	Pass
802.11ac (VHT80)	SISO	5210	1	80.854	1	Pass

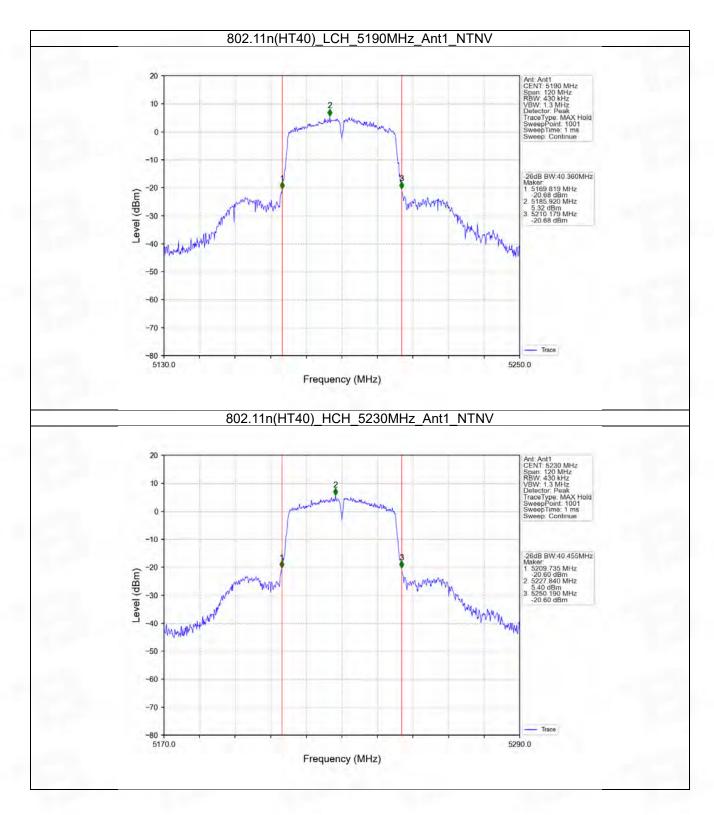
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 82 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

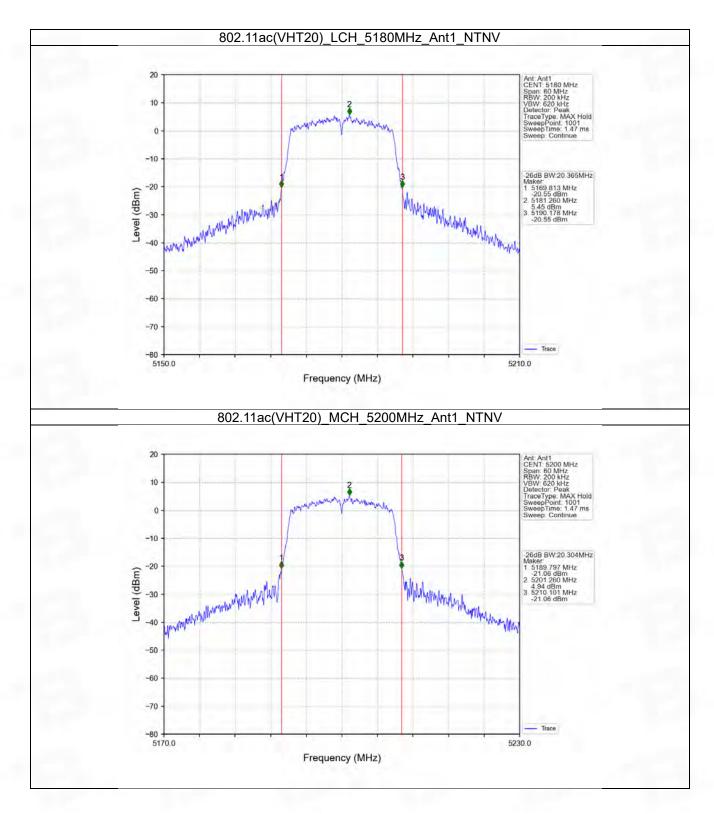


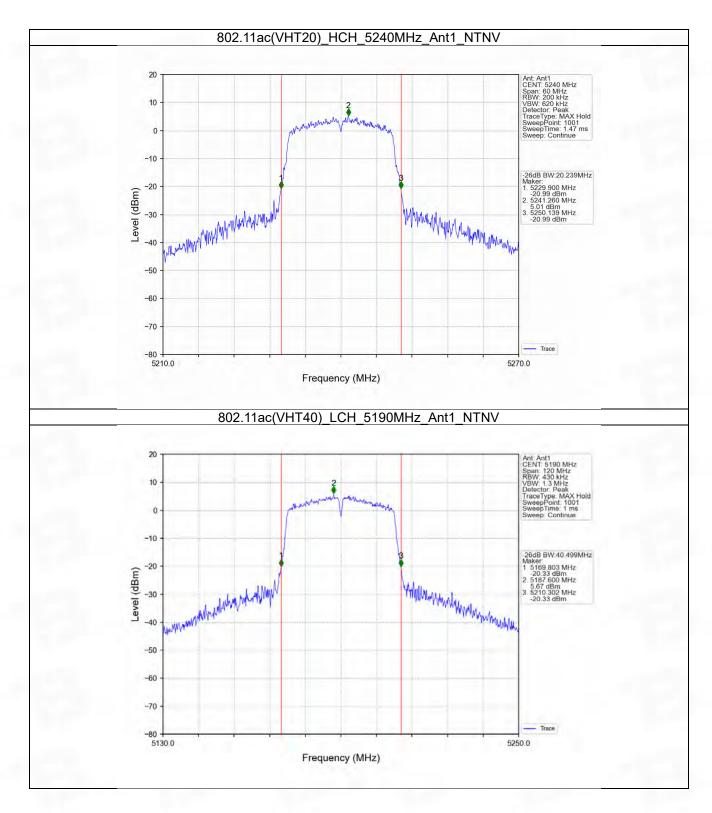
2.3.2 Test Graph



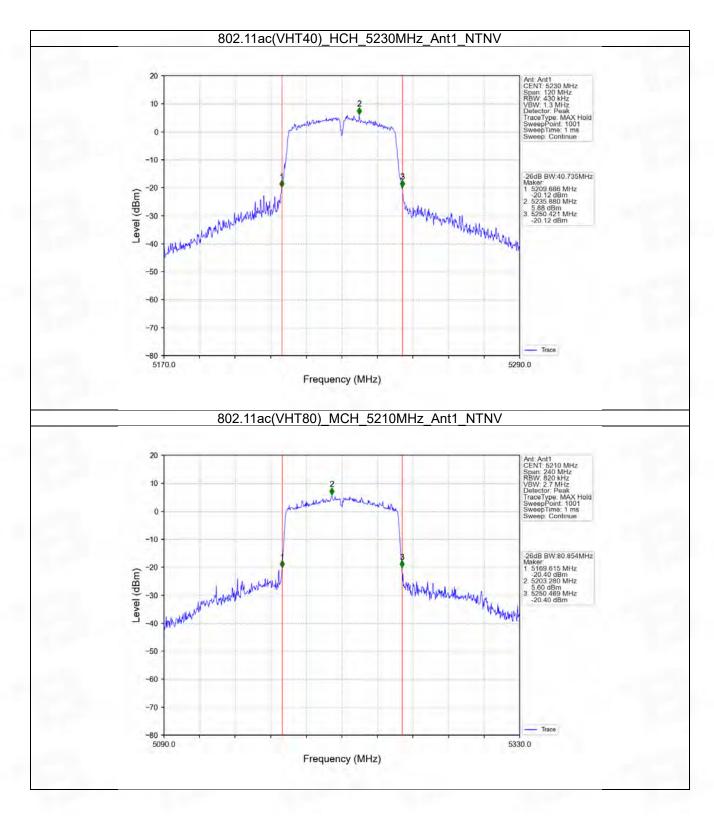
Total or partial reproduction of this document without permission of the Laboratory is not allowed. Partial Reproduction of this document without permission of the Laboratory is not allowed. Partial Content of the Laboratory is not allowed.




Page 85 of 128



Page 86 of 128



Page 88 of 128

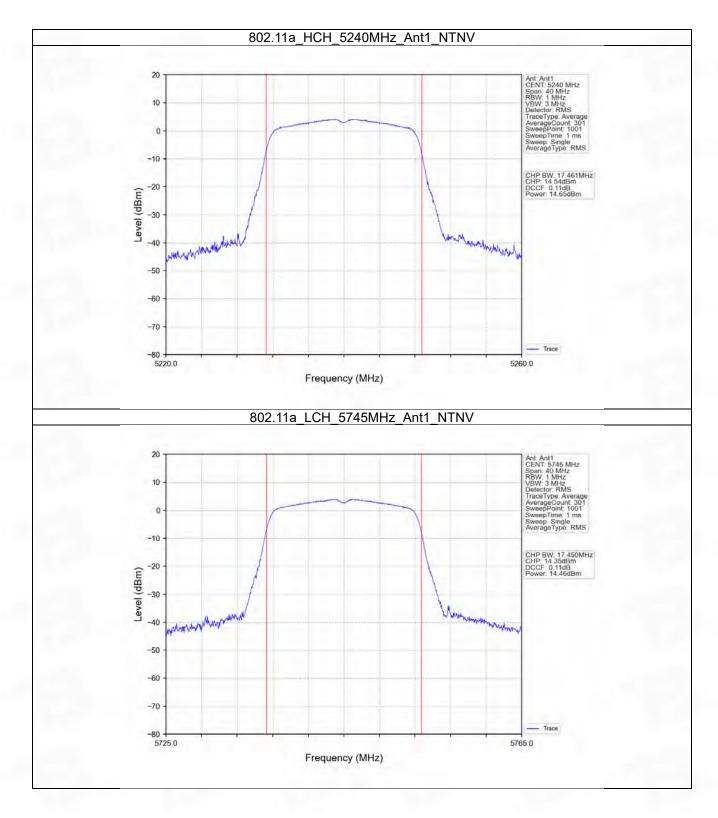
3. Maximum Conducted Output Power

3.1 Power

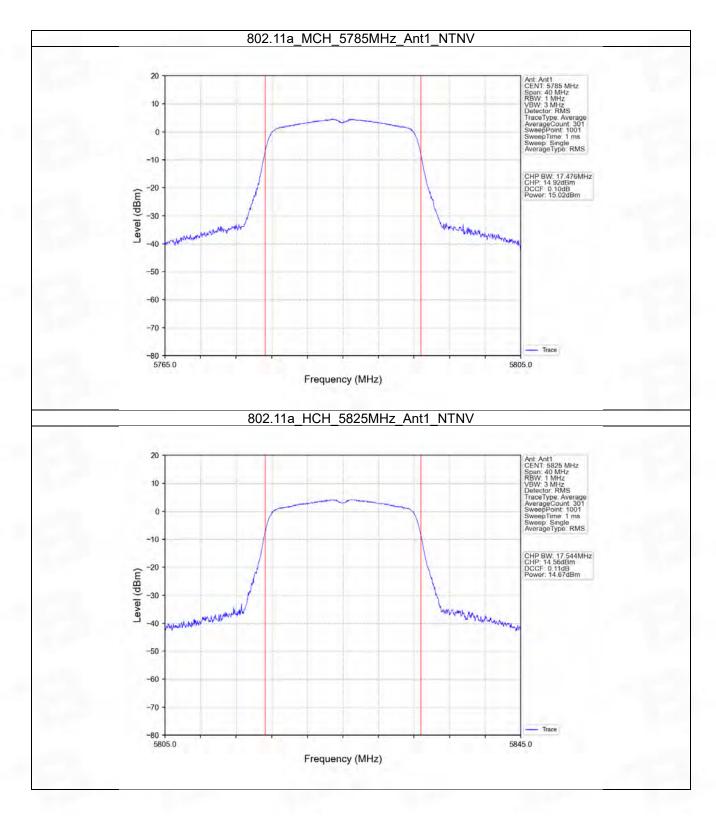
3.1.1 Test Result

Mode	TX	Frequency (MHz)	Maximum Average Cond	Vordict	
	Туре		ANT1	Limit	Verdict
802.11a		5180	13.97	<=23.98	Pass
	SISO	5200	14.54	<=23.98	Pass
		5240	14.65	<=23.98	Pass
		5745	14.46	<=30	Pass
		5785	15.02	<=30	Pass
		5825	14.67	<=30	Pass
		5180	14.38	<=23.98	Pass
		5200	14.03	<=23.98	Pass
802.11n	0100	5240	13.97	<=23.98	Pass
(HT20)	SISO	5745	14.89	<=30	Pass
· · ·	and the second	5785	14.90	<=30	Pass
		5825	14.51	<=30	Pass
802.11n (HT40)	SISO	5190	14.09	<=23.98	Pass
		5230	14.12	<=23.98	Pass
		5755	14.96	<=30	Pass
		5795	14.56	<=30	Pass
	SISO	5180	14.31	<=23.98	Pass
		5200	13.87	<=23.98	Pass
802.11ac		5240	13.91	<=23.98	Pass
(VHT20)		5745	14.77	<=30	Pass
		5785	14.42	<=30	Pass
		5825	14.55	<=30	Pass
802.11ac (VHT40)	SISO	5190	14.18	<=23.98	Pass
		5230	14.71	<=23.98	Pass
		5755	14.95	<=30	Pass
		5795	15.09	<=30	Pass
802.11ac		5210	14.61	<=23.98	Pass
(VHT80)	5150	5775	15.11	<=30	Pass
Note1: Antenn	a Gain: Ant1				

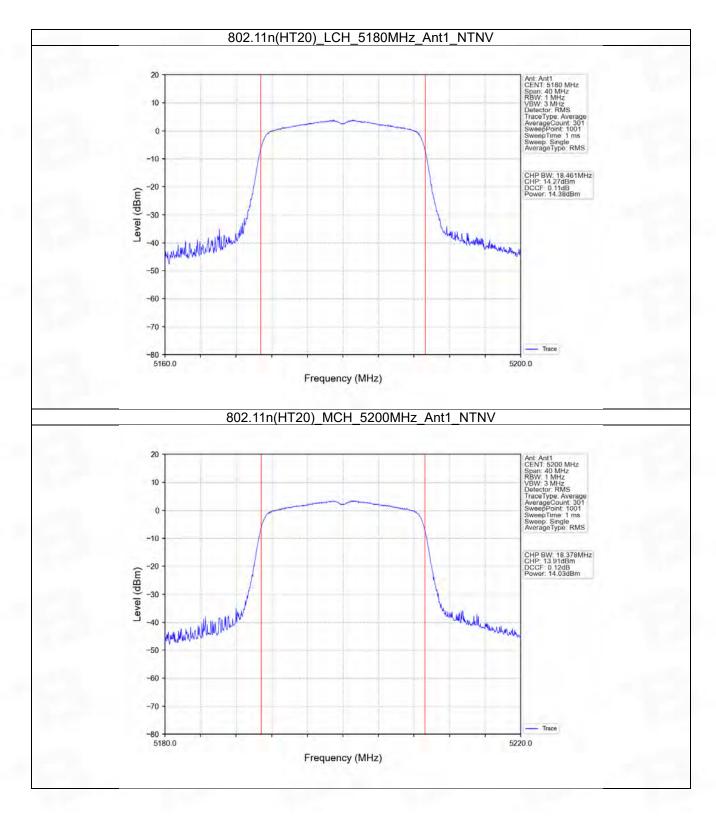
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 90 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

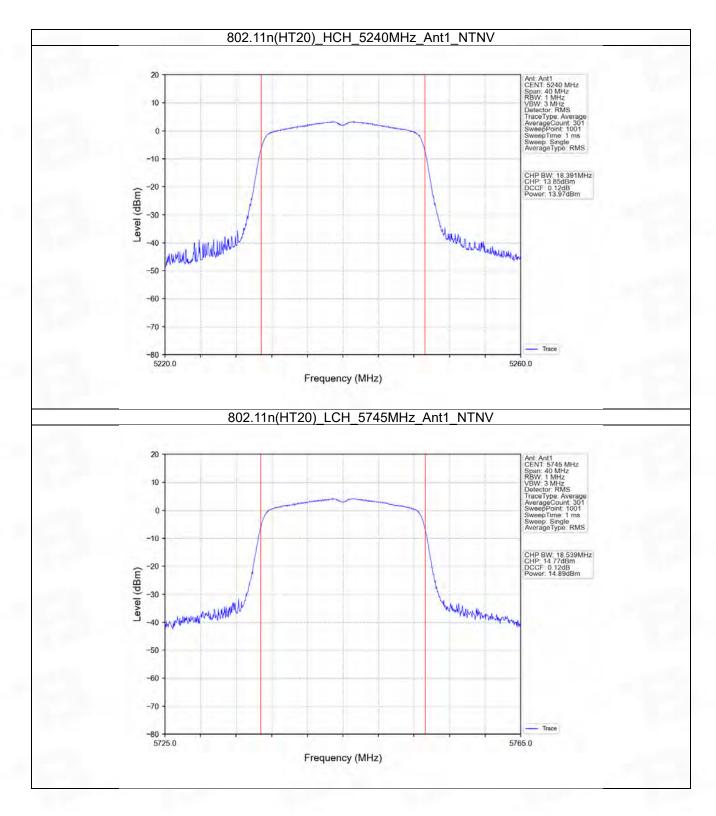


3.1.2 Test Graph

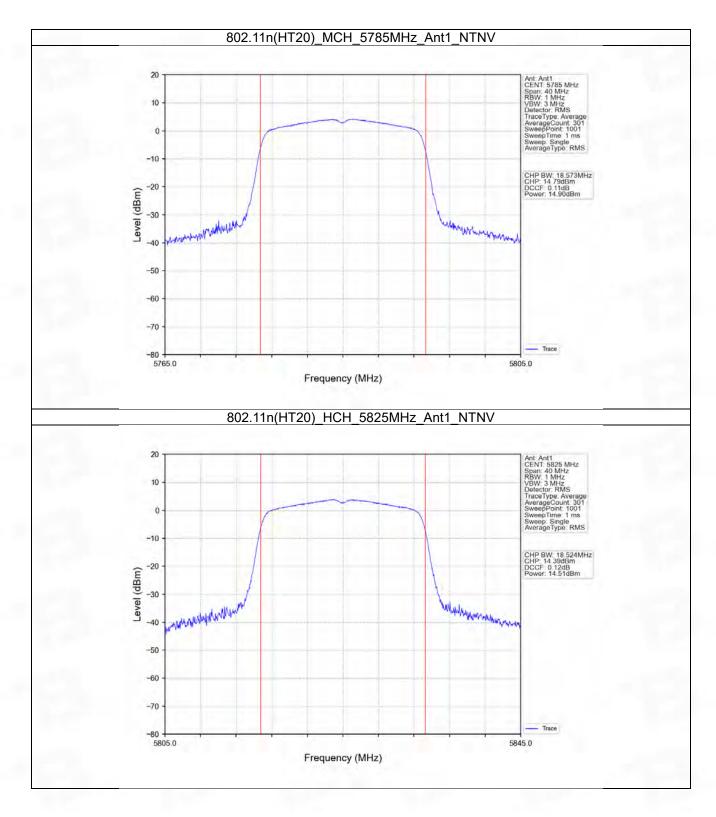

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Pay BTF Testing Lab (Shenzhen) Co., Ltd.

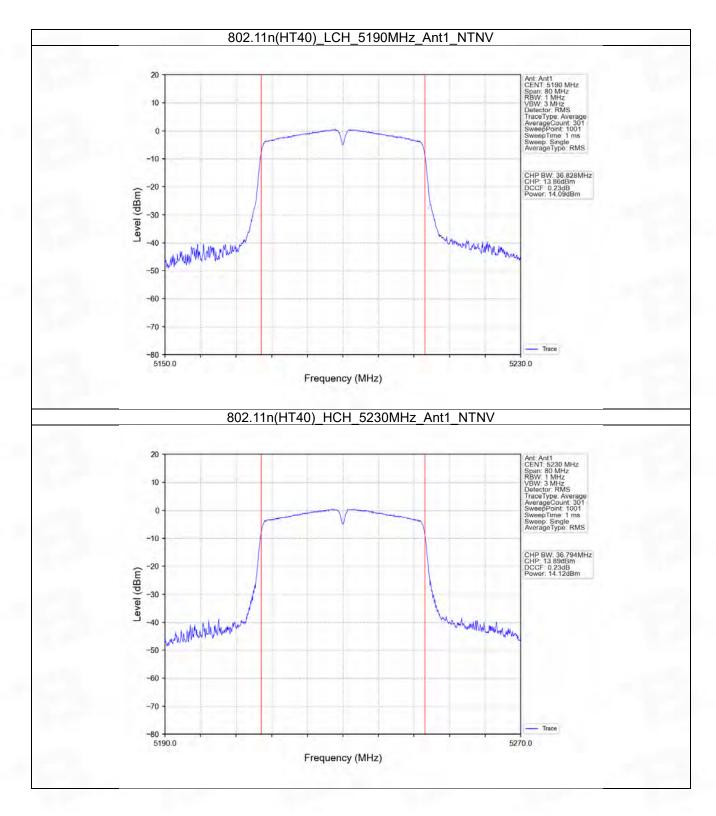
Page 92 of 128



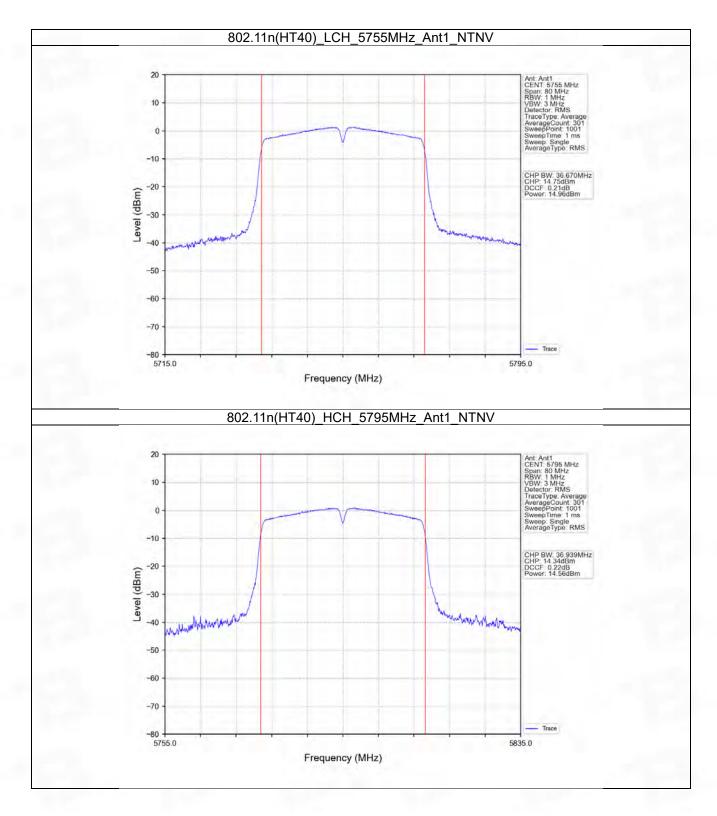

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

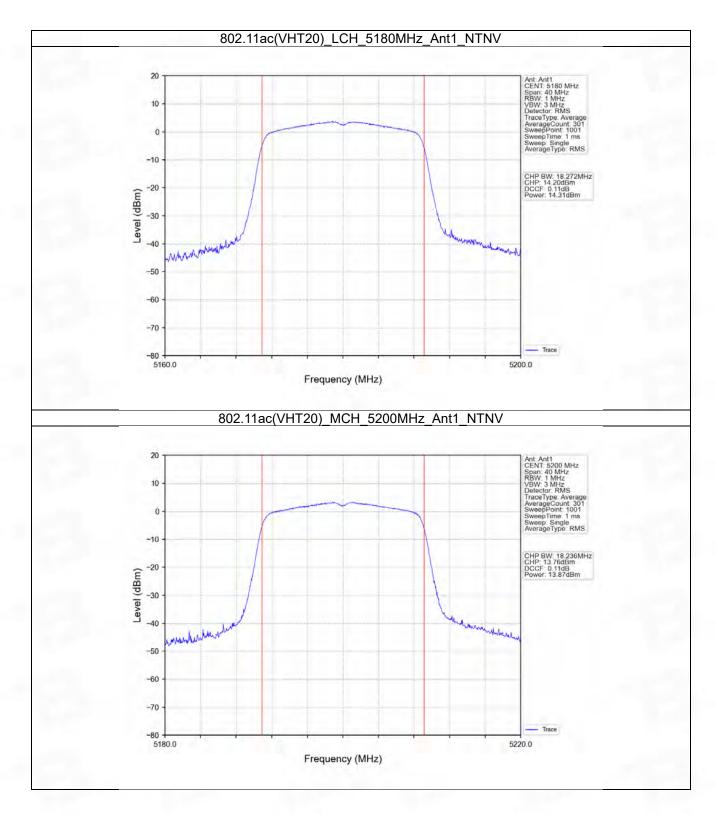
Page 93 of 128

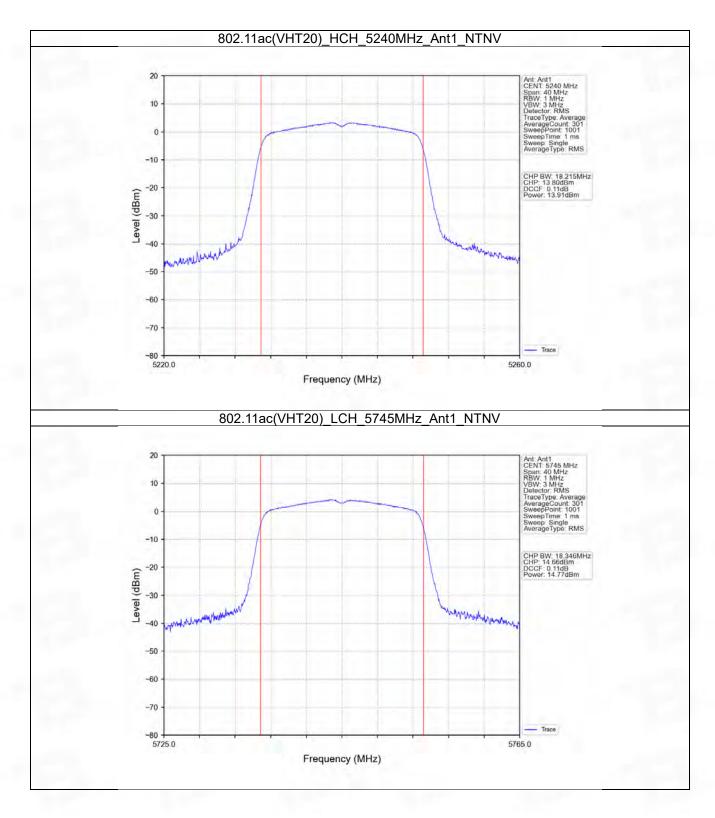


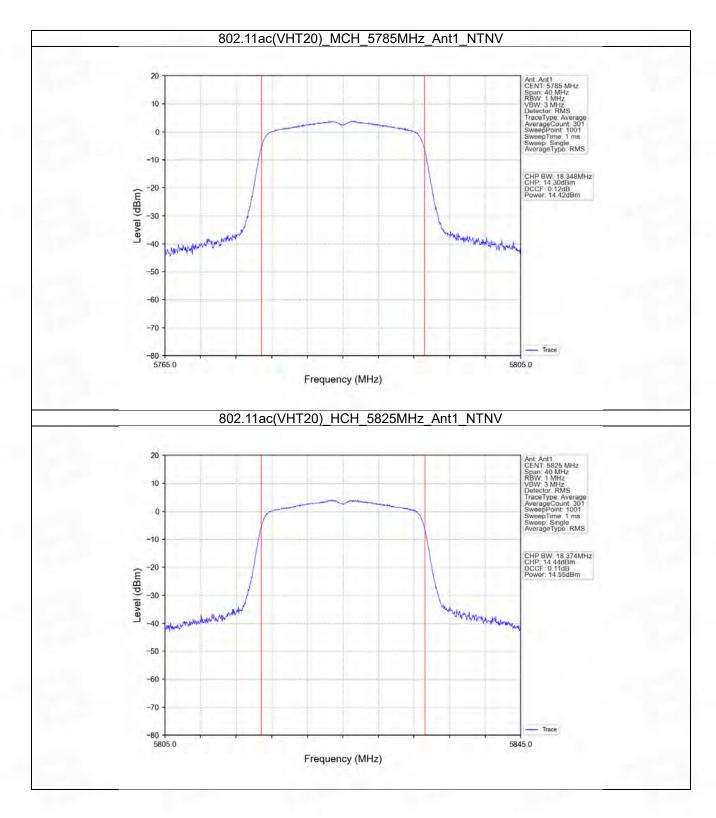


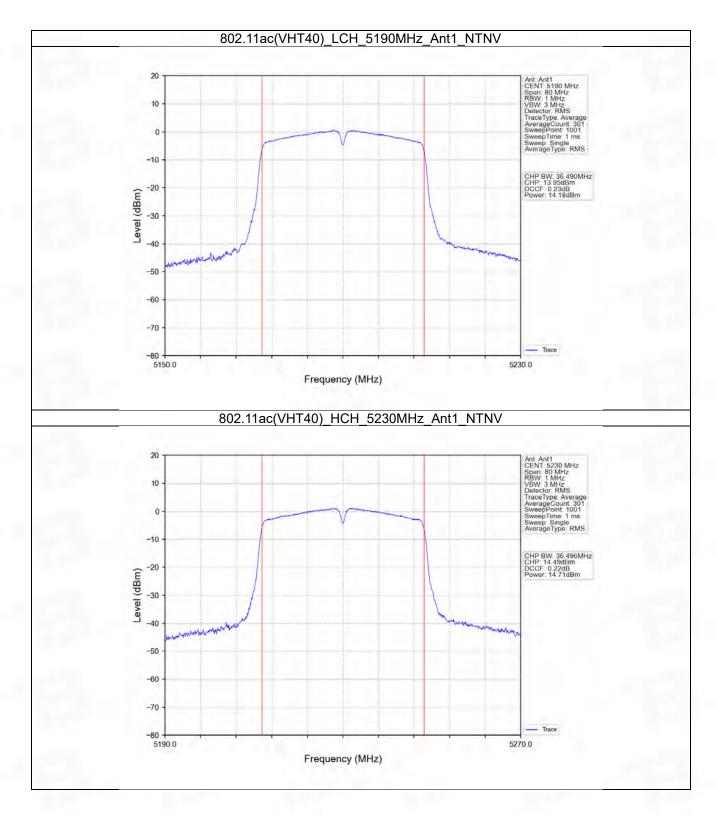
Page 95 of 128



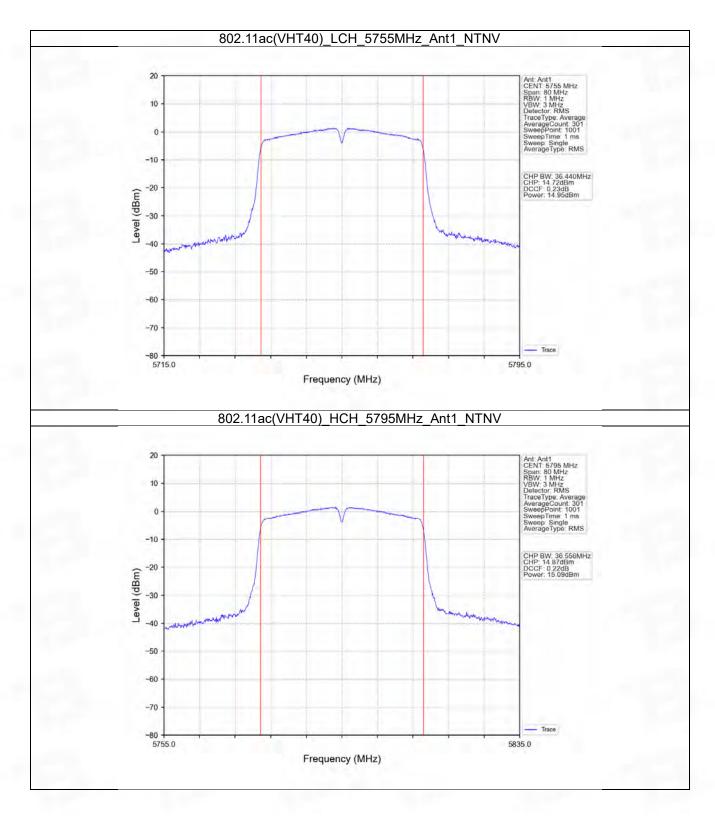

Page 97 of 128

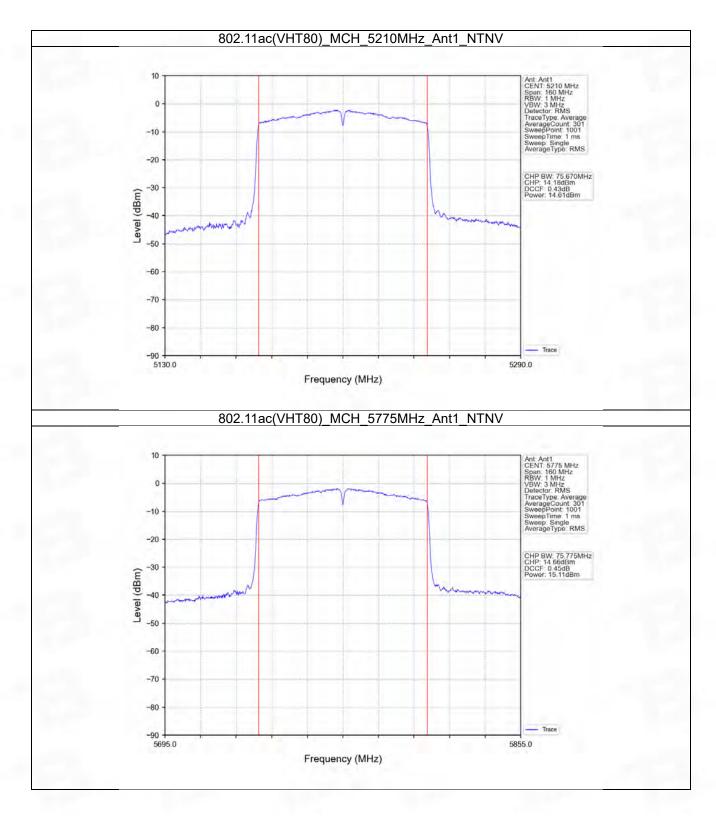

Page 98 of 128


Page 99 of 128



Page 100 of 128



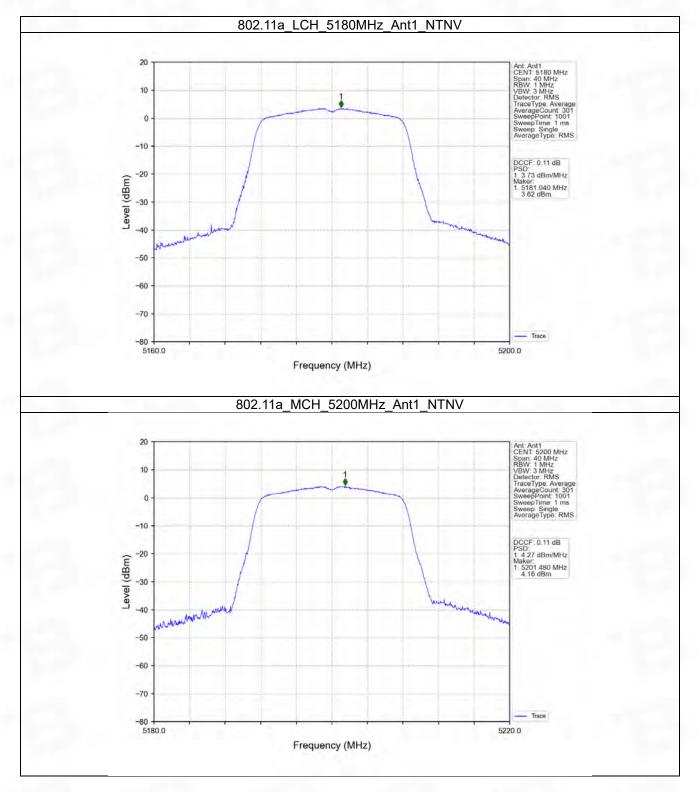


Page 103 of 128

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

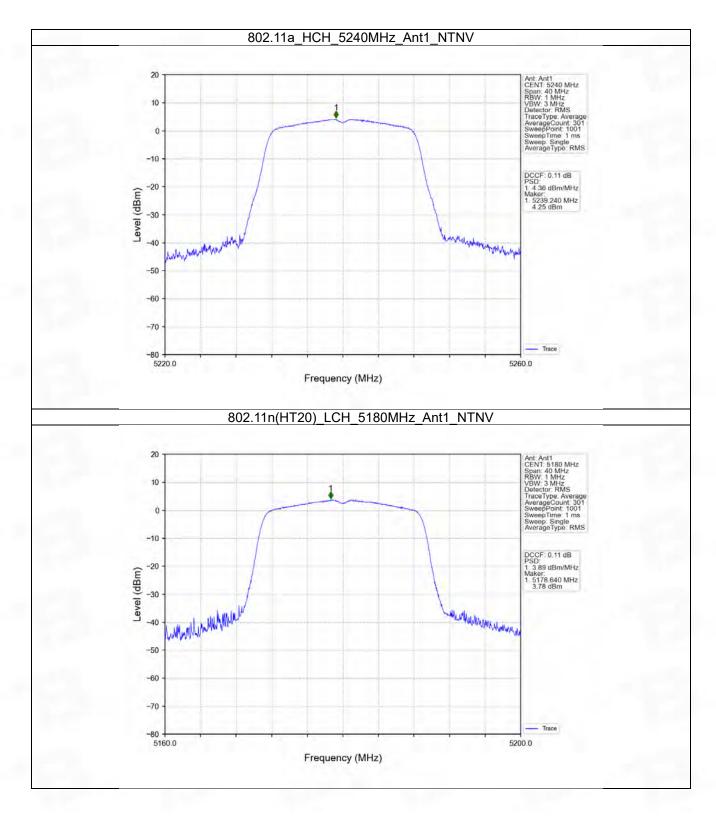
Page 104 of 128

4. Maximum Power Spectral Density

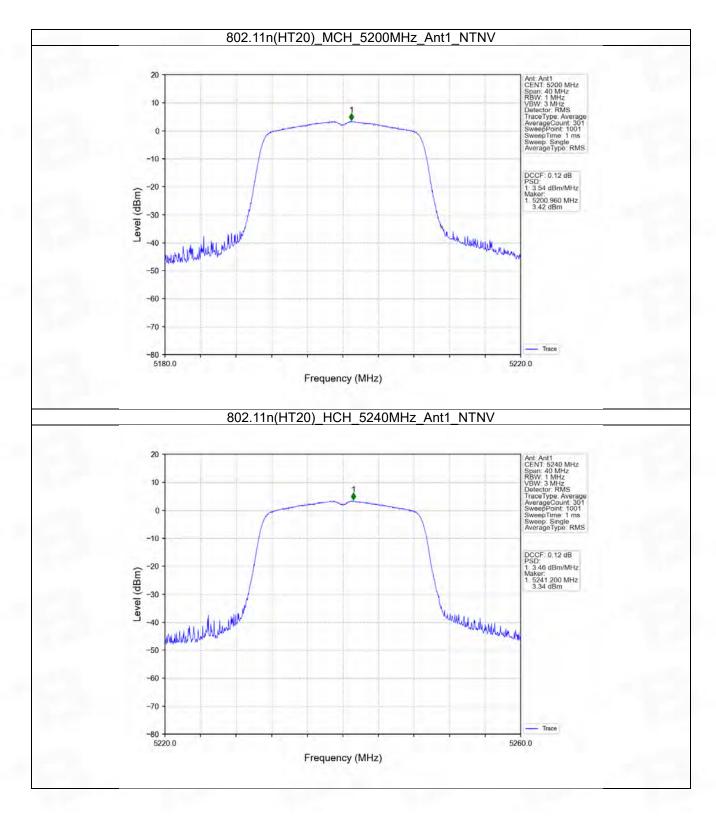

4.1 PSD

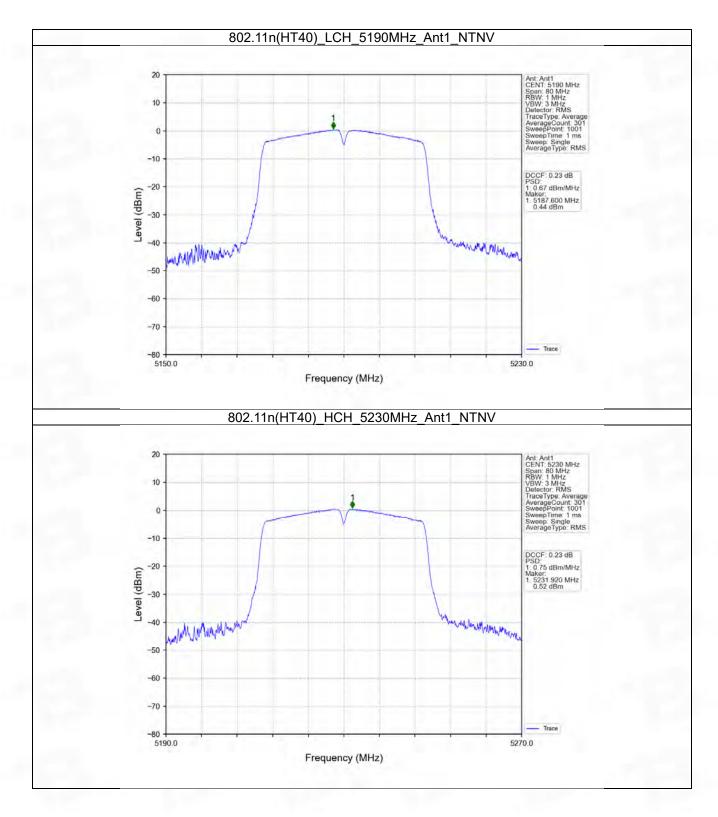
4.1.1 Test Result

Mode	TX	Frequency	Maximum PS	Verdict	
	Туре	(MHz)	ANT1	Limit	verdict
802.11a	SISO	5180	3.73	<=11	Pass
		5200	4.27	<=11	Pass
		5240	4.36	<=11	Pass
802.11n	SISO	5180	3.89	<=11	Pass
(HT20)		5200	3.54	<=11	Pass
(11120)		5240	3.46	<=11	Pass
802.11n	SISO	5190	0.67	<=11	Pass
(HT40)		5230	0.75	<=11	Pass
802.11ac	SISO	5180	3.81	<=11	Pass
(VHT20)		5200	3.56	<=11	Pass
(11120)		5240	3.45	<=11	Pass
802.11ac (VHT40)	SISO	5190	0.84	<=11	Pass
		5230	1.46	<=11	Pass
802.11ac (VHT80)	SISO	5210	-1.94	<=11	Pass
Note1: Antenna	Gain: Ant1: 0.33	dBi;			

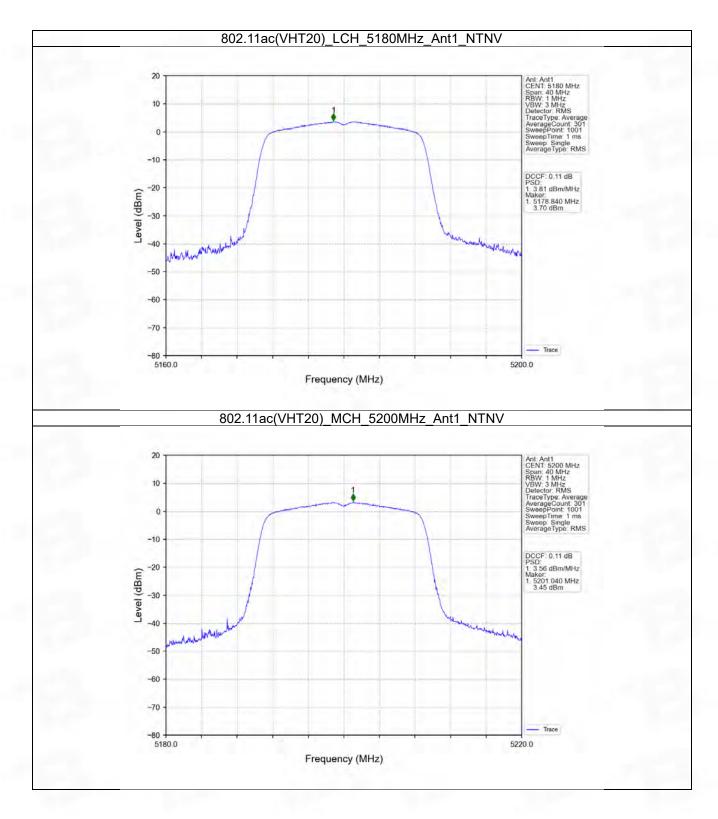


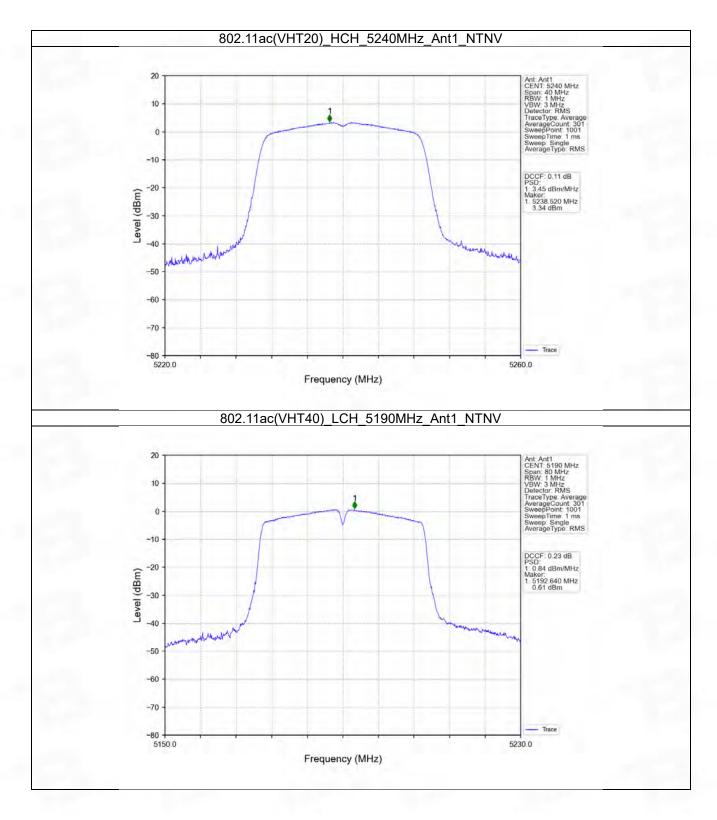
4.1.2 Test Graph

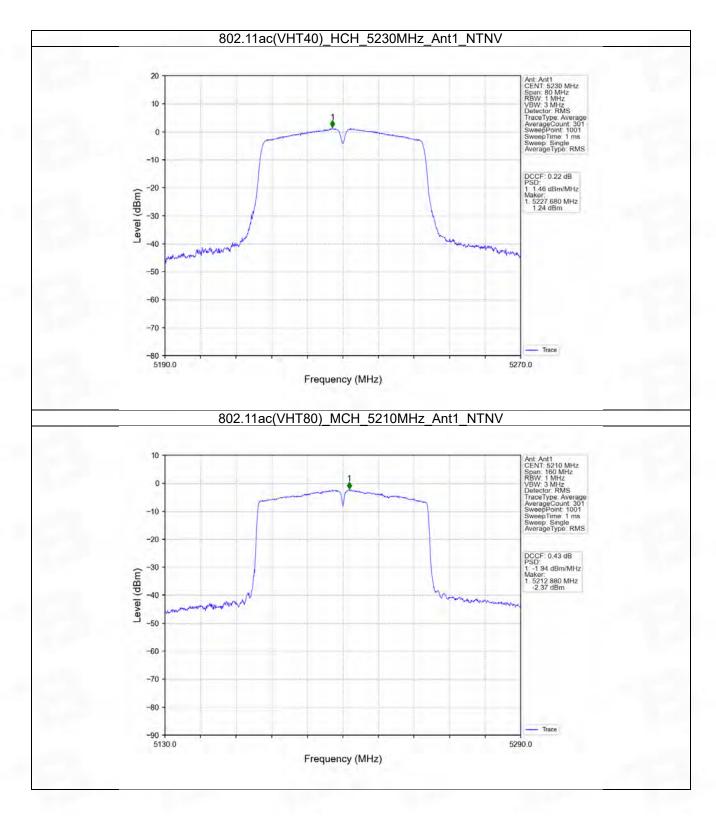

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page BTF Testing Lab (Shenzhen) Co., Ltd.



Page 107 of 128



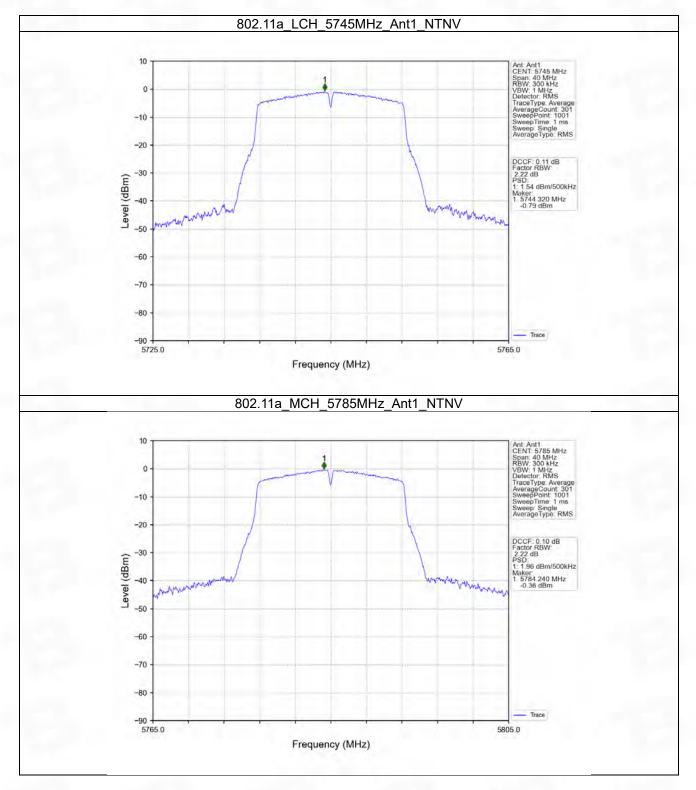

Page 109 of 128



Page 110 of 128

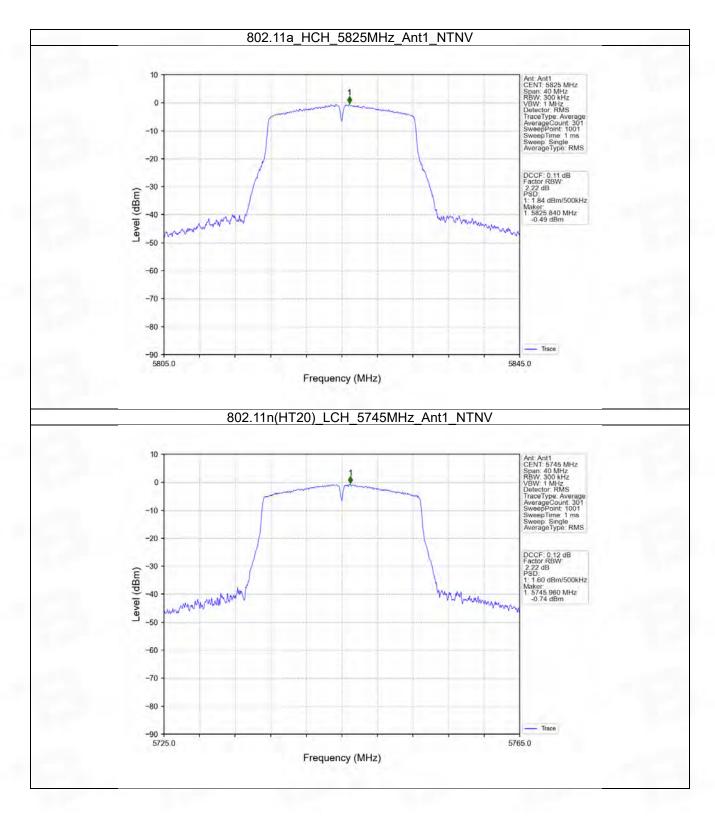
Page 112 of 128

4.2 PSD-Band3

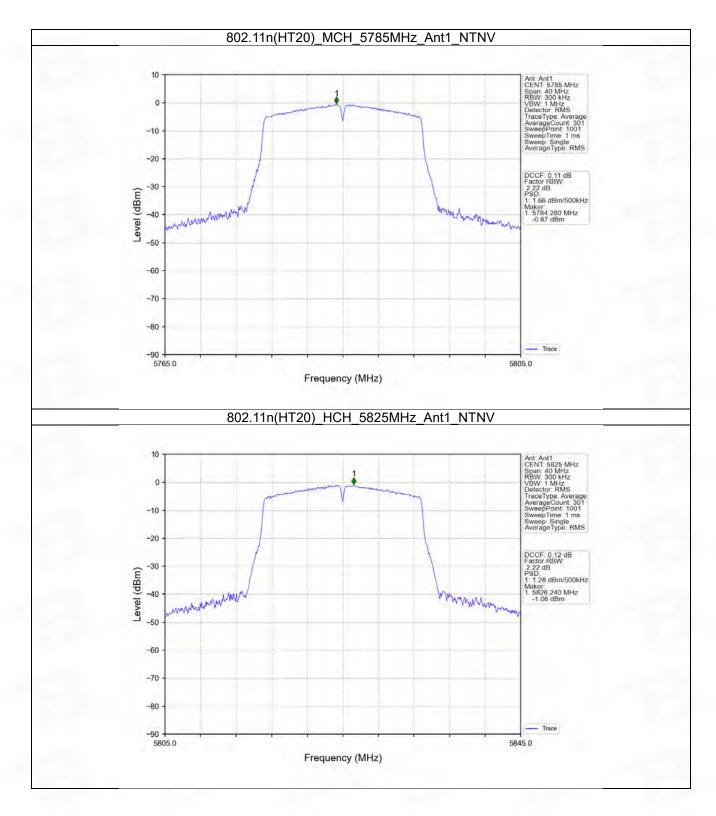

4.2.1 Test Result

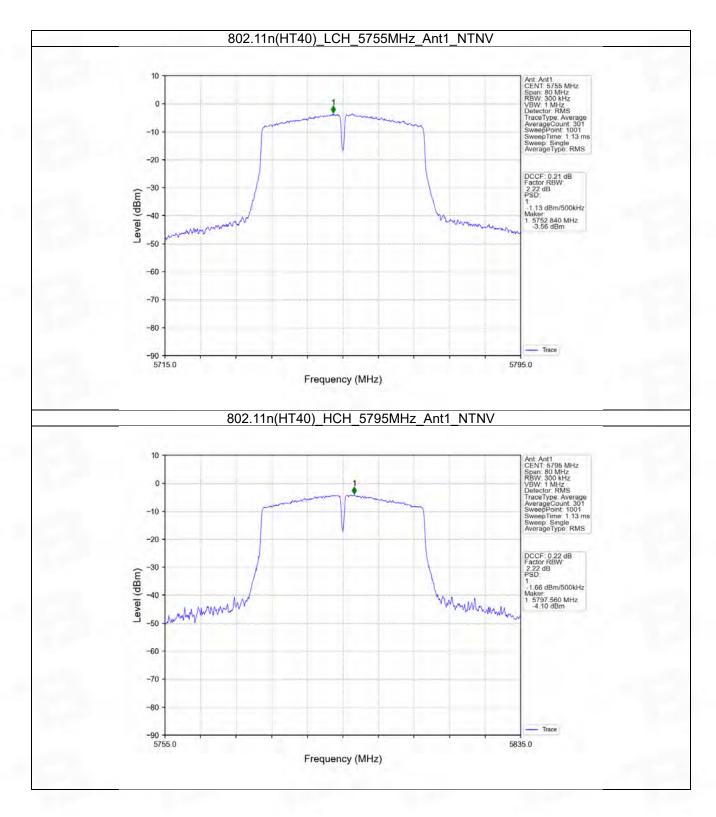
Mada	ТХ	Frequency	Maximum PSD	Verdiet	
Mode	Туре	(MHz)	ANT1	Limit	Verdict
		5745	1.54	<=30	Pass
802.11a	SISO	5785	1.96	<=30	Pass
		5825	1.84	<=30	Pass
802.11n		5745	1.60	<=30	Pass
	SISO	5785	1.66	<=30	Pass
(HT20)		5825	1.28	<=30	Pass
802.11n (HT40)	SISO	5755	-1.13	<=30	Pass
	3130	5795	-1.66	<=30	Pass
000.44		5745	1.61	<=30	Pass
802.11ac (VHT20)	SISO	5785	1.07	<=30	Pass
(11120)		5825	1.47	<=30	Pass
802.11ac	SISO	5755	-1.11	<=30	Pass
(VHT40)	5150	5795	-1.11	<=30	Pass
802.11ac (VHT80)	SISO	5775	-4.11	<=30	Pass

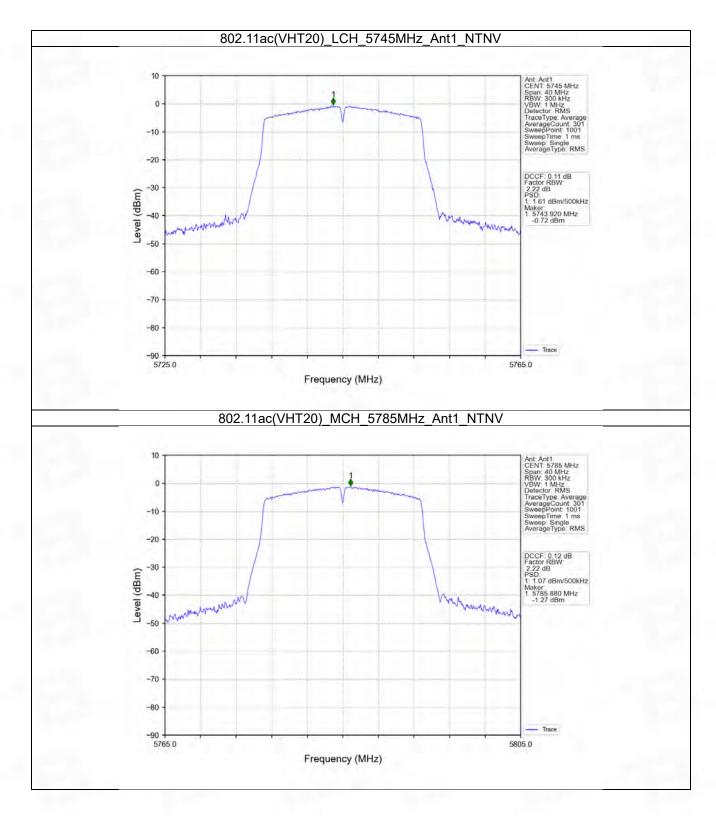
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 113 of 128BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

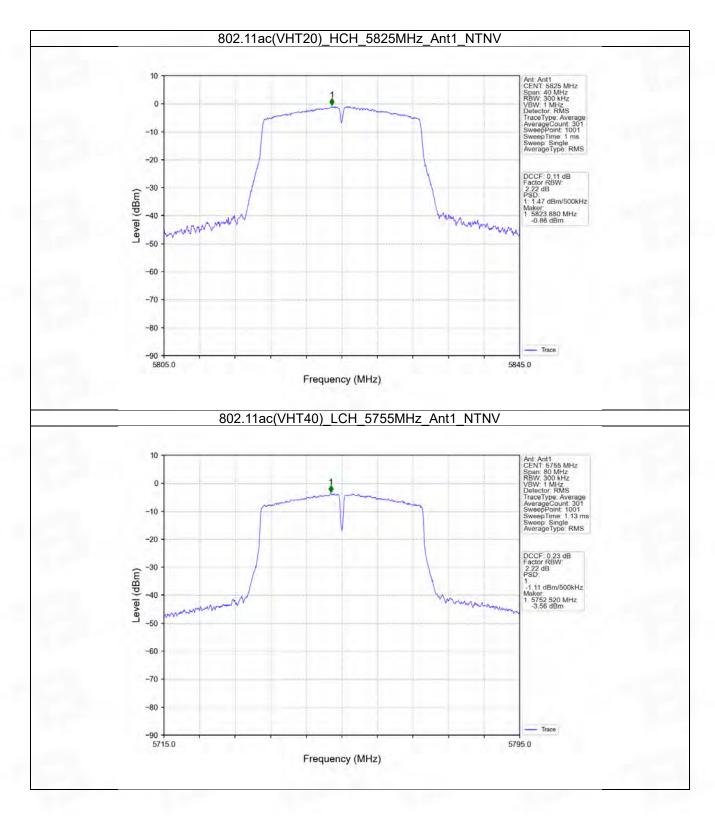

4.2.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 1 BTF Testing Lab (Shenzhen) Co., Ltd.

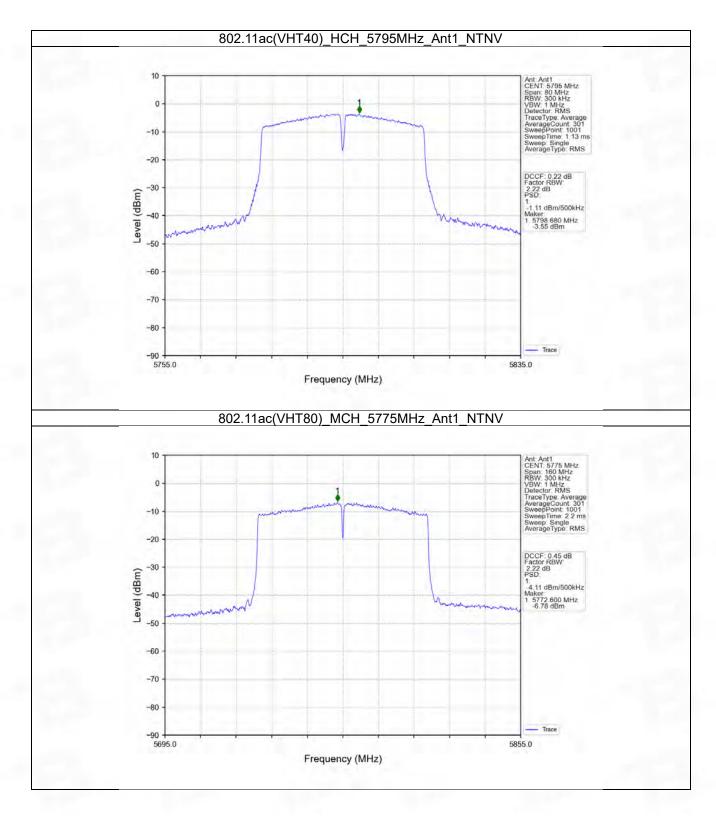

Page 114 of 128


Page 115 of 128


Page 116 of 128



Page 117 of 128



Page 119 of 128

Page 120 of 128

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

		L _	_	Ant1	· - · - ·		
Mode	ТХ Туре	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict
	.)	(=)		102	5179.940	5150 to 5250	Pass
			20	120	5179.960	5150 to 5250	Pass
				138	5180.000	5150 to 5250	Pass
			-30	120	5179.940	5150 to 5250	Pass
			-20	120	5179.960	5150 to 5250	Pass
		5180	-10	120	5179.980	5150 to 5250	Pass
			0	120	5179.940	5150 to 5250	Pass
			10	120	5180.000	5150 to 5250	Pass
			30	120	5180.060	5150 to 5250	Pass
			40	120	5180.040	5150 to 5250	Pass
			50	120	5179.960	5150 to 5250	Pass
				102	5199.940	5150 to 5250	Pass
			20	120	5199.980	5150 to 5250	Pass
			20	138	5200.000	5150 to 5250	Pass
			-30	120	5199.900	5150 to 5250	Pass
		5200 SO	-20	120	5199.980	5150 to 5250	Pass
			-10	120	5199.960	5150 to 5250	Pass
			0	120	5200.020	5150 to 5250	Pass
			10	120	5200.040	5150 to 5250	Pass
			30	120	5200.000	5150 to 5250	Pass
802.11a	SISO		40	120	5199.980	5150 to 5250	Pass
			50	120	5199.960	5150 to 5250	Pass
					102	5239.940	5150 to 5250
			20	120	5240.040	5150 to 5250	Pass
		5240		138	5239.980	5150 to 5250	Pass
			-30	120	5239.960	5150 to 5250	Pass
			-20	120	5239.980	5150 to 5250	Pass
			-10	120	5239.940	5150 to 5250	Pass
			0	120	5239.960	5150 to 5250	Pass
			10	120	5239.980	5150 to 5250	Pass
			30	120	5240.000	5150 to 5250	Pass
			40	120	5240.020	5150 to 5250	Pass
			50	120	5239.960	5150 to 5250	Pass
			-	102	5744.980	5725 to 5850	Pass
			20	120	5744.940	5725 to 5850	Pass
				138	5744.960	5725 to 5850	Pass
		F74F	-30	120	5744.960	5725 to 5850	Pass
		5745	-20	120	5745.000	5725 to 5850	Pass
			-10	120	5745.060	5725 to 5850	Pass
			0	120	5744.940	5725 to 5850	Pass
			10	120	5744.960	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 121 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 121 of 128

			30	120	5744.980	5725 to 5850	Pass
		-	40	120	5745.000	5725 to 5850	Pass
			50	120	5744.900	5725 to 5850	Pass
				102	5784.980	5725 to 5850	Pass
			20	120	5785.040	5725 to 5850	Pass
				138	5784.980	5725 to 5850	Pass
		-	-30	120	5784.940	5725 to 5850	Pass
			-20	120	5784.940	5725 to 5850	Pass
		5785	-10	120	5784.960	5725 to 5850	Pass
			0	120	5784.920	5725 to 5850	Pass
			10	120	5784.980	5725 to 5850	Pass
		-	30	120	5784.980	5725 to 5850	Pass
			40	120	5784.940	5725 to 5850	Pass
			50	120	5784.960	5725 to 5850	Pass
				102	5825.000	5725 to 5850	Pas
			20	120	5825.020	5725 to 5850	Pass
			_0	138	5825.060	5725 to 5850	Pass
			-30	120	5825.000	5725 to 5850	Pase
			-20	120	5825.000	5725 to 5850	Pas
		5825	-10	120	5825.020	5725 to 5850	Pas
		0020	0	120	5824.980	5725 to 5850	Pase
			10	120	5824.920	5725 to 5850	Pase
			30	120	5824.880	5725 to 5850	Pase
		1.11.11.11.11	40	120	5824.980	5725 to 5850	Pas
		-	50	120	5824.880	5725 to 5850	Pase
			00	102	5180.040	5150 to 5250	Pas
			20	120	5179.940	5150 to 5250	Pas
			20	138	5179.980	5150 to 5250	Pas
			-30	120	5180.040	5150 to 5250	Pas
			-20	120	5180.020	5150 to 5250	Pas
		5180	-10	120	5179.940	5150 to 5250	Pase
			0	120	5179.940	5150 to 5250	Pase
			10	120	5179.920	5150 to 5250	Pas
			30	120	5180.000	5150 to 5250	Pas
			40	120	5180.020	5150 to 5250	Pas
			50	120	5179.940	5150 to 5250	Pas
			00	102	5199.980	5150 to 5250	Pas
			20	120	5199.980	5150 to 5250	Pas
802.11n			20	138	5199.980	5150 to 5250	Pas
(HT20)	SISIN		-30	120	5200.020	5150 to 5250	Pas
(20)			-20	120	5200.020	5150 to 5250	Pas
		5200	-10	120	5199.980	5150 to 5250	Pas
		0200	0	120	5200.060	5150 to 5250	Pas
		-	10	120	5199.940	5150 to 5250	Pase
		ŀ	30	120	5199.940	5150 to 5250	Pase
			40	120	5199.920	5150 to 5250	Pase
		-	50	120	5199.940	5150 to 5250	Pase
			00	102	5240.020	5150 to 5250	Pas
			20	120	5239.940	5150 to 5250	Pas
			20	138	5239.940	5150 to 5250	Pase
		5240	-30	120	5239.980	5150 to 5250	Pase
		0210					
			-20	120	5239.980	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 122 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 122 of 128

			0	120	5239.980	5150 to 5250	Pass
			10	120	5240.000	5150 to 5250	Pass
			30	120	5239.900	5150 to 5250	Pass
			40	120	5240.060	5150 to 5250	Pass
		F	50	120	5239.980	5150 to 5250	Pass
				102	5744.880	5725 to 5850	Pass
			20	120	5744.940	5725 to 5850	Pass
				138	5744.940	5725 to 5850	Pass
			-30	120	5745.000	5725 to 5850	Pass
		-	-20	120	5744.920	5725 to 5850	Pass
		5745	-10	120	5744.960	5725 to 5850	Pass
			0	120	5744.920	5725 to 5850	Pass
			10	120	5745.020	5725 to 5850	Pass
			30	120	5744.940	5725 to 5850	Pass
		F	40	120	5744.980	5725 to 5850	Pass
			50	120	5744.960	5725 to 5850	Pass
				102	5784.960	5725 to 5850	Pass
			20	120	5784.960	5725 to 5850	Pass
				138	5785.020	5725 to 5850	Pass
			-30	120	5785.040	5725 to 5850	Pass
			-20	120	5785.000	5725 to 5850	Pass
		5785	-10	120	5785.000	5725 to 5850	Pass
			0	120	5785.000	5725 to 5850	Pass
			10	120	5784.940	5725 to 5850	Pass
			30	120	5784.980	5725 to 5850	Pass
			40	120	5785.040	5725 to 5850	Pass
			50	120	5785.020	5725 to 5850	Pass
			- •	102	5824.980	5725 to 5850	Pass
			20	120	5825.040	5725 to 5850	Pass
			_•	138	5825.060	5725 to 5850	Pass
			-30	120	5824.960	5725 to 5850	Pass
			-20	120	5825.060	5725 to 5850	Pass
		5825	-10	120	5824.940	5725 to 5850	Pass
			0	120	5825.000	5725 to 5850	Pass
		F	10	120	5824.960	5725 to 5850	Pass
			30	120	5825.000	5725 to 5850	Pass
			40	120	5824.940	5725 to 5850	Pass
			50	120	5825.020	5725 to 5850	Pass
				102	5190.000	5150 to 5250	Pass
			20	120	5189.960	5150 to 5250	Pass
			-	138	5190.000	5150 to 5250	Pass
		-	-30	120	5190.000	5150 to 5250	Pass
			-20	120	5190.000	5150 to 5250	Pass
		5190	-10	120	5190.000	5150 to 5250	Pass
			0	120	5190.000	5150 to 5250	Pass
802.11n	SISO		10	120	5190.000	5150 to 5250	Pass
(HT40)			30	120	5190.000	5150 to 5250	Pass
			40	120	5190.000	5150 to 5250	Pass
			50	120	5190.000	5150 to 5250	Pass
				102	5229.960	5150 to 5250	Pass
			20	120	5230.000	5150 to 5250	Pass
		5230	20	138	5229.960	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 123 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 123 of 128

			-20	120	5230.000	5150 to 5250	Pass
			-10	120	5230.040	5150 to 5250	Pass
			0	120	5230.000	5150 to 5250	Pass
			10	120	5230.000	5150 to 5250	Pass
		-	30	120	5230.000	5150 to 5250	Pass
			40	120	5230.000	5150 to 5250	Pass
			50	120	5230.000	5150 to 5250	Pass
				102	5755.000	5725 to 5850	Pass
			20	120	5755.000	5725 to 5850	Pass
				138	5754.960	5725 to 5850	Pass
			-30	120	5754.920	5725 to 5850	Pass
			-20	120	5755.040	5725 to 5850	Pass
		5755	-10	120	5754.960	5725 to 5850	Pass
			0	120	5755.000	5725 to 5850	Pass
			10	120	5755.080	5725 to 5850	Pass
			30	120	5755.000	5725 to 5850	Pass
			40	120	5755.000	5725 to 5850	Pass
			50	120	5755.000	5725 to 5850	Pass
				102	5795.000	5725 to 5850	Pass
			20	120	5795.000	5725 to 5850	Pass
			20	138	5795.000	5725 to 5850	Pass
			-30	120	5795.000	5725 to 5850	Pass
			-20	120	5795.000	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
		0,00	0	120	5795.000	5725 to 5850	Pass
			10	120	5794.960	5725 to 5850	Pass
			30	120	5795.000	5725 to 5850	Pass
			40	120	5795.000	5725 to 5850	Pass
			50	120	5795.040	5725 to 5850	Pass
	┝───┼		00	102	5179.980	5150 to 5250	Pass
			20	120	5180.000	5150 to 5250	Pass
			20	138	5180.040	5150 to 5250	Pass
		-	-30	120	5179.920	5150 to 5250	Pass
			-20	120	5180.000	5150 to 5250	Pass
		5180	-10	120	5179.980	5150 to 5250	Pass
		0100	0	120	5180.000	5150 to 5250	Pass
			10	120	5179.940	5150 to 5250	Pass
			30	120	5179.900	5150 to 5250	Pass
			40	120	5179.980	5150 to 5250	Pass
			50	120	5179.980	5150 to 5250	Pass
802.11ac	-		00	102	5200.000	5150 to 5250	Pass
(VHT20)	SISO		20	120	5200.100	5150 to 5250	Pass
(01120)			20	138	5200.020	5150 to 5250	Pass
			-30	120	5199.980	5150 to 5250	Pass
			-30	120	5199.960	5150 to 5250	Pass
		5200	-10	120	5200.000	5150 to 5250	Pass
		5200	-10	120	5200.000	5150 to 5250	Pass
			10	120	5200.040	5150 to 5250	Pass
			30	120	5200.020	5150 to 5250	Pass
			40	120	5199.920	5150 to 5250	Pass
			50	120	5199.920	5150 to 5250	
	-		50				Pass
		5240	20	102	5240.020	5150 to 5250	Pass
				120	5240.000	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 124 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 124 of 128

				138	5239.960	5150 to 5250	Pass
			-30	120	5240.000	5150 to 5250	Pass
			-20	120	5240.060	5150 to 5250	Pass
		0.000	-10	120	5239.940	5150 to 5250	Pass
			0	120	5239.960	5150 to 5250	Pass
			10	120	5240.000	5150 to 5250	Pass
			30	120	5240.000	5150 to 5250	Pass
			40	120	5239.940	5150 to 5250	Pass
		1000	50	120	5240.000	5150 to 5250	Pass
				102	5744.980	5725 to 5850	Pass
			20	120	5745.000	5725 to 5850	Pass
				138	5744.920	5725 to 5850	Pass
			-30	120	5745.000	5725 to 5850	Pass
		100	-20	120	5745.040	5725 to 5850	Pass
		5745	-10	120	5744.940	5725 to 5850	Pase
		0.10	0	120	5745.000	5725 to 5850	Pase
			10	120	5744.980	5725 to 5850	Pas
			30	120	5744.940	5725 to 5850	Pase
		1.00	40	120	5745.060	5725 to 5850	Pas
			50	120	5744.940	5725 to 5850	Pas
			00	102	5785.000	5725 to 5850	Pas
			20	120	5784.960	5725 to 5850	Pas
			20	138	5784.960	5725 to 5850	Pas
		10.00	-30	120	5785.000	5725 to 5850	Pas
			-20	120	5785.000	5725 to 5850	Pas
		5785	-10	120	5784.980	5725 to 5850	Pas
		0700	0	120	5784.980	5725 to 5850	Pas
			10	120	5784.960	5725 to 5850	Pas
			30	120	5785.000	5725 to 5850	Pas
			40	120	5784.960	5725 to 5850	Pase
			50	120	5784.940	5725 to 5850	Pas
			50	102	5824.920	5725 to 5850	Pase
			20	102	5824.920	5725 to 5850	Pase
			20	138	5825.000	5725 to 5850	Pas
			-30	120	5825.000	5725 to 5850	Pas
			-30	120	5824.920	5725 to 5850	Pas
		5825	-10	120	5824.980	5725 to 5850	Pas
		0020	0	120	5824.940	5725 to 5850	Pas
			10	120	5825.000	5725 to 5850	Pas
			30	120	5825.020	5725 to 5850	Pas
			40	120	5824.960	5725 to 5850	Pas
		100	50	120	5825.040	5725 to 5850	Pas
			50	102	5190.000	5150 to 5250	Pas
			20	102	5189.960	5150 to 5250	Pas
			20	138	5189.960	5150 to 5250	Pas
			-30	120	5190.000	5150 to 5250	Pas
			-30	120	5190.000	5150 to 5250	Pas
802.11ac	SISO	5190	-20	120	5190.000	5150 to 5250	Pase
()/UT40)	5150	5190	-10	120	5190.000	5150 to 5250	Pas
(VHT40)			10	120	5190.000	5150 to 5250	Pase
(VH140)		10	120	0100.000	5150 10 5250		
(VH140)				120	5180 060	5150 to 5250	Daar
(VH140)		12	30 40	120 120	5189.960 5190.000	5150 to 5250 5150 to 5250	Pass Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 125 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 125 of 128

				102	5229.920	5150 to 5250	Pass
			20	120	5230.000	5150 to 5250	Pass
				138	5229.960	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250	Pass
		-	-20	120	5230.000	5150 to 5250	Pass
		5230	-10	120	5230.000	5150 to 5250	Pass
		-	0	120	5230.000	5150 to 5250	Pass
			10	120	5230.000	5150 to 5250	Pass
Contraction of the		-	30	120	5230.000	5150 to 5250	Pass
		-	40	120	5230.000	5150 to 5250	Pass
			50	120	5230.000	5150 to 5250	Pass
				102	5755.000	5725 to 5850	Pass
			20	120	5755.000	5725 to 5850	Pass
				138	5755.040	5725 to 5850	Pass
		-	-30	120	5754.960	5725 to 5850	Pass
			-20	120	5755.000	5725 to 5850	Pass
		5755	-10	120	5754.960	5725 to 5850	Pass
			0	120	5755.000	5725 to 5850	Pass
1.0		-	10	120	5755.000	5725 to 5850	Pass
		ŀ	30	120	5754.960	5725 to 5850	Pass
			40	120	5755.040	5725 to 5850	Pass
			50	120	5755.000	5725 to 5850	Pass
1.00				102	5795.000	5725 to 5850	Pass
1000			20	120	5795.000	5725 to 5850	Pass
				138	5795.000	5725 to 5850	Pass
			-30	120	5795.000	5725 to 5850	Pass
			-20	120	5795.000	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
1000			0	120	5795.000	5725 to 5850	Pass
			10	120	5795.000	5725 to 5850	Pass
1000			30	120	5795.000	5725 to 5850	Pass
			40	120	5794.960	5725 to 5850	Pass
			50	120	5795.000	5725 to 5850	Pass
				102	5210.000	5150 to 5250	Pass
			20	120	5210.000	5150 to 5250	Pass
				138	5210.000	5150 to 5250	Pase
			-30	120	5210.000	5150 to 5250	Pass
			-20	120	5210.000	5150 to 5250	Pass
		5210	-10	120	5210.000	5150 to 5250	Pass
			0	120	5210.000	5150 to 5250	Pase
			10	120	5210.000	5150 to 5250	Pass
			30	120	5210.000	5150 to 5250	Pass
802.11ac	SISO		40	120	5210.000	5150 to 5250	Pass
(VHT80)	3130		50	120	5210.000	5150 to 5250	Pass
	Γ			102	5775.000	5725 to 5850	Pass
			20	120	5775.000	5725 to 5850	Pass
				138	5775.000	5725 to 5850	Pass
			-30	120	5775.000	5725 to 5850	Pass
		5775	-20	120	5775.075	5725 to 5850	Pass
			-10	120	5775.000	5725 to 5850	Pase
			0	120	5775.000	5725 to 5850	Pass
			10	120	5775.000	5725 to 5850	Pass
			30	120	5775.000	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 126 of 12BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 126 of 128

40	120	5775.000	5725 to 5850	Pass
50	120	5775.000	5725 to 5850	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0292	14.65
5745	5825	0.0318	15.02
5190	5230	0.0296	14.71
5755	5795	0.0323	15.09
5210	5210	0.0289	14.61

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --