

RF Test Report

For

Applicant Name:

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU

INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX

Address:

China EUT Name: Smart Phone Brand Name: OUKITEL Model Number: WP32 Serial Model Number: Please refer to section 2.4

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd.

Address:

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number:

Test Standards:

FCC ID: **Test Conclusion:** Test Date: Date of Issue:

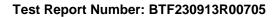
Prepared By:

Date:

Approved By:

Date:

FCC CFR Title 47 Part24 FCC CFR Title 47 Part27 2ANMU-WP32SPUT Pass 2023-09-15 to 2023-10-09 2023-10-10 hris


BTF230913R00705 FCC CFR Title 47 Part 2 FCC CFR Title 47 Part22

Chris Liu / Project Enai 2023-10-10 5 Ryan.CJ / EMC Manager 2023-10-10

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

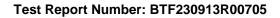

Revision History						
Version	Issue Date Revisions Content					
R_V0	2023-10-10	Original				
a second s						
Note:	Once the revision has	Once the revision has been made, then previous versions reports are invalid.				

Table of Contents

1. Introduction	4
1.1 Identification of Testing Laboratory	4
1.2 Identification of the Responsible Testing Location	
1.3 Laboratory Condition	4
1.4 Announcement	4
2. Product Information	5
2.1 Application Information	5
2.2 Manufacturer Information	5
2.3 Factory Information	
2.4 General Description of Equipment under Test (EUT)	5
2.5 Technical Information	
3. Summary of Test Results	9
3.1 Test Standards	9
3.2 Summary of Test Result	.10
3.3 Uncertainty of Test	.11
4. Test Configuration	
4.1 Environment Condition	12
4.2 Test Equipment List	.12
4.3 Test Auxiliary Equipment	13
4.4 Test Configurations	
4.5 Test Setup	. 19
5. Test Items	.21
5.1 Transmitter Radiated Power (EIRP/ERP)	
5.2 Field Strength of Spurious Radiation	24
ANNEX B TEST SETUP PHOTOS	50
ANNEX C EUT PHOTOS	.51

1. Introduction

1.1 Identification of Testing Laboratory

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Test Location:	BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
Description:	All measurement facilities used to collect the measurement data are located at F101,201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China		
FCC Registration Number:	518915		
Designation Number:	CN1330		

1.3 Laboratory Condition

Ambient Temperature:	20°C to 35°C
Ambient Relative Humidity:	45% to 55%
Ambient Pressure:	100 kPa to 102 kPa

1.4 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2. Product Information

2.1 Application Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD	
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China	

2.2 Manufacturer Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD		
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China		

2.3 Factory Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD			
Dadroce.	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China			

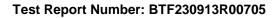
2.4 General Description of Equipment under Test (EUT)

EUT Name		Smart Phone
Under Test Model Name		WP32
S	Series Model Name	WP32 S, WP32 Pro, WP32 TITAN
Description of Model name differentiation		Only the model name is different, the others are the same.
F	lardware Version	SC6012_MB_V1.1.0
	Software and Firmware	OUKITEL_WP32_EEA_V04

2.5 Technical Information

The requirement for the following technical information of the EUT was tested in this report:

	GSM/GPRS/EGPRS 850/1900 MHz			
Operating Bands	WCDMA/HSDPA/HSUPA Band 2/4/5			
	FDD LTE Band 2/4	4/5/7/12/17		
	GPRS	GMSK		
	EGPRS	8PSK		
	WCDMA	QPSK		
Modulation Type	HSDPA/HSUPA	QPSK		
	nodpa/noupa	16QAM		
	LTE	QPSK		
		16QAM		
	GPRS/EGPRS 85	50: 824.2 MHz ~ 848.8 MHz		
	GPRS/EGPRS 19	900: 1850.2 MHz ~ 1909.8 MHz		
	WCDMA/HSDPA/	WCDMA/HSDPA/HSUPA Band 2: 1852.4 MHz ~ 1907.6 MHz		
	WCDMA/HSDPA/HSUPA Band 4: 1712.4 MHz ~ 1752.6 MHz			
	WCDMA/HSDPA/HSUPA Band 5: 826.4 MHz ~ 846.6 MHz			
TX Frequency Range	FDD LTE Band 2: 1850.7 MHz ~ 1909.3 MHz			
	FDD LTE Band 4: 1710.7 MHz ~ 1754.3 MHz			
	FDD LTE Band 5: 824.7 MHz ~ 848.3 MHz			
	FDD LTE Band 7: 2502.5 MHz ~ 2567.5 MHz			
	FDD LTE Band 12: 699.7 MHz ~ 715.3 MHz			
	FDD LTE Band 17:706.5 MHz ~ 713.5 MHz			
GPRS/EGPRS 850: 869.2 MHz		50: 869.2 MHz ~ 893.8 MHz		
	GPRS/EGPRS 1900: 1930.2 MHz ~ 1989.8 MHz			
	WCDMA/HSDPA/HSUPA Band 2: 1932.4 MHz ~ 1987.6 MHz			
	WCDMA/HSDPA/HSUPA Band 4: 2112.4 MHz ~ 2152.6 MHz			
	WCDMA/HSDPA/HSUPA Band 5: 871.4 MHz ~ 891.6 MHz			
By Frequency Bongo	FDD LTE Band 2: 1930.7 MHz ~ 1989.3 MHz			
Rx Frequency Range	FDD LTE Band 4: 2110.7 MHz ~ 2154.3 MHz			
	FDD LTE Band 5: 869.7 MHz ~ 893.3 MHz			
	FDD LTE Band 7: 2622.5 MHz ~ 2687.5 MHz			
	FDD LTE Band 12: 729.7 MHz ~ 745.3 MHz			
	FDD LTE Band 17: 736.5 MHz ~ 741.5 MHz			



	GPRS 850: 4	
	GPRS 1900: 1	
	EGPRS 850/1900: E2 WCDMA/HSDPA/HSUPA Band 2: 3	
	WCDMA/HSDPA/HSUPA Band 4: 3	
	WCDMA/HSDPA/HSUPA Band 5: 3	
Power Class	FDD LTE Band 2: 3	
	FDD LTE Band 4: 3	
	FDD LTE Band 5: 3	
	FDD LTE Band 7: 3	
	FDD LTE Band 12: 3	
	FDD LTE Band 17: 3	
Multislot Class	GPRS/EGPRS: 12	1.1
Antenna Type	PIFA Antenna	

	GSM850	GSM1900	WCDMA B2	WCDMA B4	
	-2.35dBi	0.12dBi	0.12dBi	0.17dBi	
Antenna Gain	WCDMA B5	LTE B2	LTE B4	LTE B5	
Antenna Gam	-2.35dBi	0.12dBi	0.18dBi	-2.35dBi	
	LTE B7	LTE B12	LTE B17		
	0.25dBi	-2.58dBi	-2.56dBi		
	GSM850: 26.76dB	Sm			
	GSM1900: 28.67dBm				
	WCDMA Band II: 21.31dBm				
	WCDMA Band IV: 22.27dBm				
	WCDMA Band V: 17.81dBm				
The Max RF Output	LTE Band 2: 22.24	1dBm			
Power (EIRP/ERP)	LTE Band 4: 23.22	2dBm			
	LTE Band 5: 18.21 dBm				
	LTE Band 7: 20.86dBm				
	FDD LTE Band 12: 18.34dBm				
	FDD LTE Band 17	: 18.29dBm			

Note: The EUT information are declared by manufacturer. For more detailed features description, please refer to the manufacturer's specifications or user's manual.

3. Summary of Test Results

3.1 Test Standards

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 22 Subpart H	Cellular Radiotelephone Service
3	47 CFR Part 24 Subpart E	Broadband PCS
4	47 CFR Part 27	Miscellaneous Wireless Communications Services
5	ANSI/TIA-603-E-2016	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
6	KDB 971168 D01 v03r01	Measurement Guidance for Certification of Licensed Digital Transmitters
7	ANSI C63.26:2015	IEEE/ANSI Standard for Compliance Testing of Transmitters Used in Licensed Radio Services

3.2 Summary of Test Result

No.	Description	FCC Part No.	Test Verdict	Remark
1	Conducted RF Output Power	2.1046	Pass	
2	Effective (Isotropic) Radiated Power	2.1046 22.913(a) 24.232(c) 27.50	Pass	
3	Spurious Emission at Antenna Terminals	2.1051Spurious Emission at22.917		
4	Field Strength of Spurious Radiation	2.1053 22.917 24.238 27.53	Pass	

3.3 Uncertainty of Test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2 and TR100 028-1/-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
RF output power, conducted	0.63 dB
Conducted spurious emissions	0.94 dB
Radiated emissions ($<$ 1 GHz)	4.12 dB
Radiated emissions (>1 GHz)	4.16 dB
Occupied Channel Bandwidth	69 KHz
Frequency Stability	0.4 KHz
Temperature	0.82 °C
Humidity	4.1 %

4. Test Configuration

4.1 Environment Condition

During the measurement, the environmental conditions were within the listed ranges:

	NV (Normal Voltage)	3.87 V
Test Voltage of the EUT	LV (Low Voltage)	3.48 V
Ç	HV (High Voltage)	4.26 V
	NT (Normal Temperature)	+25 °C
Test Temperature of the EUT	LT (Low Temperature)	-30 °C
	HT (High Temperature)	+50 °C

4.2 Test Equipment List

	Conc	lucted Method	d Test			
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022.11.24	2023.11.23	\boxtimes
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022.11.24	2023.11.23	\boxtimes
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022.11.24	2023.11.23	\boxtimes
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022.11.24	2023.11.23	\boxtimes
RF Sensor Unit	Techy	TR1029-2	/	2022.11.24	2023.11.23	\boxtimes
RF Control Unit	Techy	TR1029-1	/	2022.11.24	2023.11.23	\boxtimes
RFTest software	/	V1.00	/	/	/	\boxtimes

		Radiated Metho	d Test			
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due	Use
SIGNAL ANALYZER	ROHDE&SCHWARZ	FSQ40	100010	2022.11.24	2023.11.23	\boxtimes
EMI TEST RECEIVER	ROHDE&SCHWARZ	ESCI7	101032	2022.11.24	2023.11.23	\boxtimes
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021.11.28	2023.11.27	\square
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021.11.28	2023.11.27	\boxtimes
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/	\boxtimes
RE Cable	REBES Talent	UF2-NMNM- 10m	21101570	2022.11.24	2023.11.23	\boxtimes

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

RE Cable	REBES Talent	UF1-SMASMAM- 10m	21101566	2022.11.24	2023.11.23	\boxtimes
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022.11.24	2023.11.23	\boxtimes
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022.11.24	2023.11.23	\boxtimes
RE Cable	REBES Talent	UF1-SMASMAM-1m	21101568	2022.11.24	2023.11.23	\boxtimes
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022.11.24	2023.11.23	\boxtimes
RE Cable	REBES Talent	UF1-SMASMAM- 10m	21101566	2022.11.24	2023.11.23	X
Preamplifier	SCHWARZBECK	BBV9744	00246	2022.11.24	2023.11.23	\boxtimes
Horn Antenna	Schwarzbeck	BBHA9120D	2597	2023.3.26	2024.3.25	\boxtimes
Low Noise Pre- amplifier	Sket	LNPA_1840G-50	SK2022032902	2023.3.26	2024.3.25	\boxtimes
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023.3.26	2024.3.25	\boxtimes
Broadband Preamplilifier	Schwarzbeck	BBV9718D	00008	2023.3.26	2024.3.25	\boxtimes

4.3 Test Auxiliary Equipment

Description	Manufacturer	Model	Serial No.	Length	Description	Use
/	/	/	/	/	/	\boxtimes

4.4 Test Configurations

Test Items	Test Mode		Test Channel	
rest liellis	I COLIVIOUC	LCH	MCH	HCH
	GPRS 850	V	V	v
	GPRS 1900	V	V	V
	EGPRS 850	v	V	v
	EGPRS 1900	v	V	V
	WCDMA Band 2	v	v	v
	WCDMA Band 4	v	v	v
Effective (Isotropic) Radiated Power	WCDMA Band 5	V	v	v
	HSDPA Band 2	v	v	V
	HSDPA Band 4	v	v	v
	HSDPA Band 5	V	v	V
	HSUPA Band 2	V	V	v
	HSUPA Band 4	v	V	v
	HSUPA Band 5	V	V	V
	GPRS 850	v	V	v v
	GPRS 1900	v	V	V
	EGPRS 850	V	V	V
	EGPRS 1900	v	v	v v
	WCDMA Band 2	v	V	
	WCDMA Band 4	V	V	
Spurious Emission at Antenna Terminals	WCDMA Band 5	v	V	V
	HSDPA Band 2	V	V	V
	HSDPA Band 4	V	V	v
	HSDPA Band 5	v	V	V
	HSUPA Band 2	V	v	v
	HSUPA Band 4	v	V	V
	HSUPA Band 5	v	V	V
	GPRS 850	v	V	v
	GPRS 1900	v	V	v
	EGPRS 850	V	v	V
	EGPRS 1900	v	V	V V V V V V V V V V V V V V V V V V V
Field Strength of Spurious Radiation	WCDMA Band 2	v	V	V
	WCDMA Band 4	v	V	v
	WCDMA Band 5	v	V	v
	HSDPA Band 2	v	V	v
	HSDPA Band 4	v	v	V

Page 14 of 52

HSDPA Band 5	v	v	v
HSUPA Band 2	v	v	v
HSUPA Band 4	v	v	v
HSUPA Band 5	v	v	v

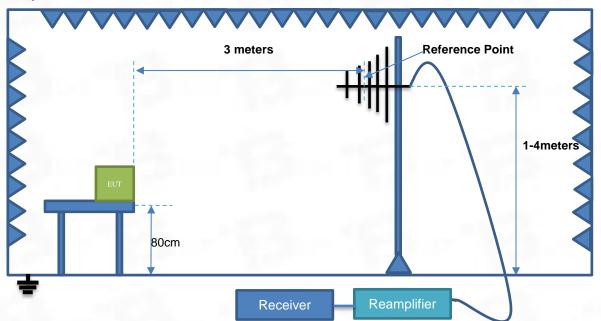
UL Frequency UL Channel No. Test Mode **UL** Channel (MHz) 824.2 Low Channel 128 **GPRS/EGPRS** 850 Middle Channel 190 836.6 251 High Channel 848.8 Low Channel 512 1850.2 **GPRS/EGPRS 1900** Middle Channel 661 1880.0 1909.8 High Channel 810 Low Channel 9262 1852.4 Middle Channel 9400 1880.0 WCDMA Band 2 High Channel 9538 1907.6 1712.4 1312 Low Channel 1732.6 WCDMA Band 4 Middle Channel 1413 **High Channel** 1513 1752.6 4132 826.4 Low Channel 836.4 WCDMA Band 5 Middle Channel 4182 **High Channel** 4233 846.6

LTE	Bandwidth (MHz)						Modula	ation Type	RB# Test Chan			nel		
Band	1.4	3	5	10	15	20	QPSK	16-QAM	1	Half	Full	LCH	MCH	HCH
Effective (Isotropic) Radiated Power														
2	v	v	v	v	v	v	v	v	v	v	v	v	V	v
4	v	v	v	v	v	v	v	v	v	v	v	v	v	v
5	v	v	v	v	n	n	v	V	v	v	V	V	v	v
7	n	n	v	v	v	v	v	V	v	v	V	V	V	V
12	v	v	v	v	n	n	v	v	v	V	v	v	v	V
17	n	n	V	V	n	n	V	V	V	V	V	V	V	V
					Spurio	ous Er	mission at	t Antenna To	ermina	als				
2	v	V	v	v	v	v	V	V	v	v	V	v	v	V
4	v	v	v	v	v	v	v	V	v	v	v	v	v	v
5	v	v	v	v	n	n	v	V	v	v	v	V	v	V
7	n	n	v	v	v	v	v	v	v	v	V	V	V	v
12	v	v	v	v	n	n	v	V	v	V	V	V	V	V
17	n	n	v	v	n	n	v	v	v	v	v	V	V	V

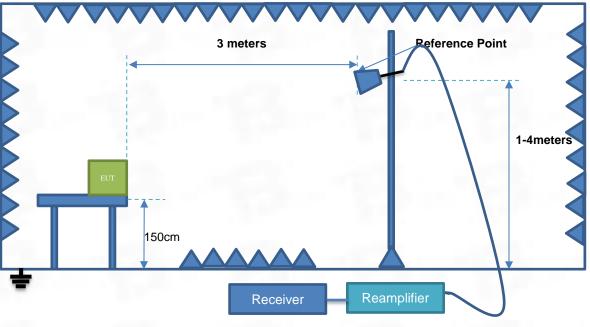
	Field Strength of Spurious Radiation													
2	v	v	v	v	v	v	v	v	v	v	v	v	v	V
4	v	v	v	v	v	v	v	v	v	v	v	V	v	V
5	v	v	v	v	n	n	v	v	v	v	v	v	v	v
7	n	n	v	v	v	v	v	v	V	v	v	v	v	V
12	v	v	v	v	n	n	v	v	v	v	v	v	v	v
17	n	n	v	v	n	n	v	v	v	V	v	v	v	V
Note 1. T	ho mai	rk "v" r	noong	that	this co	onfigu	ration is c	hosen for te	etina					

Note 1: The mark "v" means that this configuration is chosen for testing. Note 2: The mark "n" means that this bandwidth is not supported.

			Ban	d 2		
	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	Ndl	Frequency of Downlink [MHz]
		1.4	18607	1850.7	607	1930.7
		3	18615	1851.5	615	1931.5
	Low Range	5	18625	1852.5	625	1932.5
	Ŭ.	10 15 ^[1]	18650 18675	1855 1857.5	650 675	1935 1937.5
	-	20 19	18700	1860	700	1940
	Mid Range	1.4/3/5/10 15 ^[1] /20 ^[1]	18900	1880	900	1960
-		1.4	19193	1909.3	1193	1989.3
	ŀ	3	19185	1908.5	1185	1988.5
		5	19175	1907.5	1175	1987.5
	High Range	10	19150	1905	1150	1985
		15 ¹¹	19125	1902.5	1125	1982.5
N	NOTE 1: Bandwidth	20 ^[1]	19100	1900	1100	1980
1		7] Clause 7.3) is allo		cilled OE receiver s	ensitivity ret	quirement (15
			Ban	d 4		
Ĩ	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]
F		1.4	19957	1710.7	1957	2110.7
]	3	19965	1711.5	1965	2111.5
	Low Range	5	19975	1712.5	1975	2112.5
	Low runge	10	20000	1715	2000	2115
		15	20025	1717.5	2025	2117.5
_		20	20050	1720	2050	2120
	Mid Range	1.4/3/5/10/15/20	20175	1732.5	2175	2132.5
		1.4	20393	1754.3	2393	2154.3
		5	20385 20375	1753.5 1752.5	2385 2375	2153.5 2152.5
	High Range	10	20375	1752.5	2375	2152.5
	1	15	20325	1747.5	2325	2147.5
	-	20	20320	1745	2300	2147.5
			Ban	d 5		
	Test Frequency ID	Bandwidth	NuL	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]
T		[MHz]	1			
T 		1.4	20407	824.7	2407	
T			20407 20415	824.7 825.5	2407 2415	869.7
T	Low Range	1.4 3 5		825.5	2415	869.7 870.5
T	Low Range	1.4 3	20415			869.7
T 	Low Range Mid Range	1.4 3 5 10 ^[1]	20415 20425	825.5 826.5	2415 2425	869.7 870.5 871.5
	-	1.4 3 5	20415 20425 20450	825.5 826.5 829	2415 2425 2450	869.7 870.5 871.5 874
	Mid Range	1.4 3 5 10 ^[1] 1.4/3/5 10 ^[1]	20415 20425 20450 20525	825.5 826.5 829 836.5	2415 2425 2450 2525	869.7 870.5 871.5 874 881.5
-	-	1.4 3 5 10 ¹¹¹ 1.4/3/5 10 ¹¹¹ 1.4 3 5	20415 20425 20450 20525 20643	825.5 826.5 829 836.5 848.3	2415 2425 2450 2525 2643	869.7 870.5 871.5 874 881.5 893.3
	Mid Range High Range	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11]	20415 20425 20450 20525 20643 20635 20625 20600	825.5 826.5 829 836.5 848.3 847.5 846.5 844.5	2415 2425 2450 2525 2643 2635 2625 2600	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 891.5 889
	Mid Range High Range NOTE 1: Bandwidth 1	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11]	20415 20425 20450 20525 20643 20635 20635 20625 20600 of the speci	825.5 826.5 829 836.5 848.3 847.5 846.5 844.5	2415 2425 2450 2525 2643 2635 2625 2600	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 891.5 889
	Mid Range High Range NOTE 1: Bandwidth 1	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] or which a relaxation	20415 20425 20450 20525 20643 20635 20635 20625 20600 of the speci	825.5 826.5 829 836.5 848.3 847.5 846.5 846.5 844 fied UE receiver ser	2415 2425 2450 2525 2643 2635 2625 2600	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 891.5 889
N	Mid Range High Range NOTE 1: Bandwidth 1	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] or which a relaxation] Clause 7.3) is allow	20415 20425 20450 20525 20643 20635 20625 20600 of the speci ved.	825.5 826.5 829 836.5 848.3 847.5 846.5 846.5 844 fied UE receiver ser	2415 2425 2450 2525 2643 2635 2625 2600	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 891.5 889
N	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27	1.4 3 5 10 ^[17] 1.4/3/5 10 ^[17] 1.4 3 5 10 ^[17] for which a relaxation] Clause 7.3) is allow Bandwidth [MHz]	20415 20425 20450 20525 20643 20635 20625 20605 20605 20600 of the speci ved.	825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844.5 fied UE receiver ser d 7	2415 2425 2450 2525 2643 2635 2625 2600 nsitivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 899.5 899.5 899.7 rement (TS
N	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] i.4 3 5 10 ^[11] (I) Constant of the set of	20415 20425 20450 20525 20643 20635 20625 20600 of the speci ved. Bann NuL 20775	825.5 826.5 829 836.5 848.3 847.5 846.5 844. fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5	2415 2425 2450 2525 2643 2625 2600 nsitivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5
N	Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] 1.4 3 5 10 ^[11] (II] 1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4/3/5	20415 20425 20450 20525 20643 20635 20625 20600 of the speci ved. NuL 20775 20800	825.5 829 836.5 848.3 847.5 846.5 844. fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2505	2415 2425 2450 2525 2643 2635 2600 sittivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625
Ν	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27	1.4 3 5 10 ^[17] 1.4/3/5 10 ^[17] 1.4 3 5 10 ^[17] or which a relaxation] Clause 7.3) is allow Bandwidth [MHz] 5 10 15	20415 20425 20450 20525 20643 20625 20600 of the spect ved. Ban VuL 20775 20800 20825	825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2505 2507.5	2415 2425 2450 2525 2643 2635 2600 nsitivity required 2775 2800 2825	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2625 2627.5
Ν	Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] (Iularian and a second seco	20415 20425 20450 20525 20643 20635 20625 20600 of the speci ved. NuL 20775 20800	825.5 829 836.5 848.3 847.5 846.5 844. fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2505	2415 2425 2450 2525 2643 2635 2600 sittivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625
Ν	Mid Range High Range NOTE 1: Bandwidth f 36.101 [27	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] or which a relaxation] Clause 7.3) is allow Bandwidth [MHz] 5 10 15 20 ^[11]	20415 20425 20450 20525 20643 20625 20600 of the spect ved. Ban NuL 20775 20800 20825 20850	825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510	2415 2425 2450 2525 2643 2635 2600 nsitivity required 2775 2800 2825 2850	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2625 2630
Ν	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27 Test Frequency ID Low Range	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] 1.4 5 10 ^[11] 1.4 5 10 ^[11] 5 10 10 10 15 20 ^[11] 5 20 ^{[11}	20415 20425 20425 20525 20643 20625 20600 of the spectived. Band NuL 20775 20800 20825 20850 21100	825.5 826.5 829 836.5 848.3 847.5 846.5 844 fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2500 2507.5 2510 2535	2415 2425 2450 2525 2643 2635 2600 nsitivity required 2775 2800 2825 2850 3100	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2625 2630 2655
Ν	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27 Test Frequency ID Low Range	1.4 3 5 10 ¹⁷¹ 1.4/3/5 10 ¹⁷¹ 1.4 3 5 10 ¹⁷¹ 1.4 10 ¹⁷¹ 1.4 3 5 10 ¹⁷¹ 1.4 1.4 3 5 10 ¹⁷¹ 1.4 1.4 3 5 10 ¹⁷¹ 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	20415 20425 20430 20525 20643 20635 20625 20605 20605 20605 20600 ved. Bano NuL 20775 20800 20825 20850 21100 21425	825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844 fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2507.5 2507.5 2510 2535 2567.5	2415 2425 2450 2525 2643 2625 2600 nsitivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 893.3 992.5 891.5 899.7 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2630 2655 2687.5
N	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27 Test Frequency ID Low Range	1.4 3 5 10 ^[11] 1.4/3/5 10 ^[11] 1.4 3 5 10 ^[11] i.4 3 5 10 ^[11] (I) i.4 3 5 10 ^[11] (I) 5 10 ^[11] 5 10 ^[11] 5	20415 20425 20450 20525 20643 20635 20625 20600 of the specived. Bann 20775 20800 20825 20800 20825 20850 21100 21425 21400	825.5 829 836.5 848.3 847.5 846.5 844. fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2505 2507.5 2510 2535 2566	2415 2425 2450 2525 2643 2625 2600 nsitivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 891.5 889 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2625 2655 2687.5 2685
N	Mid Range High Range NOTE 1: Bandwidth 1 36.101 [27 Test Frequency ID Low Range Mid Range	1.4 3 5 10 ¹⁷¹ 1.4/3/5 10 ¹⁷¹ 1.4 3 5 10 ¹⁷¹ 1.4 10 ¹⁷¹ 1.4 3 5 10 ¹⁷¹ 1.4 1.4 3 5 10 ¹⁷¹ 1.4 1.4 3 5 10 ¹⁷¹ 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	20415 20425 20430 20525 20643 20635 20625 20605 20605 20605 20600 ved. Bano NuL 20775 20800 20825 20850 21100 21425	825.5 826.5 829 836.5 848.3 847.5 846.5 844.5 844 fied UE receiver ser d 7 Frequency of Uplink [MHz] 2502.5 2507.5 2507.5 2510 2535 2567.5	2415 2425 2450 2525 2643 2625 2600 nsitivity requi	869.7 870.5 871.5 874 881.5 893.3 892.5 891.5 893.3 992.5 891.5 899.7 rement (TS Frequency of Downlink [MHz] 2622.5 2625 2630 2655 2687.5



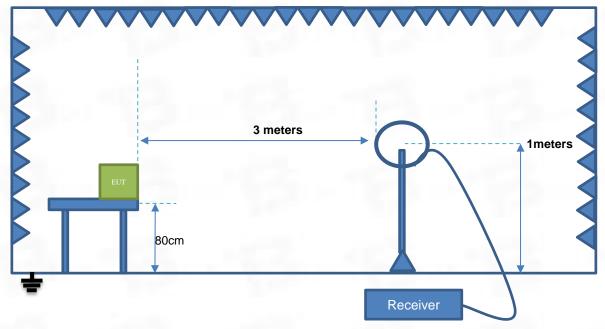
			Bar	nd 12			
1000	Table 4.3.1.1.12-1	Test frequenci	es for E-UT	RA channel band	width for	operating band 12	
	Test Frequency ID	Bandwidth [MHz]	NuL	Frequency of Uplink [MHz]	NDL	Frequency of Downlink [MHz]	
		1.4	23017	699.7	5017	729.7	
	Low Range	3	23025	700.5	5025	730.5	
	Low Range	5 [1]	23035	701.5	5035	731.5	
		10 [1]	23060	704	5060	734	
	Mid Range	1.4/3 5 ^[1] /10 ^[1]	23095	707.5	5095	737.5	
		1.4	23173	715.3	5173	745.3	
	High Range	3	23165	714.5	5165	744.5	
	Tight Range	5 [1]	23155	713.5	5155	743.5	
		10 [1]	23130	711	5130	741	
		for which a relaxa 1 [27] Clause 7.3) i		ecified UE receiver	sensitivity ree	quirement	
			Ban	d 17			
	Test Frequency ID	Bandwidth [MHz]	Nul	Frequency of Uplink [MHz]	N _{DL}	Frequency of Downlink [MHz]	
	Low Papag	5 [1]	23755	706.5	5755	736.5	
	Low Range	10 [1]	23780	709	5780	739	
	Mid Range	5 [1]/10 [1]	23790	710	5790	740	
	High Range	5 [1]	23825	713.5	5825	743.5	
	riigir Kange	10 [1]	23800	711	5800	741	



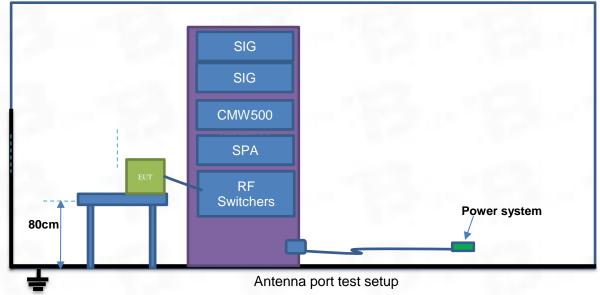
4.5 Test Setup

Test Setup 1

Radiation Test (30MHz - 1GHz)


Radiation Test (Above 1GHz)

Test Report Number: BTF230913R00705


Page 20 of 52

Radiation Test (9k - 30MHz)

5. Test Items

5.1 Transmitter Radiated Power (EIRP/ERP)

5.1.1 Limit

FCC § 2.1046 & 22.913(a) & 24.232(c) & 27.50(a) & 27.50(b) & 27.50(c) & 27.50(d) & 27.50(h) & 90.635(b) & 90.542(a); RSS-103 4.6; RSS-132 5.4, RSS-133 6.4, RSS-139 6.5, RSS199 4.4

According to FCC section 22.913(a) (5), the Effective Radiated Power (ERP) of mobile transmitters and auxiliary test transmitters must not exceed 7 watts.

According to FCC section 24.232(c), mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

According to FCC section 27.50(a) (3), for mobile and portable stations transmitting in the 2305-2315MHz band or the 2350-2360MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards.

FCC section 27.50(b) (10), portable stations (hand-held devices) transmitting in the 746-757MHz, 776-788MHz, and 805-806MHz bands are limited to 3 watts ERP.

FCC section 27.50(c) (10), portable stations (hand-held devices) in the 600MHz uplink band and the 698-746MHz band, and fixed and mobile stations in the 600MHz uplink band are limited to 3 watts ERP.

FCC section 27.50(d) (4), fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(7) Fixed, mobile, and portable (hand-held) stations operating in the 2000-2020 MHz band are limited to 2 watts EIRP.

And FCC section 27.50(h) (2), for mobile and other user stations, mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

According to FCC section 90.635(b), the maximum output power of the transmitter for mobile stations is 100 watts (20dBW).

According to FCC section 90.542(a) (7), portable stations (hand-held devices) transmitting in the 758-768 MHz band and the 788-798 MHz band are limited to 3 watts ERP.

5.1.2 Test Setup

The section 4.4 test setup 4 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

5.1.3 Test Procedure <u>Description of the Conducted Output Power Measurement</u>

The EUT is coupled to the SS with attenuator through power splitter; the RF load attached to EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. A system simulator is used to establish communication with the EUT, and its parameters are set to force the EUT transmitting at maximum output power. The measured power in the radio frequency on the transmitter output terminals shall be reported.

The relevant equation for determining the conducted measured value is:

Conducted Output Power Value (dBm) = Measured Value (dBm) + Path Loss (dB)

where:

Conducted Output Power Value = final conducted measured value in the conducted power test, in dBm; Measured Value = measured conducted power received by spectrum analyzer or power meter, in dBm; Path Loss = signal attenuation in the connecting cable between the transmitter and spectrum analyzer or power meter, including external cable loss, in dB;

During the test, the data of Path Loss (dB) is added in the spectrum analyzer or power meter, so Measured Value (dBm) is the final values which contains the data of Path Loss (dB).

For example:

In the conducted output power test, when measured value for GSM850 is 24.7 dBm, and path loss is 8.5 dB, then final conducted output power value is: Conducted Output Power Value (dBm) = 24.7 dBm + 8.5 dB = 33.2 dBm

Description of the Transmitter Radiated Power Measurement

In many cases, the RF output power limits for licensed digital transmission devices is specified in terms of effective radiated power (ERP) or equivalent isotropic radiated power (EIRP). Typically, ERP is specified when the operating frequency is less than or equal to 1 GHz and EIRP is specified when the operating frequency is greater than 1 GHz. Both are determined by adding the transmit antenna gain to the conducted RF output power with the primary difference between the two being that when determining the ERP, the transmit antenna gain is referenced to a dipole antenna (i.e., dBd) whereas when determining the EIRP, the transmit antenna gain is referenced to an isotropic antenna (dBi).

Final measurement calculation as below:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is: ERP/EIRP = PMeas + GT - LC

where:

ERP/EIRP = effective or equivalent radiated power, respectively (expressed in the same units as PMeas, typically dBW or dBm);

PMeas = measured transmitter output power or PSD, in dBm or dBW; GT = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP); dBd (ERP)=dBi (EIRP) -2.15 dB LC = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

For devices utilizing multiple antennas, KDB 662911 provides guidance for determining the effective array transmit antenna gain term to be used in the above equation.

For example:

In the EIRP test, when PMeas value for GSM1900 is 30.2 dBm, LC is 0.6 dB, and GT is -3.4 dB, then final EIRP value is:

EIRP for GSM1900 = 30.2 dBm - 3.4 dBi - 0.6 dB = 26.2 dBm

The relevant equation for determining the ERP/EIRP from the radiated RF output power is:

ERP/EIRP (dBm) = SA Read Value (dBm) + Correction Factor (dB)

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm; Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is:

ERP(dBm) = 21dBm + 8dB = 29dBm

5.1.4 Test Result

Refer to appendix report.

5.2 Field Strength of Spurious Radiation

5.2.1 Limit

FCC § 2.1053 & 22.917(a) & 24.238(a) & 27.53(a) & 27.53(c) & 27.53(f) & 27.53(g) & 27.53(h) & 27.53(m) & 90.691& 90.543 ; RSS-130 4.7, RSS-132 5.5, RSS-133 6.5, RSS-139 6.6, RSS199 4.5

FCC § 22.917(a) & 24.238(a)

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P) dB. This is calculated to be -13 dBm.

FCC § 27.53(a) (4), RSS-139 6.6

For mobile and portable stations operating in the 2305-2315MHz and 2350-2360MHz bands:

(1) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320MHz and on all frequencies between 2345 and 2360MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324MHz and on all frequencies between 2341 and 2345MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328MHz and on all frequencies between 2337 and 2341MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337MHz.

(2) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292MHz, and 70 + 10 log (P) dB below 2288MHz.

(3) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365MHz, and not less than 70 + 10 log (P) dB above 2365MHz.

FCC § 27.53(c), RSS-139 6.6

For operations in the 746–758 MHz band and the 776–788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746–758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

(2) On any frequency outside the 776–788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;

(3) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763–775 MHz and 793–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater.

However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of

measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

FCC § 27.53(f), RSS-139 6.6

For operations in the 746–758 MHz, 775–788 MHz, and 805–806 MHz bands, emissions in the band 1559–1610 MHz shall be limited to - 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

FCC § 27.53(g), RSS-139 6.6

For operations in the 600MHz band and the 698-746MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43+10*log(P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

FCC § 27.53(h) (1), RSS-139 6.6

Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log10 (P) dB. FCC § 27.53(m) (4) For mobile digital stations (BRS and EBS stations), the attenuation factor shall be not less than:

• 40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge.

• 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge,

• 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB).

In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

FCC § 90.691

(a) Out-of-band emission requirement shall apply only to the "outer" channels included in an EA license and to spectrum adjacent to interior channels used by incumbent licensees. The emission limits are as follows:
(1) For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10(f/6.1) decibels or 50 + 10 Log10(P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the block in kilohertz and where f is greater than 12.5 kHz.

(2) For any frequency removed from the EA licensee's frequency block greater than 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 43 + 10Log10(P) decibels or 80

decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 37.5 kHz.

(b) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

FCC § 90.543

(e) For operations in the 758–768 MHz and the 788–798 MHz bands, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations.

(2) On all frequencies between 769–775 MHz and 799–805 MHz, by a factor not less than 65 + 10 log (P) dB in a 6.25 kHz band segment, for mobile and portable stations.

(3) On any frequency between 775–788 MHz, above 805 MHz, and below 758 MHz, by at least 43 + 10 log (P) dB.

(4) Compliance with the provisions of paragraphs (e)(1) and (2) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

RSS199 4.5

- (a) for base station and fixed subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least 43 + 10 log10 p.
- (b) for mobile subscriber equipment, the power of any unwanted emissions measured as above shall be attenuated (in dB) below the transmitter power, P (dBW), by at least:
 - (i) 40 + 10 log10 p from the channel edges to 5 MHz away
 - (ii) 43 + 10 log10 p between 5 MHz and X MHz from the channel edges, and
 - (iii) 55 + 10 log10 p at X MHz and beyond from the channel edges
- In addition, the attenuation shall not be less than 43 + 10 log10 p on all frequencies between 2490.5 MHz and 2496 MHz, and 55 + 10 log10 p at or below 2490.5 MHz.
- In (a) and (b), p is the transmitter power measured in watts and X is 6 MHz or the equipment occupied bandwidth, whichever is greater.

5.2.2 Test Setup

The section 4.5 test setup 4 description is used for conducted test, and the test setup description is used for radiated test. The photo of test setup please refer to ANNEX B.

5.2.3 Test Procedure

1. On a test site, the EUT shall be placed at 80cm height on a turn table, and in the position close to normal use as declared by the applicant.

2. The test antenna shall be oriented initially for vertical polarization located 3 m from EUT to correspond to the fundamental frequency of the transmitter.

3. The output of the test antenna shall be connected to the measuring receiver and the peak detector is used for the measurement.

Test Report Number: BTF230913R00705

4. During the measurement of the EUT, the resolution bandwidth was to 1 MHz and the average bandwidth was set to 1 MHz.

5. The transmitter shall be switched on; the measuring receiver shall be tuned to the frequency of the transmitter under test.

6. The test antenna shall be raised and lowered through the specified range of height until the maximum signal level is detected by the measuring receiver.

7. The transmitter shall be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.

8. The test antenna shall be raised and lowered again through the specified range of height until the maximum signal level is detected by the measuring receiver.

9. The maximum signal level detected by the measuring receiver shall be noted.

10. The EUT was replaced by half-wave dipole (824 ~ 849 MHz) or horn antenna (1 850 ~ 1 910 MHz) connected to a signal generator.

11. In necessary, the input attenuator setting on the measuring receiver shall be adjusted in order to increase the sensitivity of the measuring receiver.

12. The test antenna shall be raised and lowered through the specified range of height to ensure that the maximum signal is received.

13. The input signal to the substitution antenna shall be adjusted to the level that produces a level detected by the measuring received, which is equal to the level noted while the transmitter radiated power was measured, corrected for the change of input attenuator setting of the measuring receiver.

14. The input level to the substitution antenna shall be recorded as power level in dBm, corrected for any change of input attenuator setting of the measuring receiver.

15. The measurement shall be repeated with the test antenna and the substitution antenna orientated for horizontal polarization.

Final measurement calculation as below:

The relevant equation for determining the ERP/EIRP from the radiated RF output power is: ERP/EIRP (dBm) = SA Read Value (dBm) + Correction Factor (dB)

where:

ERP/EIRP = effective or equivalent radiated power, in dBm;

SA Read Value = measured transmitter power received by EMI receiver or spectrum analyzer, in dBm; Correction Factor = total correction factor including cable loss, in dB;

During the test, the data of Correction Factor (dB) is added in the EMI receiver or spectrum analyzer, so SA Read Value (dBm) is the final values which contains the data of Correction Factor (dB).

For example:

In the ERP test, when SA read value for GSM850 is 21dBm, and correction factor is 8dB, then final ERP value for GSM850 is: ERP (dBm) = 21dBm + 8dB = 29dBm

5.2.4 Test Result

Please refer to ANNEX A.7

Ва	and:	GS	SM850	c	Test channel:	Lowest	Test mode:	TX	Polariza	tion:	Н
No.	Frequen (MHz)		Readin (dBm)	•	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1189.36	8	-22.10)	-17.10	-39.20	-13.00	-26.20	peak	Р	
2 *	1672.77	'9	1.53		-19.53	-18.00	-13.00	-5.00	peak	P	
3 !	2507.12	29	-0.37		-17.91	-18.28	-13.00	-5.28	peak	P	
4	3347.37	'1	-29.53	3	-16.85	-46.38	-13.00	-33.38	peak	P	
5	7179.52	27	-13.70)	-14.00	-27.70	-13.00	-14.70	peak	P	
6	13877.0	76	-30.38	3	-10.70	-41.08	-13.00	-28.08	peak	Р	

Ba	and:	GS	SM850	(Test channel:	Lowest	Test mode:	TX	Polarizat	ion:	v
No.	Frequen (MHz)		Readin (dBm)		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/I	F
1	1672.77	'9	-1.86		-19.53	-21.39	-13.00	-8.39	peak	P	
2 *	2507.12	9	-2.89		-17.91	-20.80	-13.00	-7.80	peak	P	
3	4495.12	4	-33.08	3	-17.28	-50.36	-13.00	-37.36	peak	P	
4	7179.52	27	-19.55	5	-14.00	-33.55	-13.00	-20.55	peak	P	
5	7390.07	0	-21.72	2	-14.19	-35.91	-13.00	-22.91	peak	P	
6	12505.7	05	-33.62	2	-10.38	-44.00	-13.00	-31.00	peak	P	

	Ва	and:	d: GSM850		с	Test hannel:	Middle	Test mode:	TX	Polarizat	tion:	Н
	No.	Frequen (MHz)		Readin (dBm)	~	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/I	-
	1	1189.36	68	-29.55	5	-17.10	-46.65	-13.00	-33.65	peak	P	
	2 !	1672.77	7 <mark>9</mark>	0.88		-19.53	-18.65	-13.00	-5.65	peak	P	
	3 *	2507.12	29	-0.55		-17.91	-18.46	-13.00	-5.46	peak	P	
	4	5503.14	13	-35.82	2	-11.63	-47.45	-13.00	-34.45	peak	P	
	5	7179.52	27	-15.75	5	-14.00	-29.75	-13.00	-16.75	peak	P	
[6	13877.0	76	-29.14	4	-10.70	-39.84	-13.00	-26.84	peak	P	

Ba	and:	GS	SM850	Test channel:	Middle	Test mode:	TX	Polarizat	tion:	V
No.	Frequen (MHz)		Readin (dBm)		Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1 *	1672.77	9	-8.76	-19.53	-28.29	-13.00	-15.29	peak	Р	
2	2507.12	9	-11.74	-17.91	-29.65	-13.00	-16.65	peak	Р	
3	4495.12	4	-33.84	-17.28	-51.12	-13.00	-38.12	peak	Р	
4	7179.52	7	-18.24	-14.00	-32.24	-13.00	-19.24	peak	Р	
5	10215.01	17	-33.23	-13.24	-46.47	-13.00	-33.47	peak	P	
6	15668.2	11	-32.45	-9.16	-41.61	-13.00	-28.61	peak	P	

Ва	and:	: GSM850		с	Test channel:	Highest	Test mode:	TX	Polariza	tion:	Н
No.	Frequen (MHz)		Readin (dBm)	~	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1189.36	8	-29.48	3	-17.10	-46.58	-13.00	-33.58	peak	Р	
2	1672.77	9	-7.37		-19.53	-26.90	-13.00	-13.90	peak	Р	
3 *	2507.12	9	-5.70		-17.91	-23.61	-13.00	-10.61	peak	Р	
4	5503.14	3	-38.02	2	-11.63	-49.65	-13.00	-36.65	peak	Р	
5	7179.52	7	-18.22	2	-14.00	-32.22	-13.00	-19.22	peak	Р	
6	7390.07	0	-20.87	7	-14.19	-35.06	-13.00	-22.06	peak	Р	

Ba	and: GSM850		350	Test channel:	Highest	Test mode:	TX	Polariza	tion:	v
No.	Frequenc (MHz)	y I	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1672.77	9	-5.84	-19.53	-25.37	-13.00	-12.37	peak	Р	
2 *	2507.12	9	-1.05	-17.91	-18.96	-13.00	-5.96	peak	Р	
3	5315.54	1	-39.40	-12.73	-52.13	-13.00	-39.13	peak	Р	
4	5503.143	3	-35.82	-11.63	-47.45	-13.00	-34.45	peak	Р	
5	7179.52	7	-20.17	-14.00	-34.17	-13.00	-21.17	peak	Р	
6	12505.70	5	-32.81	-10.38	-43.19	-13.00	-30.19	peak	Р	

Test Report Number: BTF230913R00705

Ba	and:	GSM	1900	Test channel:	Lowest	Test mode:	TX	Polariza	tion: H
No.	Frequenc (MHz)	y	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1 *	1877.800	0	2.70	-19.24	-16.54	-13.00	-3.54	peak	Р
2	2464.024	4	-29.92	-17.95	-47.87	-13.00	-34.87	peak	Р
3	3757.63	7	-8.84	-16.68	-25.52	-13.00	-12.52	peak	Р
4	5631.874	4	-32.63	-12.07	-44.70	-13.00	-31.70	peak	Р
5	7179.52	7	-17.15	-14.00	-31.15	-13.00	-18.15	peak	Р
6	13877.07	6	-27.05	-10.70	-37.75	-13.00	-24.75	peak	Р

Ba	and:	GSM1900	M1900 Test channel:		Test mode:	TX	Polariza	tion: V
No.	Frequenc (MHz)	y Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2464.024	4 -35.72	-17.95	-53.67	-13.00	-40.67	peak	Р
2 *	3757.637	7 -16.41	-16.68	-33.09	-13.00	-20.09	peak	Р
3	5503.143	3 -35.91	-11.63	-47.54	-13.00	-34.54	peak	Р
4	7179.527	7 -20.32	-14.00	-34.32	-13.00	-21.32	peak	Р
5	10039.39	3 -31.13	-13.04	-44.17	-13.00	-31.17	peak	Р
6	13877.07	6 -29.18	-10.70	-39.88	-13.00	-26.88	peak	Р

Ba	Band: GSM19		Band: GSM190				M1900 Test channel:		Middle		Test mode: TX		tion: H
No.	Frequen (MHz)	· ·	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F				
1	2464.02	4	-31.35	-17.95	-49.30	-13.00	-36.30	peak	Р				
2	3757.63	7	-22.54	-16.68	-39.22	-13.00	-26.22	peak	Р				
3	5503.14	3	-37.85	-11.63	-49.48	-13.00	-36.48	peak	Р				
4 *	7179.52	7	-19.35	-14.00	-33.35	-13.00	-20.35	peak	Р				
5	10039.3	93	-32.69	-13.04	-45.73	-13.00	-32.73	peak	Р				
6	13877.0	76	-31.21	-10.70	-41.91	-13.00	-28.91	peak	Р				

Ва	and:	GS	M1900	Test channel:	Middle	Test mode:	TX	Polarizat	cion: V
No.	Frequen (MHz)		Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2393.82	4	-36.27	-17.98	-54.25	-13.00	-41.25	peak	Р
2 *	3779.42	2	-12.63	-16.66	-29.29	-13.00	-16.29	peak	Р
3	5503.14	3	-41.06	-11.63	-52.69	-13.00	-39.69	peak	Р
4	7179.52	7	-23.85	-14.00	-37.85	-13.00	-24.85	peak	Р
5	10039.39	93	-33.35	-13.04	-46.39	-13.00	-33.39	peak	Р
6	13877.0	76	-30.50	-10.70	-41.20	-13.00	-28.20	peak	Р

Ва	nd:	GSI	M1900	Test channel:	Highest	Test mode:	TX	Polariza	tion: H
No.	Frequen (MHz)		Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	2464.02	4	-30.81	-17.95	-48.76	-13.00	-35.76	peak	Р
2	3386.29	7	-40.04	-16.90	-56.94	-13.00	-43.94	peak	Р
3	5631.87	'4	-33.82	-12.07	-45.89	-13.00	-32.89	peak	Р
4 *	7179.52	7	-18.33	-14.00	-32.33	-13.00	-19.33	peak	Р
5	10039.3	93	-29.81	-13.04	-42.85	-13.00	-29.85	peak	Р
6	15221.8	24	-29.35	-9.55	-38.90	-13.00	-25.90	peak	Р

Ba	ind:	GS	M1900	Test channel:	Highest	Test mode:	TX	Polariza	tion:	v
No.	Frequen (MHz)		Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2464.02	4	-36.98	-17.95	-54.93	-13.00	-41.93	peak	P	
2 *	3757.63	7	-16.68	-16.68	-33.36	-13.00	-20.36	peak	P	
3	5439.88	5	-39.04	-11.98	-51.02	-13.00	-38.02	peak	P	
4	7179.52	7	-31.72	-14.00	-45.72	-13.00	-32.72	peak	P	
5	10575.53	35	-34.89	-13.46	-48.35	-13.00	-35.35	peak	P	
6	14533.90	06	-32.24	-10.55	-42.79	-13.00	-29.79	peak	P	

Ва	ind:		CDMA nd II	cł	Test nannel:	Lowest	Test mode:	20M	Polariza	tion:	Н
No.	Frequen (MHz)		Readi (dBm		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2464.02	24	-30.9	4	-17.95	-48.89	-13.00	-35.89	peak	Р	
2 *	3714.44	13	-10.1	2	-16.74	-26.86	-13.00	-13.86	peak	Р	
3	5567.13	36	-34.3	4	-11.85	-46.19	-13.00	-33.19	peak	Р	
4	7179.52	27	-18.1	1	-14.00	-32.11	-13.00	-19.11	peak	Р	
5	10039.3	93	-31.2	9	-13.04	-44.33	-13.00	-31.33	peak	Р	
6	13957.5	29	-28.5	9	-10.75	-39.34	-13.00	-26.34	peak	Р	

3G Part (only show the worst case for WCDMA Band 2/4/5)

Ва	and:		CDMA nd II	cl	Test nannel:	Lowest	Test mode:	20M	Polariza	tion:	v
No.	Frequer (MHz)		Readir (dBm	<u> </u>	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/f	-
1	2464.02	24	-30.2	8	-17.95	-48.23	-13.00	-35.23	peak	P	
2 *	3693.03	33	-3.00)	-16.78	-19.78	-13.00	-6.78	peak	P	
3	4495.12	24	-34.9	1	-17.28	-52.19	-13.00	-39.19	peak	P	
4	5567.13	36	-25.9	9	-11.85	-37.84	-13.00	-24.84	peak	P	
5	7179.52	27	-19.8	5	-14.00	-33.85	-13.00	-20.85	peak	P	
6	12219.8	53	-34.8	4	-10.36	-45.20	-13.00	-32.20	peak	P	


Ва	ind:	WCDMA Band I		Test hannel:	Middle	Test mode:	20M	Polarizat	ion:	Н
					2					
No.	Frequen (MHz)		eading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	:
1	2464.02	24 -	33.06	-17.95	-51.01	-13.00	-38.01	peak	P	
2 *	3714.44	- 3	10.23	-16.74	-26.97	-13.00	-13.97	peak	P	
3	4495.12	24 -	33.22	-17.28	-50.50	-13.00	-37.50	peak	P	
4	6001.62	26 -	33.67	-13.29	-46.96	-13.00	-33.96	peak	P	
5	7179.52	27 -	15.81	-14.00	-29.81	-13.00	-16.81	peak	Р	
6	13957.5	29 -	28.24	-10.75	-38.99	-13.00	-25.99	peak	Р	

Ba	and:		CDMA nd II	cl	Test hannel:	Middle	Test mode:	20M	Polarizat	tion:	V
No.	Frequen (MHz)		Readir (dBm	~	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2478.31	0	-23.8	7	-17.95	-41.82	-13.00	-28.82	peak	Р	
2 *	3735.97	7	-4.41		-16.72	-21.13	-13.00	-8.13	peak	Р	
3	4600.27	76	-35.5	3	-16.75	-52.28	-13.00	-39.28	peak	Р	
4	5503.14	3	-26.5	8	-11.63	-38.21	-13.00	-25.21	peak	Р	
5	7221.15	5 0	-20.5	9	-14.03	-34.62	-13.00	-21.62	peak	Р	
6	13717.5	61	-25.7	7	-10.62	-36.39	-13.00	-23.39	peak	Р	

Ва	and:		DMA d II	cł	Test nannel:	Highest	Test mode:	20M	Polariza	tion:	Н
No.	Frequen (MHz)		Readir (dBm	•	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2464.02	24	-38.8	7	-17.95	-56.82	-13.00	-43.82	peak	P	
2	3714.44	13	-34.7	8	-16.74	-51.52	-13.00	-38.52	peak	Р	
3	6507.53	36	-35.4	4	-12.64	-48.08	-13.00	-35.08	peak	P	
4	7179.52	27	-26.5	1	-14.00	-40.51	-13.00	-27.51	peak	Р	
5	7519.34	18	-32.0	0	-14.29	-46.29	-13.00	-33.29	peak	Р	
6 *	13877.0	76	-29.7	8	-10.70	-40.48	-13.00	-27.48	peak	Р	

Ba	and:		CDMA nd II	cł	Test nannel:	Highest	Test mode:	20M	Polariza	tion:	v
No.	Frequer (MHz)		Readi (dBm	<u> </u>	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2478.3	10	-25.6	1	-17.95	-43.56	-13.00	-30.56	peak	Р	
2	3016.57	75	-37.3	6	-16.49	-53.85	-13.00	-40.85	peak	P	
3 *	3735.97	78	-5.6	7	-16.72	-22.39	-13.00	-9.39	peak	P	
4	5567.13	36	-29.5	9	-11.85	-41.44	-13.00	-28.44	peak	P	
5	7221.1	50	-18.8	0	-14.03	-32.83	-13.00	-19.83	peak	Р	
6	10156.1	37	-29.0	3	-13.17	-42.20	-13.00	-29.20	peak	P	



Ва	and:		CDMA nd IV	cł	Test nannel:	Lowest	Test mode:	20M	Polariza	tion:	Н
No.	Frequer (MHz)		Readir (dBm	<u> </u>	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2107.95	50	-27.0	9	-18.09	-45.18	-13.00	-32.18	peak	Р	
2	2464.02	24	-33.1	5	-17.95	-51.10	-13.00	-38.10	peak	Р	
3 *	3425.67	74	-4.11		-16.94	-21.05	-13.00	-8.05	peak	Р	
4	5134.33	35	-16.1	0	-13.80	-29.90	-13.00	-16.90	peak	P	
5	7179.52	27	-13.8	8	-14.00	-27.88	-13.00	-14.88	peak	P	
6	13877.0	76	-29.6	7	-10.70	-40.37	-13.00	-27.37	peak	Р	

Ba	ind:	WCDMA Band IV	Test channel:	Lowest	Test mode:	20M	Polariza	tion: V
No.	Frequency (MHz)	/ Readi (dBm			Limit (dBm)	Margin (dB)	Detector	P/F
1	2107.950	-33.2	2 -18.0	9 -51.31	-13.00	-38.31	peak	Р
2	2536.283	-24.8	0 -17.8	3 -42.63	-13.00	-29.63	peak	P
3 *	3425.674	-9.5	1 -16.9	4 -26.45	-13.00	-13.45	peak	Р
4	5134.335	-13.0	5 -13.8	0 -26.85	-13.00	-13.85	peak	Р
5	7179.527	-20.6	6 -14.0	0 -34.66	-13.00	-21.66	peak	Р
6	12433.621	-34.3	7 -10.3	7 -44.74	-13.00	-31.74	peak	Р

Ва	and:		CDMA nd IV	cl	Test hannel:	Middle	Test mode:	20M	Polarizat	tion:	Н
No.	Frequen (MHz)		Readir (dBm	<u> </u>	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	2107.95	0	-24.6	2	-18.09	-42.71	-13.00	-29.71	peak	P	
2	2536.28	3	-23.6	2	-17.83	-41.45	-13.00	-28.45	peak	P	
3 *	3445.53	5	-3.39)	-16.96	-20.35	-13.00	-7.35	peak	P	
4	5164.10	2	-7.28	3	-13.63	-20.91	-13.00	-7.91	peak	P	
5	7179.52	7	-12.4	0	-14.00	-26.40	-13.00	-13.40	peak	P	
6	10039.3	93	-32.9	5	-13.04	-45.99	-13.00	-32.99	peak	Р	

Ba	and:		CDMA nd IV	cł	Test nannel:	Middle	Test mode:	20M	Polarizat	ion:	v				
No.	Frequen (MHz)		Readir (dBm	~	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F				
1	2565.77	65.777 -26.3		77 -26.39		2565.777 -26		9	-17.74	-44.13	-13.00	-31.13	peak	P	•
2 *	3445.53	5	-2.37		-16.96	-19.33	-13.00	-6.33	peak	P	•				
3	4004.33	9	9 -35.30		-16.38	-51.68	-13.00	-38.68	peak	P	•				
4	5164.10	2	-9.91		-13.63	-23.54	-13.00	-10.54	peak		•				
5	7221.15	0	-18.54	4	-14.03	-32.57	-13.00	-19.57	peak	P	•				
6	11467.0	05	-34.92	2	-11.91	-46.83	-13.00	-33.83	peak	P	•				

Ba	and:	WCDMA Band IV	Test channel:	Highest	Test mode:	20M	Polariza	tion:	H
No.	Frequenc (MHz)	y Readi (dBn		Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2120.171	1 -23.0	6 -18.08	-41.14	-13.00	-28.14	peak	Р	
2	2550.987	7 -16.2	4 -17.79	-34.03	-13.00	-21.03	peak	P	
3 *	3445.535	5 -1.1	2 -16.96	-18.08	-13.00	-5.08	peak	Р	
4	5164.102	2 -10.6	-13.63	-24.26	-13.00	-11.26	peak	Р	
5	7221.150	0 -15.5	0 -14.03	-29.53	-13.00	-16.53	peak	Р	
6	11012.25	3 -34.7	2 -12.82	-47.54	-13.00	-34.54	peak	Р	

Ba	ind:	WCDMA Band IV				cł	Test nannel:	Highest	Test mode:	20M	Polariza	tion:	V
No.			Reading Factor (dBm) (dB)		Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F				
1	2107.95	0 -35.9		9	-18.09	-54.08	-13.00	-41.08	peak	Р			
2	2464.02	24	-29.9	5	-17.95	-47.90	-13.00	-34.90	peak	P			
3 *	3445.53	35	-7.18		-16.96	-24.14	-13.00	-11.14	peak	P			
4	5164.10	02 -13.90		0	-13.63	-27.53	-13.00	-14.53	peak	P			
5	7221.15	7221.150 -20.39		9	-14.03	-34.42	-13.00	-21.42	peak	Р			
6	11400.9	08	-35.8	2	-12.04	-47.86	-13.00	-34.86	peak	P			

Ва	and:		CDMA nd V		Test nannel:	Lowest	Test mode:	20M	Polarization:		Н
No.	Frequen (MHz)		Readir (dBm	-	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1319.79	4	-26.20)	-18.40	-44.60	-13.00	-31.60	peak	Р	
2	2132.46	2	-22.8	7	-18.08	-40.95	-13.00	-27.95	peak	Р	
3 *	2464.02	4	-2.85		-17.95	-20.80	-13.00	-7.80	peak	Р	
4	2981.90	0	-24.78	8	-16.52	-41.30	-13.00	-28.30	peak	Р	
5	5503.14	3	-37.89	9	-11.63	-49.52	-13.00	-36.52	peak	Р	
6	7179.52	7	-19.3	5	-14.00	-33.35	-13.00	-20.35	peak	Р	

Band:		nd: WCDMA Band V		Lowest	Test mode:	20M	Polariza	tion: V
No.	Frequency (MHz)	Readir (dBm)	•	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1155.483	-32.09	9 -17.68	-49.77	-13.00	-36.77	peak	Р
2 *	1653.550	-1.23	-19.46	-20.69	-13.00	-7.69	peak	Р
3	2464.024	-17.19	9 -17.95	-35.14	-13.00	-22.14	peak	Р
4	4004.339	-35.88	3 -16.38	-52.26	-13.00	-39.26	peak	Р
5	6001.626	-36.29	9 -13.29	-49.58	-13.00	-36.58	peak	Р
6	7179.527	-19.60	0 -14.00	-33.60	-13.00	-20.60	peak	Р

Ba	and:		CDMA nd V	c	Test hannel:	Middle	Test mode:	20M	Polariza	tion:	Н				
No.			Reading Factor (dBm) (dB)		Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F						
1	1653.55	0 -5.3		0 -5.35		550 -5.3		5	-19.46	-24.81	-13.00	-11.81	peak	Р	
2 *	2492.67	8	-2.50		-17.94	-20.44	-13.00	-7.44	peak	P					
3	2999.18	7	-39.12		-16.47	-55.59	-13.00	-42.59	peak	P					
4	5503.14	3.143 -38.05		5	-11.63	-49.68	-13.00	-36.68	peak	P					
5	7221.15	21.150 -20.94		4	-14.03	-34.97	-13.00	-21.97	peak	Р					
6	13797.08	38	-30.2	1	-10.66	-40.87	-13.00	-27.87	peak	Р					

Ba	and:		CDMA .nd V	cl	Test hannel:	Middle	Test mode:	20M	Polariza	tion:	V
No.	Frequen (MHz)		Readir (dBm	<u> </u>	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1155.48	3	-30.9	5	-17.68	-48.63	-13.00	-35.63	peak	Р	
2	1751.95	5	-26.2	6	-19.79	-46.05	-13.00	-33.05	peak	Р	
3 *	2478.31	0	-10.3	9	-17.95	-28.34	-13.00	-15.34	peak	Р	
4	5503.14	3	-40.0	9	-11.63	-51.72	-13.00	-38.72	peak	Р	
5	7432.91	4	-29.7	0	-14.23	-43.93	-13.00	-30.93	peak	Р	
6	12079.3	87	-34.8	В	-10.34	-45.22	-13.00	-32.22	peak	Р	

Ba	and:	WCDMA Band V	Test channel:	Highest	Test mode:	20M	Polariza	tion:	Н
No.	Frequency (MHz)	Readi (dBm	~		Limit (dBm)	Margin (dB)	Detector	P/F	
1	1569.721	-27.1	4 -19.4	0 -46.54	-13.00	-33.54	peak	Р	
2 *	2132.462	-22.2	8 -18.0	8 -40.36	-13.00	-27.36	peak	P	
3	2947.623	-25.7	0 -16.6	2 -42.32	-13.00	-29.32	peak	P	
4	5503.143	-37.4	2 -11.6	3 -49.05	-13.00	-36.05	peak	P	
5	7519.348	-32.4	0 -14.2	9 -46.69	-13.00	-33.69	peak	Р	
6	10039.393	-33.8	2 -13.0	4 -46.86	-13.00	-33.86	peak	Р	

Ba	and:	WCE Ban			Test nannel:	Highest	Test mode:	20M	Polariza	tion:	v
No.	Frequence (MHz)	cy	Readir (dBm		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1148.82	3	-27.9	6	-17.80	-45.76	-13.00	-32.76	peak	Р	
2	4495.12	4	-36.1	7	-17.28	-53.45	-13.00	-40.45	peak	Р	
3	5503.14	3	-36.3	0	-11.63	-47.93	-13.00	-34.93	peak	Р	
4	6249.46	4	-38.8	9	-12.96	-51.85	-13.00	-38.85	peak	Р	
5 *	7179.52	7	-26.1	8	-14.00	-40.18	-13.00	-27.18	peak	Р	
6	11871.71	10	-34.7	8	-10.71	-45.49	-13.00	-32.49	peak	Р	

Ba	and:	2		est nnel:	Lowest	Test mode:	20M	Polarizat	ion: H
No.	Frequence (MHz)		eading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1	1078.04	5 -	8.62	-19.02	-27.64	-13.00	-14.64	peak	Р
2	1366.37	4 -:	21.63	-18.96	-40.59	-13.00	-27.59	peak	Р
3	2449.82	2 -	5.37	-17.96	-23.33	-13.00	-10.33	peak	Р
4 *	3779.42	2 -	6.24	-16.66	-22.90	-13.00	-9.90	peak	Р
5	5664.52	5 -	11.85	-12.16	-24.01	-13.00	-11.01	peak	Р
6	11335.19	3 -	13.77	-12.17	-25.94	-13.00	-12.94	peak	Р

4G Part (only show the worst case for QPSK modulation of all bands)

I	Band:	2		`est innel:	Lowest	Test mode:	20M	Polarizat	ion:	v
No.	Frequen (MHz)		eading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1 *	2421.66	1 -	12.40	-17.97	-30.37	-13.00	-17.37	peak	P	
2	2913.74	0 -	41.78	-16.73	-58.51	-13.00	-45.51	peak	P	
3	5697.36	5 -	36.38	-12.28	-48.66	-13.00	-35.66	peak	P	
4	7476.00	6 -	35.77	-14.27	-50.04	-13.00	-37.04	peak	P	
5	13797.08	38 -	26.07	-10.66	-36.73	-13.00	-23.73	peak	P	
6	15046.8	51 -	26.31	-9.56	-35.87	-13.00	-22.87	peak	P	

Ba	and:	2		`est innel:	Middle	Test mode:	20M	Polarizat	ion:	Н
No.	Frequence (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2024.35	4 -14	4.54	-18.12	-32.66	-13.00	-19.66	peak	Р	
2	2947.62	3 -8	.87	-16.62	-25.49	-13.00	-12.49	peak	P	
3 *	3735.97	в -7	.60	-16.72	-24.32	-13.00	-11.32	peak	P	
4	7519.34	B -1(6.22	-14.29	-30.51	-13.00	-17.51	peak	Р	
5	9420.88	0 -20	6.45	-12.28	-38.73	-13.00	-25.73	peak	P	
6	11335.19	3 -2	7.75	-12.17	-39.92	-13.00	-26.92	peak	Р	

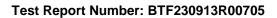
Ва	and:	2		est nnel:	Middle	Test mode:	20M	Polarizat	ion:	v
No.	Frequence (MHz)		ading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1	1071.83	2 -	19.62	-19.12	-38.74	-13.00	-25.74	peak	F	,
2	2449.82	2 -'	14.10	-17.96	-32.06	-13.00	-19.06	peak	F	,
3	2947.62	3 -2	24.31	-16.62	-40.93	-13.00	-27.93	peak	P	•
4	3779.42	2 -'	13.45	-16.66	-30.11	-13.00	-17.11	peak	F	•
5 *	5631.87	4 -'	11.16	-12.07	-23.23	-13.00	-10.23	peak	F	•
6	9420.88	0 -:	34.49	-12.28	-46.77	-13.00	-33.77	peak	F	•

Ba	and:	2		est nnel:	Highest	Test mode:	20M	Polarizat	ion:	Н
No.	Frequenc (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	1071.832	2 -9	.66	-19.12	-28.78	-13.00	-15.78	peak	P	
2	2024.354	4 -7	.30	-18.12	-25.42	-13.00	-12.42	peak	P	
3	2449.822	2 -7	.17	-17.96	-25.13	-13.00	-12.13	peak	P	
4	2981.900) -8	.12	-16.52	-24.64	-13.00	-11.64	peak	P	
5 *	3757.637	7 -5	.15	-16.68	-21.83	-13.00	-8.83	peak	P	
6	9420.880) -1(5.91	-12.28	-28.19	-13.00	-15.19	peak	Р	

Ba	and:	2			est nnel:	Highest	Test mode:	20M	Polarizat	ion:	V
No.	Frequen (MHz)			iding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/I	F
1	1090.58	2	-12	.95	-18.80	-31.75	-13.00	-18.75	peak	P	
2	2449.82	2	-10	.46	-17.96	-28.42	-13.00	-15.42	peak	P	
3	2964.71	2	-10	.93	-16.58	-27.51	-13.00	-14.51	peak	P	
4	3801.33	3	-16	6.02	-16.63	-32.65	-13.00	-19.65	peak	P	
5 *	5664.52	25	-11	.98	-12.16	-24.14	-13.00	-11.14	peak	P	
6	7562.94	2	-19	.24	-14.31	-33.55	-13.00	-20.55	peak	P	

В	and:	4			est nnel:	Lowest	Test mode:	20M	Polarizat	ion:	H
No.	Frequence (MHz)	;y	Rea (dB		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1	1103.264	4	-31	.88	-18.58	-50.46	-13.00	-37.46	peak	P	
2	2536.283	3	-27	.89	-17.83	-45.72	-13.00	-32.72	peak	P	
3	2981.900)	-27	.30	-16.52	-43.82	-13.00	-30.82	peak	P	
4 *	3465.510)	-17	.88	-16.99	-34.87	-13.00	-21.87	peak	P	
5	7179.52	7	-30	.78	-14.00	-44.78	-13.00	-31.78	peak	P	
6	13717.56	1	-31	.25	-10.62	-41.87	-13.00	-28.87	peak	P	

Ва	and:	4		fest annel:	Lowest	Test mode:	20M	Polarizat	ion:	V
No.	Frequence (MHz)		leading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/f	-
1	2999.18	7	-37.99	-10.60	-48.59	-13.00	-35.59	peak	P	
2 *	3465.51	0	-29.81	-11.19	-41.00	-13.00	-28.00	peak	P	
3	5697.36	5	-38.74	-6.33	-45.07	-13.00	-32.07	peak	P	
4	9585.68	4	-35.87	-12.23	-48.10	-13.00	-35.10	peak	P	
5	12079.38	37	-35.08	-10.34	-45.42	-13.00	-32.42	peak	P	
6	16504.95	j 4	34.79	-7.30	-42.09	-13.00	-29.09	peak	P	


Ва	and:	4		est nnel:	Middle	Test mode:	20M	Polarizat	ion:	Н
No.	Frequence (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/f	-
1	2464.02	4 -1	9.09	-12.03	-31.12	-13.00	-18.12	peak	P	
2	2981.90	0 -1	7.20	-10.65	-27.85	-13.00	-14.85	peak	P	
3 *	3465.51	0 -5	5.64	-11.19	-16.83	-13.00	-3.83	peak	P	
4	5224.15	3 -2	7.04	-7.53	-34.57	-13.00	-21.57	peak	P	
5	7179.52	7 -2	9.17	-14.00	-43.17	-13.00	-30.17	peak	P	
6	13717.56	51 -3	0.33	-10.62	-40.95	-13.00	-27.95	peak	P	

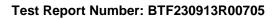
В	and:	4		est nnel:	Middle	Test mode:	20M	Polarizat	ion:	V
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	2999.187	-27	.82	-10.60	-38.42	-13.00	-25.42	peak	Р	
2 *	3485.601	-21	.06	-11.21	-32.27	-13.00	-19.27	peak	Р	
3	5664.525	-39	.46	-6.23	-45.69	-13.00	-32.69	peak	Р	
4	7179.527	-32	.73	-14.00	-46.73	-13.00	-33.73	peak	Р	
5	9585.684	-35	.43	-12.23	-47.66	-13.00	-34.66	peak	Р	
6	13877.076	-30	.21	-10.70	-40.91	-13.00	-27.91	peak	Р	

Ba	and:	4		est nnel:	Highest	Test mode:	20M	Polarizat	ion:	H
No.	Frequency (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	2464.024	-36	6.62	-12.03	-48.65	-13.00	-35.65	peak	P	
2 *	3485.601	-22	2.65	-11.21	-33.86	-13.00	-20.86	peak	P	
3	5664.525	-3	8.77	-6.23	-45.00	-13.00	-32.00	peak	P	
4	7179.527	-24	4.91	-14.00	-38.91	-13.00	-25.91	peak	P	
5	9641.257	-3	5.73	-12.34	-48.07	-13.00	-35.07	peak	P	
6	13559.879	-32	2.84	-10.53	-43.37	-13.00	-30.37	peak	P	

Ba	and:	4		est nnel:	Highest	Test mode:	20M	Polarizat	tion:	v
No.	Frequen (MHz)		Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/I	F
1	2464.02	4	-37.91	-12.03	-49.94	-13.00	-36.94	peak	P	
2 *	3465.51	0	-27.74	-11.19	-38.93	-13.00	-25.93	peak	P	
3	5503.14	3	-39.32	-5.76	-45.08	-13.00	-32.08	peak	P	
4	7138.14	4	-39.50	-13.96	-53.46	-13.00	-40.46	peak	P	
5	7519.34	8	-32.41	-14.29	-46.70	-13.00	-33.70	peak	P	
6	12505.7	05	-34.54	-10.38	-44.92	-13.00	-31.92	peak	P	

В	and:	5		est nnel:	Lowest	Test mode:	10M	Polarizat	ion:	Н
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1 *	1672.779	-20	.07	-13.60	-33.67	-13.00	-20.67	peak	P	
2	2507.129	-27	.48	-12.00	-39.48	-13.00	-26.48	peak	P	
3	5471.422	-39	.80	-5.95	-45.75	-13.00	-32.75	peak	P	
4	7179.527	-25	.33	-14.00	-39.33	-13.00	-26.33	peak	P	
5	11940.536	-35	.30	-10.51	-45.81	-13.00	-32.81	peak	P	
6	13877.076	-24	.89	-10.70	-35.59	-13.00	-22.59	peak	P	

Ba	and:	5		est nnel:	Lowest	Test mode:	10M	Polarizat	ion:	v
No.	Frequence (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/f	-
1 *	1682.47	7 -2'	1.06	-13.62	-34.68	-13.00	-21.68	peak	P	
2	1741.856	3 -3	5.58	-13.82	-49.40	-13.00	-36.40	peak	P	
3	2521.664	4 -29	9.76	-11.96	-41.72	-13.00	-28.72	peak	P	
4	5697.36	5 -39	9.27	-6.33	-45.60	-13.00	-32.60	peak	P	
5	7179.52	7 -33	3.06	-14.00	-47.06	-13.00	-34.06	peak	P	
6	13957.52	9 -29	9.28	-10.75	-40.03	-13.00	-27.03	peak	P	


Ba	and:	5		`est nnel:	Middle	Test mode:	10M	Polarizat	ion:	H
No.	Frequen (MHz)		eading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1 *	1682.47	6 -	19.05	-13.62	-32.67	-13.00	-19.67	peak	P	
2	2521.66	4 -	24.29	-11.96	-36.25	-13.00	-23.25	peak	P	
3	5830.64	0 -	39.47	-6.73	-46.20	-13.00	-33.20	peak	P	
4	7179.52	7 -	28.33	-14.00	-42.33	-13.00	-29.33	peak	P	
5	11803.28	30 -	32.55	-10.93	-43.48	-13.00	-30.48	peak	P	
6	14450.13	31 -	26.70	-10.63	-37.33	-13.00	-24.33	peak	P	

B	and:	5		est nnel:	Middle	Test mode:	10M	Polarizat	tion:	V
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	:
1 *	1692.231	-19	.19	-13.65	-32.84	-13.00	-19.84	peak	P	
2	2521.664	-26	.26	-11.96	-38.22	-13.00	-25.22	peak	P	
3	4004.339	-41	.21	-10.66	-51.87	-13.00	-38.87	peak	P	
4	7519.348	-27	.72	-14.29	-42.01	-13.00	-29.01	peak	P	
5	10760.538	-32	.96	-13.19	-46.15	-13.00	-33.15	peak	P	
6	13717.561	-28	.66	-10.62	-39.28	-13.00	-26.28	peak	P	

	Band:	5		est nnel:	Highest	Test mode:	10M	Polarizat	ion:	H
No.	Frequen (MHz)	*	ading dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/I	-
1 '	1682.47	7 -1	8.99	-13.62	-32.61	-13.00	-19.61	peak	Р	
2	2536.28	3 -2	27.23	-11.92	-39.15	-13.00	-26.15	peak	P	
3	5664.52	5 -3	39.66	-6.23	-45.89	-13.00	-32.89	peak	P	
4	7179.52	7 -2	27.94	-14.00	-41.94	-13.00	-28.94	peak	P	
5	12149.4	17 -3	34.59	-10.35	-44.94	-13.00	-31.94	peak	P	
6	16034.7	28 -3	31.72	-8.38	-40.10	-13.00	-27.10	peak	P	

Band	: 5	Test channel:	High	est	Test mode:	20M	Polarizati	on:	v
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P	/F
1 *	1692.231	-24.91	-13.65	-38.56	-13.00	-25.56	peak	F	>
2	2550.987	-41.86	-11.88	-53.74	-13.00	-40.74	peak	F	P
3	3505.809	-39.48	-11.22	-50.70	-13.00	-37.70	peak	F	Þ
4	5503.143	-39.32	-5.76	-45.08	-13.00	-32.08	peak	F	D
5	7179.527	-27.78	-14.00	-41.78	-13.00	-28.78	peak	F	2
6	13797.088	-32.63	-10.66	-43.29	-13.00	-30.29	peak	I	>

B	and:	7	Test channel:	Lowest	Test mo	ode:		20M	Polarizatio	n: H
	No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Lin (dB		Margin (dB)	Detector	P/F
	1	1267.454	-44.90	-11.86	-56.76	-25	.00	-31.76	peak	Р
	2	1663.137	-42.68	-13.56	-56.24	-25	.00	-31.24	peak	Р
	3	3465.510	-39.54	-11.19	-50.73	-25	.00	-25.73	peak	Р
	4 *	5134.335	-26.87	-8.08	-34.95	-25	.00	-9.95	peak	Р
	5	5503.143	-37.97	-5.76	-43.73	-25	.00	-18.73	peak	Р
	6	7179.527	-26.75	-14.00	-40.75	-25	.00	-15.75	peak	Р

В	and:	7		'est unnel:	Lowest	Test mode:	20M	Polarizat	ion:	v
No.	Frequenc (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	:
1	1155.483	3 -43	3.73	-11.80	-55.53	-25.00	-30.53	peak	P	
2	1792.937	7 -42	2.17	-13.99	-56.16	-25.00	-31.16	peak	P	
3	3159.355	5 -39	9.92	-10.80	-50.72	-25.00	-25.72	peak	P	
4 *	5075.317	7 -22	2.16	-8.46	-30.62	-25.00	-5.62	peak	P	
5	7179.527	7 -29	9.75	-14.00	-43.75	-25.00	-18.75	peak	P	
6	11871.71	0 -34	4.85	-10.71	-45.56	-25.00	-20.56	peak	P	

Ва	and:	7		est nnel:	Middle	Test mode:	20M	Polarizat	ion:	Н
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	3405.929	-41	.27	-11.11	-52.38	-25.00	-27.38	peak	P	
2 *	5104.741	-29	.33	-8.28	-37.61	-25.00	-12.61	peak	P	
3	5898.442	-39	.93	-6.91	-46.84	-25.00	-21.84	peak	P	
4	7179.527	-31	.09	-14.00	-45.09	-25.00	-20.09	peak	P	
5	12290.698	3 -35	5.02	-10.36	-45.38	-25.00	-20.38	peak	P	
6	13957.529	9 -31	.37	-10.75	-42.12	-25.00	-17.12	peak	P	

Ва	and:	7		est nnel:	Middle	Test mode:	20M	Polarizat	ion:	v
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1	1772.327	-32	.39	-13.92	-46.31	-25.00	-21.31	peak	P	•
2	3196.094	-40	.52	-10.85	-51.37	-25.00	-26.37	peak	P	•
3	5664.525	-38	.96	-6.23	-45.19	-25.00	-20.19	peak	P	•
4	7179.527	-30	.83	-14.00	-44.83	-25.00	-19.83	peak	P	•
5	12079.387	-34	.61	-10.34	-44.95	-25.00	-19.95	peak	P	•
6 *	15221.824	-24	.59	-9.55	-34.14	-25.00	-9.14	peak	P	•

Ва	and:	7		est nnel:	Highest	Test mode:	20M	Polariza	tion:	H
No.	Frequency (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1772.327	-34	4.89	-13.92	-48.81	-25.00	-23.81	peak	P	
2	4004.339	-4().56	-10.66	-51.22	-25.00	-26.22	peak	Р	
3	5104.741	-31	1.25	-8.28	-39.53	-25.00	-14.53	peak	P	
4	5631.874	-4().48	-6.15	-46.63	-25.00	-21.63	peak	Р	
5	7179.527	-30).83	-14.00	-44.83	-25.00	-19.83	peak	P	
6 *	13957.529	-26	6.13	-10.75	-36.88	-25.00	-11.88	peak	P	


Ba	and:	7		est nnel:	Highest	Test mode:	20M	Polarizat	ion:	v
No.	Frequence (MHz)		ading (Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	1382.26	2 -4	13.12	-13.27	-56.39	-25.00	-31.39	peak	P	
2	3587.81	8 -4	40.58	-11.12	-51.70	-25.00	-26.70	peak	P	
3	5104.74	1 -:	31.01	-8.28	-39.29	-25.00	-14.29	peak	P	
4	7519.34	8 -:	31.87	-14.29	-46.16	-25.00	-21.16	peak	P	
5	12724.47	73 -:	34.25	-10.54	-44.79	-25.00	-19.79	peak	P	
6 *	15850.41	1 -:	28.83	-8.77	-37.60	-25.00	-12.60	peak	P	

Ва	and:	12	-	fest annel:	Lowest	Test mode:	10M	Polarizat	ion:	H
No.	Frequency (MHz)	Rea (dE		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1 *	1414.597	-13	.65	-13.51	-27.16	-13.00	-14.16	peak	P	
2	2120.171	-21	.06	-12.13	-33.19	-13.00	-20.19	peak	P	
3	2830.728	-34	.52	-11.08	-45.60	-13.00	-32.60	peak	P	
4	5830.640	-39	.73	-6.73	-46.46	-13.00	-33.46	peak	P	
5	7179.527	-26	.04	-14.00	-40.04	-13.00	-27.04	peak	Р	
6	11940.536	-34	.49	-10.51	-45.00	-13.00	-32.00	peak	P	

В	and:	12	Test annel:	Lowest	Test mode:	10M	Polarizat	ion:	v
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	:
1	1406.443	-31.33	-13.48	-44.81	-13.00	-31.81	peak	P	
2	5631.874	-39.82	-6.15	-45.97	-13.00	-32.97	peak	P	
3 *	7179.527	-25.96	-14.00	-39.96	-13.00	-26.96	peak	P	
4	7519.348	-33.13	-14.29	-47.42	-13.00	-34.42	peak	P	
5	11400.908	-34.31	-12.04	-46.35	-13.00	-33.35	peak	P	
6	13638.492	-34.74	-10.58	-45.32	-13.00	-32.32	peak	Р	

Ba	nd:	12	Test channel:	Middle	Test mode:	10M	Polariza	tion:	Н
No.	Frequence (MHz)		ding Facto Bm) (dB)	r Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1 *	1431.04	6 -18	.56 -13.56	-32.12	-13.00	-19.12	peak	P	
2	2132.46	2 -21	.24 -12.13	-33.37	-13.00	-20.37	peak	P	
3	2830.72	8 -34	.52 -11.08	-45.60	-13.00	-32.60	peak	P	
4	7519.34	8 -30	.89 -14.29	-45.18	-13.00	-32.18	peak	P	
5	9585.68	4 -35	.53 -12.23	-47.76	-13.00	-34.76	peak	P	
6	13797.08	38 -32	.41 -10.66	-43.07	-13.00	-30.07	peak	P	

Ba	and:	12		`est innel:	Middle	Test mode:	10M	Polarizat	ion:	V
No.	Frequenc (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/	F
1	1422.798	3 -34	.49	-13.54	-48.03	-13.00	-35.03	peak	P)
2	1702.041	-42	.33	-13.69	-56.02	-13.00	-43.02	peak	P)
3	2285.640) -42	.01	-12.09	-54.10	-13.00	-41.10	peak	P)
4	3016.575	5 -40	.93	-10.62	-51.55	-13.00	-38.55	peak	P)
5	5503.143	3 -40	.50	-5.76	-46.26	-13.00	-33.26	peak	P)
6 *	7179.527	-25	.96	-14.00	-39.96	-13.00	-26.96	peak	P)

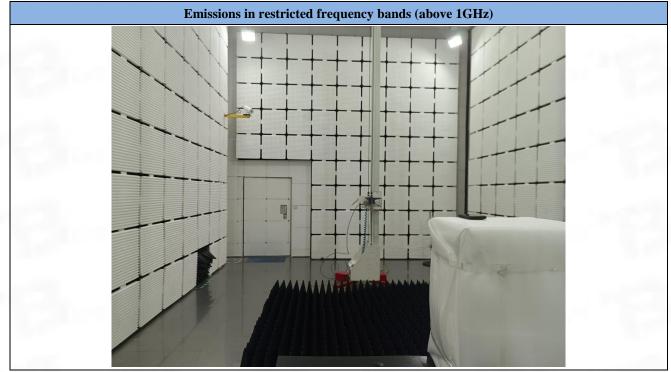
Ba	and:	12		est nnel:	Highest	Test mode:	10M	Polarizat	ion:	Н
No.	Frequency (MHz)	· .	ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1741.856	-34	.35	-13.82	-48.17	-13.00	-35.17	peak	Р	
2	2120.171	-33	3.57	-12.13	-45.70	-13.00	-32.70	peak	Р	
3	3308.894	-40	.60	-10.99	-51.59	-13.00	-38.59	peak	Р	
4	5503.143	-39	.46	-5.76	-45.22	-13.00	-32.22	peak	Р	
5 *	7179.527	-28	3.51	-14.00	-42.51	-13.00	-29.51	peak	Р	
6	11803.280	0 -34	.40	-10.93	-45.33	-13.00	-32.33	peak	Р	

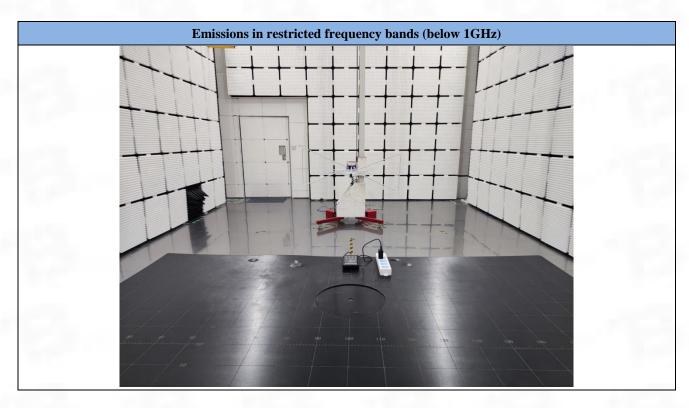
Ba	and:	12		est nnel:	Highest	Test mode:	10M	Polarizat	ion:	v
No.	Frequency (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1414.597	′ -34	.45	-13.51	-47.96	-13.00	-34.96	peak	P	
2	1751.955	j -42	.56	-13.85	-56.41	-13.00	-43.41	peak	P	
3	3016.575	i -39	.84	-10.62	-50.46	-13.00	-37.46	peak	P	
4	5697.365	i -40	.30	-6.33	-46.63	-13.00	-33.63	peak	P	
5 *	7179.527	-27	.36	-14.00	-41.36	-13.00	-28.36	peak	P	
6	13326.74	7 -33	.62	-10.57	-44.19	-13.00	-31.19	peak	P	

В	and:	17		Test annel:	Lowest	Test mode:	10M	Polarizat	tion:	H
No.	Frequency (MHz)	Rea (dB		Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1 *	1414.597	-18	91	-13.51	-32.42	-13.00	-19.42	peak	P	
2	2132.462	-31	98	-12.13	-44.11	-13.00	-31.11	peak	P	
3	2464.024	-36	94	-12.03	-48.97	-13.00	-35.97	peak	P	
4	3141.144	-40	23	-10.78	-51.01	-13.00	-38.01	peak	P	
5	5503.143	-39	58	-5.76	-45.34	-13.00	-32.34	peak	P	
6	7179.527	-27	39	-14.00	-41.39	-13.00	-28.39	peak	P	

Ba	and:	17	Cest nnel:	Lowest	Test mode:	10M	Polarizat	ion:	V
No.	Frequency (MHz)	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1	1422.798	-29.93	-13.54	-43.47	-13.00	-30.47	peak	Р	
2	1762.112	-29.49	-13.88	-43.37	-13.00	-30.37	peak	P	
3	5471.422	-40.59	-5.95	-46.54	-13.00	-33.54	peak	P	
4 *	7221.150	-25.64	-14.03	-39.67	-13.00	-26.67	peak	P	
5	11803.280	-35.31	-10.93	-46.24	-13.00	-33.24	peak	P	
6	13797.088	-29.97	-10.66	-40.63	-13.00	-27.63	peak	P	

Ва	and:	17		fest annel:	Middle	Test mode:	10M	Polarizat	ion:	Н
No.	Frequen (MHz)		iding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	-
1 *	1431.04	7 -16	6.50	-13.56	-30.06	-13.00	-17.06	peak	P	
2	2132.46	2 -19	9.11	-12.13	-31.24	-13.00	-18.24	peak	P	
3	2830.72	8 -32	2.44	-11.08	-43.52	-13.00	-30.52	peak	P	
4	5503.14	3 -40).70	-5.76	-46.46	-13.00	-33.46	peak	P	
5	7519.34	8 -30).63	-14.29	-44.92	-13.00	-31.92	peak	P	
6	12651.12	28 -34	1.34	-10.48	-44.82	-13.00	-31.82	peak	P	


Band:		17		Test Annel: Middle		Test mode:	10M	Polarization:		v
No.	Frequenc (MHz)		ding 3m)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1422.798		-34.78		-48.32	-13.00	-35.32	peak	Р	
2	2059.76	7 -43	3.70	-12.16	-55.86	-13.00	-42.86	peak	Р	
3	3051.653	3 -42	.49	-10.66	-53.15	-13.00	-40.15	peak	Р	
4	5664.52	5 -41	.05	-6.23	-47.28	-13.00	-34.28	peak	Р	
5	7562.942	2 -36	6. <mark>8</mark> 6	-14.31	-51.17	-13.00	-38.17	peak	Р	
6 *	13797.08	8 -33	8.49	-10.66	-44.15	-13.00	-31.15	peak	Р	


Band:		17	Test channel:	Highest		10M	Polarizat	tion: H
No.	Frequency (MHz)		ding Facto Bm) (dB)	r Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F
1 *	1431.047	-21	.99 -13.56	-35.55	-13.00	-22.55	peak	Р
2	2157.260	-39	.83 -12.13	-51.96	-13.00	-38.96	peak	Р
3	2464.024	-37	.45 -12.03	-49.48	-13.00	-36.48	peak	Р
4	5763.617	-40	.04 -6.52	-46.56	-13.00	-33.56	peak	Р
5	7179.527 -33		.11 -14.00	-47.11	-13.00	-34.11	peak	Р
6	13797.088	8 -30	.34 -10.66	-41.00	-13.00	-28.00	peak	Р

Band:		17		est nnel:	Highest	est Test mode:	10M	Polarization:		v
No.	Frequence (MHz)		ading Bm)	Factor (dB)	Level (dBm)	Limit (dBm)	Margin (dB)	Detector	P/F	
1	1431.04	7 -34	4.54	-13.56	-48.10	-13.00	-35.10	peak	P	
2	1782.60	2 -34	4.62	-13.95	-48.57	-13.00	-35.57	peak	P	
3	2981.90	0 -41	1.90	-10.65	-52.55	-13.00	-39.55	peak	P	
4 *	5503.14	3 -40	0.80	-5.76	-46.56	-13.00	-33.56	peak	P	
5	7476.00	6 -39	9.23	-14.27	-53.50	-13.00	-40.50	peak	P	
6	10948.77	78 -36	6.20	-12.92	-49.12	-13.00	-36.12	peak	Р	

ANNEX B TEST SETUP PHOTOS

Total or partial reproduction of this document without permission of the Laboratory is not allowed.PBTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, ChinaP

Page 50 of 52

Test Report Number: BTF230913R00705

ANNEX C EUT PHOTOS

Please refer to the report No. BTF230913R00701

Test Report Number: BTF230913R00705

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

--END OF REPORT--