

RF Test Report

For

Applicant Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD

A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU

Address: INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN,

518XXX China

EUT Name: Smart Phone
Brand Name: OUKITEL
Model Number: WP32

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230913R00704 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2ANMU-WP32SPUT

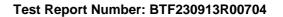
Test Date: 2023-09-15 to 2023-10-09

Date of Issue: 2023-10-10

Prepared By:

Address:

Chris Liu / Project Enginee

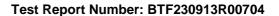

Date: 2023-10-10

Approved By:

Ryan.CJ / EMC Manager

Date: 2023-10-10

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-10-10	Original	
Note: Once the revision has been made, then previous versions reports are invalid.			

Table of Contents

1	INTF	SODUC.	TION	5
	1.1	Identi	ification of Testing Laboratory	5
	1.2		ification of the Responsible Testing Location	
	1.3	Anno	uncement	5
2	PRO	DUCT	INFORMATION	6
	2.1	Appli	cation Information	6
	2.2	Manu	facturer Information	6
	2.3		ory Information	
	2.4		ral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3	SUM		OF TEST RESULTS	
	3.1		Standards	
	3.2 3.3		rtainty of Test nary of Test Result	
4				
4			FIGURATION	
	4.1 4.2		Equipment List Auxiliary Equipment	
	4.2		Modes	
5			ON RESULTS (EVALUATION)	
	5.1		nna requirement	
6	•		CTRUM MATTER TEST RESULTS (RF)	
U	` '			
	6.1		E.U.T. Operation:	
		6.1.1 6.1.2	Test Setup Diagram:	
		6.1.3	1 0	
	6.2		Cycle	
		6.2.1	· ·	
		6.2.2	Test Data:	
	6.3	Maxir	mum conducted output power	19
		6.3.1	E.U.T. Operation:	20
		6.3.2		
	6.4	Powe	er spectral density	21
		6.4.1		
		6.4.2		
	6.5		sion bandwidth and occupied bandwidth	
		6.5.1 6.5.2	E.U.T. Operation: Test Data:	
	6.6		edge emissions (Radiated)	
	0.0	6.6.1	E.U.T. Operation:	
		6.6.2	Test Setup Diagram:	
		6.6.3	Test Data:	
	6.7	Unde	sirable emission limits (below 1GHz)	
		6.7.1	E.U.T. Operation:	
		6.7.2	Test Setup Diagram:	
		6.7.3	Test Data:	
	6.8		sirable emission limits (above 1GHz)	
		6.8.1	E.U.T. Operation:	35

	6.8.2	Test Data:	36
7	TEST SETUI	P PHOTOS	38
		RUCTIONAL DETAILS (EUT PHOTOS)	
		· /	

1 Introduction

1.1 Identification of Testing Laboratory

	Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou	
	Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
ĺ	Fax Number:	+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.2 Manufacturer Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.3 Factory Information

	Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO., LTD
Address:	Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE,
	GUANLAN, LONGHUA SHENZHEN, 518XXX China	GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Smart Phone
Test Model Number:	WP32
Series Model Number:	WP32 S, WP32 Pro, WP32 TITAN
Description of Model name differentiation:	Only the model name is different, the others are the same.
Hardware Version:	SC6012_MB_V1.1.0
Software Version:	OUKITEL_WP32_EEA_V04

2.5 Technical Information

Power Supply:	DC 3.87V form battery
Operation Frequency Range	U-NII Band 1: 5.18~5.24 GHz
Frequency Block	U-NII Band 1: 5.15~5.25 GHz
Channel Bandwidth	802.11a: 20 MHz 802.11n: 20 MHz, 40 MHz
Antenna Type:	802.11ac: 20 MHz, 40 MHz, 80 MHz PIFA Antenna
Antenna Gain:	0.33 dBi
Matai	

Note:

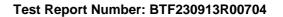
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

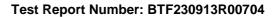

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission (150 kHz-30 MHz)	±2.64dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

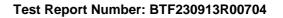

Test Configuration

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23			

Duty Cycle							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	1	/		
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

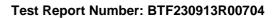
Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		



Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		

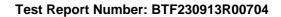


MXA Signal Analyzer KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23
------------------------------	--------	------------	------------	------------

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	1	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	1	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	/		
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23		

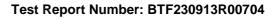
Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			



WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23

Non-Occupancy Period Test								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23			

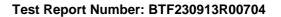
DFS Detection Thresh	DFS Detection Thresholds								
Equipment	Manufacturer	Cal Date	Cal Due Date						
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2022-11-24	2023-11-23				
RF Sensor Unit	Techy	TR1029-2	/	2022-11-24	2023-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2022-11-24	2023-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2022-11-24	2023-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2022-11-24	2023-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2022-11-24	2023-11-23				


Pandadus amissisma (Padistad)								
Band edge emissions (Radiated)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			

RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23	
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1	
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27	
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	ESCI7 101032		2023-11-23	
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1	
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23	
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21	
EZ_EMC	Frad	FA-03A2 RE+	/	/	/	
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	1	
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27	

Undesirable emission limits (below 1GHz)								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23			
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23			
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27			
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23			
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/			
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23			
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21			
EZ_EMC	Frad	FA-03A2 RE+	/	/	/			
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/			
Log periodic antenna SCHWARZBECK VULB 916		VULB 9168	01328	2021-11-28	2023-11-27			

Undesirable emission	limits (above 1GF	lz)			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	POSITIONAL SKET		1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

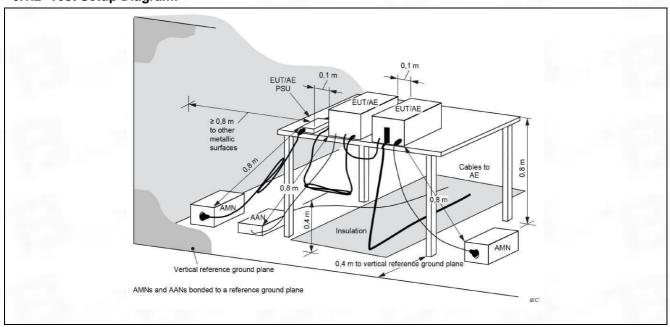
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМЗ	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

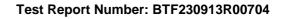
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
--	--

6 Radio Spectrum Matter Test Results (RF)

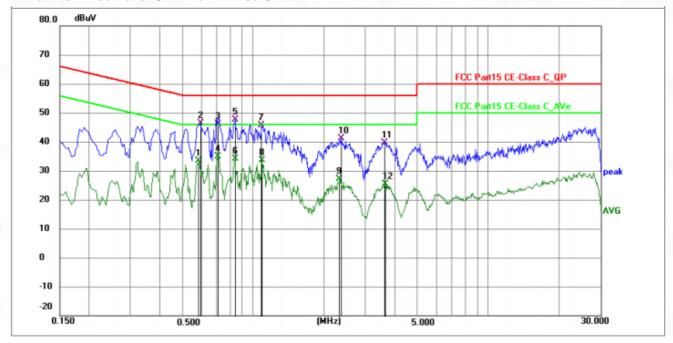

6.1 Conducted Emission at AC power line

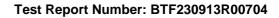

Test Requirement:	47 CFR Part 15.207(a)						
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						
	Frequency of emission (MHz)	Conducted limit (dBµV)					
Test Limit:		Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						

6.1.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

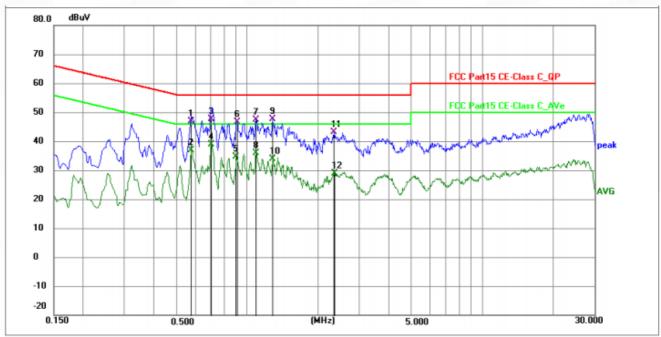
6.1.2 Test Setup Diagram:



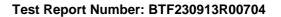


6.1.3 Test Data:

TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

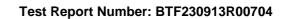


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.5865	22.74	10.66	33.40	46.00	-12.60	AVG	Р	
2	0.5955	35.67	10.67	46.34	56.00	-9.66	QP	Р	
3	0.7080	35.47	10.73	46.20	56.00	-9.80	QP	Р	
4	0.7080	24.18	10.73	34.91	46.00	-11.09	AVG	Р	
5 *	0.8385	36.81	10.75	47.56	56.00	-8.44	QP	Р	
6	0.8385	23.34	10.75	34.09	46.00	-11.91	AVG	Р	
7	1.0859	34.77	10.77	45.54	56.00	-10.46	QP	Р	
8	1.0905	22.96	10.77	33.73	46.00	-12.27	AVG	Р	
9	2.3325	16.35	10.70	27.05	46.00	-18.95	AVG	Р	
10	2.3640	30.39	10.70	41.09	56.00	-14.91	QP	Р	
11	3.6105	29.00	10.72	39.72	56.00	-16.28	QP	Р	
12	3.6420	14.68	10.72	25.40	46.00	-20.60	AVG	Р	



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.5775	36.24	10.66	46.90	56.00	-9.10	QP	Р	
2	0.5775	26.30	10.66	36.96	46.00	-9.04	AVG	Р	
3	0.7035	36.97	10.73	47.70	56.00	-8.30	QP	Р	
4 *	0.7035	28.13	10.73	38.86	46.00	-7.14	AVG	Р	
5	0.8970	23.97	10.76	34.73	46.00	-11.27	AVG	Р	
6	0.9060	35.76	10.76	46.52	56.00	-9.48	QP	Р	
7	1.0905	36.68	10.77	47.45	56.00	-8.55	QP	Р	
8	1.0905	25.08	10.77	35.85	46.00	-10.15	AVG	Р	
9	1.2795	37.00	10.75	47.75	56.00	-8.25	QP	Р	
10	1.2885	23.25	10.75	34.00	46.00	-12.00	AVG	Р	
11	2.3415	32.43	10.70	43.13	56.00	-12.87	QP	Р	
12	2.3550	18.19	10.70	28.89	46.00	-17.11	AVG	Р	

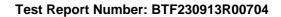
6.2 Duty Cycle


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

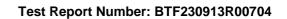
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:


Please Refer to Appendix for Details.

Maximum conducted output power

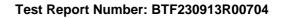
47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii)
47 CFR Part 15.407(a)(1)(iii)
47 CFR Part 15.407(a)(1)(iv)
47 CFR Part 15.407(a)(2)
47 CFR Part 15.407(a)(3)(i)
ANSI C63.10-2013, section 12.3
For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
directional gain of the antenna execeds o abi.
For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi.
Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is
professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi.
If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


	the band 5.725-5.850 GHz, the maximum conducted output power over the uency band of operation shall not exceed 1 W.
	ansmitting antennas of directional gain greater than 6 dBi are used, the
	rimum conducted output power shall be reduced by the amount in dB that the
	ctional gain of the antenna exceeds 6 dBi.
	vever, fixed point-to-point U-NII devices operating in this band may employ
	smitting antennas with directional gain greater than 6 dBi without any
	esponding reduction in transmitter conducted power. Fixed, point-to-point
	rations exclude the use of point-to-multipoint systems, omnidirectional
	lications, and multiple collocated transmitters transmitting the same
	rmation. The operator of the U-NII device, or if the equipment is professionally
	alled, the installer, is responsible for ensuring that systems employing high gain
	ctional antennas are used exclusively for fixed, point-to-point operations.
	hod SA-1
	set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	et RBW = 1 MHz.
,	et VBW >= 3 MHz.
	lumber of points in sweep >= [2 x span / RBW]. (This gives bin-to-bin spacing
	RBW / 2, so
	narrowband signals are not lost between frequency bins.)
,	weep time = auto.
	etector = RMS (i.e., power averaging), if available. Otherwise, use sample
	ector mode.
	transmit duty cycle < 98%, use a video trigger with the trigger level set to
	ble triggering
	on full power pulses. The transmitter shall operate at maximum power control left for the
	re duration of every sweep. If the EUT transmits continuously (i.e., with no OFF rvals) or
	uty cycle >= 98%, and if each transmission is entirely at the maximum power
	trol level,
	n the trigger shall be set to "free run."
	race average at least 100 traces in power averaging (rms) mode.
	ompute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	ne signal
	ig the instrument's band power measurement function, with band limits set
	al to the
	V or OBW band edges. If the instrument does not have a band power function,
	n sum the
	ctrum levels (in power units) at 1 MHz intervals extending across the 26 dB
	V or 99%
	V of the spectrum.
1 (71)	v or the spectfull.

6.3.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.3.2 Test Data:


Please Refer to Appendix for Details.

6.4 Power spectral density

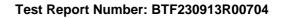
6.4 Power spectral	density
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iii)
	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Test Limit:	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional
	gain greater than 6 dBi without any corresponding reduction in transmitter


	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output power
	measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set NBW >= 1 / T, where T is defined in 12.2 a).
	 2) Set VBW >= [3 x RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

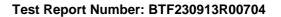
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.4.2 Test Data:


Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

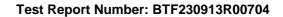
6.5 Emission ba	ndwidth and occupied bandwidth
Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4
TOST WIGHTOG.	KDB 789033 D02, Clause C.2
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified
	by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectral
	envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report
	the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are
	recovered and directly summed in linear power terms. The recovered amplitude
	data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. c) Detector = Peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

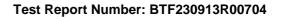
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

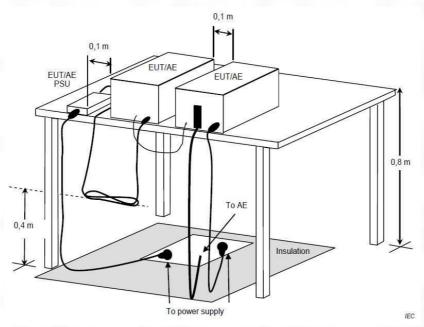
6.6 Band edge em	47 CFR Part 15.407(b)	(1)		
	47 CFR Part 15.407(b)			
Test Requirement:	47 CFR Part 15.407(b)(2)			
	` ,	` '		
To at Math a di	47 CFR Part 15.407(b)(10)			
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6			
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the			
	5.15-5.35 GHz band shall be a sha	ing solely in the 5.725-	5.850 GHz band	l:
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27			
	dBm/MHz at the band of	edge.		
	MHz	MHz	MHz	GHz
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
	4.125-4.128	25.5-25.67	1300-1427	
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5
			5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
To at Line it.	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4
Test Limit:	6.31175-6.31225	123-138	2200-2300	14.47-14.5
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4
	8.37625-8.38675 8.41425-8.41475 12.29-12.293	156.7-156.9 162.0125-167.17 167.72-173.2	2690-2900 3260-3267 3332-3339	22.01-23.12 23.6-24.0 31.2-31.8
	12.51975-12.52025 12.57675-12.57725 13.36-13.41	240-285 322-335.4	3345.8-3358 3600-4400	36.43-36.5 (²)
	¹ Until February 1, 1999	, this restricted band s	nall be 0.490-0.5	510 MHz.
	² Above 38.6			
	The field strength of en exceed the limits show MHz, compliance with measurement instrume 1000 MHz, compliance based on the average 15.35apply to these me	n in § 15.209. At frequenthe limits in § 15.209shentation employing a Clawith the emission limit value of the measured	encies equal to c all be demonstra SPR quasi-peak s in § 15.209sha	or less than 1000 ated using a detector. Above all be demonstrated
	Except as provided els	ewhere in this subpart,	the emissions fr	rom an intentional



	radiator shall not exceed	the field strength levels spec	cified in the following table:
	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
		100 **	
	30-88		3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
Procedure:	above the ground at a 3 r degrees to determine the b. The EUT was set 3 me was mounted on the top of c. The antenna height is a determine the maximum applarizations of the antend. For each suspected en the antenna was tuned to of below 30MHz, the anterwas turned from 0 degrees. The test-receiver syste Bandwidth with Maximum f. If the emission level of the specified, then testing concreported. Otherwise the ere-tested one by one using in a data sheet. g. Test the EUT in the low h. The radiation measure. Transmitting mode, and for it. Repeat above procedur Remark: 1. Level= Read Level+ Ca 2. Scan from 18GHz to 40 points marked on above presented and the reported. 3. As shown in this section are based on average liming not exceed the maximum dB under any condition of than the average limit, on 4. The disturbance above	position of the highest radia ters away from the interferer of a variable-height antenna varied from one meter to four value of the field strength. But a are set to make the measure is sission, the EUT was arrangulated heights from 1 meter to 4 minna was tuned to heights 1 min was set to Peak Detect Full Hold Mode. The EUT in peak mode was 1 was set to Peak Detect Full Hold Mode. The was arrangulated height and the peak was a set to peak missions that did not have 1 given peak or average method a ments are performed in X, Y, bund the X axis positioning we was until all frequencies measure the highest emission into had been displayed. The or which are attenuated more more into the field separated average limits specified where we was a set to peak measurement is 18GHz were very low and the strength of the peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement is 18GHz were very low and the strength was a set to peak measurement was a set to peak measu	er. The table was rotated 360 ation. Ince-receiving antenna, which tower. In meters above the ground to oth horizontal and vertical surement. It was detailed to its worst case and then neters (for the test frequency meter) and the rotatable table maximum reading. Inction and Specified I odB lower than the limit avalues of the EUT would be odB margin would be as specified and then reported innel, the Highest channel. If I axis positioning for which it is the worst case, sured was complete. I preamp Factor to the sure of the sure

6.6.1 E.U.T. Operation:

Operating Environment:	
Temperature: 25.5 °C	
Humidity:	50.6 %



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

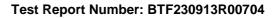
6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report

UNII-1 20M 5180MHz Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5146.400	80.27	-27.25	53.02	74.00	-20.98	peak	Р
2 *	5150.000	80.96	-27.24	53.72	74.00	-20.28	peak	Р

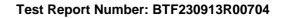
UNII-1 20M_5180MHz_Vertical


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5148.000	81.15	-27.25	53.90	74.00	-20.10	peak	Р
2	5150.000	81.51	-27.24	54.27	74.00	-19.73	peak	Р
3 *	5150.000	67.31	-27.24	40.07	54.00	-13.93	AVG	Р

UNII-1 20M_5320MHz_Horizontal

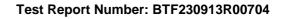
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5350.000	46.74	6.37	53.11	74.00	-20.89	peak	Р
2	5460.000	34.57	6.57	41.14	74.00	-32.86	peak	Р

UNII-1 20M_5320MHz_Vertical

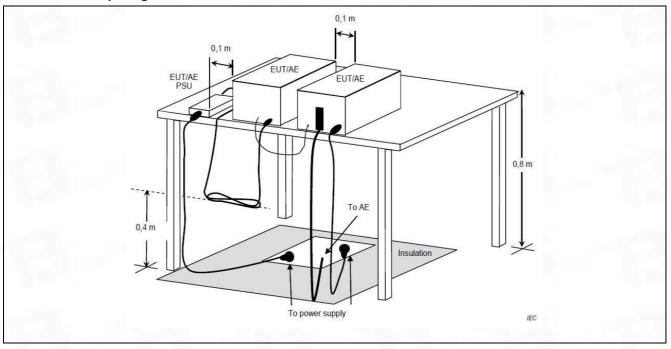

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	5350.000	42.64	4.63	47.27	74.00	-26.73	peak	Р
2	5460.000	36.04	4.79	40.83	74.00	-33.17	peak	Р

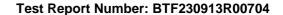
6.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)						
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
	limits set forth in § 15.2						
Test Limit:		ewhere in this subpart, the emis d the field strength levels speci Field strength (microvolts/meter)					
163t Lillill.	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705 1.705-30.0	24000/F(kHz) 30	30 30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
Procedure:	above the ground at a 3 degrees to determine the b. The EUT was set 3 owhich was mounted on c. The antenna height is determine the maximum polarizations of the antend. For each suspected of the antenna was turned of below 30MHz, the answas turned from 0 degree. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing correported. Otherwise the re-tested one by one us data sheet. g. Test the EUT in the load to the testing mode, and in the readiation measure. Transmitting mode, and in the readiation measure. 1. Level= Read Level+ 2. Scan from 9kHz to 30 points marked on above testing, so only above pemissions from the radianced not be reported. 3. The disturbance beloage to the set of	EUT was placed on the top of a meter semi-anechoic chamber to position of the highest radiator 10 meters away from the interpretate the top of a variable-height and a varied from one meter to four an value of the field strength. Both and are set to make the measurements are set to make the measurements are set to make the measurements are set to Peak Detect Furth Hold Mode. If the EUT in peak mode was 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emissions that did not have 10 ould be stopped and the peak emission are performed in X, Y, found the X axis positioning we have until all frequencies measures unti	r. The table was rotated 360 ion. rference-receiving antenna, enna tower. meters above the ground to th horizontal and vertical urement. ed to its worst case and then eters (for the test frequency neter) and the rotatable table maximum reading. nction and Specified OdB lower than the limit values of the EUT would be odB margin would be cified and then reported in a linel, the Highest channel. Z axis positioning for hich it is the worst case. ured was complete. Preamp Factor OMHz was very low. The maximum for the position of the second when amplitude of spurious entan 20dB below the limit tharmonics were the highest				

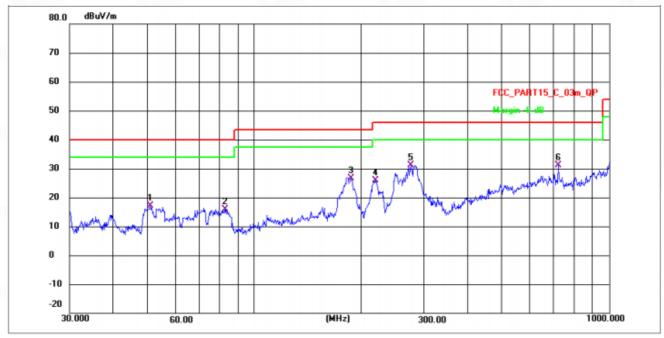


- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

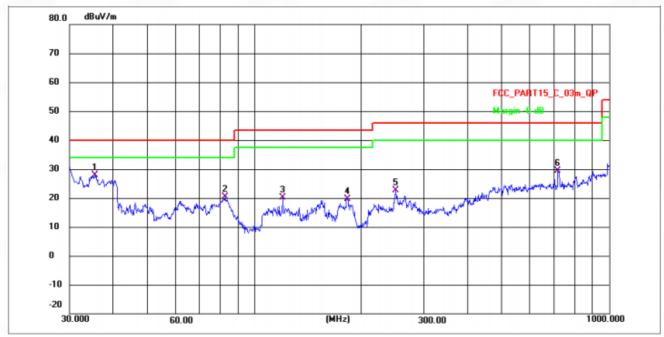

6.7.1 E.U.T. Operation:

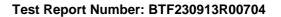

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

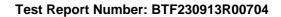
6.7.2 Test Setup Diagram:



6.7.3 Test Data:


Note: All the mode have been tested, and only the worst mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

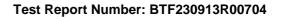

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
	1	50.7636	35.45	-18.27	17.18	40.00	-22.82	QP	Р
	2	82.5033	47.05	-31.11	15.94	40.00	-24.06	QP	Р
	3	187.7530	54.10	-27.44	26.66	43.50	-16.84	QP	Р
Г	4	219.8448	52.43	-26.46	25.97	46.00	-20.03	QP	Р
	5 *	277.0935	56.81	-25.62	31.19	46.00	-14.81	QP	Р
	6	720.4615	54.85	-23.66	31.19	46.00	-14.81	QP	Р


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	35.4370	48.38	-20.62	27.76	40.00	-12.24	QP	Р
2	82.5033	51.46	-31.11	20.35	40.00	-19.65	QP	Р
3	120.0660	48.15	-28.05	20.10	43.50	-23.40	QP	Р
4	183.2005	47.19	-27.48	19.71	43.50	-23.79	QP	Р
5	250.7404	48.51	-25.84	22.67	46.00	-23.33	QP	Р
6	719.1995	52.96	-23.65	29.31	46.00	-16.69	QP	Р

6.8 Undesirable emission limits (above 1GHz)

	47 OFD D: (45 407/1)									
	47 CFR Part 15.407(b)									
Test Requirement:	47 CFR Part 15.407(b)									
•	47 CFR Part 15.407(b)									
	47 CFR Part 15.407(b)									
Test Method:	ANSI C63.10-2013, se									
	For transmitters operat									
	5.15-5.35 GHz band sh									
	For transmitters operat									
	5.15-5.35 GHz band sh	5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.								
	For transmitters on ever	line calaby in the F 70F	5 050 CH= box							
	For transmitters operated All emissions shall be I									
	or below the band edge									
	below the band edge, a									
	linearly to a level of 15									
	from 5 MHz above or b		reasing inleany	to a level of 21						
	MHz	euge. MHz	MHz	GHz						
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5						
	1.20720 1.20770	70 7 1.0	5	0.0 0.0						
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4						
			2							
T	6.31175-6.31225	123-138	2200-2300	14.47-14.5						
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4						
		25								
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5						
	12.57675-12.57725	322-335.4	3600-4400	(²)						
	13.36-13.41									
	1 –									
	¹ Until February 1, 1999), this restricted band s	hall be 0.490-0.5	510 MHz.						
	² Above 38.6									
	The field strength of our		in these frames	and boards abolt not						
	The field strength of en									
	exceed the limits show MHz, compliance with									
	measurement instrume									
	1000 MHz, compliance									
	based on the average									
	15.35apply to these me		ciilissions. THE	61041310113 III 3						
	10.00appiy to these int	casarements.								
	Except as provided els	ewhere in this subpart	the emissions for	rom an intentional						
	radiator shall not excee									
	Frequency (MHz)	Field strength		Measurement						
	1.104001103 (1911 12)	. ioid oliongin		5454151110110						

		(microvolts/meter)	distance
		· ·	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:	300	3
		he EUT was placed on the top of	a rotating table 1.5 motors
		a 3 meter fully-anechoic chamber	
		the position of the highest radiat	
		3 meters away from the interferen	
		top of a variable-height antenna t	
		at is varied from one meter to four	
		um value of the field strength. Bo	
		ntenna are set to make the meas	
		ed emission, the EUT was arrange	
		ed to heights from 1 meter to 4 m	
		antenna was tuned to heights 1 n	
		egrees to 360 degrees to find the	
		system was set to Peak Detect Fu	inction and Specified
	Bandwidth with Maxi		
		el of the EUT in peak mode was 1	
		g could be stopped and the peak	
		the emissions that did not have 10	
	•	using peak or average method as	s specified and then reported
Procedure:	in a data sheet.		
		e lowest channel, the middle char	
		surements are performed in X, Y,	
		and found the X axis positioning w	
	i. Repeat above proc	edures until all frequencies meas	ured was complete.
	Remark:		
	1. Level= Read Leve	I+ Cable Loss+ Antenna Factor- F	Preamp Factor
	2. Scan from 18GHz	to 40GHz, the disturbance above	18GHz was very low. The
		ove plots are the highest emission	
	testing, so only above	e points had been displayed. The	amplitude of spurious
	emissions from the ra	adiator which are attenuated more	e than 20dB below the limit
	need not be reported		
	3. As shown in this se	ection, for frequencies above 1GH	Iz, the field strength limits
		e limits. However, the peak field s	
		num permitted average limits spe	
		on of modulation. For the emissio	
	d d	4 1 41 1	


6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

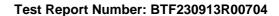
than the average limit, only the peak measurement is shown in the report.

4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been

displayed.

6.8.2 Test Data:

UNII-1_20M_5180MHz_Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3196.094	66.19	-29.33	36.86	74.00	-37.14	peak	Р
2	3801.333	65.72	-29.02	36.70	74.00	-37.30	peak	Р
3	5194.040	85.62	-27.21	58.41	74.00	-15.59	peak	Р
4	5194.040	71.42	-27.21	44.21	54.00	-9.79	AVG	Р
5	7305.122	69.47	-24.84	44.63	74.00	-29.37	peak	Р
6	9366.577	71.98	-23.50	48.48	74.00	-25.52	peak	Р
7	10393.713	90.74	-24.46	66.28	74.00	-7.72	peak	Р
8 *	10393.713	72.43	-24.46	47.97	54.00	-6.03	AVG	Р

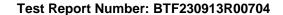
UNII-1_20M_5180MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3308.894	66.42	-29.23	37.19	74.00	-36.81	peak	Р
2	4218.186	65.51	-28.90	36.61	74.00	-37.39	peak	Р
3	5194.040	91.89	-27.21	64.68	74.00	-9.32	peak	Р
4 *	5194.040	76.73	-27.21	49.52	54.00	-4.48	AVG	Р
5	7476.006	69.55	-24.79	44.76	74.00	-29.24	peak	Р
6	10393.713	73.79	-24.46	49.33	74.00	-24.67	peak	Р
7	12505.705	72.45	-21.61	50.84	74.00	-23.16	peak	Р

UNII-1_20M_5240MHz_Horizontal

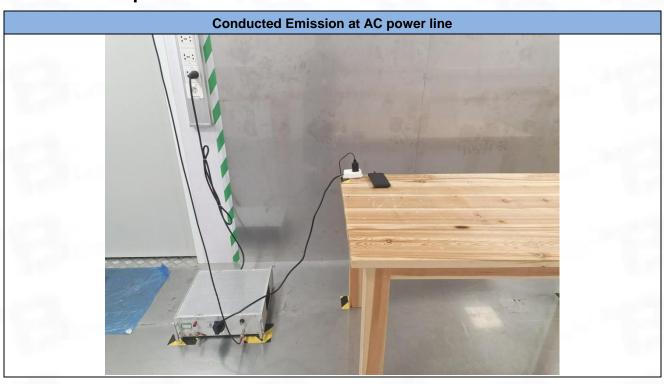
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2625.796	71.02	-30.15	40.87	74.00	-33.13	peak	Р
2	2625.796	55.98	-30.15	25.83	54.00	-28.17	AVG	Р
3	3405.929	67.02	-29.14	37.88	74.00	-36.12	peak	Р
4	5224.153	94.81	-27.19	67.62	74.00	-6.38	peak	Р
5 *	5224.153	79.52	-27.19	52.33	54.00	-1.67	AVG	Р
6	7347.474	68.21	-24.83	43.38	74.00	-30.62	peak	Р
7	9585.684	72.89	-23.38	49.51	74.00	-24.49	peak	Р
8	10453.971	88.22	-24.49	63.73	74.00	-10.27	peak	Р
9	10453.971	71.26	-24.49	46.77	54.00	-7.23	AVG	Р

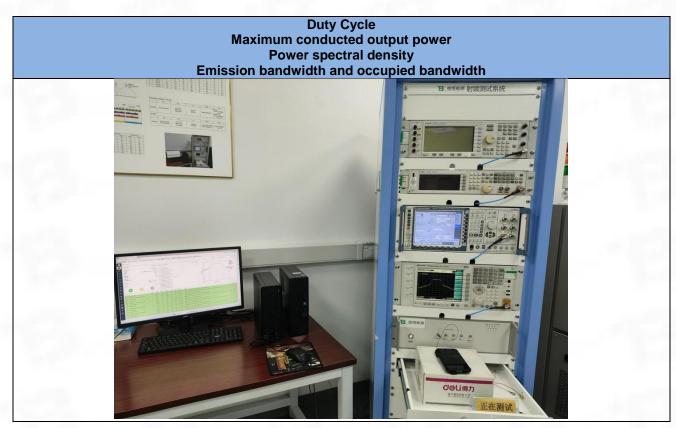
UNII-1_20M_5240MHz_Vertical

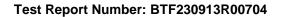

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2999.187	65.70	-29.51	36.19	74.00	-37.81	peak	Р
2	3587.818	65.73	-29.04	36.69	74.00	-37.31	peak	Р
3	5224.153	92.67	-27.19	65.48	74.00	-8.52	peak	Р
4 *	5224.153	78.95	-27.19	51.76	54.00	-2.24	AVG	Р
5	7056.092	69.14	-24.91	44.23	74.00	-29.77	peak	Р
6	9585.684	71.32	-23.38	47.94	74.00	-26.06	peak	Р
7	10453.971	75.50	-24.49	51.01	74.00	-22.99	peak	Р

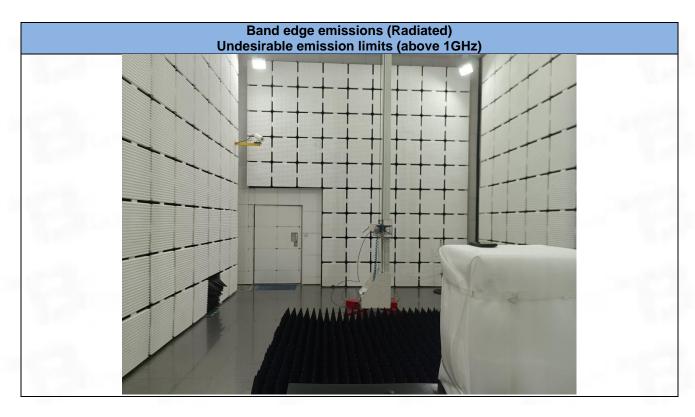
UNII-1_20M_5320MHz_Horizontal

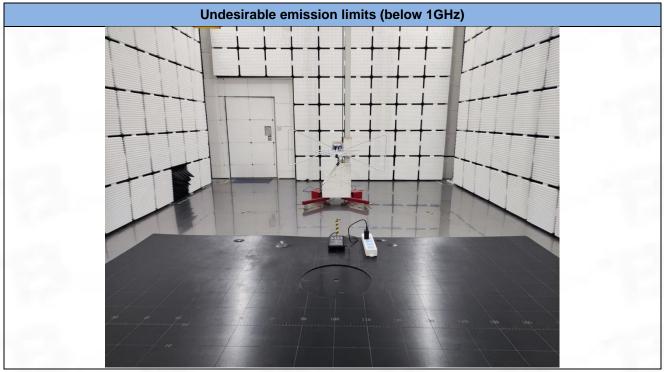
No. Frequency (MHz) Reading (dBuV) Factor (dB/m) Level (dBuV/m) Limit (dBuV/m) Margin (dB) Detector P/F 1 3270.858 66.76 -29.27 37.49 74.00 -36.51 peak P 2 4004.339 65.94 -29.00 36.94 74.00 -37.06 peak P 3 5254.440 91.75 -27.16 64.59 74.00 -9.41 peak P 4 5254.440 74.97 -27.16 47.81 54.00 -6.19 AVG P 5 7015.420 68.86 -24.93 43.93 74.00 -30.07 peak P 6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P 8 10514.577 67.22 -24.49 42.73 54.00 -11.27 AVG P									
2 4004.339 65.94 -29.00 36.94 74.00 -37.06 peak P 3 5254.440 91.75 -27.16 64.59 74.00 -9.41 peak P 4 * 5254.440 74.97 -27.16 47.81 54.00 -6.19 AVG P 5 7015.420 68.86 -24.93 43.93 74.00 -30.07 peak P 6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	No.							Detector	P/F
3 5254.440 91.75 -27.16 64.59 74.00 -9.41 peak P 4 * 5254.440 74.97 -27.16 47.81 54.00 -6.19 AVG P 5 7015.420 68.86 -24.93 43.93 74.00 -30.07 peak P 6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	1	3270.858	66.76	-29.27	37.49	74.00	-36.51	peak	Р
4 * 5254.440 74.97 -27.16 47.81 54.00 -6.19 AVG P 5 7015.420 68.86 -24.93 43.93 74.00 -30.07 peak P 6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	2	4004.339	65.94	-29.00	36.94	74.00	-37.06	peak	Р
5 7015.420 68.86 -24.93 43.93 74.00 -30.07 peak P 6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	3	5254.440	91.75	-27.16	64.59	74.00	-9.41	peak	Р
6 8943.274 72.51 -24.42 48.09 74.00 -25.91 peak P 7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	4 *	5254.440	74.97	-27.16	47.81	54.00	-6.19	AVG	Р
7 10514.577 84.48 -24.49 59.99 74.00 -14.01 peak P	5	7015.420	68.86	-24.93	43.93	74.00	-30.07	peak	Р
The second of th	6	8943.274	72.51	-24.42	48.09	74.00	-25.91	peak	Р
8 10514.577 67.22 -24.49 42.73 54.00 -11.27 AVG P	7	10514.577	84.48	-24.49	59.99	74.00	-14.01	peak	Р
	8	10514.577	67.22	-24.49	42.73	54.00	-11.27	AVG	Р

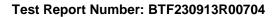

UNII-1_20M_5320MHz_Vertical

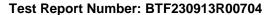

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2610.661	69.37	-30.18	39.19	74.00	-34.81	peak	Р
2	3425.674	66.99	-29.12	37.87	74.00	-36.13	peak	Р
3	5254.440	91.43	-27.16	64.27	74.00	-9.73	peak	Р
4 *	5254.440	75.74	-27.16	48.58	54.00	-5.42	AVG	Р
5	8106.200	69.83	-25.49	44.34	74.00	-29.66	peak	Р
6	10514.577	75.77	-24.49	51.28	74.00	-22.72	peak	Р
7	12433.621	72.44	-21.69	50.75	74.00	-23.25	peak	Р

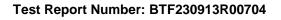



7 Test Setup Photos





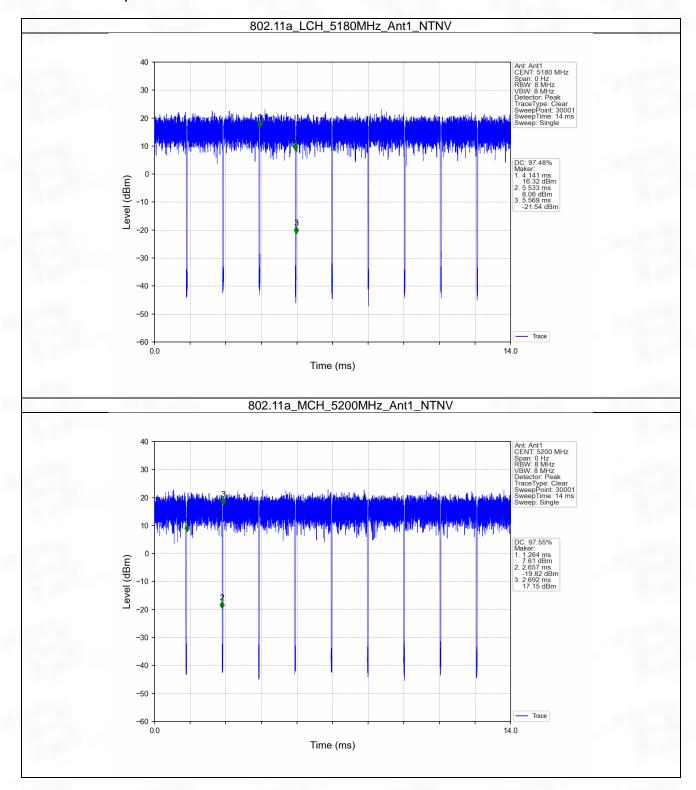



8 EUT Constructional Details (EUT Photos)

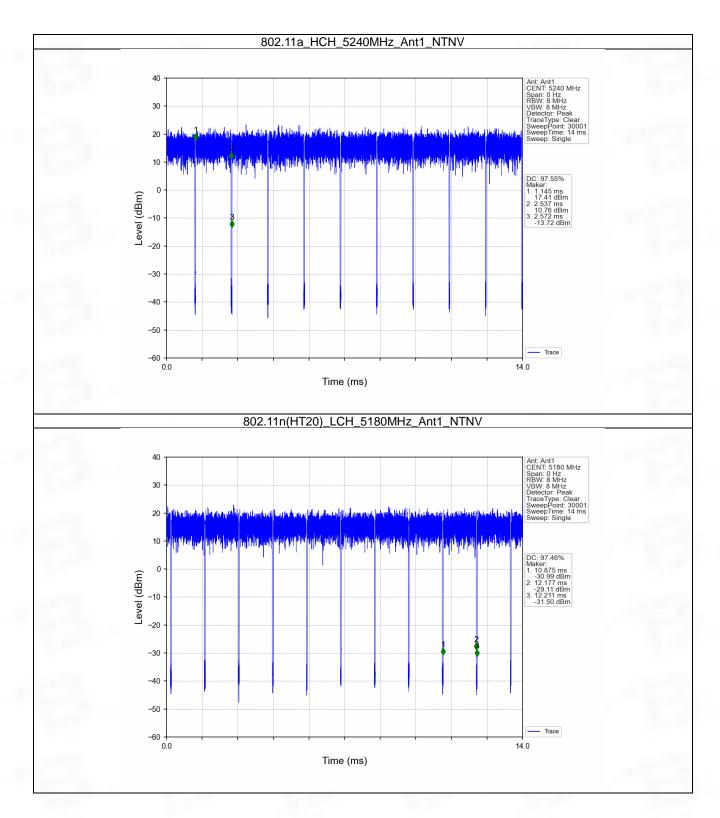
Please refer to the report No.BTF230913R00701

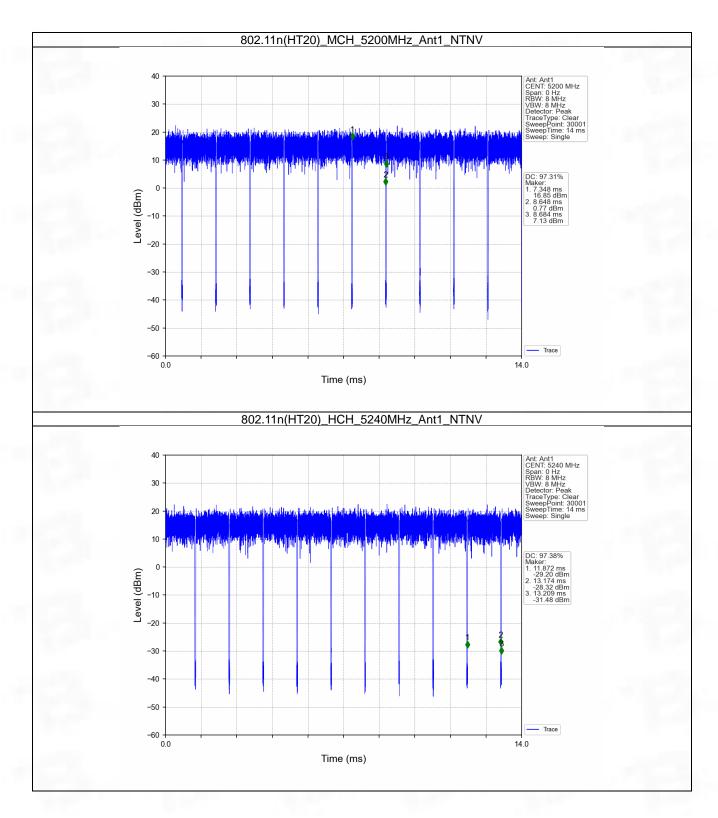
Appendix

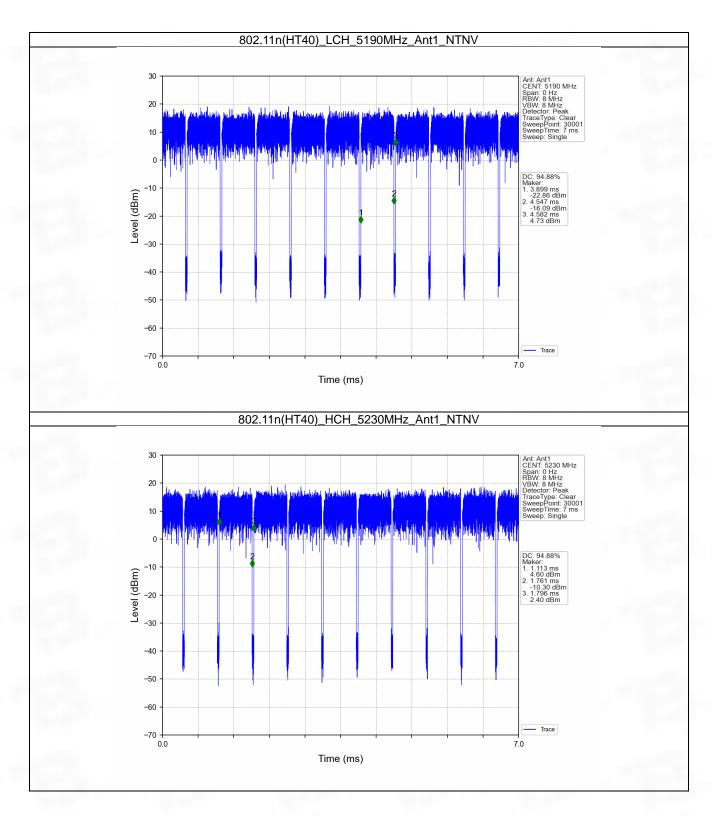
1. Duty Cycle

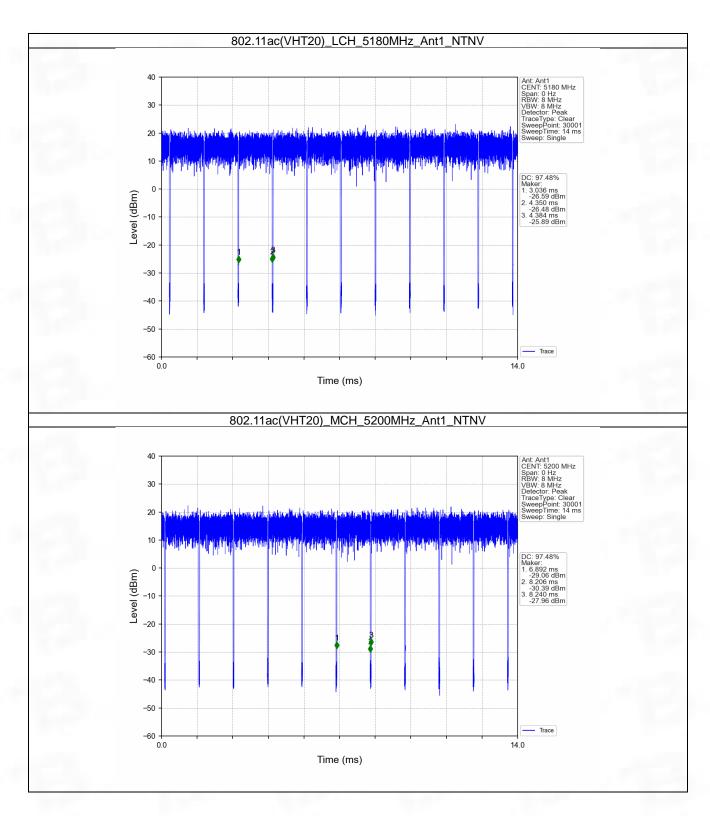

1.1 Ant1

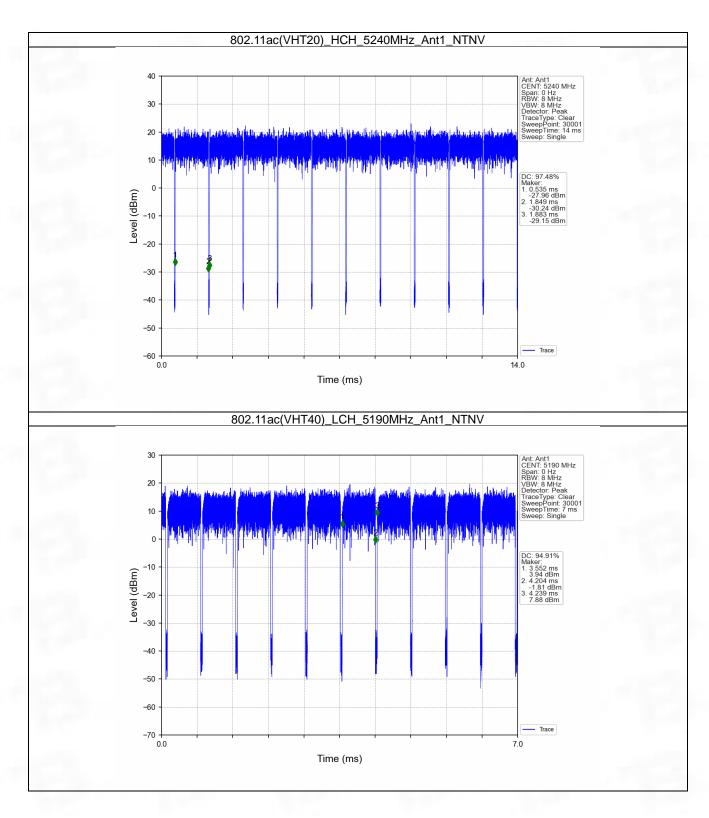
1.1.1 Test Result

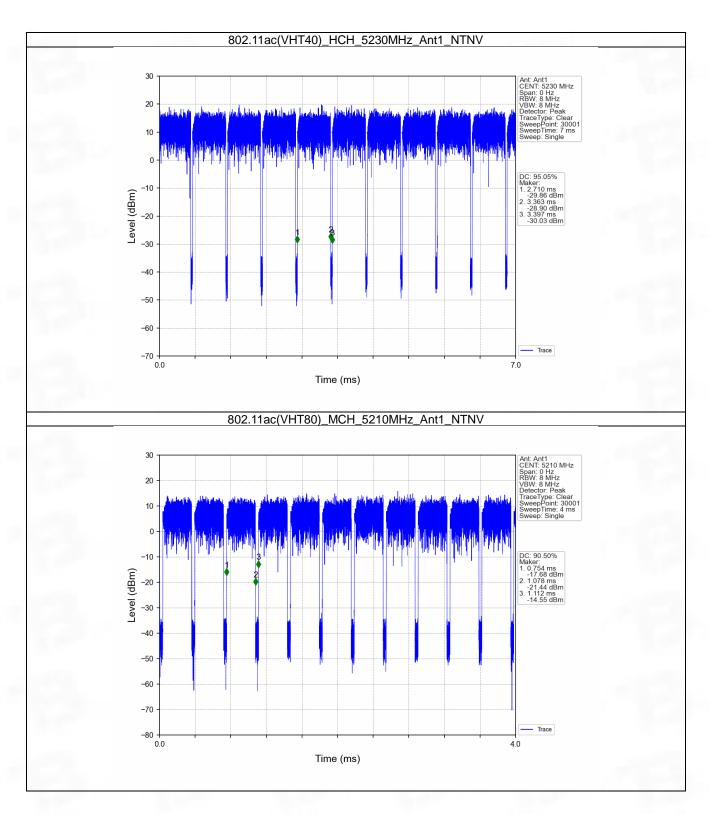

					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	1.392	1.428	97.48	0.11	0.03
802.11a	SISO	5200	1.393	1.428	97.55	0.11	0.06
		5240	1.392	1.427	97.55	0.11	0.03
000 44.5		5180	1.302	1.336	97.46	0.11	0.07
802.11n	SISO	5200	1.300	1.336	97.31	0.12	0.03
(HT20)		5240	1.302	1.337	97.38	0.12	0.07
802.11n	SISO	5190	0.648	0.683	94.88	0.23	0.03
(HT40)	3130	5230	0.648	0.683	94.88	0.23	0.03
802.11ac		5180	1.314	1.348	97.48	0.11	0.03
(VHT20)	SISO	5200	1.314	1.348	97.48	0.11	0.10
(٧Π120)		5240	1.314	1.348	97.48	0.11	0.03
802.11ac	SISO	5190	0.652	0.687	94.91	0.23	0.07
(VHT40)	3130	5230	0.653	0.687	95.05	0.22	0.03
802.11ac (VHT80)	SISO	5210	0.324	0.358	90.50	0.43	0.07

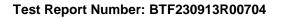

1.1.2 Test Graph



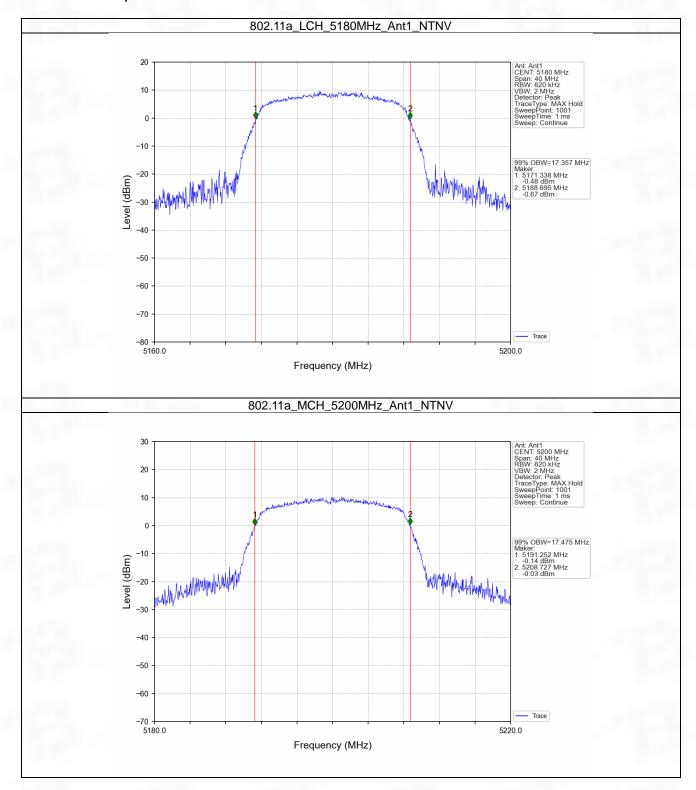




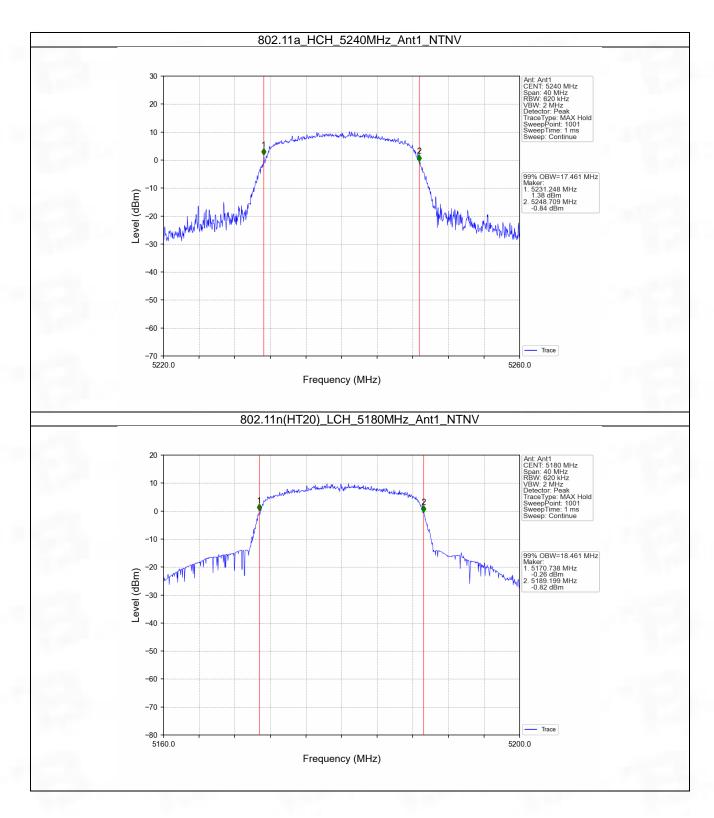


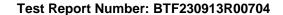


2. Bandwidth

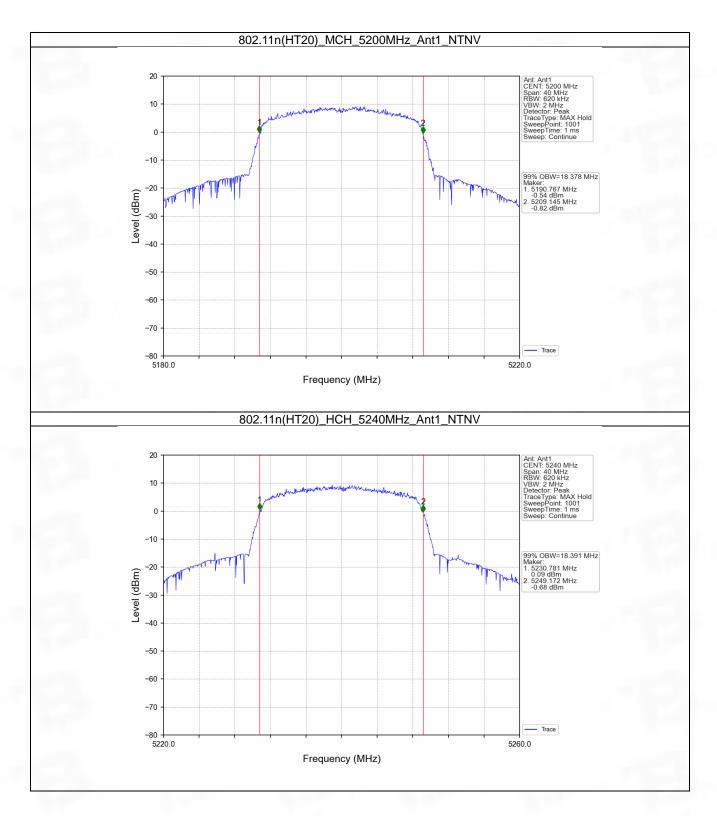

2.1 OBW

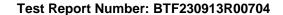
2.1.1 Test Result

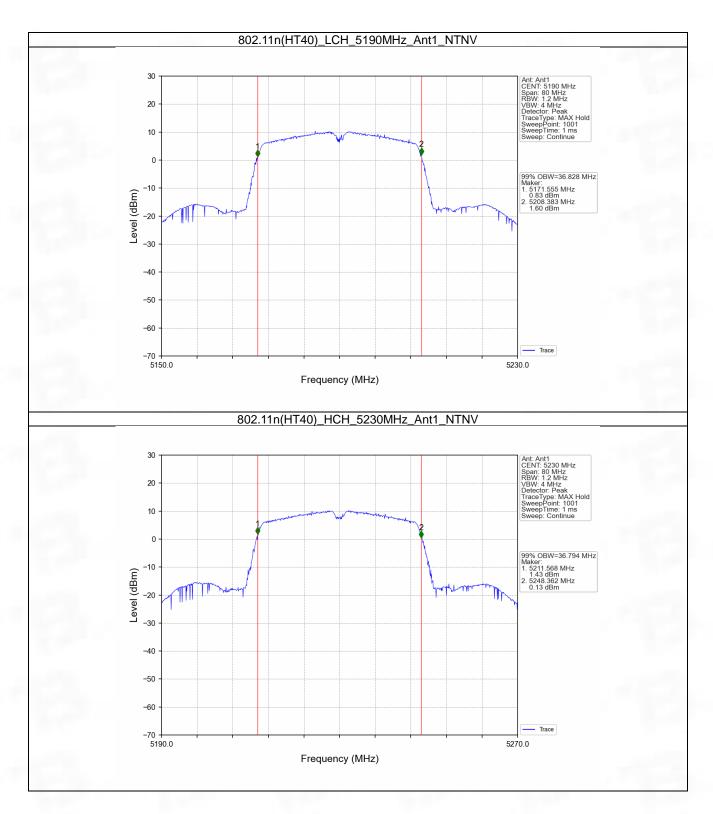

Mode	TX	Frequency	ANT	99% Occupied Bandwidth (MHz)	Verdict
Wode	Type	(MHz)		Result	verdict
		5180	1	17.357	Pass
802.11a	SISO	5200	1	17.475	Pass
		5240	1	17.461	Pass
000 44.5		5180	1	18.461	Pass
802.11n	SISO	5200	1	18.378	Pass
(HT20)		5240	1	18.391	Pass
802.11n	CICO	5190	1	36.828	Pass
(HT40)	SISO	5230	1	36.794	Pass
000 44	SISO	5180	1	18.272	Pass
802.11ac		5200	1	18.236	Pass
(VHT20)		5240	1	18.215	Pass
802.11ac	0100	5190	1	36.490	Pass
(VHT40)	SISO	5230	1	36.496	Pass
802.11ac (VHT80)	SISO	5210	1	75.670	Pass

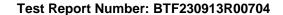


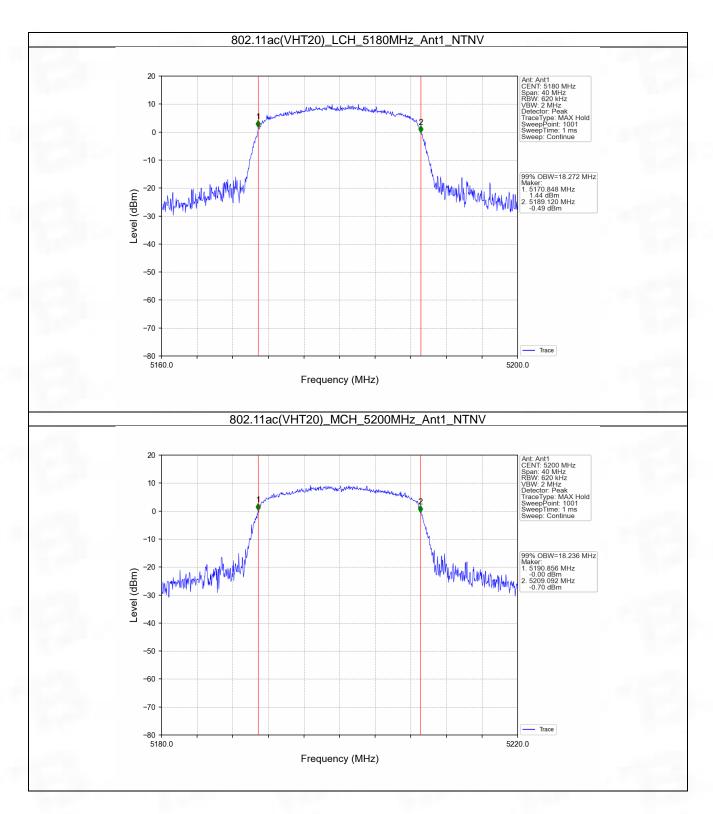
2.1.2 Test Graph

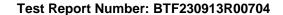


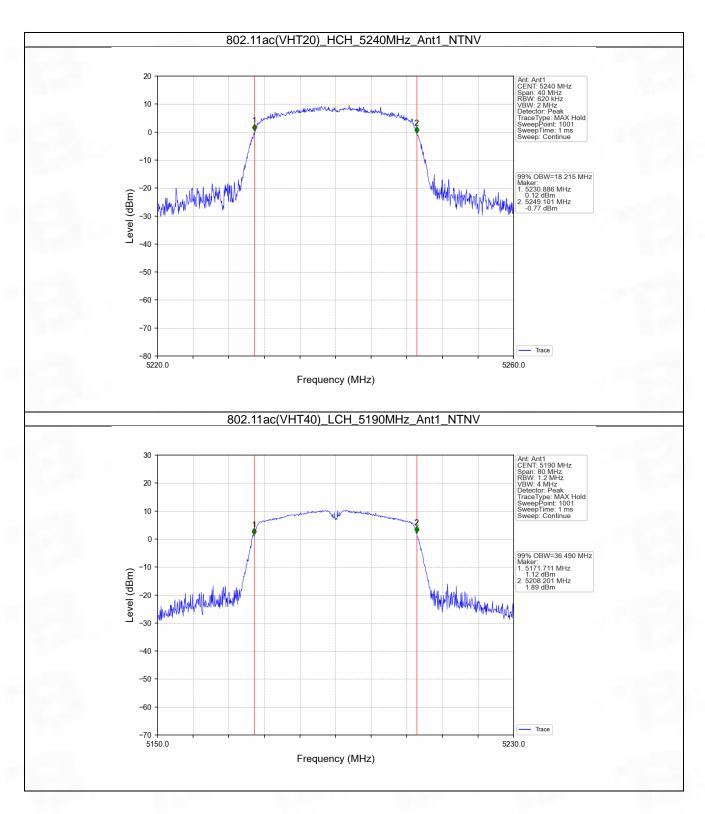


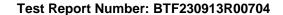


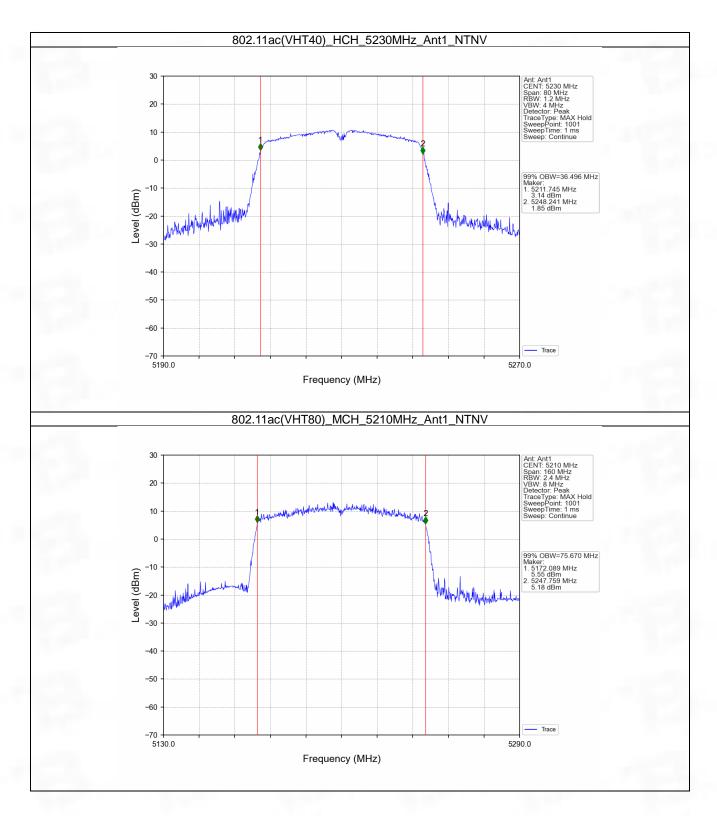


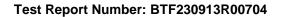


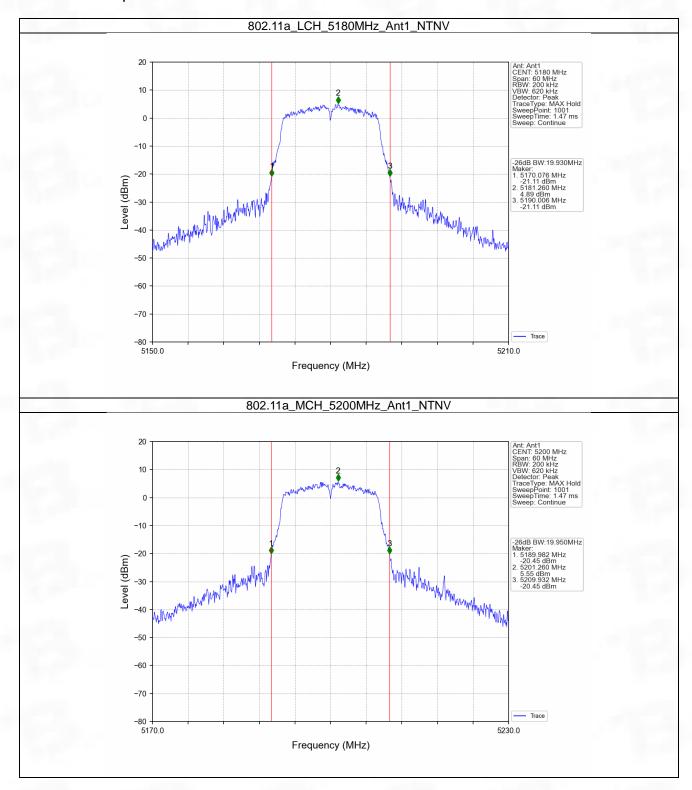


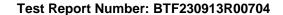




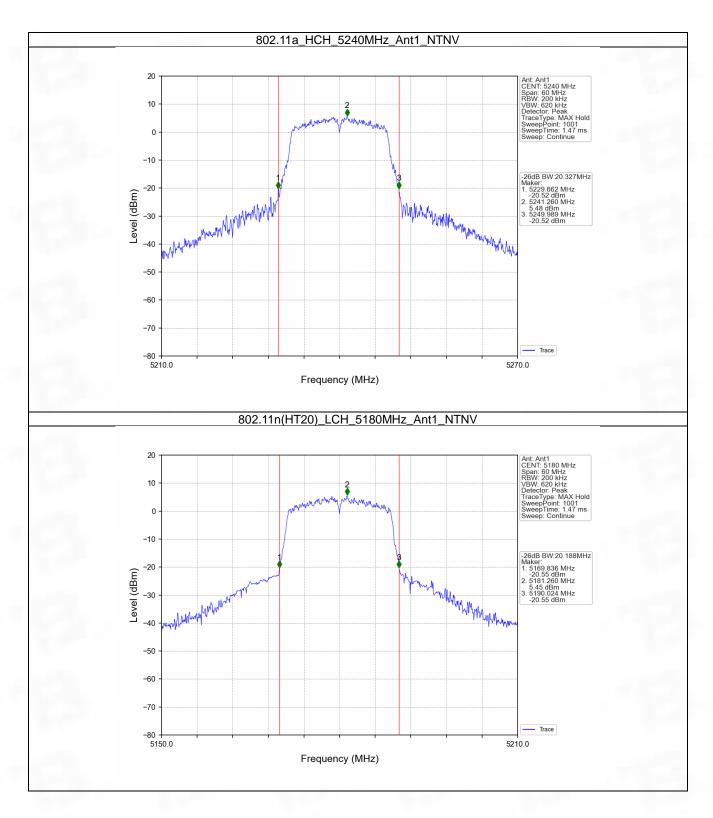




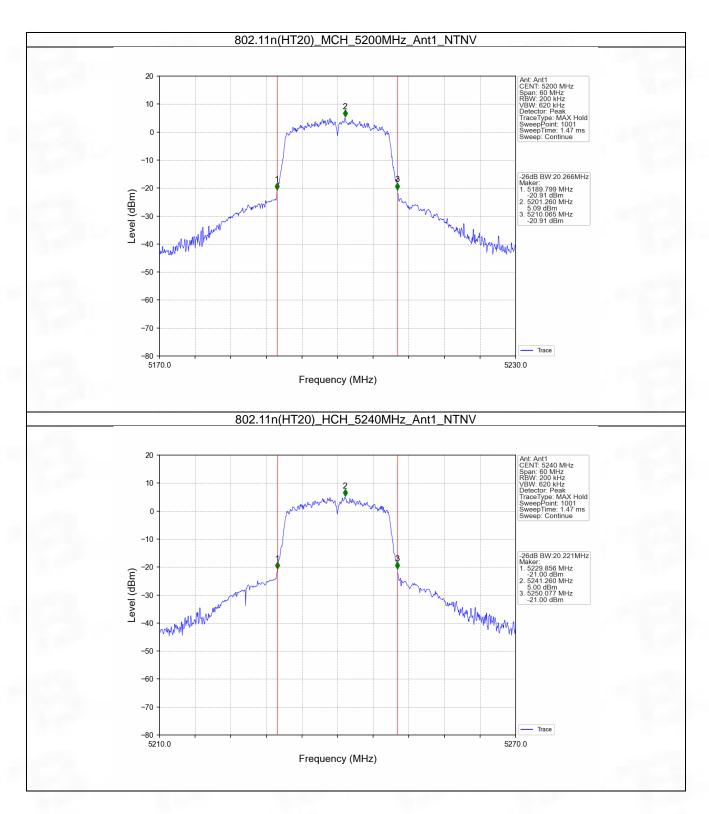

2.2 26dB BW

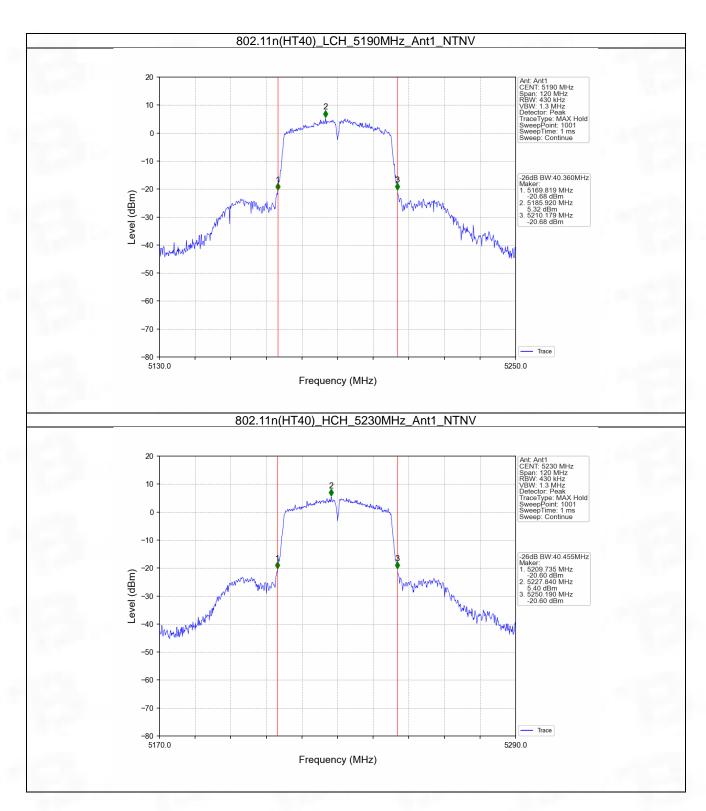

2.2.1 Test Result

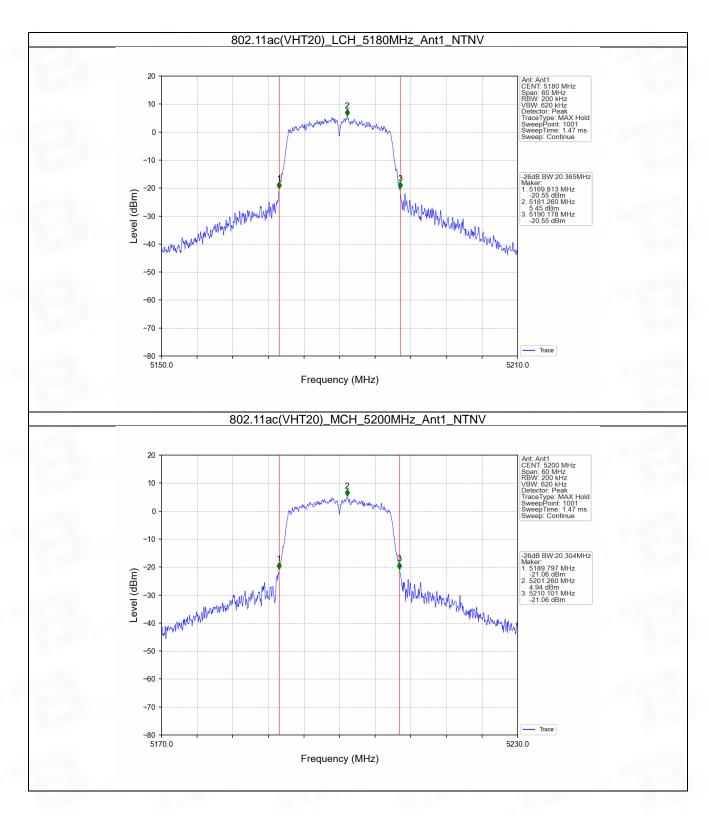
Mode	TX	Frequency	ANT	26dB Bandwidth (MHz)	Verdict	
Wode	Type	(MHz)	7 (1 4 1	Result	voraiot	
		5180	1	19.930	Pass	
802.11a	SISO	5200	1	19.950	Pass	
		5240	1	20.327	Pass	
000 115		5180	1	20.188	Pass	
802.11n (HT20)	SISO	5200	1	20.266	Pass	
(П120)		5240	1	20.221	Pass	
802.11n	SISO	5190	1	40.360	Pass	
(HT40)	3130	5230	1	40.455	Pass	
802.11ac		5180	1	20.365	Pass	
(VHT20)	SISO	5200	1	20.304	Pass	
(٧١١٧)		5240	1	20.239	Pass	
802.11ac	SISO	5190	1	40.499	Pass	
(VHT40)	3130	5230	1	40.735	Pass	
802.11ac (VHT80)	SISO	5210	1	80.854	Pass	

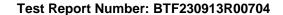


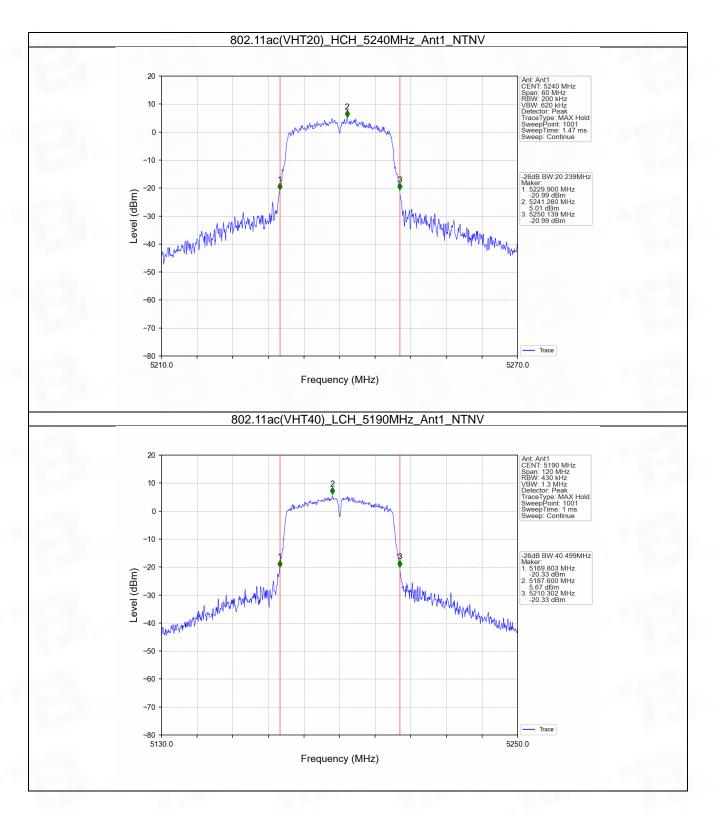
2.2.2 Test Graph

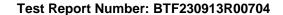


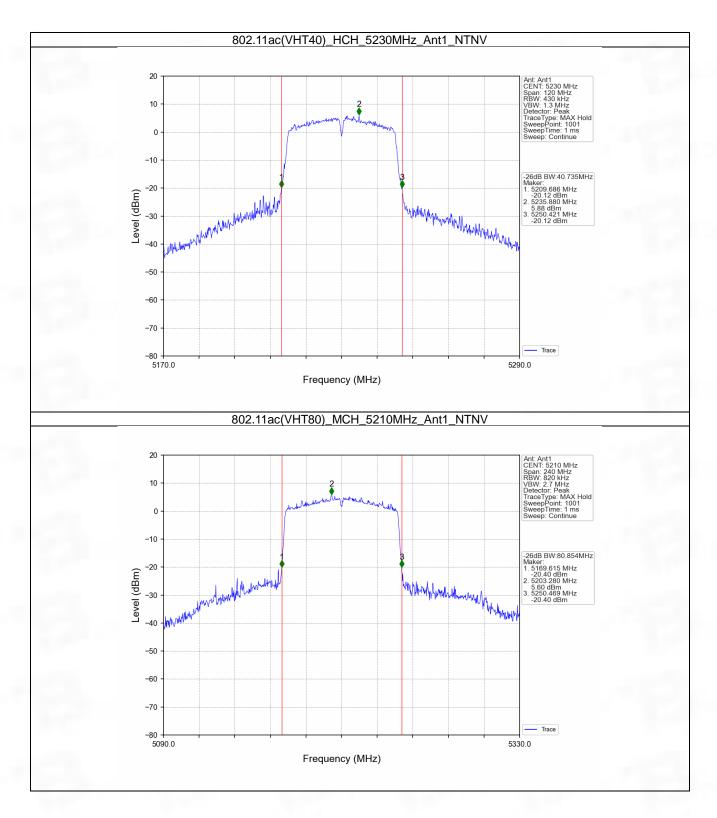


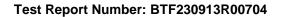


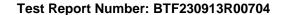






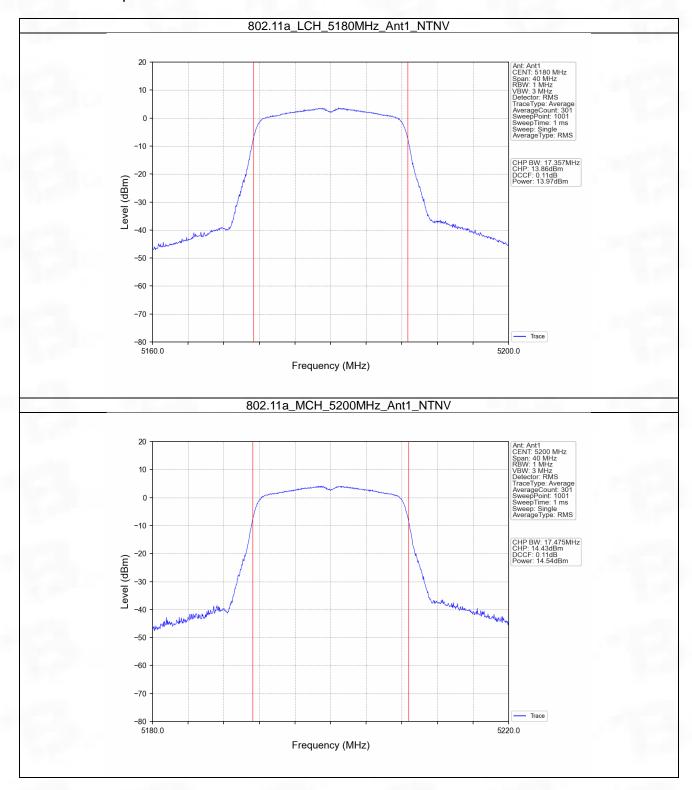


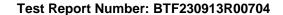


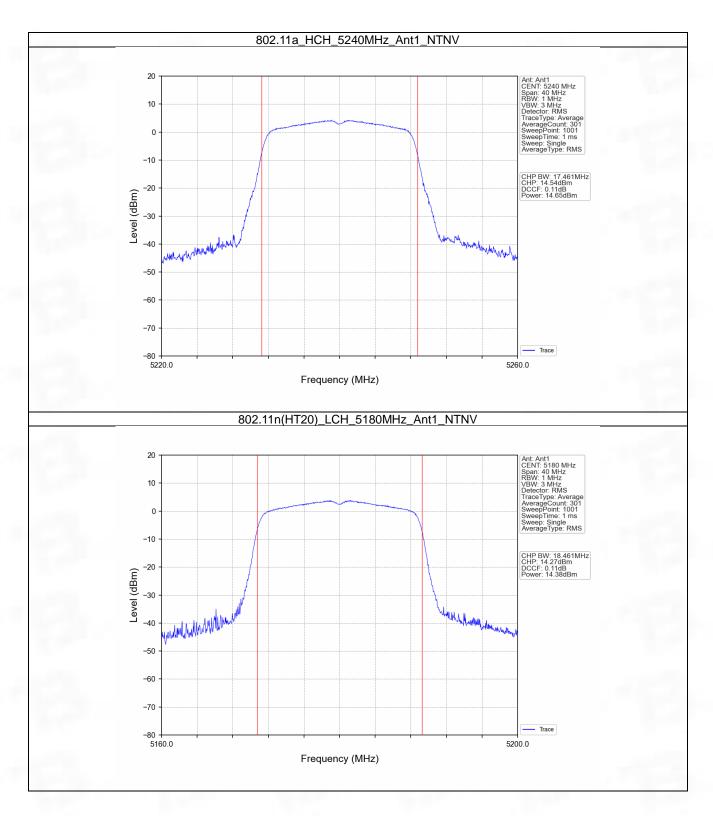


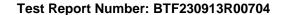
3. Maximum Conducted Output Power

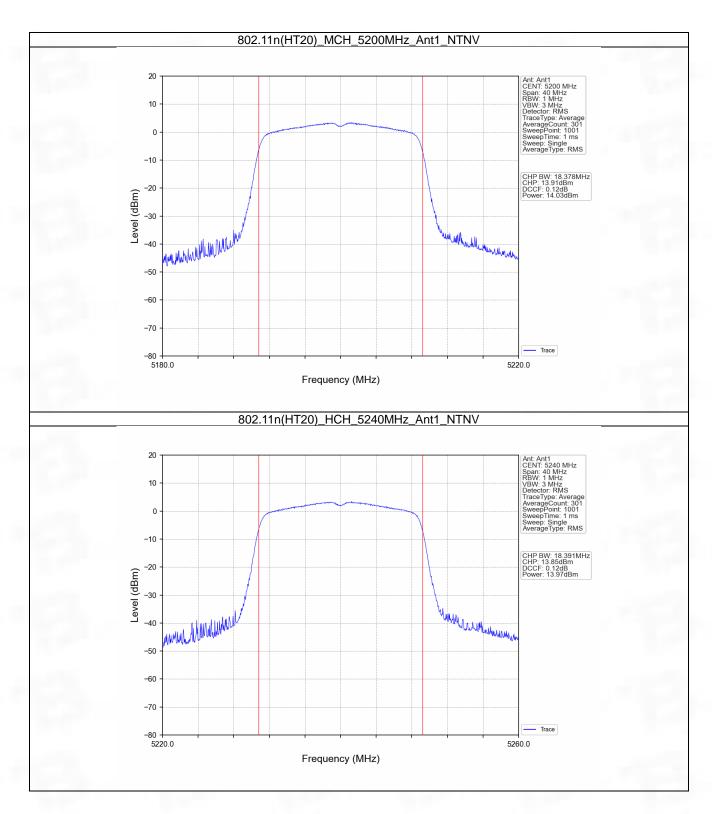
3.1 Power

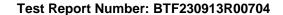

3.1.1 Test Result

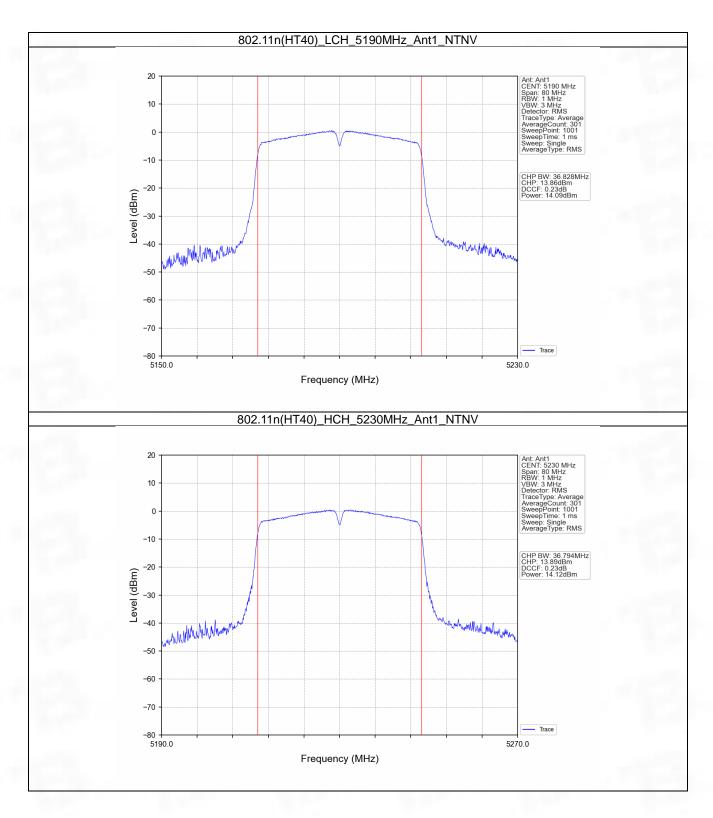

Mada	TX	Frequency	Maximum Average Conduc	cted Output Power (dBm)	Vardiat
Mode	Туре	(MHz)	ANT1	Limit	Verdict
		5180	13.97	<=23.98	Pass
802.11a	SISO	5200	14.54	<=23.98	Pass
		5240	14.65	<=23.98	Pass
000 11n		5180	14.38	<=23.98	Pass
802.11n	SISO	5200	14.03	<=23.98	Pass
(HT20)		5240	13.97	<=23.98	Pass
802.11n	CICO	5190	14.09	<=23.98	Pass
(HT40)	SISO	5230	14.12	<=23.98	Pass
000 44	SISO	5180	14.31	<=23.98	Pass
802.11ac		5200	13.87	<=23.98	Pass
(VHT20)		5240	13.91	<=23.98	Pass
802.11ac	CICO	5190	14.18	<=23.98	Pass
(VHT40)	SISO	5230	14.71	<=23.98	Pass
802.11ac (VHT80)	SISO	5210	14.61	<=23.98	Pass
ote1: Antenna	Gain: Ant1: 0	.33dBi;			

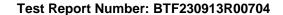


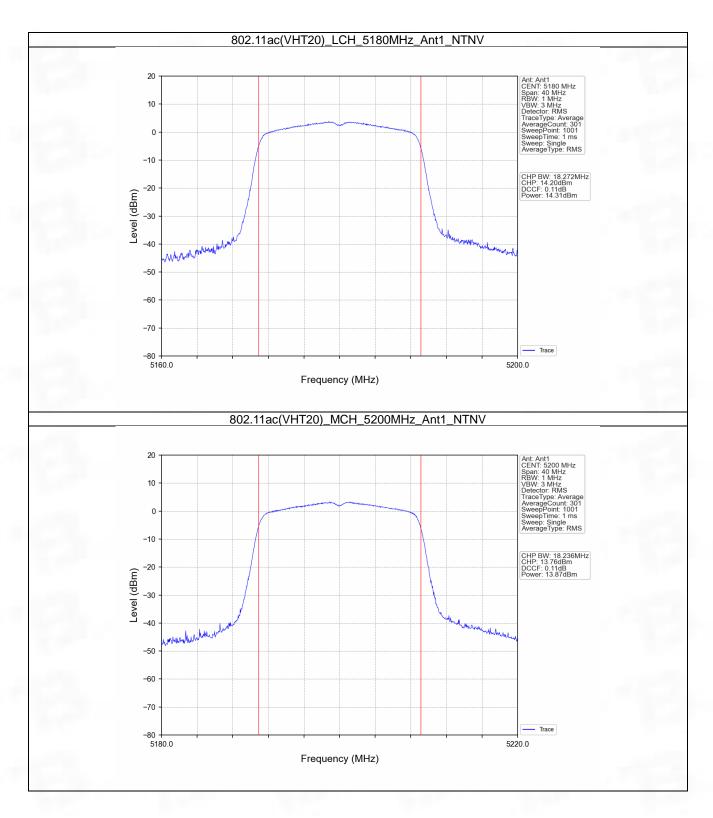

3.1.2 Test Graph

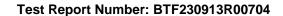


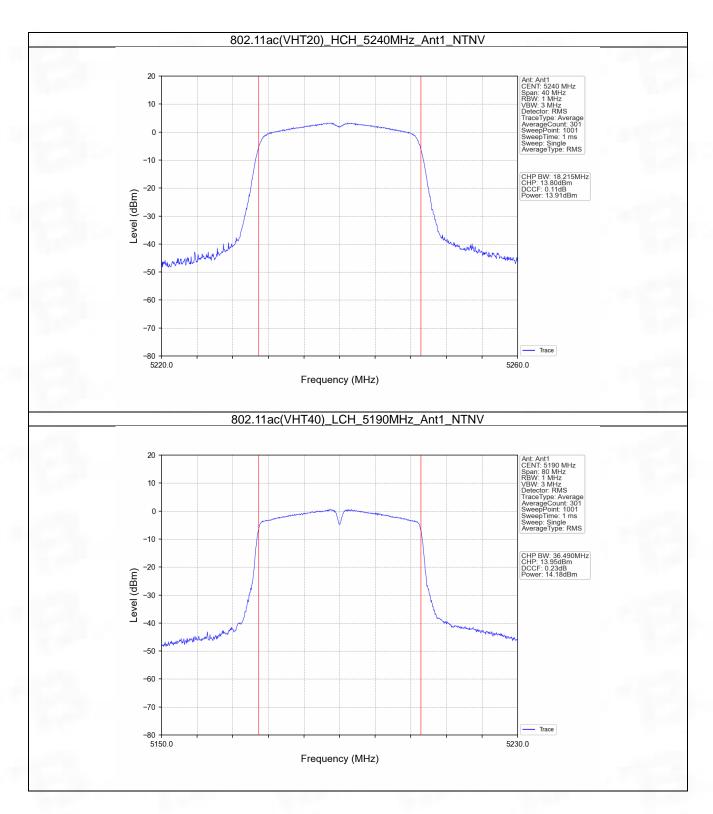


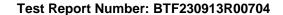


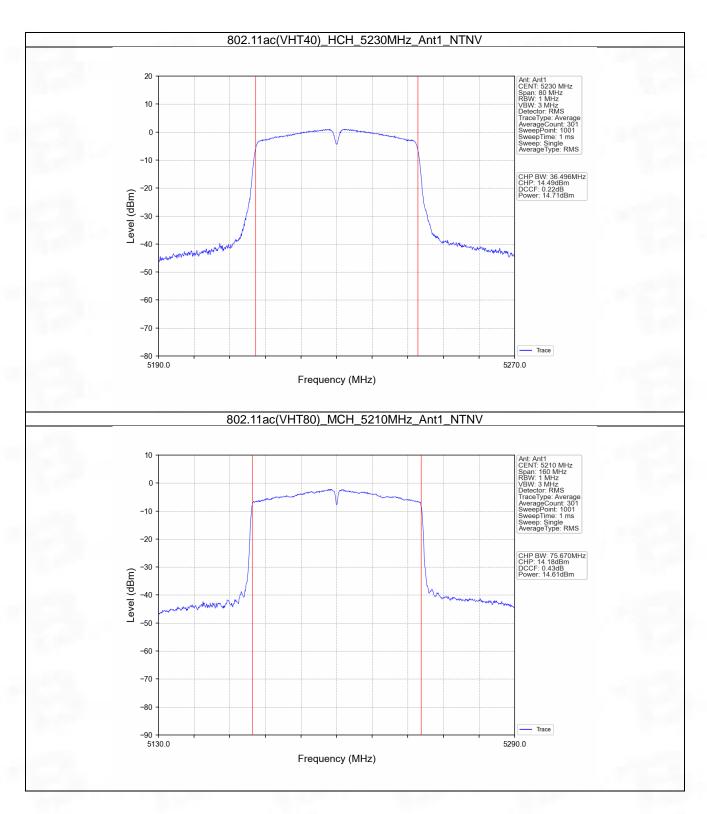


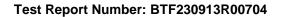




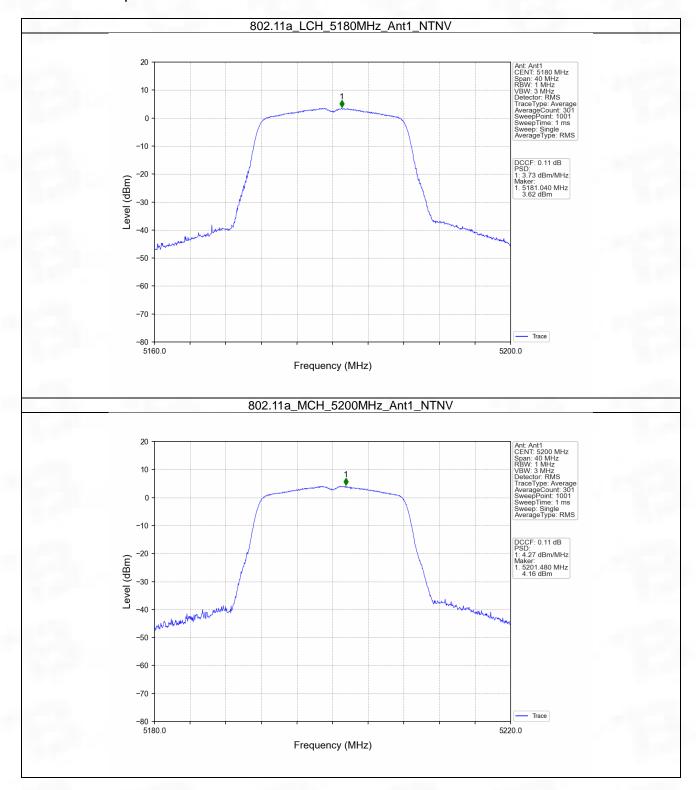


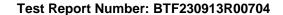




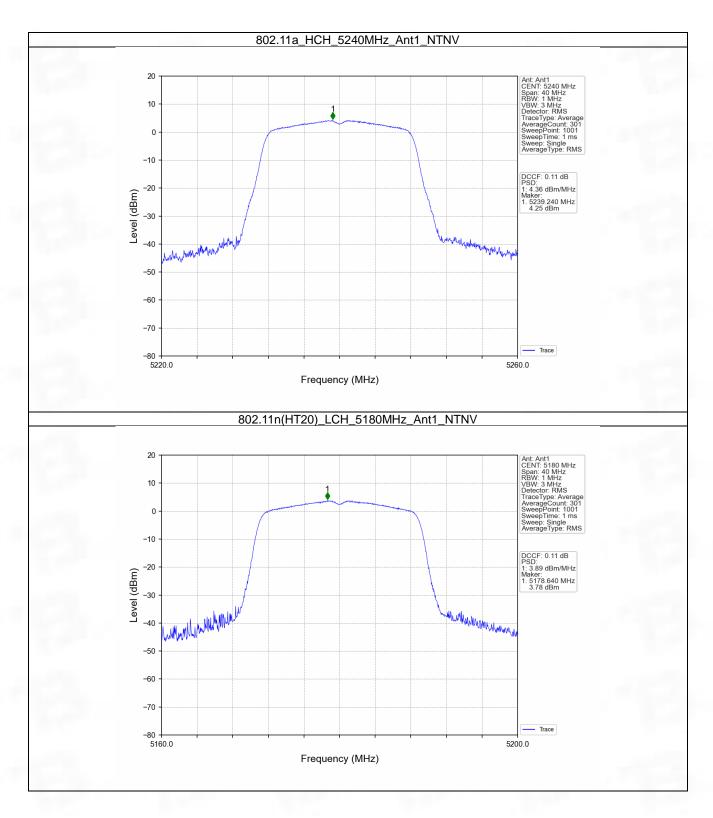


4. Maximum Power Spectral Density

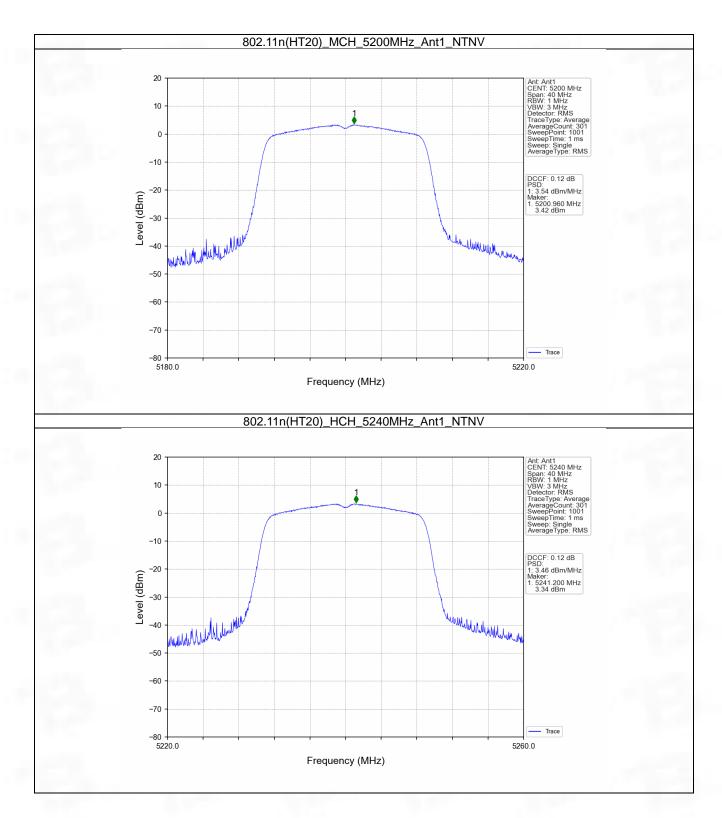

4.1 PSD

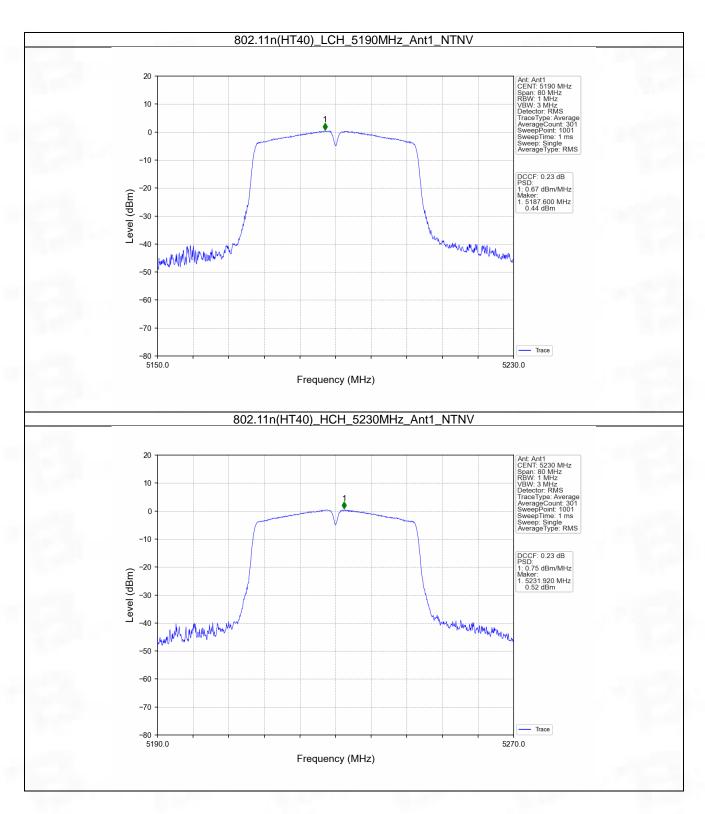

4.1.1 Test Result

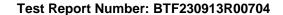
Mode	TX	Frequency	Maximum PS	Verdict	
Mode	Type	(MHz)	ANT1	Limit	verdict
	SISO	5180	3.73	<=11	Pass
802.11a		5200	4.27	<=11	Pass
		5240	4.36	<=11	Pass
000 115	SISO	5180	3.89	<=11	Pass
802.11n		5200	3.54	<=11	Pass
(HT20)		5240	3.46	<=11	Pass
802.11n	SISO	5190	0.67	<=11	Pass
(HT40)		5230	0.75	<=11	Pass
802.11ac (VHT20)	SISO	5180	3.81	<=11	Pass
		5200	3.56	<=11	Pass
		5240	3.45	<=11	Pass
802.11ac (VHT40)	SISO	5190	0.84	<=11	Pass
		5230	1.46	<=11	Pass
802.11ac (VHT80)	SISO	5210	-1.94	<=11	Pass
te1: Antenna Ga	ain: Ant1: 0.33dBi				

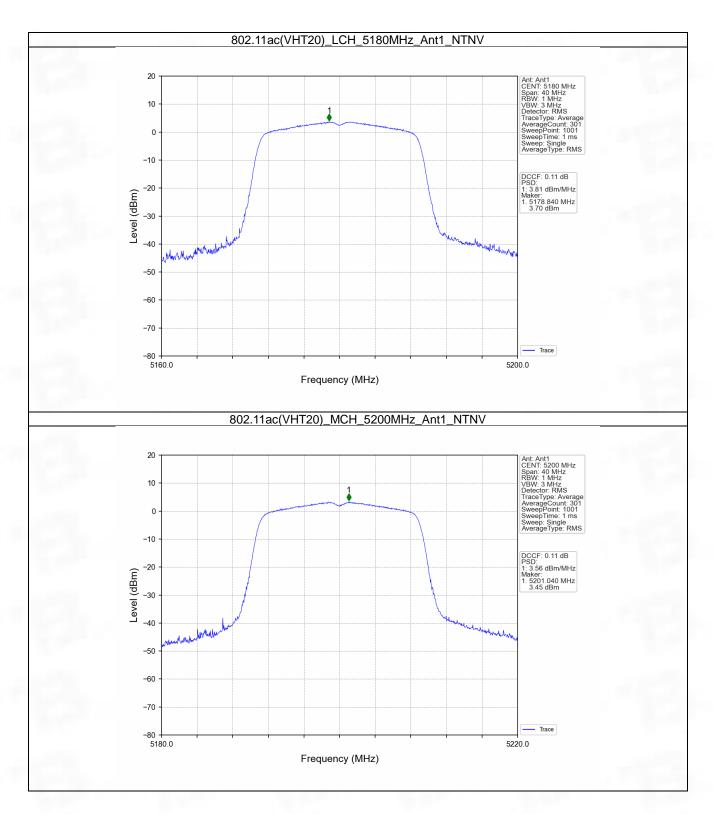


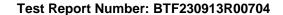
4.1.2 Test Graph

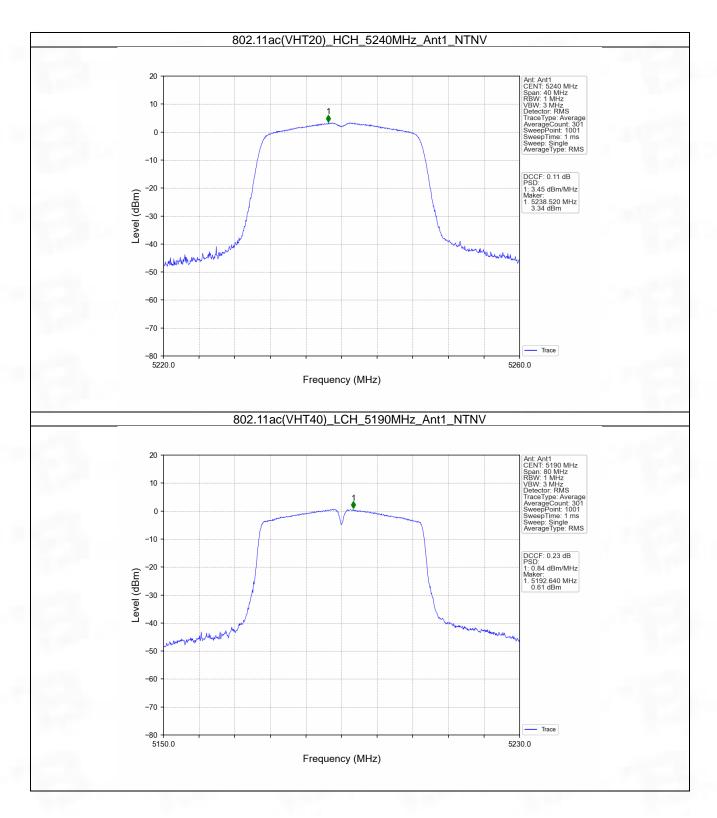


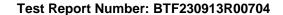


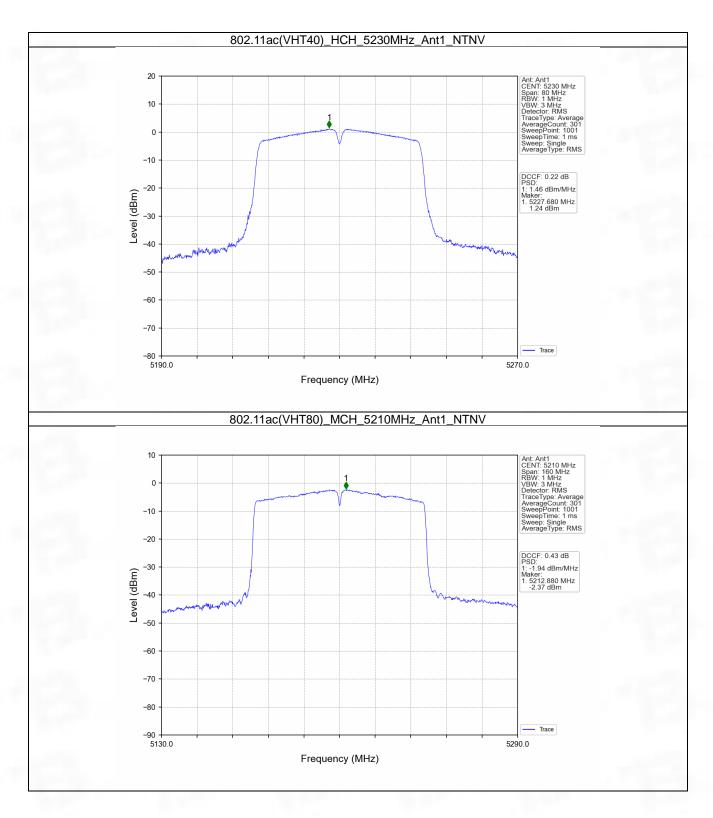


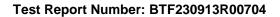




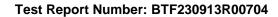








5. Frequency Stability


5.1 Ant1

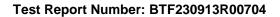
5.1.1 Test Result

Mada	TX	Frequency	Temperature	Ant1 Voltage	Measured Frequency	Limit	\/!'		
Mode	Type	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	Verdict		
				102	5179.940	5150 to 5250	Pass		
			20	120	5179.960	5150 to 5250	Pass		
				138	5180.000	5150 to 5250	Pass		
			-30	120	5179.940	5150 to 5250	Pass		
			-20	120	5179.960	5150 to 5250	Pass		
		5180	-10	120	5179.980	5150 to 5250	Pass		
			0	120	5179.940	5150 to 5250	Pass		
			10	120	5180.000	5150 to 5250	Pass		
			30	120	5180.060	5150 to 5250	Pass		
			40	120	5180.040	5150 to 5250	Pass		
			50	120	5179.960	5150 to 5250	Pass		
				102	5199.940	5150 to 5250	Pass		
			20	120	5199.980	5150 to 5250	Pass		
				138	5200.000	5150 to 5250	Pass		
			-30	120	5199.900	5150 to 5250	Pass		
			-20	120	5199.980	5150 to 5250	Pass		
802.11a	SISO	5200	-10	120	5199.960	5150 to 5250	Pass		
			0	120	5200.020	5150 to 5250	Pass		
			10	120	5200.040	5150 to 5250	Pass		
			30	120	5200.000	5150 to 5250	Pass		
			40	120	5199.980	5150 to 5250	Pass		
			50	120	5199.960	5150 to 5250	Pass		
			20	102	5239.940	5150 to 5250	Pass		
				120	5240.040	5150 to 5250	Pass		
				138	5239.980	5150 to 5250	Pass		
			-30	120	5239.960	5150 to 5250	Pass		
			-20	120	5239.980	5150 to 5250	Pass		
		5240	-10	120	5239.940	5150 to 5250	Pass		
			0	120	5239.960	5150 to 5250	Pass		
			10	120	5239.980	5150 to 5250	Pass		
					30	120	5240.000	5150 to 5250	Pass
			40	120	5240.020	5150 to 5250	Pass		
			50	120	5239.960	5150 to 5250	Pass		
802.11n (HT20) SISO				102	5180.040	5150 to 5250	Pass		
			20	120	5179.940	5150 to 5250	Pass		
	SISO			138	5179.980	5150 to 5250	Pass		
				-30	120	5180.040	5150 to 5250	Pass	
				-20	120	5180.020	5150 to 5250	Pass	
			-10	120	5179.940	5150 to 5250	Pass		
			0	120	5179.940	5150 to 5250	Pass		
			10	120	5179.920	5150 to 5250	Pass		
			30	120	5180.000	5150 to 5250	Pass		
			40	120	5180.020	5150 to 5250	Pass		
			50	120	5179.940	5150 to 5250	Pass		
				102	5199.980	5150 to 5250	Pass		
		5200	20	120	5199.980	5150 to 5250	Pass		

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 82 of 8 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

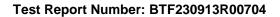
Page 82 of 86

	Г			138	5199.980	5150 to 5250	Pass	
		-	-30	120	5200.020	5150 to 5250 5150 to 5250	Pass	
			-20	120	5200.020	5150 to 5250	Pass	
			-10	120	5199.980	5150 to 5250	Pass	
			0	120	5200.060	5150 to 5250	Pass	
		-	10	120	5199.940	5150 to 5250	Pass	
			30	120	5199.940	5150 to 5250	Pass	
		-	40	120	5199.920	5150 to 5250	Pass	
			50	120	5199.940	5150 to 5250	Pass	
	 		30	102	5240.020	5150 to 5250	Pass	
			20	120	5239.940	5150 to 5250	Pass	
			20	138	5239.960	5150 to 5250	Pass	
			-30	120	5239.980	5150 to 5250	Pass	
			-20	120	5239.980	5150 to 5250	Pass	
		5240	-10	120	5240.020	5150 to 5250	Pass	
		3240	0	120	5239.980	5150 to 5250	Pass	
		-	10	120	5240.000	5150 to 5250	Pass	
			30	120	5239.900	5150 to 5250	Pass	
			40	120	5240.060	5150 to 5250	Pass	
			50	120	5239.980	5150 to 5250	Pass	
			30	102	5190.000	5150 to 5250	Pass	
			20	120	5189.960	5150 to 5250	Pass	
			20	138	5190.000	5150 to 5250	Pass	
		-	-30	120	5190.000	5150 to 5250	Pass	
			-20	120	5190.000	5150 to 5250	Pass	
		5190	-10	120	5190.000	5150 to 5250	Pass	
		3190	0	120	5190.000	5150 to 5250		
			10	120	5190.000	5150 to 5250	Pass	
			30	120			Pass	
			40	120	5190.000 5190.000	5150 to 5250 5150 to 5250	Pass	
902 115			50	120	5190.000	5150 to 5250	Pass Pass	
802.11n (HT40)	SISO		50	102	5229.960	5150 to 5250 5150 to 5250	Pass	
(1140)			20	120	5230.000		Pass	
				20	138	5229.960	5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250 5150 to 5250		
		5230	-20	120	5230.000		Pass	
				120	5230.040	5150 to 5250 5150 to 5250	Pass	
			-10				Pass	
			0	120	5230.000	5150 to 5250	Pass	
			10	120	5230.000	5150 to 5250	Pass	
			30	120	5230.000	5150 to 5250	Pass	
			40	120	5230.000	5150 to 5250	Pass	
			50	120	5230.000	5150 to 5250	Pass	
		5180	20	102	5179.980	5150 to 5250	Pass	
			20	120	5180.000	5150 to 5250	Pass	
				00	138	5180.040	5150 to 5250	Pass
			-30	120	5179.920	5150 to 5250	Pass	
802.11ac (VHT20)			-20	120	5180.000	5150 to 5250	Pass	
	SISO		-10	120	5179.980	5150 to 5250	Pass	
			0	120	5180.000	5150 to 5250	Pass	
			10	120	5179.940	5150 to 5250	Pass	
			30	120	5179.900	5150 to 5250	Pass	
			40	120	5179.980	5150 to 5250	Pass	
			50	120	5179.980	5150 to 5250	Pass	
				102	5200.000	5150 to 5250	Pass	
			20	120	5200.100	5150 to 5250	Pass	
		5200	5200		138	5200.020	5150 to 5250	Pass
			-30	120	5199.980	5150 to 5250	Pass	
			-20	120	5199.960	5150 to 5250	Pass	



			-10	120	5200.000	5150 to 5250	Pass
			0	120	5200.040	5150 to 5250	Pass
			10	120	5200.020	5150 to 5250	Pass
			30	120	5200.000	5150 to 5250	Pass
			40	120	5199.920	5150 to 5250	Pass
		-	50	120	5199.940	5150 to 5250	Pass
				102	5240.020	5150 to 5250	Pass
			20	120	5240.000	5150 to 5250	Pass
				138	5239.960	5150 to 5250	Pass
			-30	120	5240.000	5150 to 5250	Pass
		-	-20	120	5240.060	5150 to 5250	Pass
		5240	-10	120	5239.940	5150 to 5250	Pass
		02.0	0	120	5239.960	5150 to 5250	Pass
		-	10	120	5240.000	5150 to 5250	Pass
		-	30	120	5240.000	5150 to 5250	Pass
			40	120	5239.940	5150 to 5250	Pass
		-	50	120	5240.000	5150 to 5250	Pass
			30	102	5190.000	5150 to 5250	Pass
			20	120	5189.960	5150 to 5250	Pass
			20	138	5189.960	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250	Pass
		-	-20	120	5190.000	5150 to 5250	Pass
		5190	-10	120	5190.000	5150 to 5250	Pass
		5190	0	120	5190.000	5150 to 5250	Pass
		-	10	120	5190.000	5150 to 5250	Pass
			30	120	5189.960	5150 to 5250	Pass
			40	120	5190.000	5150 to 5250	Pass
802.11ac			50	120	5190.000	5150 to 5250	Pass
(VHT40)	SISO		20	102	5229.920	5150 to 5250	Pass
(VIII 1 0)				120	5230.000	5150 to 5250	Pass
				138	5229.960	5150 to 5250	Pass
		5230	-30	120	5230.000	5150 to 5250	Pass
			-20	120	5230.000	5150 to 5250	Pass
			-10	120	5230.000	5150 to 5250	Pass
			0	120	5230.000	5150 to 5250	
		-	10	120	5230.000	5150 to 5250	Pass
			30	120			Pass
					5230.000	5150 to 5250	Pass
			40	120	5230.000	5150 to 5250	Pass
			50	120	5230.000	5150 to 5250	Pass
802.11ac		SO 5210	20	102	5210.000	5150 to 5250	Pass
				120	5210.000	5150 to 5250	Pass
			20	138	5210.000	5150 to 5250	Pass
			-30	120	5210.000	5150 to 5250	Pass
	CICO		-20	120	5210.000	5150 to 5250	Pass
(VHT80)	SISO		-10	120	5210.000	5150 to 5250	Pass
			0	120	5210.000	5150 to 5250	Pass
			10	120	5210.000	5150 to 5250	Pass
			30	120	5210.000	5150 to 5250	Pass
			40	120	5210.000	5150 to 5250	Pass
			50	120	5210.000	5150 to 5250	Pass

6. Form731


6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0292	14.65
5190	5230	0.0296	14.71
5210	5210	0.0289	14.61

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --