

RADIO TEST REPORT FCC ID: 2ANMU-WP27SPUT

Product:Smart PhoneTrade Mark:OUKITELModel No.:WP27Family Model:WP27 S, WP27 Pro, WP27 Ultra, WP27Family Model:S23071404712002Issue Date:17 Aug, 2023

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

1	TEST	RESULT CERTIFICATION	4
2	SUM	MARY OF TEST RESULTS	5
3		LITIES AND ACCREDITATIONS	
-			
		FACILITIES ABORATORY ACCREDITATIONS AND LISTINGS	
		MEASUREMENT UNCERTAINTY	
4		ERAL DESCRIPTION OF EUT	
5	DESC	CRIPTION OF TEST MODES	9
6	SETU	IP OF EQUIPMENT UNDER TEST	.10
(BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
		SUPPORT EQUIPMENT	
(EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TEST	'REQUIREMENTS	.14
,	7.1 (CONDUCTED EMISSIONS TEST	.14
	7.1.1	Applicable Standard	
	7.1.2	Conformance Limit	
	7.1.3	Measuring Instruments	
	7.1.4	Test Configuration	.14
	7.1.5	Test Procedure	
	7.1.6	Test Results	
		RADIATED SPURIOUS EMISSION	
	7.2.1	Applicable Standard	
	7.2.2	Conformance Limit	
	7.2.3	Measuring Instruments	
	7.2.4	Test Configuration	
	7.2.5	Test Procedure	
,	7.2.6 7.3 6	Test Results 5DB BANDWIDTH	
	7.3.1	Applicable Standard	
	7.3.2	Conformance Limit	
	7.3.3	Measuring Instruments	
	7.3.4	Test Setup	
	7.3.5	Test Procedure	
	7.3.6		
-	7.4 I	DUTY CYCLE	.27
	7.4.1	Applicable Standard	.27
	7.4.2	Conformance Limit	.27
	7.4.3	Measuring Instruments	.27
	7.4.4	Test Setup	
	7.4.5	Test Procedure	
	7.4.6	Test Results	
		PEAK OUTPUT POWER	
	7.5.1	Applicable Standard	
	7.5.2	Conformance Limit	
	7.5.3	Measuring Instruments	
	7.5.4 7.5.5	Test Setup	
	7.5.5 7.5.6	Test Procedure Test Results	
,		POWER SPECTRAL DENSITY	
	/.U I	OWER 51 DETRAL DE1911 1	.50

Report No.: S23071404712002

	7.0.1	Applicable Standard	.30
	7.6.2	Conformance Limit	
	7.6.3	Measuring Instruments	.30
	7.6.4	Test Setup	
	7.6.5	Test Procedure	.30
	7.6.6	Test Results	
7.3	7 C	ONDUCTED BAND EDGE MEASUREMENT	.32
	7.7.1	Applicable Standard	. 32
	7.7.2	Conformance Limit	. 32
	7.7.3	Measuring Instruments	. 32
	7.7.4	Test Setup	. 32
	7.7.5	Test Procedure	. 32
	7.7.6	Test Results	
7.8	8 SI	PURIOUS RF CONDUCTED EMISSIONS	.33
	7.8.1	Conformance Limit	
	7.8.2	Measuring Instruments	. 33
	7.8.3	Test Setup	. 33
	7.8.4	Test Procedure	
	7.8.5	Test Results	. 33
7.9	9 A	NTENNA APPLICATION	.34
	7.9.1	Antenna Requirement	. 34
	7.9.2	Result	. 34
8	TEST	RESULTS	.35
11	٨·		35
		Duty Cycle	
	8.1.2	Maximum Conducted Output Power	
	8.1.3	-6dB Bandwidth	
	8.1.4	Occupied Channel Bandwidth	
	8.1.5	Maximum Power Spectral Density Level	
	8.1.6	Band Edge	
	8.1.7	Conducted RF Spurious Emission	
		Duty Cycle	
		Maximum Conducted Output Power	
	8.1.10	-6dB Bandwidth	
	0.1.10		
	8111	Occupied Channel Bandwidth	64
	8.1.11 8.1.12	Occupied Channel Bandwidth Maximum Power Spectral Density Level	
	8.1.12	Maximum Power Spectral Density Level	.67
	8.1.12 8.1.13	Maximum Power Spectral Density Level Band Edge	.67 .70
	8.1.12	Maximum Power Spectral Density Level	.67 .70

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer's Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Product description	
Product name:	Smart Phone
Model and/or type reference:	WP27
Family Model:	WP27 S, WP27 Pro, WP27 Ultra, WP27 TITAN
Test sample number	S230714047013

Measurement Procedure Used:

APPLICABLE STANDARDS		
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J		
FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013 Complied		
		KDB 558074 D01 15.247 Meas Guidance v05r02

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	17 Jul. 2023 ~ 17 Aug, 2023	
Testing Engineer	:	Joven lin	
		(Allen Liu)	
Authorized Signatory	:	Alex	
		(Alex Li)	

	SUMMARY OF TEST RESULTS FCC Part15 (15.247), Subpart C					
Standard Section	Test Item	Verdict	Remark			
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Peak Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
-	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm Site Location	 Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK 北测®

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification				
Equipment	Smart Phone			
Trade Mark	OUKITEL			
FCC ID	2ANMU-WP27SPUT			
Model No.	WP27			
Family Model	WP27 S, WP27 Pro, WP27 Ultra, WP27 TITAN			
Model Difference	All models are the same circuit and RF module, except the model name.			
Operating Frequency	2402MHz~2480MHz			
Modulation	GFSK			
Number of Channels	40 Channels			
Antenna Type	FPC Antenna			
Antenna Gain	0.1dBi			
Power supply	DC 3.87V/8500mAh from battery or DC 5V from Adapter.			
Adapter	Model: HJ-PD33W-US Input: 100-240V~50/60Hz 0.8A Output: 5.0V3.0A OR 9.0V3.0A OR 12.0V2.75A 33.0W MAX			
HW Version	LG985_MB_V4.0			
SW Version	OUKITEL_WP27_EEA_V03			

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

	Re	vision History	
Report No.	Version	Description	Issued Date
S23071404712002	Rev.01	Initial issue of report	17 Aug, 2023
			<u> </u>

NTEK 北测

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps / 2Mbps for GFSK modulation) were used for all test.

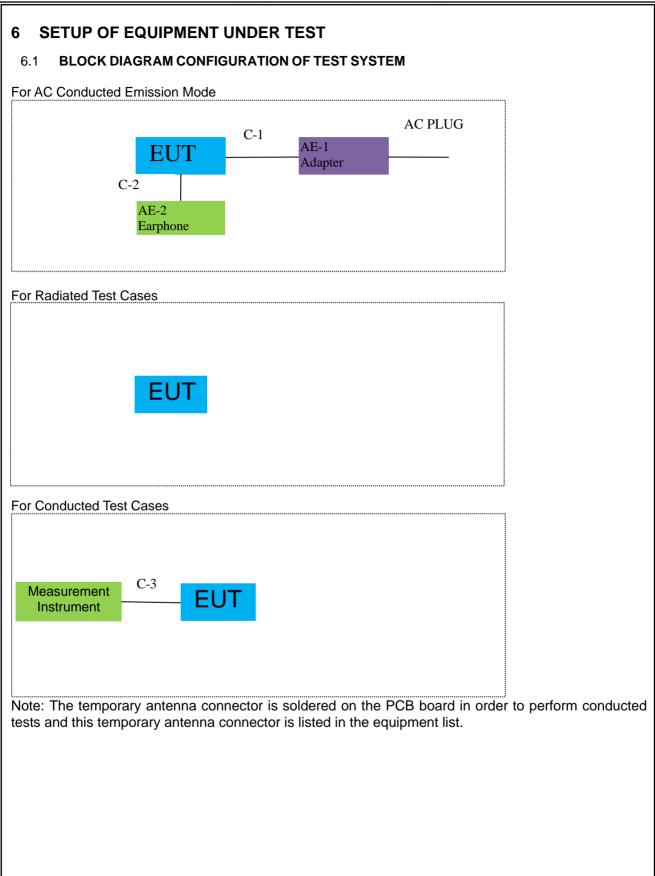
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2404
19	2440
20	2442
38	2478
39	2480

Note: fc=2402MHz+k×2MHz k=0 to 39

The following summary table is showing all test modes to demonstrate in compliance with the standard.


Test Cases		
Test Item	Data Rate/ Modulation	
AC Conducted Emission	Mode 1: normal link mode	
	Mode 1: normal link mode	
Radiated Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	
Conducted Test	Mode 2: GFSK Tx Ch00_2402MHz_1Mbps/2Mbps	
Conducted Test Cases	Mode 3: GFSK Tx Ch19_2440MHz_1Mbps/2Mbps	
Cases	Mode 4: GFSK Tx Ch39_2480MHz_1Mbps/2Mbps	

Note:

1. The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

- 2. AC power line Conducted Emission was tested under maximum output power.
- 3. For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.
- 4. EUT built-in battery-powered, the battery is fully-charged.

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
AE-1	Adapter	HJ-PD33W-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

i luului	Una Conducted	estequipment	n			1	
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.08	2023.11.07	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.08	2023.11.07	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.11.08	2023.11.07	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2022.11.08	2023.11.07	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Cc	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

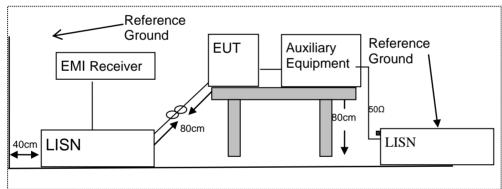
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

	Conducted	Emission Limit
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56*	56-46*
0.5-5.0	56	46
5.0-30.0	60	50


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
 - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

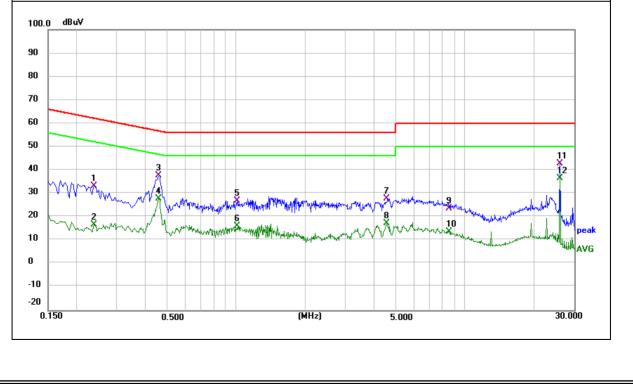
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

7.1.6 Test Results


EUT:	Smart Phone	Model Name :	WP27
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
LAST VAIDAA .	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

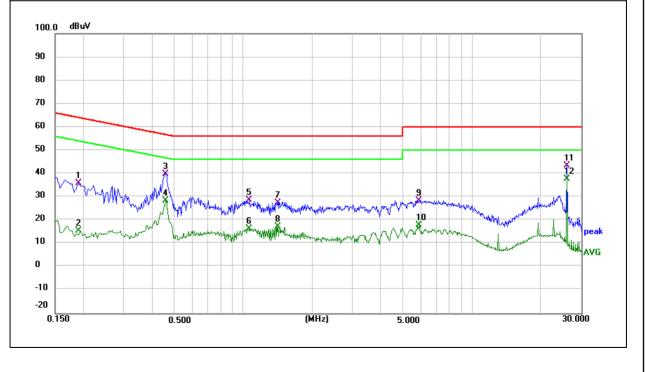
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.2380	23.14	10.12	33.26	62.17	-28.91	QP
0.2380	6.54	10.12	16.66	52.17	-35.51	AVG
0.4580	27.20	10.57	37.77	56.73	-18.96	QP
0.4580	17.35	10.57	27.92	46.73	-18.81	AVG
1.0100	15.14	11.68	26.82	56.00	-29.18	QP
1.0100	4.55	11.68	16.23	46.00	-29.77	AVG
4.5340	18.32	9.67	27.99	56.00	-28.01	QP
4.5340	7.66	9.67	17.33	46.00	-28.67	AVG
8.5460	14.08	9.69	23.77	60.00	-36.23	QP
8.5460	4.03	9.69	13.72	50.00	-36.28	AVG
25.9980	33.13	9.62	42.75	60.00	-17.25	QP
25.9980	26.95	9.62	36.57	50.00	-13.43	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3


EUT:	Smart Phone	Model Name :	WP27
Temperature:	24 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Demark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1900	25.87	10.01	35.88	64.04	-28.16	QP
0.1900	5.56	10.01	15.57	54.04	-38.47	AVG
0.4580	29.17	10.57	39.74	56.73	-16.99	QP
0.4580	18.01	10.57	28.58	46.73	-18.15	AVG
1.0620	16.96	11.78	28.74	56.00	-27.26	QP
1.0620	4.60	11.78	16.38	46.00	-29.62	AVG
1.4140	15.17	12.48	27.65	56.00	-28.35	QP
1.4140	4.79	12.48	17.27	46.00	-28.73	AVG
5.8859	18.87	9.68	28.55	60.00	-31.45	QP
5.8859	8.15	9.68	17.83	50.00	-32.17	AVG
26.0020	33.73	9.62	43.35	60.00	-16.65	QP
26.0020	28.06	9.62	37.68	50.00	-12.32	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

Version.1.3

NTEK 北测

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	GHz			
16.42-16.423	399.9-410	4.5-5.15			
16.69475-16.69525	608-614	5.35-5.46			
16.80425-16.80475	960-1240	7.25-7.75			
25.5-25.67	1300-1427	8.025-8.5			
37.5-38.25	1435-1626.5	9.0-9.2			
73-74.6	1645.5-1646.5	9.3-9.5			
74.8-75.2	1660-1710	10.6-12.7			
123-138	2200-2300	14.47-14.5			
149.9-150.05	2310-2390	15.35-16.2			
156.52475-156.52525	2483.5-2500	17.7-21.4			
156.7-156.9	2690-2900	22.01-23.12			
162.0125-167.17	3260-3267	23.6-24.0			
167.72-173.2	3332-3339	31.2-31.8			
240-285	3345.8-3358	36.43-36.5			
322-335.4	3600-4400	(2)			
	MHz 16.42-16.423 16.69475-16.69525 16.80425-16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 123-138 149.9-150.05 156.52475-156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	MHzMHz16.42-16.423399.9-41016.69475-16.69525608-61416.80425-16.80475960-124025.5-25.671300-142737.5-38.251435-1626.573-74.61645.5-1646.574.8-75.21660-1710123-1382200-2300149.9-150.052310-2390156.52475-156.525252483.5-2500156.7-156.92690-2900162.0125-167.173260-3267167.72-173.23332-3339240-2853345.8-3358			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

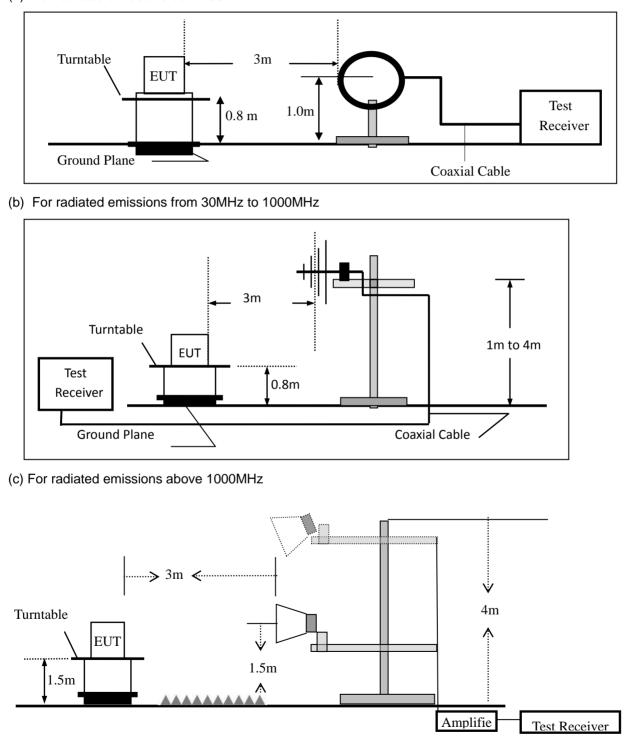
Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHZ)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz: Distance extrapolation factor =40log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz: Distance extrapolation factor =20log(Specific distance/ test distance)(dB); Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

NTEK 北测

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting				
Attenuation	Auto				
Start Frequency	1000 MHz				
Stop Frequency	10th carrier harmonic				
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average				

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
 - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	During the radiated emission test, the Spectrum Analyzer was set with the following configurations:										
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth								
30 to 1000	QP	120 kHz	300 kHz								
Above 1000	Peak	1 MHz	1 MHz								
Above 1000	Average	1 MHz	1 MHz								

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	WP27	
Temperature:	24 ℃	Relative Humidity:	53%	
Pressure:	1010hPa	Test Mode:	Mode 1	
Test Voltage :	DC 3.87V			

Polar (H/V) V V V V V V	Frequency	Meter Reading			Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
V	33.9172	5.98	24.30	30.28	40.00	-9.72	QP	
V	45.5347	8.43	17.84	26.27	40.00	-13.73	QP	
V	87.1115	5.56	16.35	21.91	40.00	-18.09	QP	
V	169.5990	13.50	17.51	31.01	43.50	-12.49	QP	
V	180.0164	9.88	16.94	26.82	43.50	-16.68	QP	
V	520.8881	6.62	25.21	31.83	46.00	-14.17	QP	

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit 80.0 dBuV/m

Pola (H/\		Freque	ency	Met Read		Factor	Emis Lev	vel	Limits	Margin	Remark
(1.4	-,	(MH	lz)	(dBu	ıV)	(dB)	(dBu	V/m)	(dBuV/m)	(dB)	
Н		30.00	000	5.6	61 26.47		32.	08	40.00	-7.92	QP
Н		39.43		7.2		21.32	28.		40.00	-11.45	QP
Н		80.92		6.1		15.51	21.		40.00	-18.33	QP
Н		104.5		7.0		18.05	25.		43.50	-18.40	QP
H		345.5		6.9		21.58	28.		46.00	-17.44	QP
H Rem		742.2	586	8.2	9	28.70	36.	99	46.00	-9.01	QP
			Meter R	eading	- Fact	or, Margin=	Emissi	onlev	el - Limit		
80.0		iV/m		eauing	- i act	or, margin–					
Γ											
70 -											
60 -											
50 -											
40											
										Munder	mar mar hundre
30 🖡	THE ALL	2			-				5	and specific and the second	
		multip		3	X	underholen and an an		and	e wanthender the strengthe		
20		"TATHOUND	Marke 1	1 Marchard March	Nytheren	And rath an united of the	many weeks	Alahav	annanda Martina anna anna anna anna anna anna anna		
			- archivelyholder	(M.) M. (N.)							
10											
0.0											
30.	000		60.00)		(MHz)		300.00		1000.000
)/0.70	sion.1	2									Page 22 of 76

Spurious Em	nission	Above 1GF	lz (1GHz	to 25G	iHz)						
EUT:		Smart Pho	ne		Model No.:		WP27				
Temperature	e:	20 ℃			Relative Hur	nidity:	48%				
Test Mode:		Mode2/Mod	de3/Mode	4	Test By:		Allen Liu				
Frequency	Read Level	Cable loss	Antenna Factor	Pream Facto		Limits	Margin	Remark	Comment		
(MHz)	(dBµV) (dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)				
	Low Channel (2402 MHz)(GFSK)Above 1G										
4804.338	61.69	5.21	35.59	44.30	0 58.19	74.00	-15.81	Pk	Vertical		
4804.338	41.69	5.21	35.59	44.30	0 38.19	54.00	-15.81	AV	Vertical		
7206.107	62.01	6.48	36.27	44.60	0 60.16	74.00	-13.84	Pk	Vertical		
7206.107	41.40	6.48	36.27	44.60	0 39.55	54.00	-14.45	AV	Vertical		
4804.169	63.29	5.21	35.55	44.30	0 59.75	74.00	-14.25	Pk	Horizontal		
4804.169	41.72	5.21	35.55	44.30	0 38.18	54.00	-15.82	AV	Horizontal		
7206.214	61.14	6.48	36.27	44.52	2 59.37	74.00	-14.63	Pk	Horizontal		
7206.214	40.92	6.48	36.27	44.52	2 39.15	54.00	-14.85	AV	Horizontal		
Mid Channel (2440 MHz)(GFSK)Above 1G											
4880.473	62.93	5.21	35.66	44.20	0 59.60	74.00	-14.40	Pk	Vertical		
4880.473	44.30	5.21	35.66	44.20	0 40.97	54.00	-13.03	AV	Vertical		
7320.265	64.90	7.10	36.50	44.43	3 64.07	74.00	-9.93	Pk	Vertical		
7320.265	41.96	7.10	36.50	44.43	3 41.13	54.00	-12.87	AV	Vertical		
4880.366	63.17	5.21	35.66	44.20	0 59.84	74.00	-14.16	Pk	Horizontal		
4880.366	40.51	5.21	35.66	44.20	0 37.18	54.00	-16.82	AV	Horizontal		
7320.234	59.75	7.10	36.50	44.43	3 58.92	74.00	-15.08	Pk	Horizontal		
7320.234	44.49	7.10	36.50	44.43	3 43.66	54.00	-10.34	AV	Horizontal		
			High (Channel	(2480 MHz)(GF	SK) Abov	e 1G	1			
4960.482	63.43	5.21	35.52	44.2	1 59.95	74.00	-14.05	Pk	Vertical		
4960.482	42.21	5.21	35.52	44.2	1 38.73	54.00	-15.27	AV	Vertical		
7440.131	65.58	7.10	36.53	44.60	0 64.61	74.00	-9.39	Pk	Vertical		
7440.131	48.76	7.10	36.53	44.60	0 47.79	54.00	-6.21	AV	Vertical		
4960.326	64.40	5.21	35.52	44.2	1 60.92	74.00	-13.08	Pk	Horizontal		
4960.326	44.00	5.21	35.52	44.2	1 40.52	54.00	-13.48	AV	Horizontal		
7440.199	65.37	7.10	36.53	44.60	0 64.40	74.00	-9.60	Pk	Horizontal		
7440.199	45.54	7.10	36.53	44.60	0 44.57	54.00	-9.43	AV	Horizontal		

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor

(2)All other emissions more than 20dB below the limit.

(3)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

JT:	Smart Ph	ione		Model	Model No.:			WP27		
emperature:	perature: 20 °C Relative Humidity: 4				48%					
est Mode:	Mode2/ N	/lode4		Test B	sy:		Aller	Liu		
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limi	ts	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV	′/m)	(dB)	Туре	
				1Mbps	s(GFSK)					
2310.00	63.84	2.97	27.80	43.80	50.81	74		-23.19	Pk	Horizontal
2310.00	43.93	2.97	27.80	43.80	30.90	54		-23.10	AV	Horizontal
2310.00	60.77	2.97	27.80	43.80	47.74	74		-26.26	Pk	Vertical
2310.00	43.14	2.97	27.80	43.80	30.11	54		-23.89	AV	Vertical
2390.00	62.83	3.14	27.21	43.80	49.38	74		-24.62	Pk	Vertical
2390.00	42.47	3.14	27.21	43.80	29.02	54		-24.98	AV	Vertical
2390.00	63.65	3.14	27.21	43.80	50.20	74		-23.80	Pk	Horizontal
2390.00	42.26	3.14	27.21	43.80	28.81	54		-25.19	AV	Horizontal
2483.50	62.13	3.58	27.70	44.00	49.41	74		-24.59	Pk	Vertical
2483.50	43.92	3.58	27.70	44.00	31.20	54		-22.80	AV	Vertical
2483.50	65.49	3.58	27.70	44.00	52.77	74		-21.23	Pk	Horizontal
2483.50	43.79	3.58	27.70	44.00	31.07	54	.	-22.93	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

UT:	Smart F	hone		Model	Model No.:			WP27		
Temperature:	20 ℃			Relativ	Relative Humidity:			48%		
Fest Mode:	Mode2/	Mode4		Test By	y:		Allen	Liu		
	Deading	Cabla	Antonno	Draamp	Emionian					
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ'	V/m)	(dB)	Туре	
3260	64.87	4.04	29.57	44.70	53.78	74	4	-20.22	Pk	Vertical
3260	57.86	4.04	29.57	44.70	46.77	54	4	-7.23	AV	Vertical
3260	66.26	4.04	29.57	44.70	55.17	74	4	-18.83	Pk	Horizontal
3260	58.23	4.04	29.57	44.70	47.14	54	4	-6.86	AV	Horizontal
3332	66.33	4.26	29.87	44.40	56.06	74	4	-17.94	Pk	Vertical
3332	56.44	4.26	29.87	44.40	46.17	54	4	-7.83	AV	Vertical
3332	66.63	4.26	29.87	44.40	56.36	74	4	-17.64	Pk	Horizontal
3332	51.96	4.26	29.87	44.40	41.69	54	4	-12.31	AV	Horizontal
17797	45.67	10.99	43.95	43.50	57.11	74	4	-16.89	Pk	Vertical
17797	35.91	10.99	43.95	43.50	47.35	54	4	-6.65	AV	Vertical
17788	44.24	11.81	43.69	44.60	55.14	74	4	-18.86	Pk	Horizontal
17788	36.01	11.81	43.69	44.60	46.91	54	4	-7.09	AV	Horizontal

Note: (1) All other emissions more than 20dB below the limit.

(2)Only the worst data is recorded in the report, the data rates (1Mbps for GFSK modulation) test result is the worst

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

a) Set RBW = 100 kHz.

- b) Set the video bandwidth (VBW) \ge 3*RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02s Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on} / T_{total}

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.5 **PEAK OUTPUT POWER**

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.1.

7.5.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows Subclause 11.9.1.1 of ANSI C63.10 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Set the RBW \geq DTS bandwidth. Set VBW =3*RBW. Set the span \geq 3*RBW Set Sweep time = auto couple. Set Detector = peak. Set Trace mode = max hold. Allow trace to fully stabilize. Use peak marker function to determine the peak amplitude level.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.6 **POWER SPECTRAL DENSITY**

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10 This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5*DTS bandwidth.

c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.

- d) Set the VBW \geq 3 RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Allen Liu

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	WP27
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode4	Test By:	Allen Liu

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.9 ANTENNA APPLICATION

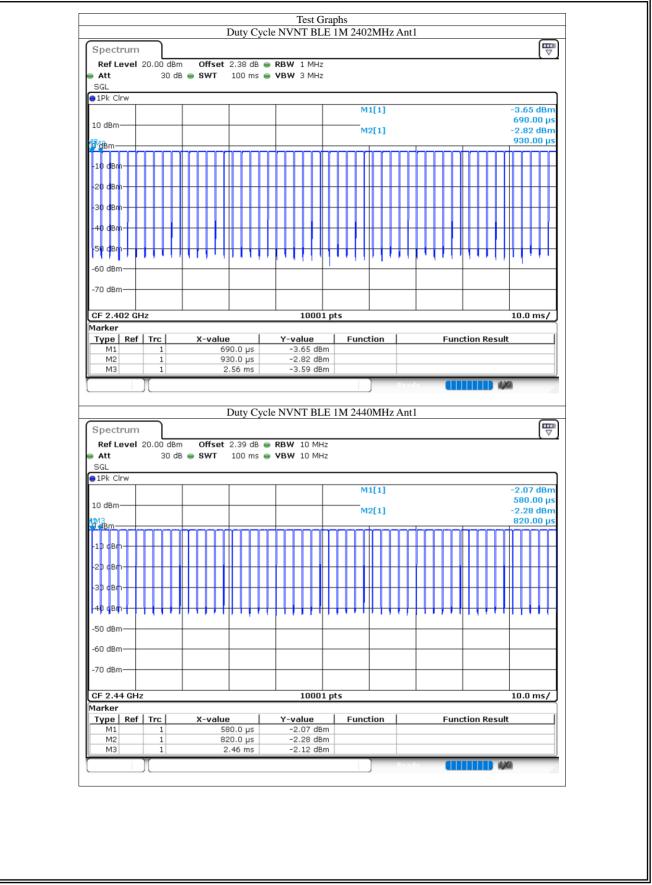
7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

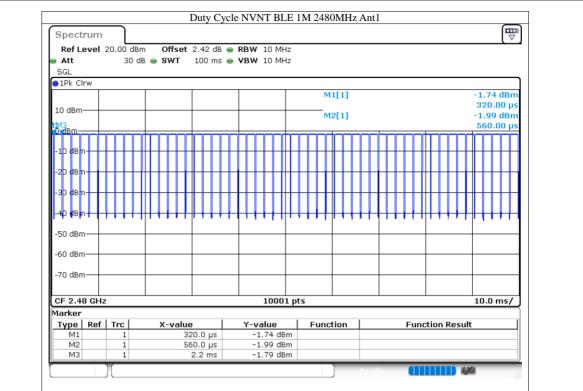
The EUT antenna is permanent attached FPC antenna (Gain: 0.1dBi). It comply with the standard requirement.

8 TEST RESULTS

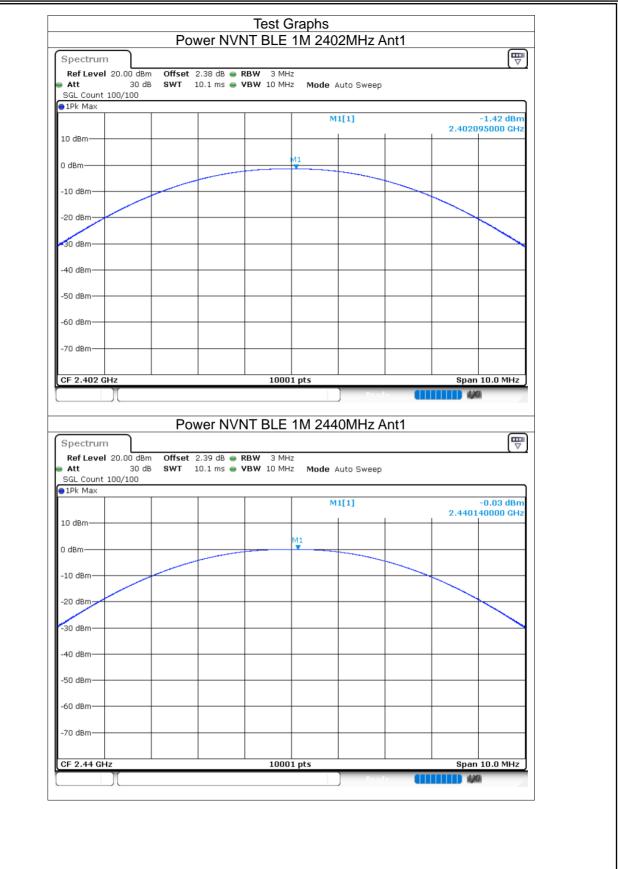

1M:

8.1.1 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	Ant1	87.81	0.56	0.61
NVNT	BLE 1M	2440	Ant1	87.77	0.57	0.61
NVNT	BLE 1M	2480	Ant1	87.59	0.58	0.61

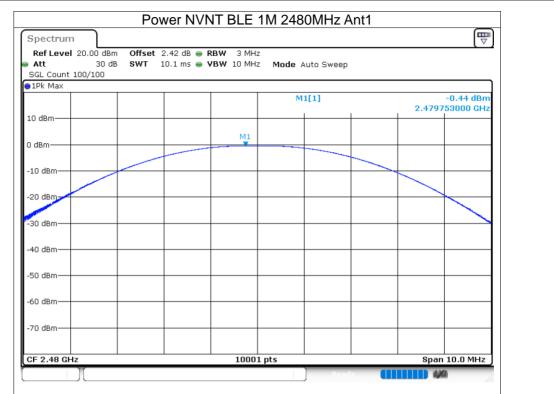

Report No.: S23071404712002

Version.1.3



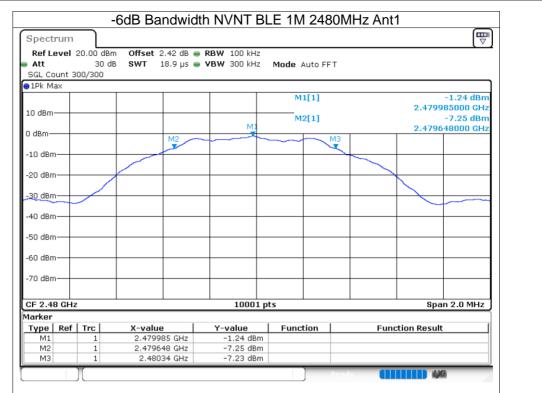
8.1.2 Maximum Conducted Output Power

Condition	n Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-1.42	30	Pass
NVNT	BLE 1M	2440	Ant1	-0.03	30	Pass
NVNT	BLE 1M	2480	Ant1	-0.44	30	Pass



8.1.3 -6dB Bandwidth

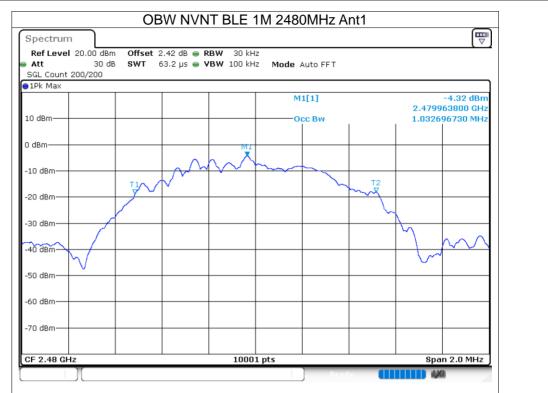
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.654	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.674	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.692	0.5	Pass

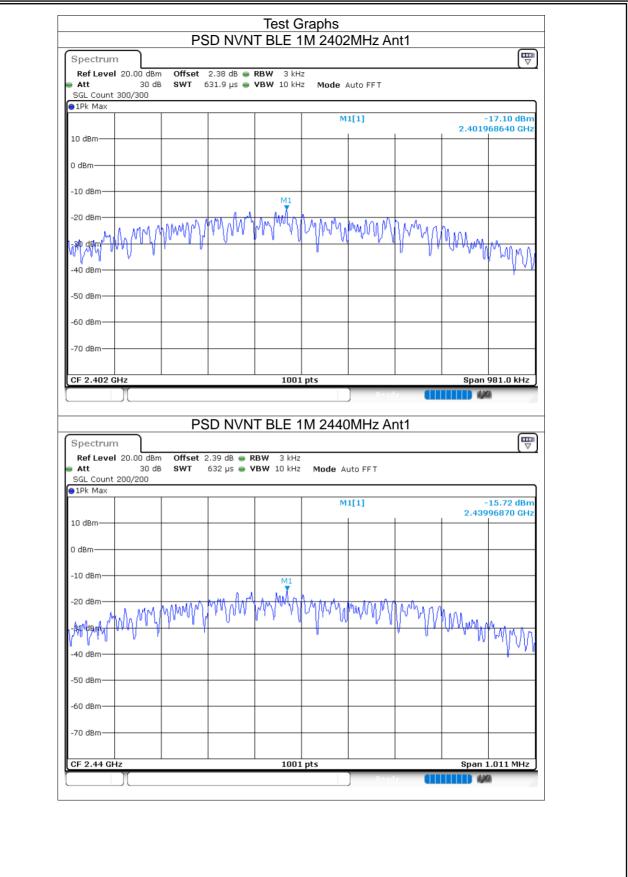




8.1.4 Occupied Channel Bandwidth

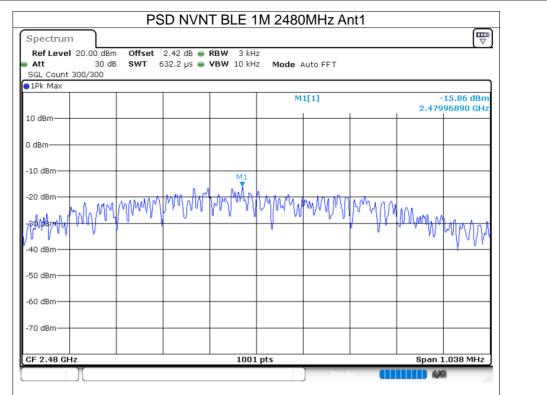
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.008
NVNT	BLE 1M	2440	Ant1	1.016
NVNT	BLE 1M	2480	Ant1	1.033





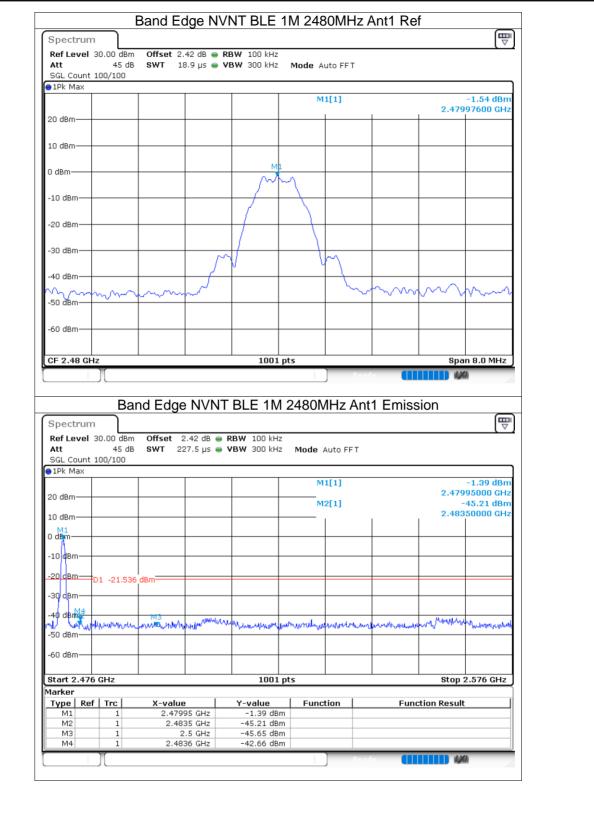
8.1.5 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-17.1	8	Pass
NVNT	BLE 1M	2440	Ant1	-15.72	8	Pass
NVNT	BLE 1M	2480	Ant1	-15.86	8	Pass



8.1.6 Band Edge

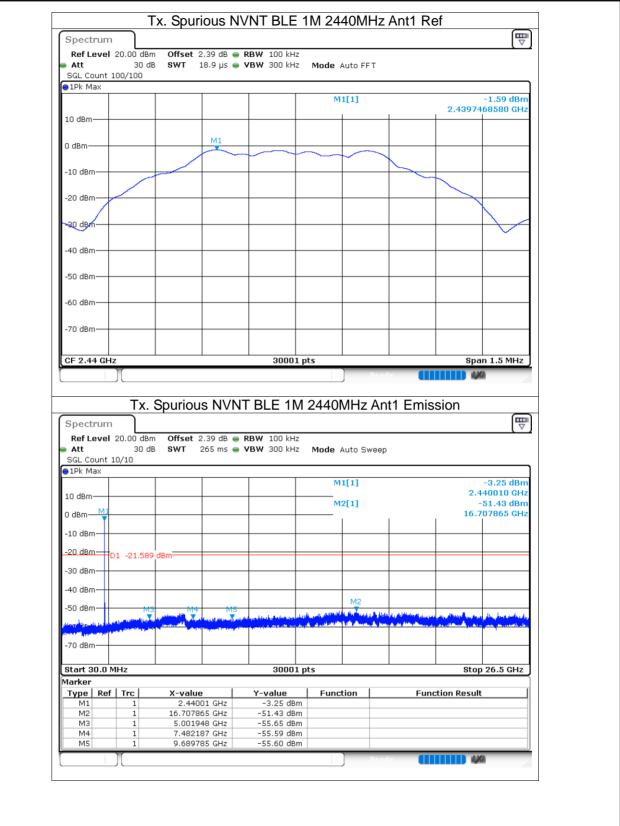
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-47.82	-20	Pass
NVNT	BLE 1M	2480	Ant1	-41.12	-20	Pass

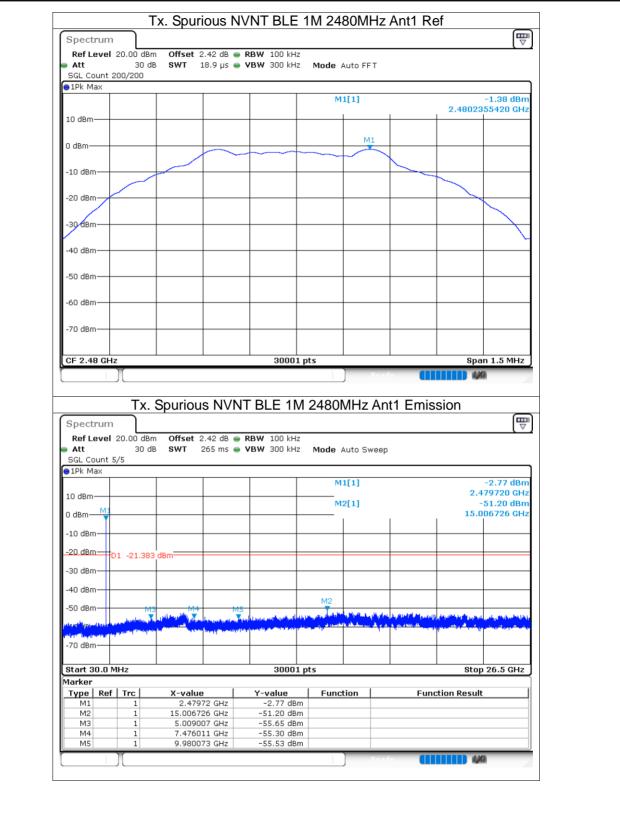


Att 35 dB			2402MHz Ant		
	Offset 2.38 dB ● R SWT 18.9 µs ● V		le Auto FFT		
SGL Count 100/100					
			M1[1]		-2.45 dBm
10 dBm				2.401	98400 GHz
0 dBm		M			
-10 dBm		$\perp m$			
-20 dBm					
-30 dBm		N.	V		
-40 dBm					
-50 dBm		+ +		~~	
-60 dBm	m v v V	<u> </u>	~~~	~~~~~	~~~~
-70 dBm		<u> </u>			
CF 2.402 GHz	· · · · ·	1001 pts		Spar	18.0 MHz
	Offset 2.38 dB ● SWT 227.5 µs ●				
SGL Count 100/100	awi 227.3 µs 🖷	YBW 300 KH2 MU	ue Auto FFT		
😑 1Pk Max			M1[1]		-3.02 dBm
	1 1		_	2.401	75000 GHz
10 dBm		1 1	M2[1]		53.01 dBm
10 dBm					
_					53.01 dBm
10 dBm	dBm				53.01 dBm
10 dBm	dBm		M2[1]		53.01 dBm
10 dBm 0 dBm -10 dBm -20 dBm -21 -22.446					53.01 dBm
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	M4			2.400	53.01 dBm 00008/GHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	M4		M2[1]	2.400	53.01 dBm 000081GHz
10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -10 -22.446 -30 dBm -40 dBm -50 dBm	M4			2.400	53.01 dBm 00008/GHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	M4	1001 pts		2.400	53.01 dBm 00008/GHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	M4 Work water from the	1001 pts	Internet when about	2.4000	53.01 dBm 000081 GHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	М4 Манинининининининининининининининининини	1001 pts Y-value F -3.02 dBm		2.400	53.01 dBm 000081 GHz
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm -50 dBm -50 dBm -70 dBm Start 2.306 GHz Marker Туре Ref Trc	M4 Worker March Mar X-value	1001 pts Y-value F	Internet when about	2.4000	53.01 dBm 000081 GHz

8.1.7 Conducted RF Spurious Emission

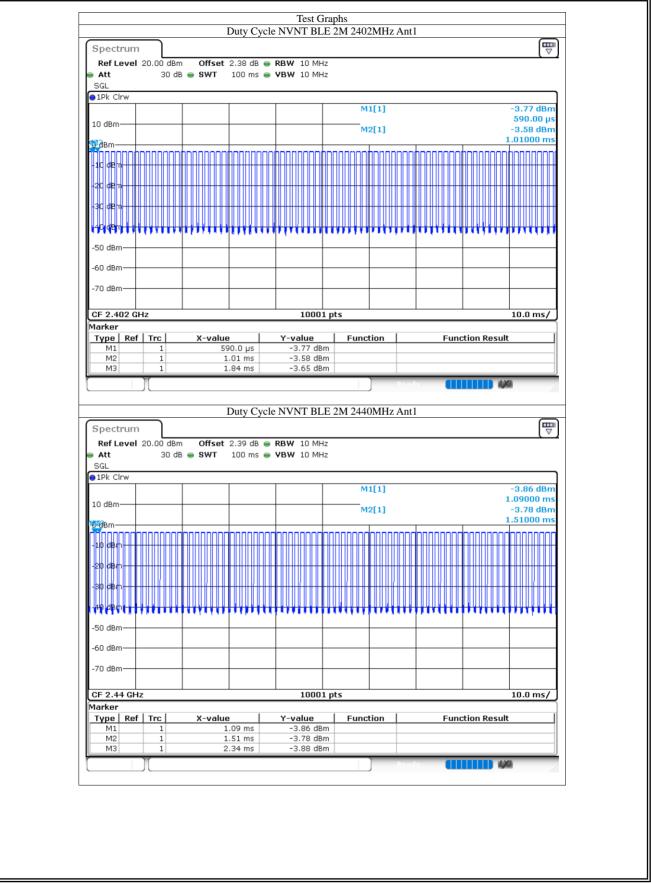
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-48.86	-20	Pass
NVNT	BLE 1M	2440	Ant1	-49.84	-20	Pass
NVNT	BLE 1M	2480	Ant1	-49.81	-20	Pass





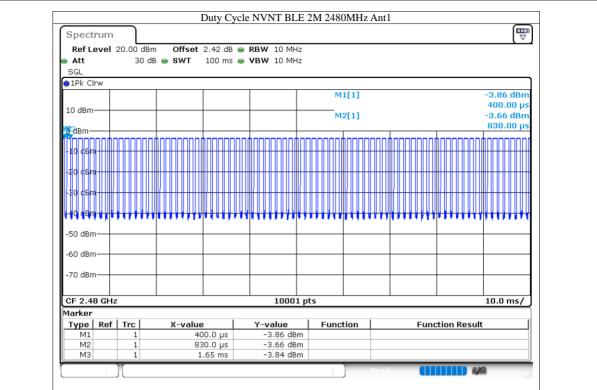
NTEK 北测[®]

2M:

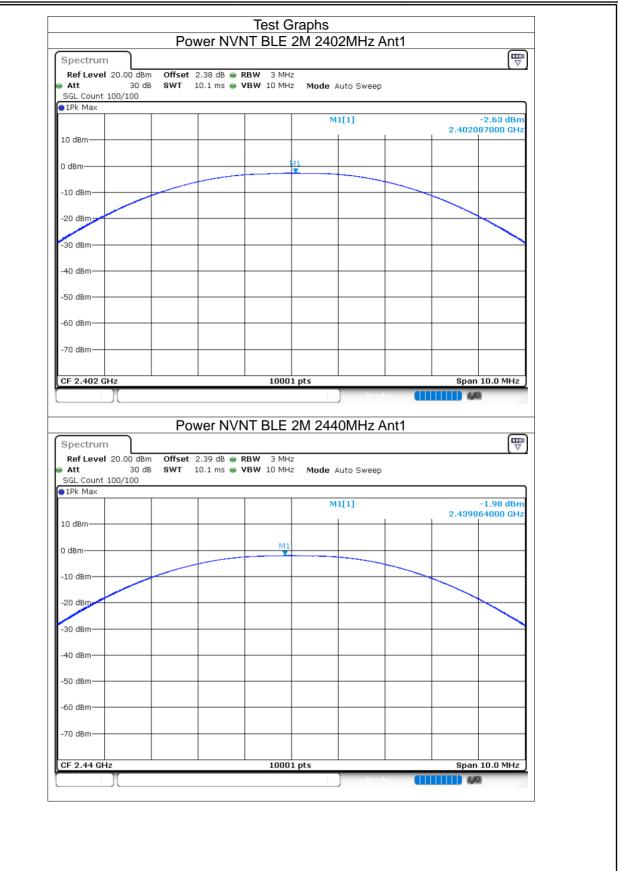

8.1.8 **Duty Cycle**

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 2M	2402	Ant1	67.2	1.73	1.2
NVNT	BLE 2M	2440	Ant1	67.19	1.73	1.2
NVNT	BLE 2M	2480	Ant1	66.4	1.78	1.22

NTEK 北测[®]

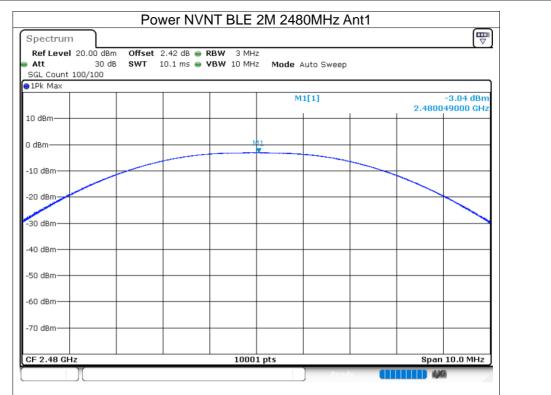


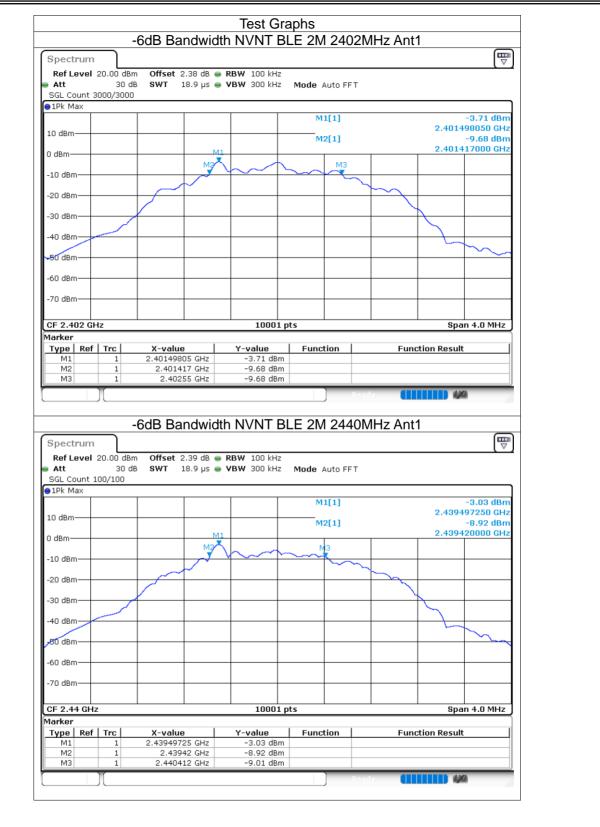
Report No.: S23071404712002



8.1.9 Maximum Conducted Output Power

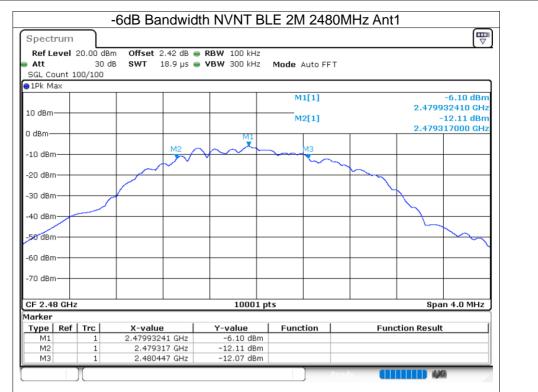
Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-2.63	30	Pass
NVNT	BLE 2M	2440	Ant1	-1.98	30	Pass
NVNT	BLE 2M	2480	Ant1	-3.04	30	Pass

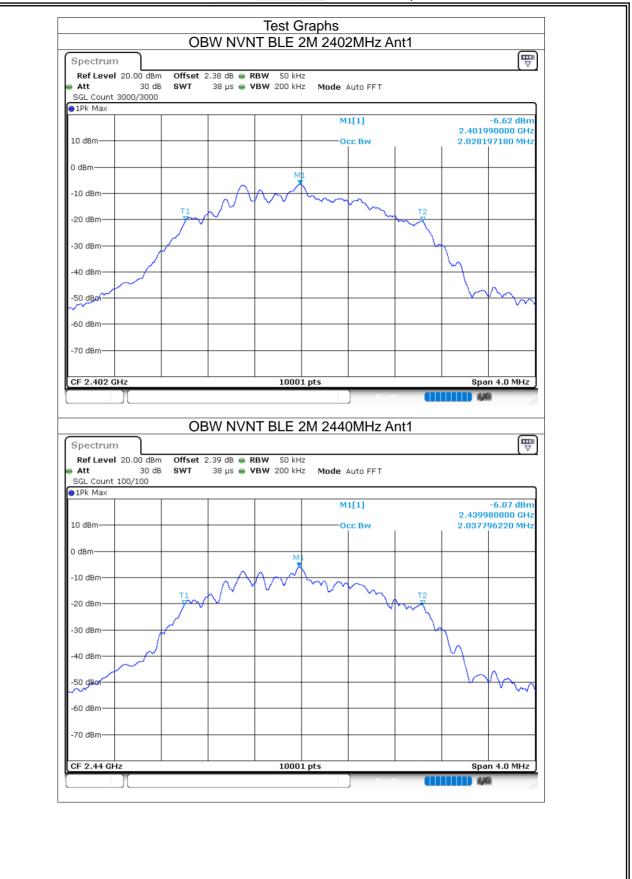




8.1.10 -6dB Bandwidth

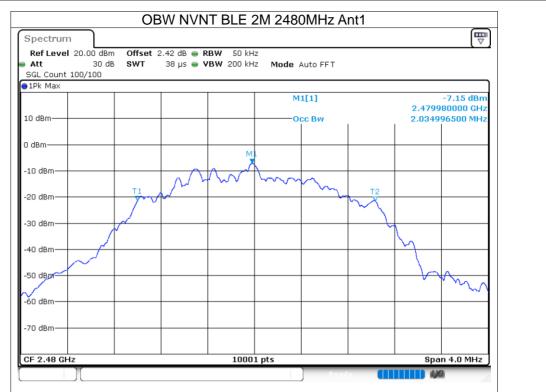
Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 2M	2402	Ant1	1.133	0.5	Pass
NVNT	BLE 2M	2440	Ant1	0.993	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.13	0.5	Pass

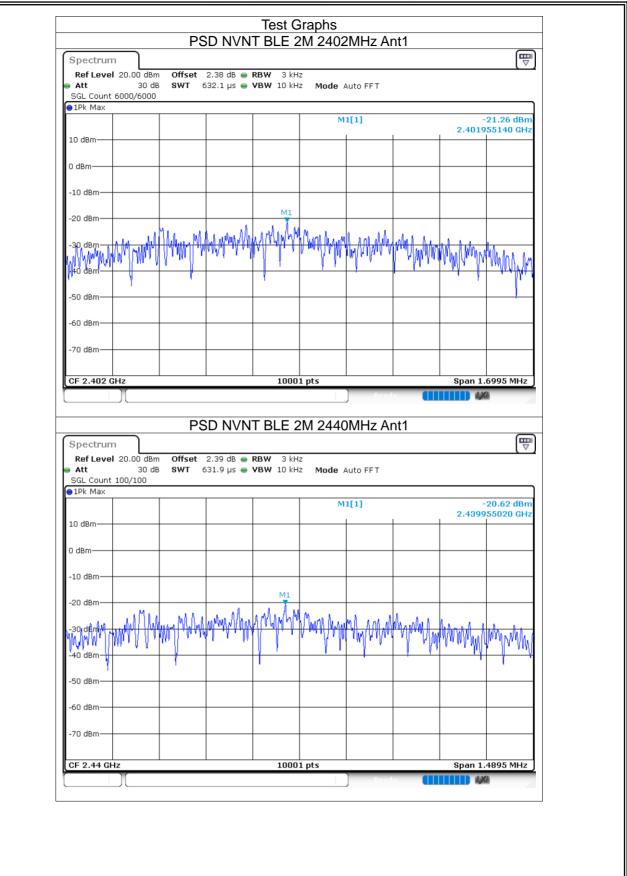




8.1.11 Occupied Channel Bandwidth

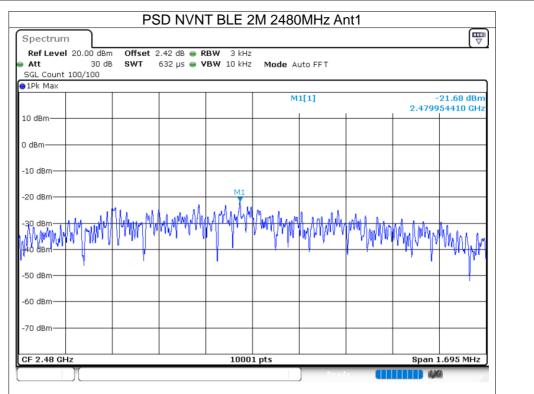
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 2M	2402	Ant1	2.028
NVNT	BLE 2M	2440	Ant1	2.038
NVNT	BLE 2M	2480	Ant1	2.035





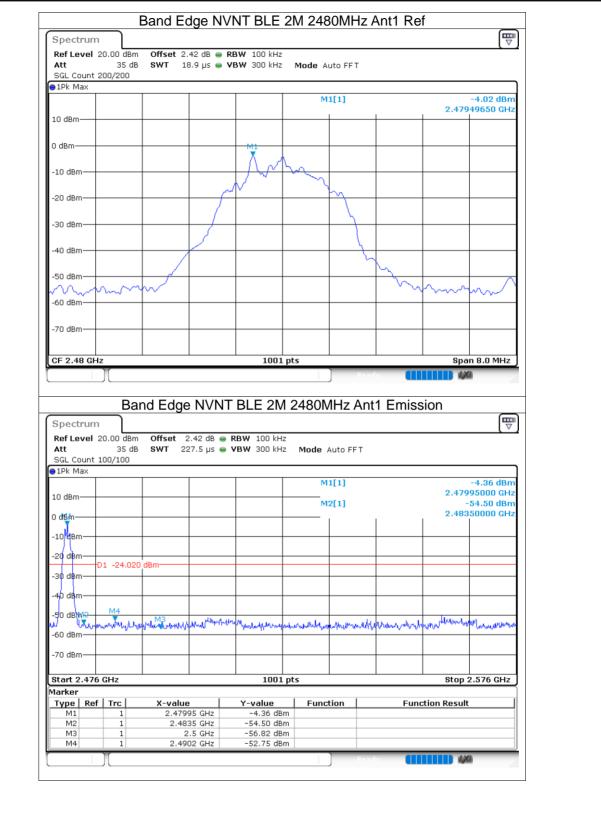
8.1.12 Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 2M	2402	Ant1	-21.26	8	Pass
NVNT	BLE 2M	2440	Ant1	-20.62	8	Pass
NVNT	BLE 2M	2480	Ant1	-21.68	8	Pass



8.1.13 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-46.68	-20	Pass
NVNT	BLE 2M	2480	Ant1	-48.72	-20	Pass



Spectrum	ı			NT BLE					
Ref Level : Att SGL Count	35 dB			BW 100 kHz BW 300 kHz		uto FFT			
1Pk Max	1300/1300								
					M	1[1]			-3.82 dBm
10 dBm								2.401	49650 GHz
D dBm				M11					
				1 The					
-10 dBm									
-20 dBm			$-f^{\sim}$						
-30 dBm									
-40 dBm									
							m		
-50 dBm	·	~~~~~					have been a second	~~~~	
-60 dBm									
-70 dBm									
				1001	nte			- Cna	
CF 2.402 G)[nd Edge	• NVNT	1001 BLE 2N) – tea 1Hz Ant	1 Emiss		n 8.0 MHz)
Spectrum) Bai			BLE 2M	1 2402N) Rear 1Hz Ant	1 Emiss		n 8.0 MHz)
Spectrum Ref Level	Bai 1 20.00 dBm	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402M		1 Emiss		
Spectrum Ref Level Att SGL Count	Bai Bai 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402M		1 Emiss		
Spectrum Ref Level Att SGL Count	Bai Bai 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402M ^z Mode /	Auto FFT	1 Emiss		
Spectrum Ref Level Att SGL Count) IPk Max	Bai Bai 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402M ^z Mode /		1 Emiss	sion 2.401	-3.95 dBm 45000 GHz
Spectrum Ref Level Att SGL Count 1Pk Max	Bai Bai 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402N ^z Mode / M	Auto FFT	1 Emiss	sion 2.401	-3.95 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Bai Bai 20.00 dBm 35 dB	Offset 2	2.38 dB 👄 F	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1]	1 Emiss	sion 2.401	-3.95 dBm 45000 GHz 49.90 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm 20 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 👄 F	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1]	1 Emiss	sion 2.401	-3.95 dBm 45000 GHz 49.90 dBm
Spectrum Ref Level Att SGL Count IPk Max ID dBm ID dBm ID dBm 20 dBm	Bai Bai 20.00 dBm 35 dB	Offset 2 SWT 22	2.38 dB 👄 F	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1]	1 Emiss	sion 2.401	-3.95 dBm 45000 GHz 49.90 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 0 dBm 10 dBm 20 dBm 30 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 👄 F	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1]	1 Emiss	sion 2.401	-3.95 dBm 45000 GHz 49.90 dBm 0000Q GHz
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 🖷 F 27.5 µs 🖷 V	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1] 2[1]		2.400	-3.95 dBm 45000 GHz 49.90 dBm 000001GHz
Spectrum Ref Level Att SGL Count IPK Max ID dBm 0 dBm 20 dBm 20 dBm 30 dBm 40 dBm 50 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 🖷 🖡	BLE 2M	1 2402N ^z Mode / M	Auto FFT 1[1] 2[1]	1 Emiss	2.400	-3.95 dBm 45000 GHz 49.90 dBm 000001GHz
Spectrum Ref Level Att SGL Count IPk Max I0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 🖷 🖡	BLE 2M	1 2402M	Auto FFT 1[1] 2[1]		2.400	-3.95 dBm 45000 GHz 49.90 dBm 000001GHz
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm 10 dBm 20 dBm 30 dBm 30 dBm 50 dBm 50 dBm 50 dBm 70 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 🖷 🖡	BLE 2N	1 2402M	Auto FFT 1[1] 2[1]		2.401 2.400	-3.95 dBm 45000 GHz 49.90 dBm 0000001GHz
Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	Bai 20.00 dBm 35 dB 100/100	Offset 2 SWT 22	2.38 dB 🖷 🖡	BLE 2M	1 2402M	Auto FFT 1[1] 2[1]		2.401 2.400	-3.95 dBm 45000 GHz 49.90 dBm 000001GHz
Spectrum Ref Level Att SGL Count IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -70	Bai 20.00 dBm 35 dB 100/100 D1 -23.819	Offset 2 SWT 22	2.38 dB • Γ 27.5 μs • \	BLE 2M	1 2402N	Auto FFT 1[1] 2[1]	Murthmalen	2.401 2.400	-3.95 dBm 45000 GHz 49.90 dBm 000000.GHz 1
Spectrum Ref Level Att SGL Count IPk Max I0 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -70	Bai 20.00 dBm 35 dB 100/100 D1 -23.819	Offset 2 SWT 22 dBm	2.38 dB • Γ	BLE 2N	2 2 3 3 4 4 4 4 4 4 4 4 4 4 5 4 5 4 5 4 5 4	Auto FFT 1[1] 2[1]	Murthmalen	2.400 2.400	-3.95 dBm 45000 GHz 49.90 dBm 000000.GHz 1
Att SGL Count SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm Start 2.3006 Varker Type	Bai 20.00 dBm 35 dB 100/100 D1 -23.819	Offset 2 SWT 22 dBm dBm kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/w/ kw/w/w/w/	2.38 dB • Γ 27.5 μs • \ 27.5 μs • \ 45 GHz 4 GHz 39 GHz	BLE 2M	1 2402N	Auto FFT 1[1] 2[1]	Murthmalen	2.400 2.400	-3.95 dBm 45000 GHz 49.90 dBm 000000.GHz 1
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70	Bai 20.00 dBm 35 dB 100/100 D1 -23.819 01 -23.819 0 GHz 5 GHz 1 1	Offset 2 SWT 22 dBm dBm kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/ww kw/ww/w/w/ kw/w/w/w/	2.38 dB 27.5 μs	BLE 2M	1 2402N	Auto FFT 1[1] 2[1]	Murthmalen	2.400 2.400	-3.95 dBm 45000 GHz 49.90 dBm 000000.GHz 1

8.1.14 Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 2M	2402	Ant1	-46.81	-20	Pass
NVNT	BLE 2M	2440	Ant1	-47.06	-20	Pass
NVNT	BLE 2M	2480	Ant1	-46.07	-20	Pass

Spectrum		. Spurious					
Ref Level	20.00 dam	Offset 2 20 dr	B 曼 RBW 100 kHz	,			[▽]
Att	20.00 UBM 30 dB		s 🖶 VBW 100 kHz s 🖶 VBW 300 kHz		> FFT		
SGL Count 3	000/3000						
●1Pk Max				part Fre	1		-3.72 dBm
				M1[1]	1	2.40	-3.72 dBm L49950 GHz
10 dBm							
0 dBm		M1 X					
-10 dBm			\sim	~~~~			
10 0011		\sim			7		
-20 dBm	$\neg \neg$					$\rightarrow \sim$	
-30 dBm							+
-40 dBm							$\vdash \forall \downarrow$
-50 dBm							
-JU UBIII							
-60 dBm							
-70 dBm							
		1					
CF 2.402 GH	Tx. S		VNT BLE 2N	/ 2402MF	Peody Hz Ant1 Er	•••••	n 3.0 MHz
Spectrum Ref Level Att	Tx. S	Offset 2.38 da		/ 2402MF		•••••	a ///
Spectrum	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	/ 2402MF		•••••	a ///
Spectrum Ref Level Att SGL Count 1	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	/ 2402MF	o Sweep	mission	-7.34 dBm
Spectrum Ref Level Att SGL Count 1	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep]	mission	-7.34 dBm 2.3970 GHz
Spectrum Ref Level Att SGL Count 1 1Pk Max	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	A 2402MH	o Sweep	mission	-7.34 dBm
Spectrum Ref Level Att SGL Count 1 IO dBm 0 dBm M1	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 PIPK Max 10 dBm 0 dBm -10 dBm	Tx. S	Offset 2.38 da	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	Tx. S	Offset 2.38 df SWT 265 m:	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 df SWT 265 m:	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 df SWT 265 m:	VNT BLE 2N B • RBW 100 KHZ	Mode Auto M1[1]	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 1Pk Max 10 dBm 0 dBm M1 -10 dBm -20 dBm -30 dBm -40 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m 	VNT BLE 2N	Mode Auto	2 Sweep]] 	mission	-7.34 dBm 2.3970 GHz -50.54 dBm
Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m:	VNT BLE 2N	Mode Auto	o Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m:	VNT BLE 2N	Mode Auto	2 Sweep]] 	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 • 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m:	VNT BLE 2N	Mode Auto	2 Sweep]] 	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m:	VNT BLE 2N	Mode Auto Mode Auto M1[1] M2[1]	2 Sweep]] 		-7.34 dBm 2.3970 GHz 50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 PIPk Max 10 dBm 0 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm Start 30.0 M	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m:	VNT BLE 2N	Mode Auto Mode Auto M1[1] M2[1]	2 Sweep]] 		-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 M Marker Type Ref	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m 	VNT BLE 2N	Mode Auto	Sweep		-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 ID dBm 0 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70	Tx. S 20.00 dBm 30 dB 0/10 1 -23.718 d 1 -23.718 d	Offset 2.38 dk SWT 265 m: Bm 1 M1 1 M1 1 M1 1 M2 1 M1 1 M1 1 M1 1 M2 1 M2 1 M2 1 M2 1 M2 1 M2 1 M3 1 M2 1 M3 1 M3 1 M4 1 M3 1 M4 1 M3 1 M4 1 <td>VNT BLE 2N B B RBW 100 kHz S B VBW 300 kHz I I I I I I I I I I I I I I I I I I I</td> <td>Mode Auto</td> <td>Sweep</td> <td>mission</td> <td>-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz</td>	VNT BLE 2N B B RBW 100 kHz S B VBW 300 kHz I I I I I I I I I I I I I I I I I I I	Mode Auto	Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm Start 30.0 M Marker Type Ref	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m; Bm	VNT BLE 2N B RBW 100 kHz S VBW 300 kHz VBW 300 kHz I I I I I I I I I I I I I I I I I I I	Mode Auto	Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 ID dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm Type Ref M1 M2 M3 M4	Tx. S 20.00 dBm 30 dB 0/10	Offset 2.38 dk SWT 265 m 265 m	VNT BLE 2N B B RBW 100 kHz S VBW 300 kHz VBW 300 kHz I I I I I I I I I I I I I I I I I I I	Mode Auto	Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz
Spectrum Ref Level Att SGL Count 1 IPk Max 10 dBm 10 dBm -20 dBm -30 dBm -50 dBm -70 dBm Start 30.0 W Marker Type Ref M2	Tx. S 20.00 dBm 30 dB 0/10 1 -23.718 d 1 -23.718 d	Offset 2.38 dk SWT 265 m; Bm	VNT BLE 2N B B RBW 100 kHz S VBW 300 kHz VBW 300 kHz I I I I I I I I I I I I I I I I I I I	Mode Auto	Sweep	mission	-7.34 dBm 2.3970 GHz -50.54 dBm 5.7267 GHz

