

TEST REPORT

Report No.:	BCTC2407486227-1E				
Applicant:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD				
Product Name:	Tablet				
Test Model:	RT9				
Tested Date:	2024-07-03 to 2024-08-22				
Issued Date:	2024-08-23				
She	enzhen BCTC Testing Co., Ltd.				
No.: BCTC/RF-EMC-005	Page: 1 of 83				

FCC ID: 2ANMU-RT9

Product Name:	Tablet
Trademark:	OUKITEL
Model/Type Reference:	RT9 RT9 S, RT9 Pro, RT9 Ultra, RT9 TITAN
Prepared For:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-07-03
Sample tested Date:	2024-07-03 to 2024-08-22
Issue Date:	2024-08-23
Report No.:	BCTC2407486227-1E
Test Standards	FCC Part15.247 ANSI C63.10-2013
Test Results	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by:

Brave Zeng/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

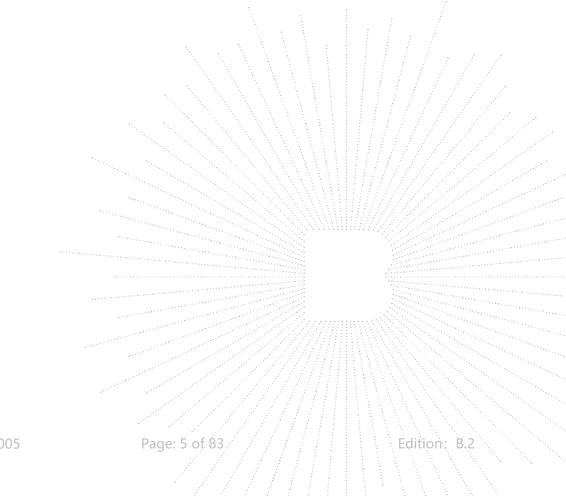
Page: 2 of 83

Table Of Content

Test	Report Declaration F	Page
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	-
4.6	Table Of Parameters Of Text Software Setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1 6.2	Block Diagram Of Test Setup	
6.2 6.3	Limit Test procedure	
0.3 6.4		
0.4 6.5	EUT operating Conditions Test Result	
0.5 7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operati	on23
8.1	Block Diagram Of Test Setup	
8.2	Limit	
8.3	Test procedure	24
8.4	EUT operating Conditions	24
8.5	Test Result	25
9.	Spurious RF Conducted Emissions	26
9.1	Block Diagram Of Test Setup	26
9.2	Limit Test procedure	26
9.3	Test procedure	26
9.4	Test Result	27
10.		40
10.1	Block Diagram Of Test Setup	48
10.2	Limit	
10.3		
10.4	lest Result	
11.	Maximum Peak Output Power	
11.1	J	
11.2	Limit	54

11.3 Test procedure	54
11.4 Test Result	54
12. Hopping Channel Separation	60
12.1 Block Diagram Of Test Setup	60
12.2 Limit	60
12.3 Test procedure	60
12.4 Test Result	60
13. Number Of Hopping Frequency	66
13.1 Block Diagram Of Test Setup	66
13.2 Limit	66
13.3 Test procedure	66
13.4 Test Result	66
14. Dwell Time	69
14.1 Block Diagram Of Test Setup	69
14.2 Limit	69
14.3 Test procedure	69
14.4 Test Result	69
15. Antenna Requirement	79
15.1 Limit	79
15.2 Test Result	79
16. EUT Photographs	80
17. EUT Test Setup Photographs	81
· - ·	

(Note: N/A Means Not Applicable)


Page: 4 of 83

Edition: B.2

1. Version

Report No.	Issue Date	Description	Approved
BCTC2407486227-1E	2024-08-23	Original	Valid

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

No.: BCTC/RF-EMC-005

Page: 6 of 83

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U≠0.59°C

4. Product Information And Test Setup

4.1 Product Information

Model/Type reference:	RT9 RT9 S, RT9 Pro, RT9 Ultra, RT9 TITAN
Model differences:	All the model are the same circuit and RF module, except model names.
Bluetooth Version:	5.0
Hardware Version:	T40_9230TMB_D4XUF_V1.0
Software Version:	V01
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel	79CH
Antenna installation:	Internal antenna
	1.33 dBi
Antenna Gain:	Remark: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information. The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.
Ratings:	DC 9V from adapter/DC 3.87V from battery
	Model: HJ-FC001K7-US Input: 100-240V- 50/60Hz 0.6A
Adapter Information:	Output: 5.0V === 3.0A 15.0W OR 9.0V === 2.0A 18.0W OR 12.0V === 1.5A 18.0W MAX

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Tablet	OUKITEL	RT9	N/A	EUT
E-2	Adapter	N/A	HJ-FC001K7-US	N/A	Auxiliary

ltem	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO	1M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	Γ

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz
4		Link		

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version		CMD	
Frequency	2402 MHz	2441 MHz	2480 MHz
Parameters	DEF	DEF	DEF

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards. FCC Test Firm Registration Number: 712850 A2LA certificate registration number is: CN1212 ISED Registered No.: 23583 ISED CAB identifier: CN0017

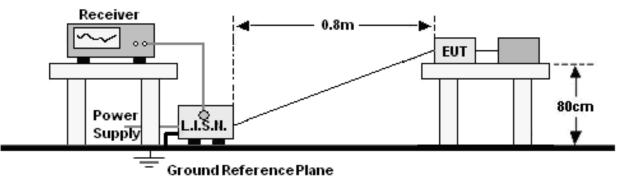
5.2 Test Instrument Used

Conducted Emissions Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
LISN	R&S	ENV216	101375	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	EMC-CON 3A1	١	\
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 16, 2024	May 15, 2025

RF Conducted Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power meter	Keysight	E4419	1	May 16, 2024	May 15, 2025
Power Sensor (AV)	Keysight	E9300A		May 16, 2024	May 15, 2025
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 16, 2024	May 15, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Radio frequency control box	MAIWEI	MW100-RFC B	$\sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{1}{i} \sum_{j$		X
Software	MAIWEI	MTS 8310	· · · · · · · · · · · · · · · · · · ·	1	

	Radiated Emissions Test (966 Chamber01)				
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 16, 2024	May 15, 2025
Receiver	R&S	ESR3	102075	May 16, 2024	May 15, 2025
Receiver	R&S	ESRP	101154	May 16, 2024	May 15, 2025
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 16, 2024	May 15, 2025
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 21, 2024	May 20, 2025
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 21, 2024	May 20, 2025
Amplifier	SKET	LAPA_01G18 G-45dB	SK202104090 1	May 16, 2024	May 15, 2025
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 21, 2024	May 20, 2025
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 16, 2024	May 15, 2025
Horn Antenna(18G Hz-40GHz)	Schwarzbeck	BBHA9170	00822	May 21, 2024	May 20, 2025
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 16, 2024	May 15, 2025
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

No.: BCTC/RF-EMC-005


Page: 12 of 83

Edition: B.2

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit	(dBuV)
Frequency (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

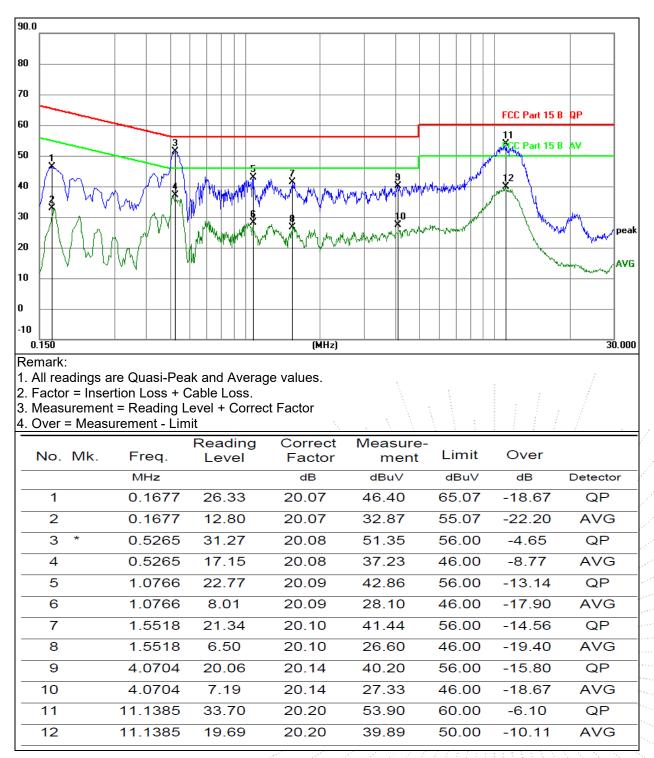
6.3 Test procedure

Setting
10 dB
0.15 MHz
30 MHz
9 kHz

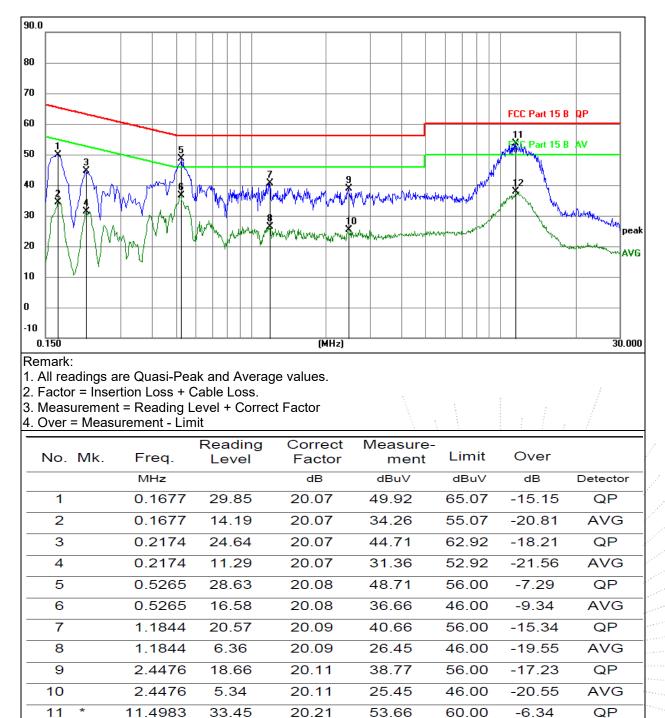
a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.


6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


6.5 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Ν
Test Mode:	Mode 4	Test Voltage :	AC120V/60Hz

11.4983

17.74

12

Page: 15 of 83

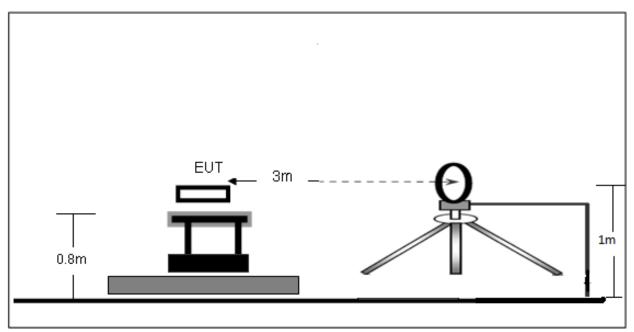
37.95

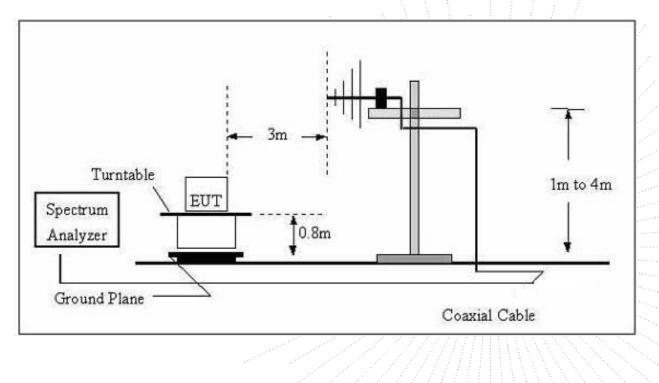
50.00

-12.05

20.21

Edition: B.2


AVG


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

Turntable EUT 1.5m Im to 4m Ground Plane Ground Plane

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Li	mit at 3m Distance
(MHz)	uV/m	(m)	uV/m	dBuV/m
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80
0.490 ~ 1.705	24000/F(kHz)	30 .	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)	
Frequency (MHz)	Peak	Average
Above 1000	74	54

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:

(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.
(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes

other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

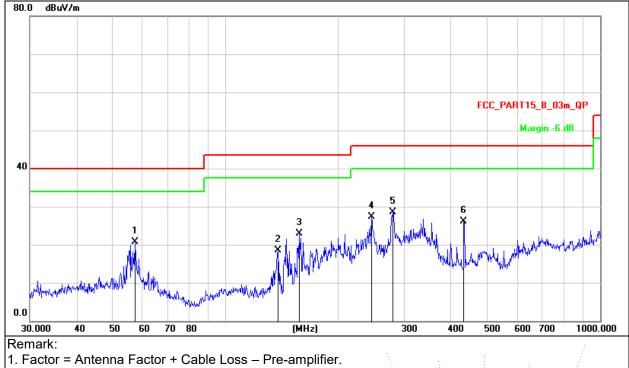
7.5 Test Result

Below 30MHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC120V/60Hz
Test Mode:	Mode 4	Polarization :	

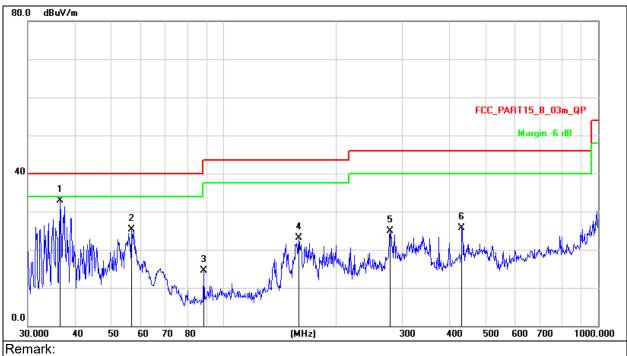
Freq.	Reading	Limit Margin	State
(MHz)	(dBuV/m)	(dBuV/m) (dB)	P/F
			PASS
			PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Test Mode:	Mode 4	Test Voltage:	AC120V/60Hz



Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		57.1914	35.55	-14.87	20.68	40.00	-19.32	QP
2		137.9028	37.06	-18.58	18.48	43.50	-25.02	QP
3		157.0074	41.73	-18.91	22.82	43.50	-20.68	QP
4		245.0900	41.81	-14.43	27.38	46.00	-18.62	QP
5	*	280.0237	42.26	-13.66	28.60	46.00	-17.40	QP
6	4	432.5457	36.30	-10.20	26.10	46.00	-19.90	QP

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Test Mode:	Mode 4	Test Voltage:	AC120V/60Hz

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Measurement = Reading Level + Correct Factor

				0
3.	Over =	Measurement	-	Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	36.5092	48.23	-15.39	32.84	40.00	-7.16	QP
2		56.7917	40.16	-14.82	25.34	40.00	-14.66	QP
3		88.3421	32.25	-17.79	14.46	43.50	-29.04	QP
4		158.6677	41.85	-18.79	23.06	43.50	-20.44	QP
5		278.0668	38.52	-13.70	24.82	46.00	-21.18	QP
6	4	432.5457	35.96	-10.20	25.76	46.00	-20.24	QP

Polar	Fre- quency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			GFSK Lo	w channel			
V	4804.00	74.04	-19.99	54.05	74.00	-19.95	PK
V	4804.00	65.23	-19.99	45.24	54.00	-8.76	AV
V	7206.00	66.22	-14.22	52.00	74.00	-22.00	PK
V	7206.00	55.37	-14.22	41.15	54.00	-12.85	AV
Н	4804.00	69.97	-19.99	49.98	74.00	-24.02	PK
Н	4804.00	59.30	-19.99	39.31	54.00	-14.69	AV
Н	7206.00	63.49	-14.22	49.27	74.00	-24.73	PK
Н	7206.00	56.36	-14.22	42.14	54.00	-11.86	AV
			GFSK Mid	dle channel			
V	4882.00	71.64	-19.84	51.80	74.00	-22.20	PK
V	4882.00	64.74	-19.84	44.90	54.00	-9.10	AV
V	7323.00	64.11	-13.90	50.21	74.00	-23.79	PK
V	7323.00	54.47	-13.90	40.57	54.00	-13.43	AV
Н	4882.00	68.31	-19.84	48.47	74.00	-25.53	PK
Н	4882.00	58.80	-19.84	38.96	54.00	-15.04	AV
Н	7323.00	62.08	-13.90	48.18	74.00	-25.82	PK
Н	7323.00	54.94	-13.90	41.04	54.00	-12.96	AV
			GFSK Hig	h channel			1
V	4960.00	72.73	-19.68	53.05	74.00	-20.95	PK
V	4960.00	62.86	-19.68	43.18	54.00	-10.82	AV
V	7440.00	64.34	-13.57	50.77	74.00	-23.23	PK
V	7440.00	54.37	-13.57	40.80	54.00	-13.20	AV
Н	4960.00	70.25	-19.68	50.57	74.00	-23.43	PK
Н	4960.00	60.38	-19.68	40.70	54.00	-13.30	AV
Н	7440.00	62.07	-13.57	48.50	74.00	-25.50	PK
Н	7440.00	53.09	-13.57	39.52	54.00	-14.48	AV

Between 1GHz - 25GHz

Remark:

1.Measurement = Reading Level + Correct Factor,

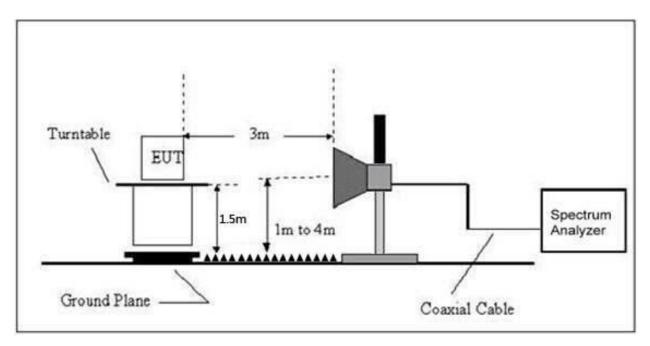
Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier,

Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


5.All the Modulation are test, the worst mode is GFSK, the data recording in the report.

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)		
Frequency (MHz)	Peak	Average	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

8.5 Test Result

Test mode	Polar (H/V)	Fre- quency	Reading Level	Correct Factor	Measure- ment (dBuV/m)		nits V/m)	Result		
	()	(MHz)	(dBuV/m)	(dB)	PK	PK	AV			
			L	ow Channe	l 2402MHz					
	Н	2390.00	71.23	-25.43	45.80	74.00	54.00	PASS		
	Н	2400.00	75.45	-25.40	50.05	74.00	54.00	PASS		
	V	2390.00	71.77	-25.43	46.34	74.00	54.00	PASS		
OFOK	V	2400.00	75.32	-25.40	49.92	74.00	54.00	PASS		
GFSK			F	ligh Channe	l 2480MHz					
	Н	2483.50	73.97	-25.15	48.82	74.00	54.00	PASS		
	Н	2500.00	70.15	-25.10	45.05	74.00	54.00	PASS		
	V	2483.50	75.27	-25.15	50.12	74.00	54.00	PASS		
	V	2500.00	70.50	-25.10	45.40	74.00	54.00	PASS		
		Low Channel 2402MHz								
	Н	2390.00	72.84	-25.43	47.41	74.00	54.00	PASS		
	Н	2400.00	76.86	-25.40	51.46	74.00	54.00	PASS		
	V	2390.00	72.58	-25.43	47.15	74.00	54.00	PASS		
	V	2400.00	76.83	-25.40	51.43	74.00	54.00	PASS		
π/4DQPSK	High Channel 2480MHz									
	Н	2483.50	76.28	-25.15	51.13	74.00	54.00	PASS		
	Н	2500.00	70.77	-25.10	45.67	74.00	54.00	PASS		
	V	2483.50	75.36	-25.15	50.21	74.00	54.00	PASS		
	V	2500.00	72.22	-25.10	47.12	74.00	54.00	PASS		
				ow Channe	l 2402MHz					
	Н	2390.00	71.06	-25.43	45.63	74.00	54.00	PASS		
	Н	2400.00	74.33	-25.40	48.93	74.00	54.00	PASS		
	V	2390.00	71.53	-25.43	46.10	74.00	54.00	PASS		
0000/	V	2400.00	74.79	-25.40	49.39	74.00	54.00	PASS		
8DPSK			L.	ligh Channe	l 2480MHz					
	Н	2483.50	73.62	-25.15	48.47	74.00	54.00	PASS		
	Н	2500.00	70.30	-25.10	45.20	74.00	54.00	PASS		
	V	2483.50	74.40	-25.15	49.25	74.00	54.00	PASS		
	V	2500.00	70.47	-25.10	45.37	74.00	54.00	PASS		

Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier,

Over= Measurement - Limit

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3 In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

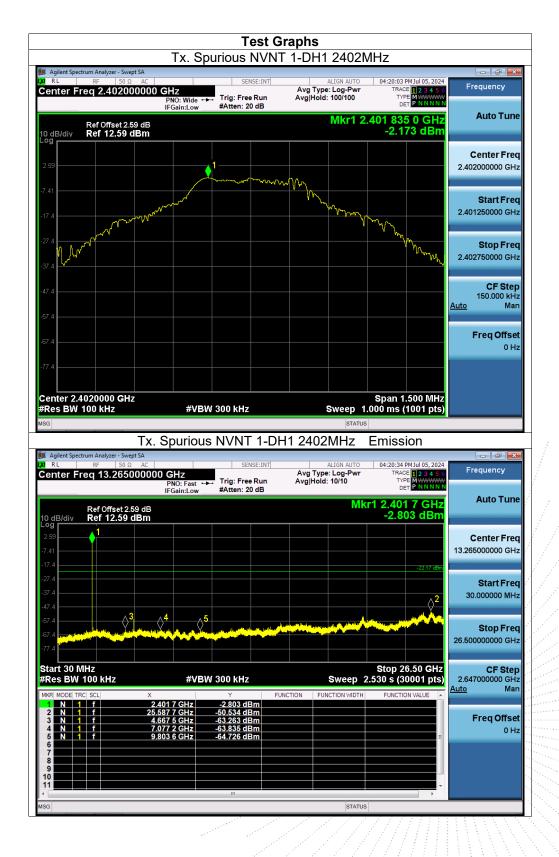
9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

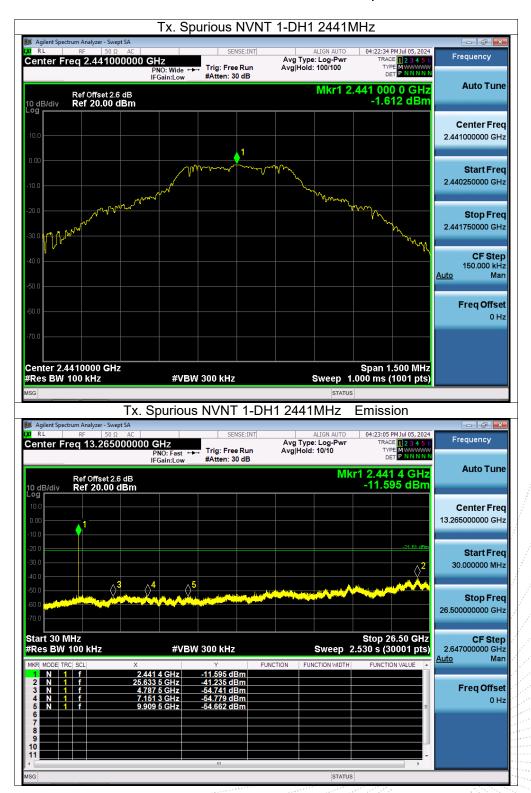
9.3 Test procedure


1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

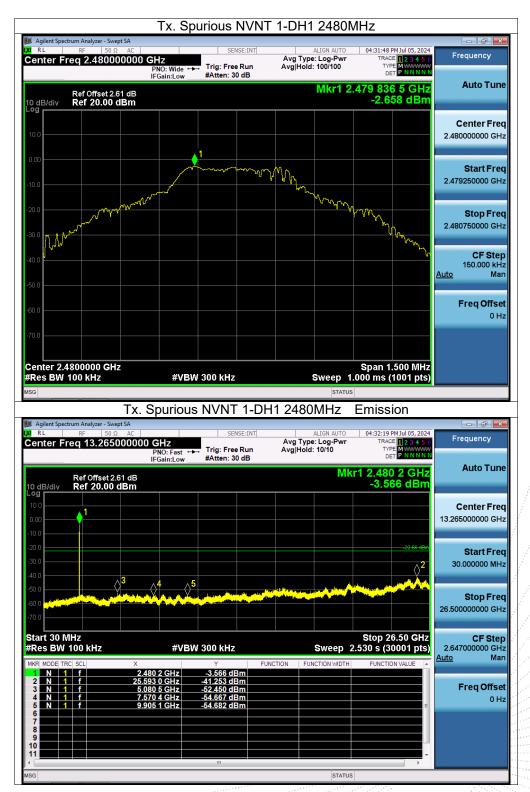
Page: 26 of 83

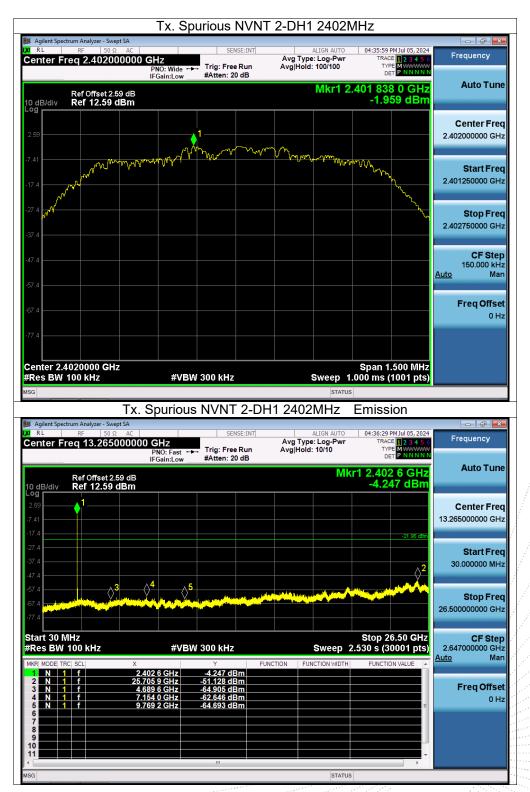
9.4 Test Result

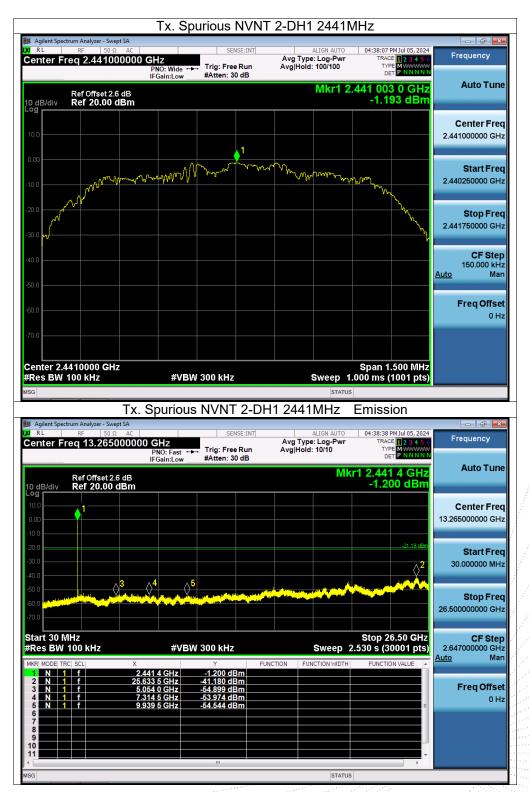


No.: BCTC/RF-EMC-005

Page: 27 of 83

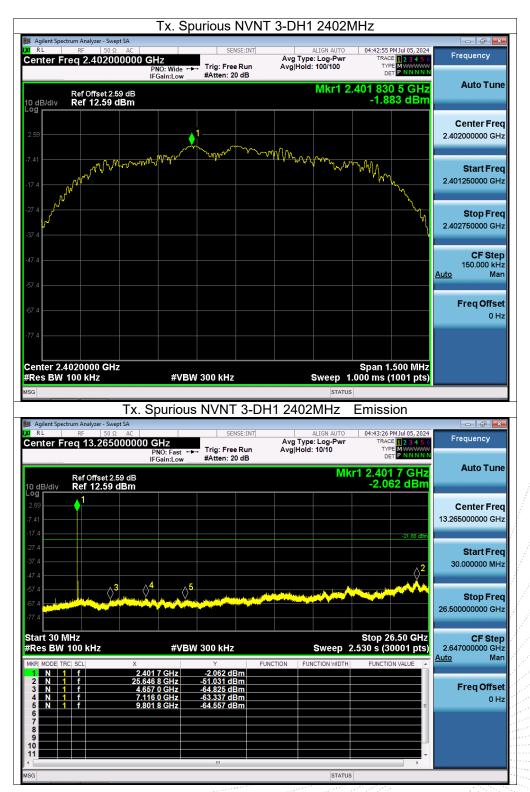

Edition: B.2

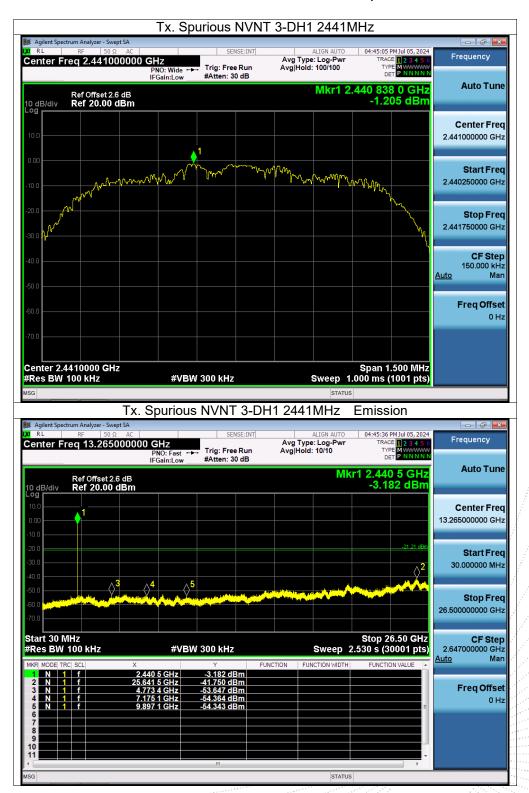

Edition: B.2

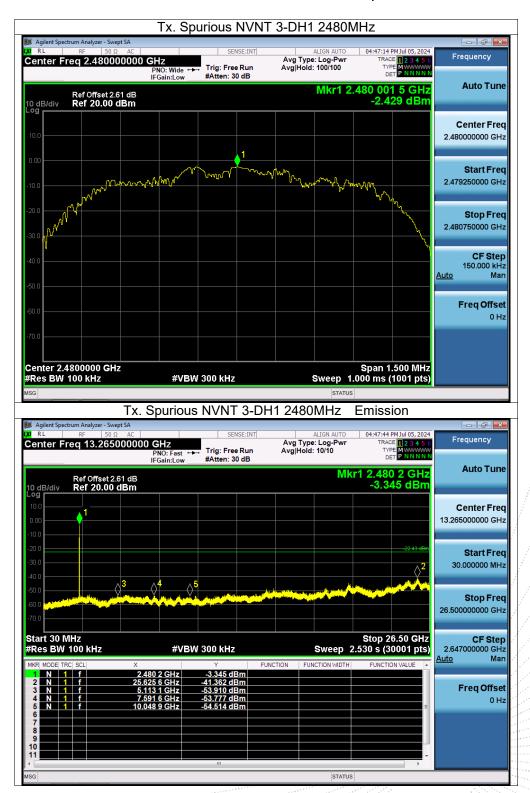


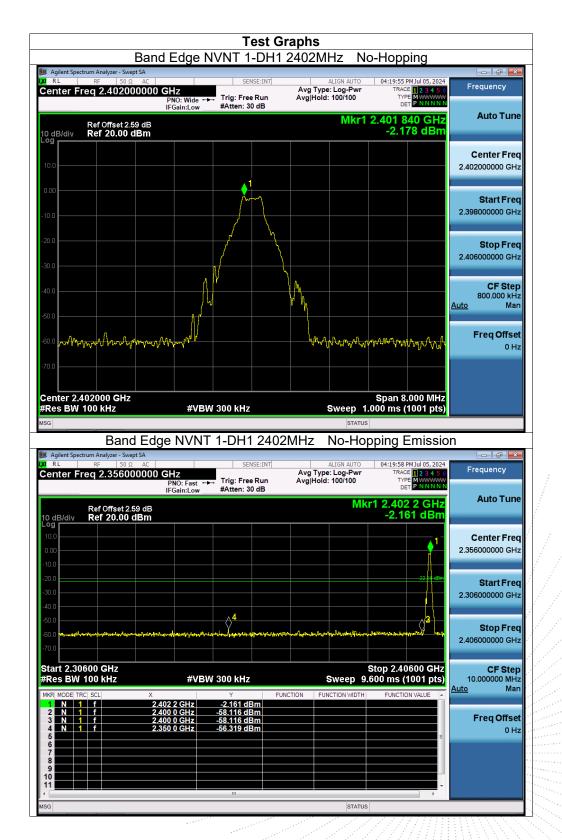
Edition: B.2

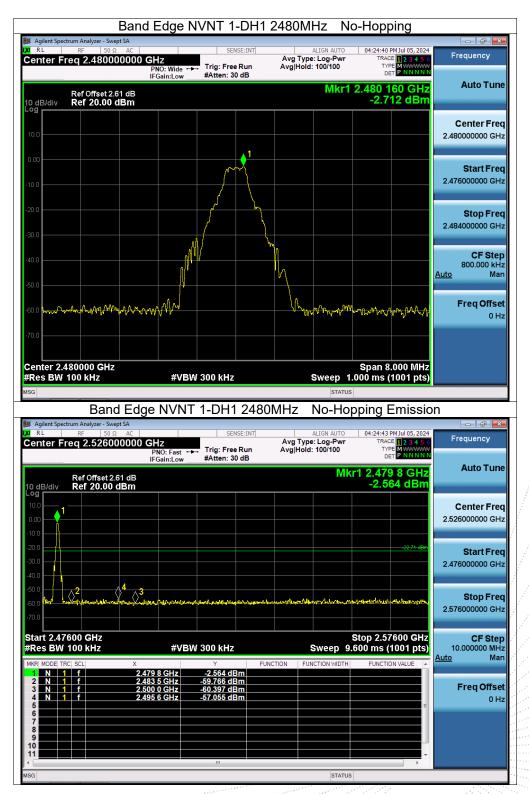




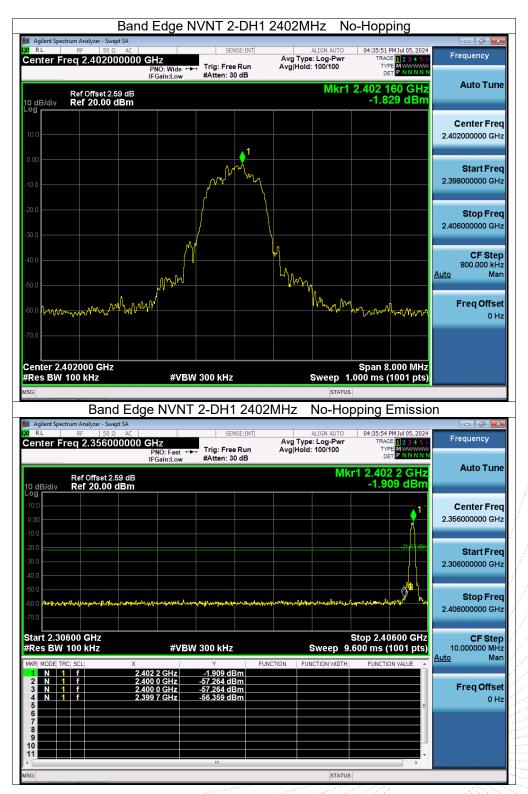


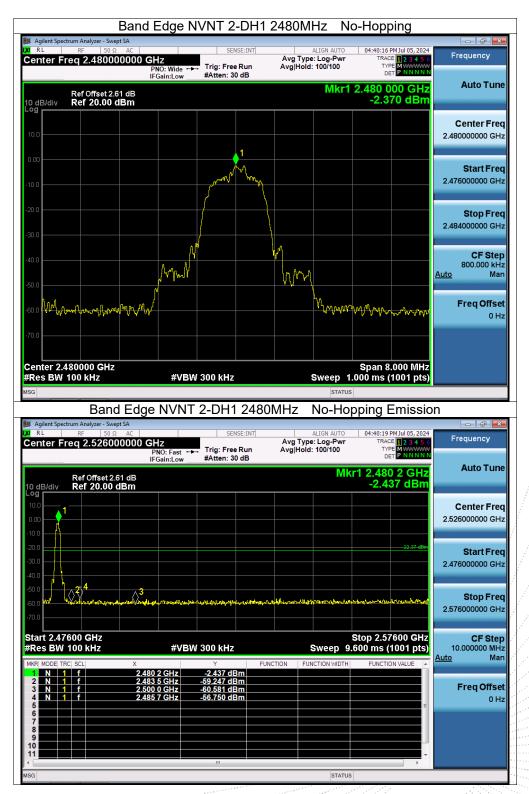



Edition: B.2



Edition: B.2







Edition: B.2

10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

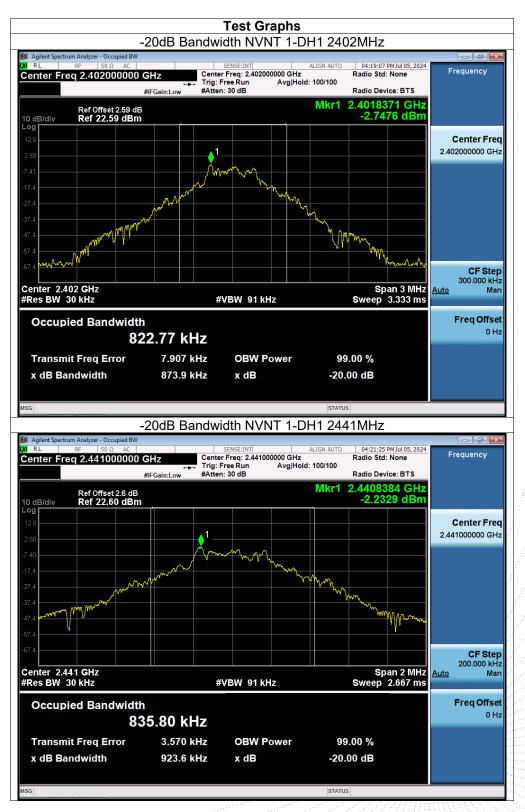
1. Set RBW = 30kHz.

2. Set the video bandwidth (VBW) \ge 3 x RBW.

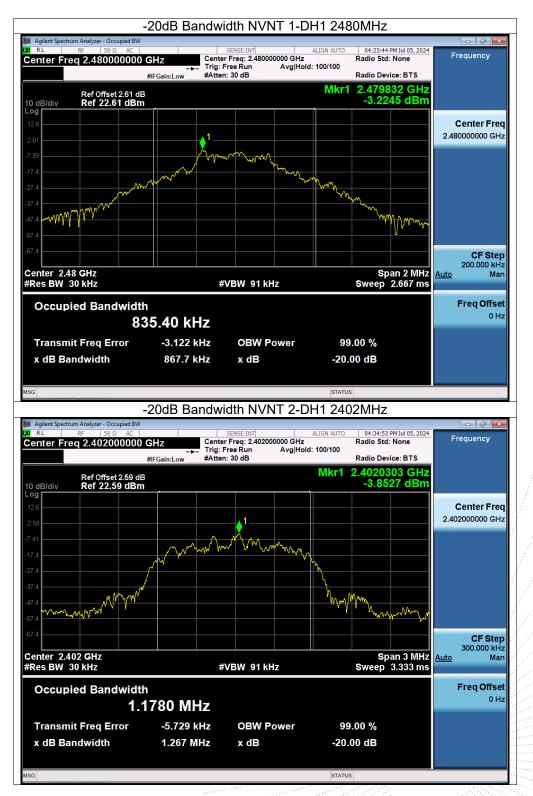
3. Detector = Peak.

4. Trace mode = max hold.

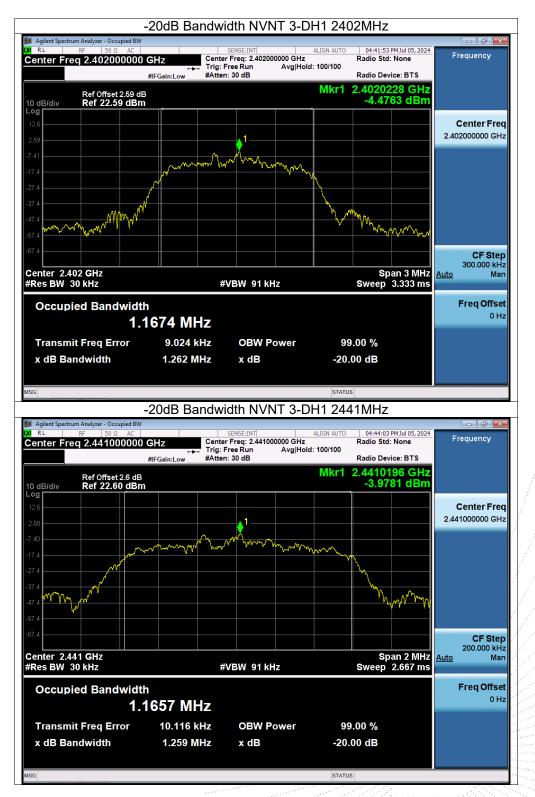
5. Sweep = auto couple.

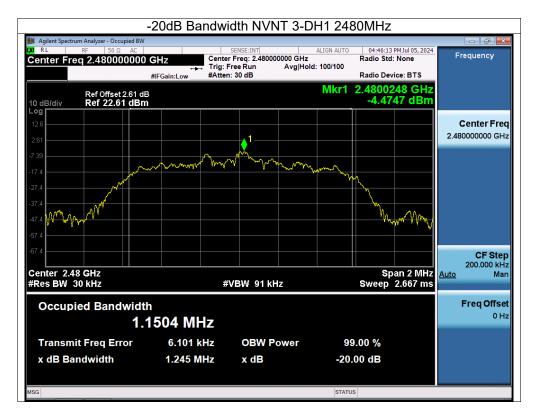

6. Allow the trace to stabilize.

7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.


10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.874	Pass
NVNT	1-DH1	2441	0.924	Pass
NVNT	1-DH1	2480	0.868	Pass
NVNT	2-DH1	2402	1.267	Pass
NVNT	2-DH1	2441	1.26	Pass
NVNT	2-DH1	2480	1.262	Pass
NVNT	3-DH1	2402	1.262	Pass
NVNT	3-DH1	2441	1.259	Pass
NVNT	3-DH1	2480	1.245	Pass





No.: BCTC/RF-EMC-005

Page: 53 of 83

11. Maximum Peak Output Power

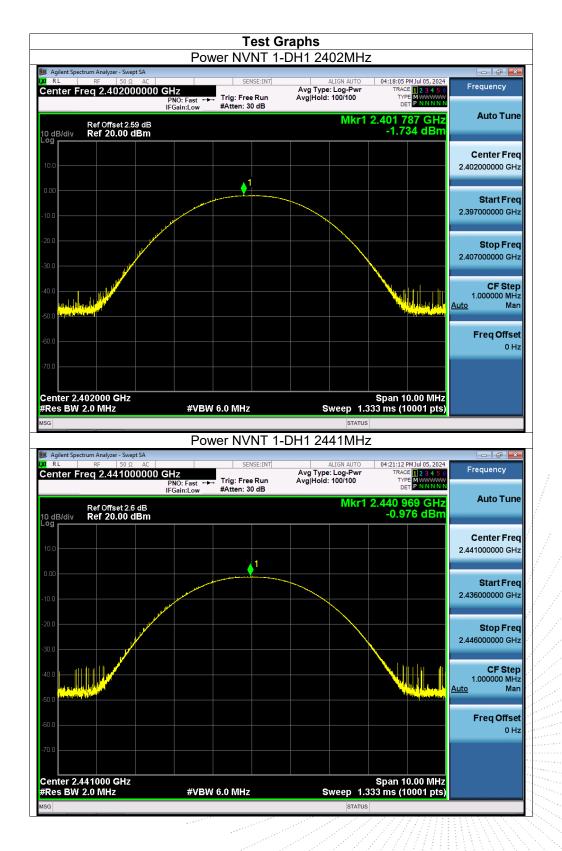
11.1 Block Diagram Of Test Setup

11.2 Limit

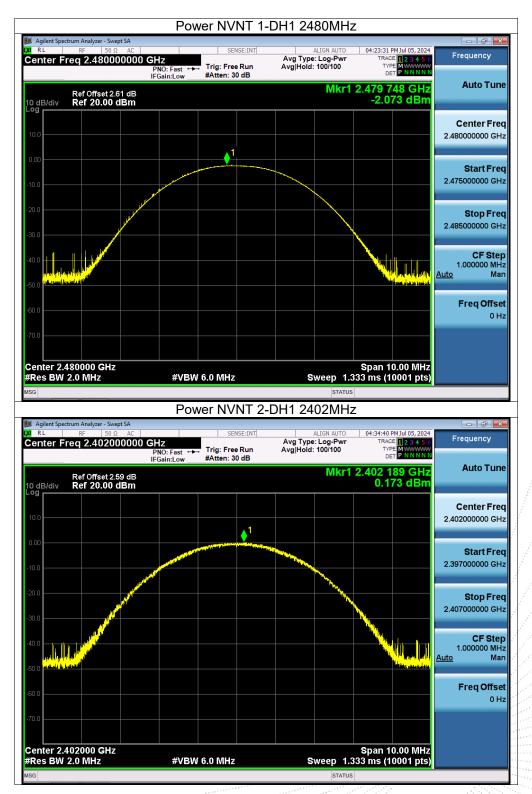
	FCC Part15 (15.247) , Subpart C						
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS			

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

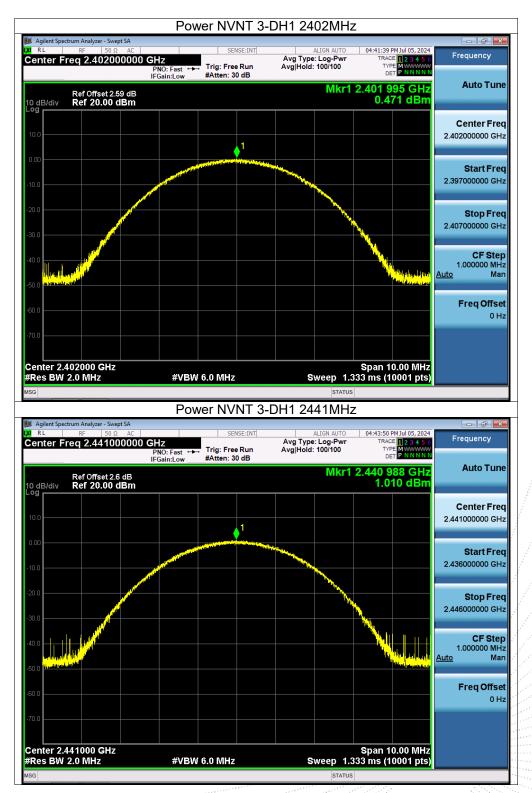

2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

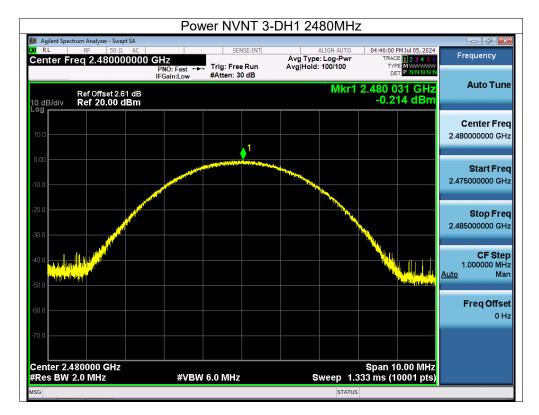
3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.


11.4 Test Result

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-1.73	21	Pass
NVNT	1-DH1	2441	-0.98	21	Pass
NVNT	1-DH1	2480	-2.07	21	Pass
NVNT	2-DH1	2402	0.17	21	Pass
NVNT	2-DH1	2441	0.65	21	Pass
NVNT	2-DH1	2480	-0.55	21	Pass
NVNT	3-DH1	2402	0.47	21	Pass
NVNT	3-DH1	2441	1.01	21	Pass
NVNT	3-DH1	2480	-0.21	21	Pass







Page: 57 of 83

No.: BCTC/RF-EMC-005

Page: 59 of 83

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

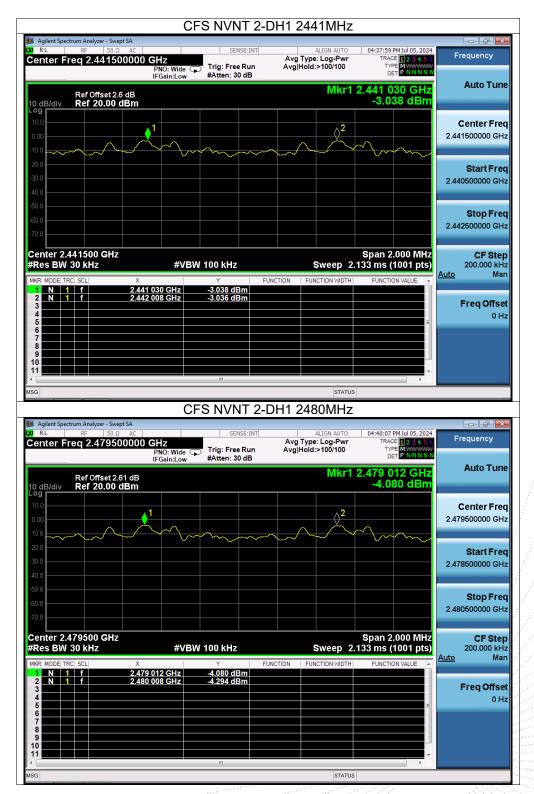
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

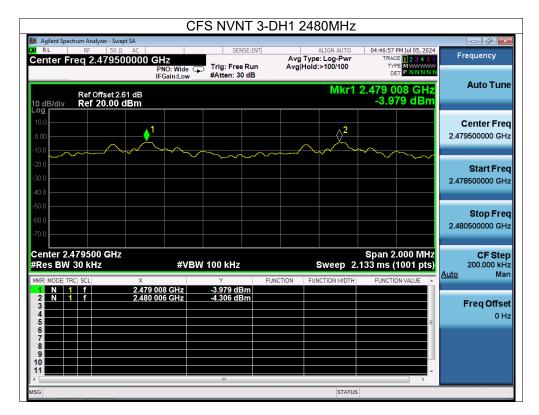
2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz, Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.832	2402.834	1.002	0.583	Pass
NVNT	1-DH1	2440.834	2441.834	1	0.616	Pass
NVNT	1-DH1	2478.832	2479.834	1.002	0.579	Pass
NVNT	2-DH1	2402.028	2403.008	0.98	0.845	Pass
NVNT	2-DH1	2441.03	2442.008	0.978	0.84	Pass
NVNT	2-DH1	2479.012	2480.008	0.996	0.841	Pass
NVNT	3-DH1	2402.008	2403.028	1.02	0.841	Pass
NVNT	3-DH1	2441.01	2442.028	1.018	0.839	Pass
NVNT	3-DH1	2479.008	2480.006	0.998	0.83	Pass

12.4 Test Result





RL RF 5 enter Freq 2.402	Swept SA 0 Ω AC 2500000 GHz PNO: Wide	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:42:33 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N	Frequency
	IFGain:Low			2.402 008 GHz	Auto Tui
Ref Offset 0 dB/div Ref 20.0				-3.784 dBm	
10.0	<u> </u>				Center Fre
10.0					2.402500000 GH
20.0					Start Fre
40.0					2.401500000 GH
50.0					Oton En
50.0					Stop Fre 2.403500000 GH
^{70.0}	H7			Span 2.000 MHz	CF Ste
Res BW 30 kHz		BW 100 kHz	Sweep 2	.133 ms (1001 pts)	200.000 kł Auto Ma
IKR MODE TRC SCL	× 2.402 008 GHz	-3.784 dBm	JNCTION FUNCTION WIDTH	FUNCTION VALUE	
2 N 1 f 3 4	2.403 028 GHz	-3.588 dBm			Freq Offs
5 6				E	01
7 8					
9					
G		III	STATUS		
			314103	5	
			<u>11 2441MU-</u>		
Agilent Spectrum Analyzer - S	Swept SA		DH1 2441MHz		- P
	Swept SA 0 Ω AC 500000 GHz PNO: Wide	SENSE:INT	DH1 2441MHz ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	04:44:52 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNN	Frequency
RL RF 5 enter Freq 2.441 Ref Offset	Swept SA 0 Ω AC 5000000 GHz PNO: Wide IFGain:Low 2.6 dB	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency
Ref Offset	Swept SA 0 Ω AC 5000000 GHz PNO: Wide IFGain:Low 2.6 dB	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	Frequency Auto Tur
RL RF 5 enter Freq 2.441 Ref Offset 0 dB/div Ref 20.0	Swept SA 0 Ω AC 5000000 GHz PNO: Wide IFGain:Low 2.6 dB	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency Auto Tur Center Fre
Ref Offset	Swept SA 0 Q. AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency
RL RF 5 enter Freq 2.441 Ref Offset 8 0 dB/div Ref 20.0 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9	Swept SA 0 Q. AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency Auto Tur Center Fre 2.441500000 GH Start Fre
RL RF 5 enter Freq 2.441 Ref Offset 8 0 dB/div Ref 20.0 8 10 0 0 0 10 0 0 0	Swept SA 0 Q. AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency Auto Tur Center Fre 2.441500000 GH
RL RF 5 enter Freq 2.441 Ref Offset 8 0 dB/div Ref 20.0 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9 0 00 9 9	Swept SA 0 Q. AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency Auto Tur Center Fre 2.441500000 GH Start Fre
RL RF 5 enter Freq 2.441 Ref Offset 8 0 dB/div Ref 20.0 9 0 dB/div Ref 20.0	Swept SA 0 Q. AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNNN 2.441 010 GHz	Frequency Auto Tur Center Fre 2.441500000 GH Start Fre 2.440500000 GH
RL RF 5 enter Freq 2.441 Ref Offset 0 dB/div Ref 20.0 0 dB/div	Swept SA 0 Q AC 500000 GHz PNO: Wide IFGain:Low :2.6 dB 0 dBm	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100 Mkr1	TRACE 12 24 5 6 TYPE MANNANA 2.441 010 GHz -3.069 dBm	Frequency Auto Tur Center Fre 2.441500000 Gi Start Fre 2.440500000 Gi Stop Fre 2.442500000 Gi
RL RF S enter Freq 2.441 Ref Offset Ref Offset 0 dB/div Ref 20.0 Ref 20.0 0 0	Swept SA 0 Q. AC. 5000000 GHz PNO: Wide IFGain:Low 12.6 dB 0 dBm 1 1 1 1 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100	2.441 010 GHz -3.069 dBm Span 2.000 MHz .133 ms (1001 pts)	Frequency Auto Tur Center Fre 2.441500000 GH Start Fre 2.440500000 GH Stop Fre 2.442500000 GH
RL Ref Offset o dB/div Ref Offset 0 dB/div Ref 20.0 00	Swept SA 0 Q. AC SHE 500000 GHz PNC: Wide IFGain:Low 2.6 dB 0 dBm 1 1 4 2.441 010 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100 Mkr1	2.441 010 GHz -3.069 dBm	Frequency Auto Tur Center Fre 2.441500000 GH Start Fre 2.440500000 GH
RL RF S enter Freq 2.441 Ref Offset 8 0 dB/div Ref 20.0 9 1 dB/div Ref 20.0 9 1 dB/div 1 f <t< td=""><td>Swept SA 0 Q AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm 1 1 1 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4</td><td>SENSE:INT</td><td>ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100</td><td>2.441 010 GHz -3.069 dBm Span 2.000 MHz .133 ms (1001 pts)</td><td>Frequency Auto Tur Center Fre 2.441500000 Gl Start Fre 2.440500000 Gl Stop Fre 2.442500000 Gl CF Ste 200.000 kl Auto</td></t<>	Swept SA 0 Q AC 500000 GHz PNO: Wide IFGain:Low 2.6 dB 0 dBm 1 1 1 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100	2.441 010 GHz -3.069 dBm Span 2.000 MHz .133 ms (1001 pts)	Frequency Auto Tur Center Fre 2.441500000 Gl Start Fre 2.440500000 Gl Stop Fre 2.442500000 Gl CF Ste 200.000 kl Auto
RL RF S enter Freq 2.441 Ref Offset S 0 dB/div Ref 20.0 Ref 20.0 0 dB/div Ref 20.0 S Ref 20.0 Ref 20.0 S Ref 20.0 Ref 20.0 S Res BW 30 kHz S S 1 d f S	Swept SA 0 Q. AC SHE 500000 GHz PNC: Wide IFGain:Low 2.6 dB 0 dBm 1 1 4 2.441 010 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100	2.441 010 GHz -3.069 dBm Span 2.000 MHz .133 ms (1001 pts)	Frequency Auto Tur Center Fre 2.441500000 Gl Start Fre 2.440500000 Gl Stop Fre 2.442500000 Gl CF Ste 200.000 kl Auto
RL RF S enter Freq 2.441 Ref Offset Ref Offset 0 dB/div Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0 Ref 20.0	Swept SA 0 Q. AC SHE 500000 GHz PNC: Wide IFGain:Low 2.6 dB 0 dBm 1 1 4 2.441 010 GHz	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hoid:>100/100	2.441 010 GHz -3.069 dBm Span 2.000 MHz .133 ms (1001 pts)	Erequency Auto Tur Center Fre 2.441500000 GH Start Fre 2.440500000 GH Stop Fre 2.442500000 GH CF Ste 200.000 kH

No.: BCTC/RF-EMC-005

Page: 65 of 83

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.4 Test Result

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

	Test	: Graphs NT 1-DH1 2441MH:	7
Agilent Spectrum Analyzer - S	Swept SA		
RL RF 5 Center Freq 2.441	0 Ω AC SENSE:IN 750000 GHz PNO: Fast Trig: Free Run	Avg Type: Log-Pwr	4:52:09 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW
	IFGain:Low #Atten: 30 dB		Bar O GHz Auto Tu
Ref Offset 0 dB/div Ref 20.0			-2.234 dBm
.og 10.0			Center F
	เกลงงกุสสุภภมสุดภูมิการกุสุภภุภภุภภุภภุภภุภภุภภุภภุภภุภภุภภุภภุภ	กกุษยายายายายายายายายายา	2.441750000 c
10.0	<u>AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA</u>	<u>MANAANAANAANAANAANANANAANA</u>	Start F
30.0			2.400000000
50.0			
50.0 			2.483500000
70.0			
tart 2.40000 GHz Res BW 100 kHz	#VBW 300 kHz	Stoj Sweep 8.000	0 2.48350 GHz CF St ms (1001 pts) 8.350000 M
IKR MODE TRC SCL	X Y	-	FUNCTION VALUE
1 N 1 f 2 N 1 f 3	2.401 837 0 GHz -2.234 dBm 2.479 993 0 GHz -2.814 dBm		Freq Off
4 5			0
6 7 8			
9			
SG			
Agilent Spectrum Analyzer - S		NT 2-DH1 2441MH	Z
	0 Ω AC SENSE:IN 750000 GHz	Avg Type: Log-Pwr	4:57:27 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 Frequency
	PNO: Fast Free Run IFGain:Low #Atten: 30 dB		
Ref Offset 0 dB/div Ref 20.0			1 837 0 GHz -1.834 dBm
			Center F
	MANAANAANAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
30.0			2.400000000 0
40.0			
N			
50.0			Stop Fi
50.0 /			2.483500000 0
50.0 50.0 70.0 Start 2.40000 GHz	#\/EW/ 200 L/L		2.48350000 0 2.48350 GHz CF St
x	#VBW 300 kHz	Sweep 8.000	2.483500000
50 0 0 50 0 0 start 2.40000 GHz Res BW 100 kHz KR MODE TRC SCL 1 N 1 f 2 N 1 f		Sweep 8.000	2.48350000 0 2.48350 GHz ms (1001 pts) FUNCTION VALUE
50.0 0 Start 2,40000 GHz Res BW 100 kHz MR MODE TRC SCL 1 N 1 f 2 N 1 f 3 4	X Y 2.401 837 0 GHz -1.834 dBm	Sweep 8.000	2.483500000 2.483500000 0 2.483500000 0 2.483500000 CF St 8.350000 Muto Freq Off
50.0 0 50.0 0 start 2.40000 GHz Res BW 100 kHz IKR MODE TRCI SCL 1 1 2 N 3 4 5 6	X Y 2.401 837 0 GHz -1.834 dBm	Sweep 8.000	2.48350000 0 0 2.48350 GHz ms (1001 pts) FUNCTION VALUE A Freq Off
50.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	X Y 2.401 837 0 GHz -1.834 dBm	Sweep 8.000	2.483500000 2.483500000 0 2.483500000 0 2.483500000 CF St 8.350000 Muto Freq Off
3000 Image: Constraint of the second se	X Y 2.401 837 0 GHz -1.834 dBm	Sweep 8.000	2.483500000 2.483500000 0 2.483500000 0 2.483500000 CF St 8.350000 Muto Freq Off

Нор	ping No. NVNT	3-DH1 2441N	ЛНz	
J Agilent Spectrum Analyzer - Swept SA	SENSE:INT	ALIGN AUTO	05:01:55 PM Jul 05, 2024	
Center Freq 2.441750000 GHz PNO: Fast IEGaint ov		Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N N	Frequency
Ref Offset 2.6 dB		Mkr1 2.	401 837 0 GHz -2.072 dBm	Auto Tune
	www.www.	hannan	2 WWWWWWW	Center Freq 2.441750000 GHz
-20.0				Start Freq 2.400000000 GHz
-60.0			 	Stop Freq 2.483500000 GHz
-70.0 Start 2.40000 GHz #Res BW 100 kHz #V	/BW 300 kHz		Stop 2.48350 GHz 000 ms (1001 pts)	CF Step 8.350000 MHz
MKR MODE_TRC SCL X 1 N 1 f 2.401 837 0 GHz 2 N 1 f 2.480 327 0 GHz 3 4	Y FUN -2.072 dBm -6.881 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	Auto Man Freq Offset 0 Hz
5 6 7 8 9 9			E	
11 < MSG	m	STATUS	• •	

No.: BCTC/RF-EMC-005

Page: 68 of 83

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

Condition	Mode	Fre- quency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	0.406	129.514	319	31600	400	Pass
NVNT	1-DH3	2441	1.662	245.976	148	31600	400	Pass
NVNT	1-DH5	2441	2.909	296.718	102	31600	400	Pass
NVNT	2-DH1	2441	0.398	127.36	320	31600	400	Pass
NVNT	2-DH3	2441	1.65	262.35	159	31600	400	Pass
NVNT	2-DH5	2441	2.899	327.587	113	31600	400	Pass
NVNT	3-DH1	2441	0.396	126.324	319	31600	400	Pass
NVNT	3-DH3	2441	1.647	261.873	159	31600	400	Pass
NVNT	3-DH5	2441	2.898	327.474	113	31600	400	Pass

14.4 Test Result

Note: Total Dwell Time (ms) = Pulse Time (ms)*Burst Count

		Test G			
		'NT 1-DH1 2	441MHz On	e Burst	
Agilent Spectrum Analyzer - Sw RL RF 50 S Center Freq 2.4410	2 AC	SENSE:INT Trig Delay-500.0 µ: → Trig: Video #Atten: 30 dB	ALIGN AUTO s Avg Type: Log-Pwr	04:52:15 PM Jul 05, 2024 TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	Frequency
Ref Offset 2 I0 dB/div Ref 20.00	.6 dB dBm			ΔMkr1 406.0 μs 0.07 dB	Auto Tun
					Center Free 2.441000000 GH
20.0					Start Fre 2.441000000 GH
		the second se	na a francia potencia a compositiva francia. 1944 gallo glimba na sela compositiva francia da compositiva a 1944 gallo glimba na sela compositiva a		Stop Fre 2.441000000 GH
Center 2.441000000 Res BW 1.0 MHz		V 3.0 MHz	Sweep 10	Span 0 Hz).00 ms (10001 pts)	CF Stej 1.000000 MH <u>Auto</u> Mai
MKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t 3	× 406.0 μs (Δ) 497.0 μs		INCTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offse
4 5 6 7				E	0 H
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					
SG		m	STATU	s	
	Dwell NVN	IT 1-DH1 24	41MHz Accı	imulated	
Agilent Spectrum Analyzer - Sw RL RF 50 S Center Freq 2.4410	2 AC	SENSE:INT	ALIGN AUTO	04:52:49 PM Jul 05, 2024 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast ++ IFGain:Low	 Trig: Free Run #Atten: 30 dB 		TYPE WWWWWW DET PNNNN	Auto Tun
Ref Offset 2. 0 dB/div Ref 20.00					Auto Tuli
10.0					Center Fre 2.441000000 GH
0.00					Start Fre 2.441000000 GH
10.0 					Stop Fre
30.0					2.441000000 GH
					CF Ste j 1.000000 MH <u>Auto</u> Ma
60.0					Freq Offse
70.0					
enter 2.441000000 (Res BW 1.0 MHz		V 3.0 MHz	Sween	Span 0 Hz 31.60 s (10001 pts)	