

RF Test Report

For

Applicant Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD

A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU

Address: INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN,

518XXX China

EUT Name: tablet
Brand Name: OUKITEL
Model Number: OT6

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen.

China

Report Number: BTF231127R00404 Test Standards: 47 CFR Part 15E

Test Conclusion: Pass

FCC ID: 2ANMU-OT6

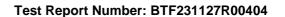
Test Date: 2023-11-01 to 2023-11-20

Date of Issue: 2023-11-20

Prepared By:

Approved By:

Address:

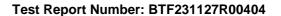

Chris Liu / Project Énginee

Ryan.CJ / EMC Manager

Date: 2023-11-20

Date: 2023-11-20

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.



Revision History			
Version	Issue Date	Revisions Content	
R_V0	2023-11-20	Original	
Note: Once the revision has been made, then previous versions reports are invalid			

Table of Contents

1	INTF	SODUC.	TION	5
	1.1	ldenti	ification of Testing Laboratory	5
	1.2		ification of the Responsible Testing Location	
	1.3	Anno	uncement	5
2	PRO	DUCT I	INFORMATION	6
	2.1	ilaaA	cation Information	6
	2.2		facturer Information	
	2.3	Facto	ory Information	6
	2.4		ral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3	SUM	IMARY	OF TEST RESULTS	7
	3.1		Standards	
	3.2		rtainty of Test	
	3.3		mary of Test Result	
4			FIGURATION	
	4.1	Test E	Equipment List	8
	4.2 4.3		Auxiliary Equipment	
5			ON RESULTS (EVALUATION)	
3	5.1		nna requirement	
6	_		CTRUM MATTER TEST RESULTS (RF)	
0				
	6.1		ucted Emission at AC power line	
		6.1.1 6.1.2	E.U.T. Operation: Test Setup Diagram:	
		6.1.3	Test Data:	
	6.2		Cycle	
	V	6.2.1	•	
		6.2.2	Test Data:	
	6.3	Maxir	num conducted output power	19
		6.3.1	E.U.T. Operation:	
		6.3.2	Test Data:	20
	6.4	Powe	r spectral density	21
		6.4.1		
			Test Data:	
	6.5	Emiss	sion bandwidth and occupied bandwidth	
		6.5.1	E.U.T. Operation:	
		6.5.2	Test Data:	
	6.6		edge emissions (Radiated)	
		6.6.1 6.6.2	E.U.T. Operation: Test Setup Diagram:	
		6.6.3	Test Data:	
	6.7		sirable emission limits (below 1GHz)	
	J.,	6.7.1	E.U.T. Operation:	
		6.7.2	Test Setup Diagram:	
		6.7.3	Test Data:	
	6.8	Unde	sirable emission limits (above 1GHz)	34
		6.8.1	E.U.T. Operation:	35

	6.8.2	Test Data:	36
7	TEST SETUI	P PHOTOS	40
		TRUCTIONAL DETAILS (EUT PHOTOS)	
APPE	NDIX	· · · · · · · · · · · · · · · · · · ·	43

1 Introduction

1.1 Identification of Testing Laboratory

	Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
	Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou
	Address.	Community, Songgang Street, Bao'an District, Shenzhen, China
	Phone Number:	+86-0755-23146130
Fax Number:		+86-0755-23146130

1.2 Identification of the Responsible Testing Location

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 Product Information

2.1 Application Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE,
Address:	GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.2 Manufacturer Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE,
Address.	GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.3 Factory Information

	Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
,	Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE,
	Address.	GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.4 General Description of Equipment under Test (EUT)

EUT Name:	tablet
Test Model Number:	OT6
Series Model Number:	OT6 S, OT6 Pro, OT6 Ultra, OT6 Kids
Description of Model name differentiation:	Only the model name is different, everything else is the same
Hardware Version:	R8631-RK3562-V1.0
Software Version:	OUKITEL_OT6_EEA_V01

2.5 Technical Information

Power Supply:	DC 3.8V form battery
Operation Frequency	U-NII Band 1: 5.18~5.24 GHz
Range	U-NII Band 3: 5.745~5.825 GHz
Eroguanay Plack	U-NII Band 1: 5.15~5.25 GHz
Frequency Block	U-NII Band 3: 5.725~5.85 GHz
	802.11a: 20 MHz
Channel Bandwidth	802.11n: 20 MHz, 40 MHz
	802.11ac: 20 MHz, 40 MHz, 80 MHz
Antenna Type:	PIFA Antenna
Antenna Gain:	-0.7 dBi
N-4	

Note:

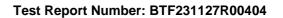
^{#:} The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices


3.2 Uncertainty of Test

Item	Measurement Uncertainty
Occupied Bandwidth	±69kHz
Transmitter Power, Conducted	±0.87dB
Power Spectral Density	±0.69dB
Conducted Spurious Emissions	±0.95dB
Radiated Spurious Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB
Radiated Spurious Emissions (30M - 1GHz)	±4.12dB

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	Pass
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Channel Availability Check Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(ii)	Pass
U-NII Detection Bandwidth	47 CFR Part 15E	47 CFR Part 15.407(h)(2)	Pass
Statistical Performance Check	47 CFR Part 15E	KDB 935210 D02, Clause 5.1 Table 2	Pass
Channel Move Time, Channel Closing Transmission Time	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iii)	Pass
Non-Occupancy Period Test	47 CFR Part 15E	47 CFR Part 15.407(h)(2)(iv)	Pass
DFS Detection Thresholds	47 CFR Part 15E	KDB 905462 D02, Clause 5.2 Table 3	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(2) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

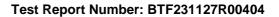
Test Configuration

Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-16	2023-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-16	2023-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-16	2023-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-16	2023-11-23			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Maximum conducted	Maximum conducted output power							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	1	1			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15			
WIDEBAND RADIO COMMNUNICATION	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15			

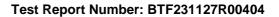


TESTER					
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	/	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Emission bandwidth and occupied bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	1	/		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Availability Check Time							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	1	/	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct	Dongguan	etm-6050c	20211026123	2023-11-16	2024-11-15		

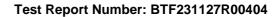

Current Regulated Power Supply	Tongmen Electronic Technology Co., LTD	31			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

U-NII Detection Bandwidth							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	1	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Statistical Performance Check							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	1	V1.00	1	1	1		
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15		
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15		

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	1	V1.00	1	/	1			
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15			
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15			
Programmable constant temperature	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15			

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 10 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



and humidity box					
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Non-Occupancy Period Test						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RFTest software	/	V1.00	/	1	/	
RF Control Unit	Techy	TR1029-1	/	2023-11-16	2024-11-15	
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15	
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15	
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15	
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15	
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15	

DFS Detection Thresholds					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	1	V1.00	1	1	/
RF Control Unit	Techy	TR1029-1	1	2023-11-16	2024-11-15
RF Sensor Unit	Techy	TR1029-2	1	2023-11-16	2024-11-15
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-16	2024-11-15
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-16	2024-11-15
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-16	2024-11-15
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-16	2024-11-15

Band edge emissions (Radiated)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23	
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15	

RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	2024-11-15
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	1	1	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15

Undesirable emission limits (below 1GHz)							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	80000	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	1	1	/		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		

Log periodic antenna SCHWARZBECK VULB	9168 01328	2021-11-28	2023-11-27
---------------------------------------	------------	------------	------------

Undesirable emission	Undesirable emission limits (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23		
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-16	2024-11-15		
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-16	2024-11-15		
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-16	2024-11-15		
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-16	2024-11-15		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23		
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21		
EZ_EMC	Frad	FA-03A2 RE+	1	1	1		
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	1	1		
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-16	2024-11-15		



4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

4.3 Test Modes

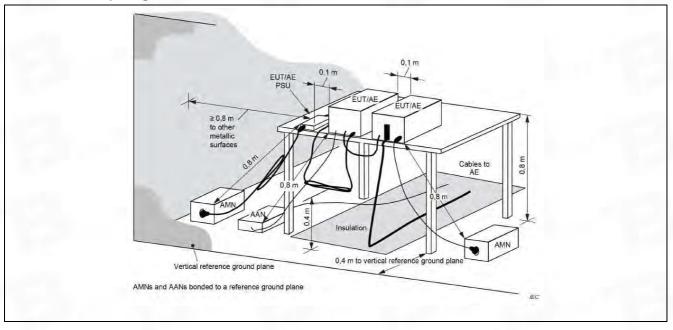
No.	Test Modes	Description
TM1	802.11a mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
ТМ3	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. Only the data of worst case is recorded in the report.
TM4	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

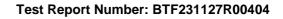
5 Evaluation Results (Evaluation)

5.1 Antenna requirement

	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
--	--

6 Radio Spectrum Matter Test Results (RF)

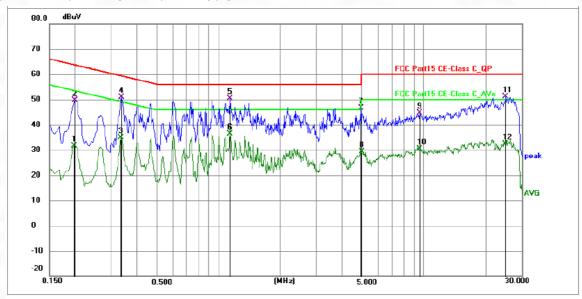

6.1 Conducted Emission at AC power line


Test Requirement:	47 CFR Part 15.207(a)				
Test Method:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				
	Frequency of emission (MHz)	Hz) Conducted limit (dBµV)			
		Quasi-peak	Average		
Toot Limit:	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of t	he frequency.			

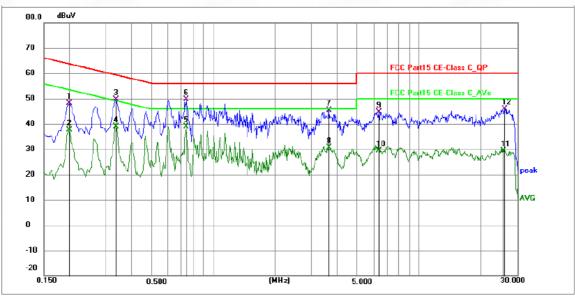
6.1.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.1.2 Test Setup Diagram:



6.1.3 Test Data:


TM1 / Line: Line / Band: U-NII 1 / BW: 20 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1985	21.12	10.56	31.68	53.67	-21.99	AVG	Р	
2	0.1995	39.17	10.56	49.73	63.63	-13.90	QP	Р	
3	0.3336	23.98	10.99	34.97	49.36	-14.39	AVG	Р	
4	0.3345	39.78	10.99	50.77	59.34	-8.57	QP	Р	
5 *	1.1400	39.74	10.66	50.40	56.00	-5.60	QP	Р	
6	1.1400	25.64	10.66	36.30	46.00	-9.70	AVG	Р	
7	4.9290	35.95	10.73	46.68	56.00	-9.32	QP	Р	
8	4.9603	18.60	10.73	29.33	46.00	-16.67	AVG	Р	
9	9.5503	33.72	10.84	44.56	60.00	-15.44	QP	Р	
10	9.5503	19.60	10.84	30.44	50.00	-19.56	AVG	Р	
11	24.9495	39.83	11.20	51.03	60.00	-8.97	QP	Р	
12	24.9495	21.07	11.20	32.27	50.00	-17.73	AVG	Р	

TM1 / Line: Neutral / Band: U-NII 1 / BW: 20 / CH: L

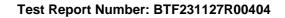
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1995	37.50	10.56	48.06	63.63	-15.57	QP	Р	
2	0.1995	27.13	10.56	37.69	53.63	-15.94	AVG	Р	
3	0.3345	38.74	10.99	49.73	59.34	-9.61	QP	Р	
4	0.3371	27.99	11.00	38.99	49.27	-10.28	AVG	Р	
5	0.7350	27.94	10.89	38.83	46.00	-7.17	AVG	Р	
6 *	0.7395	38.82	10.87	49.69	56.00	-6.31	QP	Р	
7	3.6420	34.81	10.64	45.45	56.00	-10.55	QP	Р	
8	3.6420	20.06	10.64	30.70	46.00	-15.30	AVG	Р	
9	6.3555	33.96	10.78	44.74	60.00	-15.26	QP	Р	
10	6.3555	18.68	10.78	29.46	50.00	-20.54	AVG	Р	
11	25.6380	18.06	11.21	29.27	50.00	-20.73	AVG	Р	
12	25.8673	34.58	11.21	45.79	60.00	-14.21	QP	Р	

6.2 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Test Limit:	No limits, only for report use.
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

6.2.1 E.U.T. Operation:

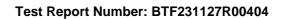
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar


6.2.2 Test Data:

Please Refer to Appendix for Details.

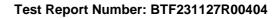
6.3 Maximum conducted output power

6.3 Maximum cond	ucted output power
	47 CFR Part 15.407(a)(1)(i)
	47 CFR Part 15.407(a)(1)(ii)
Total Democratic	47 CFR Part 15.407(a)(1)(iii)
Test Requirement:	47 CFR Part 15.407(a)(1)(iv)
	47 CFR Part 15.407(a)(2)
	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any
	elevation angle above 30 degrees as measured from the horizon must not exceed
	125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum
	conducted output power over the frequency band of operation shall not exceed 1
	W provided the maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the
	maximum conducted output power over the frequency band of operation shall not
	exceed 1 W.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum conducted output
	power.
Test Limit:	For fixed point-to-point transmitters that employ a directional antenna gain greater
Test Littit.	than 23 dBi, a 1 dB reduction in maximum conducted output power is required for
	each 1 dB of antenna gain in excess of 23 dBi.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems,
	omnidirectional applications, and multiple collocated transmitters transmitting the
	same information. The operator of the U-NII device, or if the equipment is
	professionally installed, the installer, is responsible for ensuring that systems
	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output
	power over the frequency band of operation shall not exceed 250 mW provided the
	maximum antenna gain does not exceed 6 dBi.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	F
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output
	power over the frequency bands of operation shall not exceed the lesser of 250
	mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.
	If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.


	For the band 5.725-5.850 GHz, the maximum conducted output power over the
	frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum conducted output power shall be reduced by the amount in dB that the
	directional gain of the antenna exceeds 6 dBi.
	However, fixed point-to-point U-NII devices operating in this band may employ
	transmitting antennas with directional gain greater than 6 dBi without any
	corresponding reduction in transmitter conducted power. Fixed, point-to-point
	operations exclude the use of point-to-multipoint systems, omnidirectional
	applications, and multiple collocated transmitters transmitting the same
	information. The operator of the U-NII device, or if the equipment is professionally
	installed, the installer, is responsible for ensuring that systems employing high gain
	directional antennas are used exclusively for fixed, point-to-point operations.
	Method SA-1
	a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
	b) Set RBW = 1 MHz.
	c) Set VBW >= 3 MHz.
	d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing
	<= RBW / 2, so
	that narrowband signals are not lost between frequency bins.)
	e) Sweep time = auto.
	f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
	g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering
	only on full power pulses. The transmitter shall operate at maximum power control level for the
Procedure:	entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF
Troocdare.	intervals) or
	at duty cycle >= 98%, and if each transmission is entirely at the maximum power
	control level,
	then the trigger shall be set to "free run."
	h) Trace average at least 100 traces in power averaging (rms) mode.
	i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW
	of the signal
	using the instrument's band power measurement function, with band limits set
	equal to the
	EBW or OBW band edges. If the instrument does not have a band power function,
	then sum the
	spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%
	OBW of the spectrum.
631 FILT Operation:	

6.3.1 E.U.T. Operation:

Operating Environment:			
Temperature:	25.5 °C		
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		


6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Power spectral	density
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
Test Limit:	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations. For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter

	conducted power.
	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by following the
	instructions in 12.3.2 for measuring maximum conducted output power using a spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled, "Compute
	power" (This procedure is required even if the maximum conducted output
	measurement was performed using the power meter method PM.) b) Use the peak search function on the instrument to find the peak of the spectrum. c) Make the following adjustments to the peak value of the spectrum, if applicable: 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum. 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging and
	power averaging.
	d) The result is the PPSD. e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities. This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided that the
	measured power is integrated to show the total power over the measurement bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply: 1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	 2) Set VBW >= [3 × RBW]. 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

6.4.1 E.U.T. Operation:

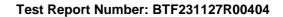
Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Emission bandwidth and occupied bandwidth

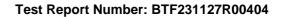
	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Method:	ANSI C63.10-2013, section 6.9.3 & 12.4 KDB 789033 D02, Clause C.2
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the
Procedure:	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral
	envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be
	used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are
	recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%


power bandwidth is
the difference between these two frequencies.
h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument
display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may
be reported in addition to the plot(s).
6 dB emission bandwidth: a) Set RBW = 100 kHz.
b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
c) Detector = Peak.
d) Trace mode = max hold.
e) Sweep = auto couple.
f) Allow the trace to stabilize.
g) Measure the maximum width of the emission that is constrained by the
frequencies associated with the two outermost amplitude points (upper and lower
frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.5.1 E.U.T. Operation:

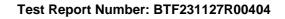
Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.5.2 Test Data:


Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

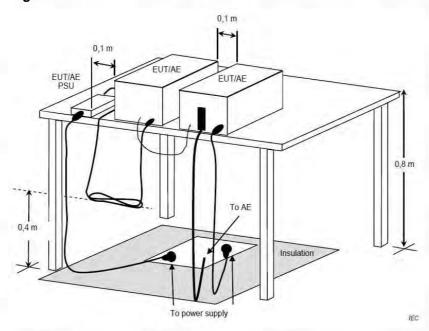
	47 CFR Part 15.407(b)	(1)								
- (D : (47 CFR Part 15.407(b)									
Test Requirement:	47 CFR Part 15.407(b)									
	47 CFR Part 15.407(b)	` ,								
Test Method:	ANSI C63.10-2013, se		7.6							
Tool Mouriou.	For transmitters operat			ssions outside of the						
	5.15-5.35 GHz band sh	nall not exceed an e.i.r.	p. of −27 dBm/M	IHz.						
	For transmitters operat 5.15-5.35 GHz band sh									
	For transmitters operat	ing solely in the 5.725-	5.850 GHz band	l:						
		All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above								
	or below the band edge									
	below the band edge, a									
	linearly to a level of 15.									
	from 5 MHz above or b		creasing linearly	to a level of 21						
	dBm/MHz at the band	· · · · · · · · · · · · · · · · · · ·	N 41 1—	CII-						
	MHz	MHz	MHz	GHz						
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15						
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46						
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75						
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5						
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2						
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5						
			5							
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7						
Test Limit:	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4						
rest Limit.	6.31175-6.31225	123-138	2200-2300	14.47-14.5						
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2						
	8.362-8.366	156.52475-156.525 25	2483.5-2500	17.7-21.4						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12						
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0						
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8						
	12.51975-12.52025 12.57675-12.57725	240-285 322-335.4	3345.8-3358 3600-4400	36.43-36.5 (²)						
	13.36-13.41			()						
	¹ Until February 1, 1999), this restricted band sl	nall be 0.490-0.5	510 MHz.						
	² Above 38.6									
	The field strength of en	nissions appearing with	in these frequer	ncy bands shall not						
	exceed the limits show MHz, compliance with measurement instrume	the limits in § 15.209sh entation employing a Cl	all be demonstra SPR quasi-peak	ated using detector. Above						
	1000 MHz, compliance based on the average 15.35apply to these me	value of the measured								
	Except as provided els	ewhere in this subpart,	the emissions fr	rom an intentional						



	radiator shall not exceed th	e field strength levels specified i	n the following table:
	Frequency (MHz)	Field strength	Measurement
	1 3 ()	(microvolts/meter)	distance
		,	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		0
		T was placed on the top of a rot	ating table 1.5 meters
		eter fully-anechoic chamber. The	
		osition of the highest radiation.	table was rotated 500
		rs away from the interference-re	occiving antonna which
		a variable-height antenna tower	
		ried from one meter to four mete	
		lue of the field strength. Both ho	· ·
		a are set to make the measurem	
		ssion, the EUT was arranged to	
		eights from 1 meter to 4 meters na was tuned to heights 1 meter	
		to 360 degrees to find the maxim	
		•	•
	Bandwidth with Maximum F	was set to Peak Detect Functio	n and Specified
			ower than the limit
		e EUT in peak mode was 10dB l d be stopped and the peak value	
		issions that did not have 10dB r	
Dragodura	•	peak or average method as spe	cilled and then reported
Procedure:	in a data sheet.	at abannal the middle abannal	the Highest shappel
		st channel, the middle channel	
		ents are performed in X, Y, Z axi	
		and the X axis positioning which	
		s until all frequencies measured	was complete.
	Remark:	la Laga LAntonna Factor Droon	an Factor
		le Loss+ Antenna Factor- Pream	
		GHz, the disturbance above 18G	
		ots are the highest emissions co	
		s had been displayed. The amp	
		which are attenuated more than	1 2006 below the littlit
	need not be reported.	for fraguencies shave 4011- 41-	a field atropath limits
		for frequencies above 1GHz, th	
		s. However, the peak field streng	
		ermitted average limits specified	
		nodulation. For the emissions when peak measurement is show	
		the peak measurement is show	
		8GHz were very low and the ha	
		d when testing, so only the abov	re narmonics had been
	displayed.		

6.6.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25.5 °C					
Humidity:	50.6 %					



Atmospheric Pressure:

1010 mbar

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Note: All the mode have been tested, and only the worst mode 802.11are in the report

UNII-1 20M 5180MHz Horizontal

		. –						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5104.638	84.31	-31.76	52.55	68.20	-15.65	peak	Р
2	5150.000	84.91	-31.72	53.19	68.20	-15.01	peak	Р

UNII-1 _20M _5180MHz Vertical

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5093.118	85.33	-31.76	53.57	68.20	-14.63	peak	Р
2	5150.000	85.93	-31.72	54.21	68.20	-13.99	peak	Р

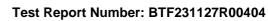
UNII-1 20M 5320MHz Horizontal

_		_						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
INO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	85.30	-31.92	53.38	68.20	-14.82	peak	Р
2	5436.362	83.67	-31.88	51.79	68.20	-16.41	peak	Р

UNII-1 20M 5320MHz Vertical

_	. –	_						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5350.000	85.98	-31.92	54.06	68.20	-14.14	peak	Р
2	5447.572	84.35	-31.88	52.47	68.20	-15.73	peak	Р

UNII-3 20M 5745MHz Horizontal

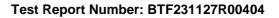

		. —						
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5650.000	87.68	-31.73	55.95	68.20	-12.25	peak	Р
2	5700.000	94.62	-31.84	62.78	105.60	-42.82	peak	Р
3	5720.000	95.52	-31.90	63.62	110.8	-47.18	peak	Р

UNII-3 20M 5745MHz Vertical

• · · · · • ·								
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
NO.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5650.000	88.53	-31.73	56.80	68.20	-11.40	peak	Р
2	5700.000	95.47	-31.84	63.63	105.60	-41.97	peak	Р
3	5720.000	96.37	-31.90	64.47	110.8	-46.33	peak	Р

UNII-3 20M 5825MHz Horizontal

No	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	F/F
1	5850.000	85.64	-31.80	53.84	122.20	-68.36	peak	Р
2	5875.000	92.58	-31.91	60.67	110.80	-50.13	peak	Р
3	5925.000	93.48	-31.97	61.51	68.20	-6.69	peak	Р



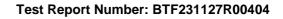
UNII-3 20M 5825MHz Vertical

,		. –							
	No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	1 //
	1	5850.000	86.16	-31.80	54.36	122.20	-67.84	peak	Р
	2	5875.000	93.10	-31.91	61.19	110.80	-49.61	peak	Р
	3	5925.000	94.00	-31.97	62.03	68.20	-6.17	peak	Р

Undesirable emission limits (below 1GHz) 6.7

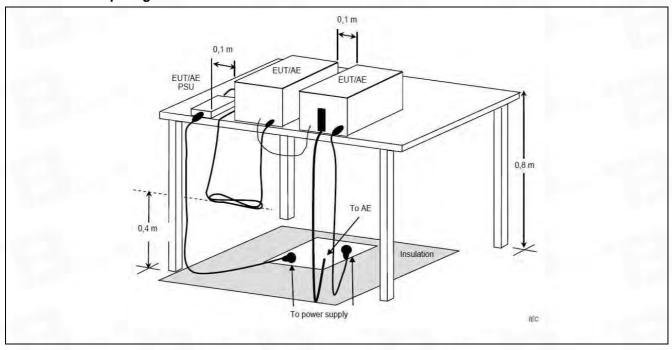
Test Requirement:	47 CFR Part 15.407(b)(9)								
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6								
Test Limit:	limits set forth in § 15.209. Except as provided elsewh	w 1 GHz must comply with the mere in this subpart, the emissine field strength levels specific Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 **	ions from an intentional						
	216-960	200 **	3						
	Above 960	500	3						
Procedure:	Below 1GHz: a. For below 1GHz, the EU above the ground at a 3 m degrees to determine the p b. The EUT was set 3 or 1 which was mounted on the c. The antenna height is verified to the antenna of the antenna of the antenna was turned to the antenna was turned to the antenna was turned to the antenna was turned from 0 degrees to the entermine the entermine the antenna was turned from 0 degrees to the test-receiver system and width with Maximum f. If the emission level of the specified, then testing coureported. Otherwise the erre-tested one by one using data sheet. g. Test the EUT in the lower than the radiation measuren than the radiation measurent than	JT was placed on the top of a eter semi-anechoic chamber. cosition of the highest radiation 0 meters away from the interfect top of a variable-height anterplaced from one meter to four malue of the field strength. Both as are set to make the measurission, the EUT was arranged heights from 1 meter to 4 meters to 360 degrees to find the man was set to Peak Detect Functions.	rotating table 0.8 meters The table was rotated 360 n. erence-receiving antenna, nna tower. neters above the ground to horizontal and vertical rement. to its worst case and then ers (for the test frequency eter) and the rotatable table aximum reading. ction and Specified IB lower than the limit alues of the EUT would be IB margin would be fied and then reported in a el, the Highest channel. axis positioning for ch it is the worst case. ed was complete. eamp Factor MHz was very low. The could be found when						

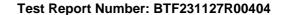
emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.


3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

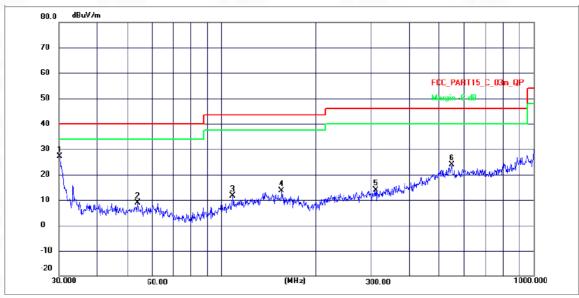
Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.7.1 E.U.T. Operation:

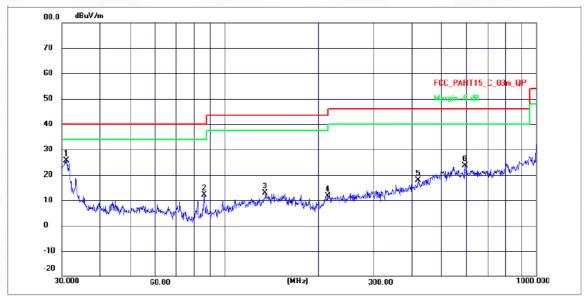

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.7.2 Test Setup Diagram:



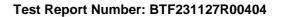
6.7.3 Test Data:

Note: All the mode have been tested, and only the worst mode are in the report


TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L

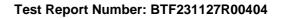

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	30.2111	45.90	-18.77	27.13	40.00	-12.87	peak	Р
2	53.6932	27.22	-18.25	8.97	40.00	-31.03	peak	Р
3	108.2667	39.77	-28.15	11.62	43.50	-31.88	peak	Р
4	155.9101	41.28	-27.73	13.55	43.50	-29.95	peak	Р
5	311.0867	39.31	-25.34	13.97	46.00	-32.03	peak	Р
6	546.1393	45.41	-21.62	23.79	46.00	-22.21	peak	Р

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1 *	31.0706	46.23	-20.72	25.51	40.00	-14.49	peak	Р
2	86.2001	42.53	-30.50	12.03	40.00	-27.97	peak	Р
3	135.2688	40.67	-27.91	12.76	43.50	-30.74	peak	Р
4	215.2678	38.17	-26.66	11.51	43.50	-31.99	peak	Р
5	417.6411	41.62	-23.80	17.82	46.00	-28.18	peak	Р
6	592.0107	45.66	-22.11	23.55	46.00	-22.45	peak	Р

6.8 Undesirable emission limits (above 1GHz)

	47 CFR Part 15.407(b))(1)										
-	47 CFR Part 15.407(b)											
Test Requirement:	47 CFR Part 15.407(b)											
	47 CFR Part 15.407(b)											
Test Method:		ction 12.7.4, 12.7.5, 12	.7.6									
Tool Mourou.				ssions outside of the								
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.											
	For transmitters operat	For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.										
	For transmitters operate	For transmitters operating solely in the 5.725-5.850 GHz band:										
		limited to a level of -27										
		e increasing linearly to										
		and from 25 MHz above										
		.6 dBm/MHz at 5 MHz a										
		below the band edge inc										
	dBm/MHz at the band		reasing inleany	to a level of 21								
		•	MU	CH								
	MHz	MHz	MHz	GHz								
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15								
	10.495-0.505	16.69475-16.69525	608-614	5.35-5.46								
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75								
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5								
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2								
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5								
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7								
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4								
	0.20773-0.20823	100-121.94	2	13.23-13.4								
	6.31175-6.31225	123-138	2200-2300	14.47-14.5								
Test Limit:	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2								
	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4								
	0.302-0.300	25	2403.3-2300	17.7-21.4								
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12								
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0								
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8								
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5								
	12.57675-12.57725	322-335.4	3600-4400	(²)								
	13.36-13.41	322-333.4	3000-4400	()								
	1 Intil Cohmon (4, 400)) this wastwisted beaud al	!! b - 0 400 0 /	540 MUI-								
	² Above 38.6), this restricted band sl	iali DE 0.490-0.3	ΙΟ IVII IZ.								
	Above 36.6											
	The field strength of er	missions appearing with	in these frequer	ncy hands shall not								
		n in § 15.209. At freque										
		the limits in § 15.209sh										
	•	•		•								
		entation employing a CI										
		with the emission limit										
	based on the average 15.35apply to these m	value of the measured easurements	emissions. The	provisions in §								
	10.00appiy to tilese ili	ododi omonio.										
	Except as provided els	ewhere in this subpart,	the emissions f	rom an intentional								
	radiator shall not excee	ed the field strength lev	els specified in t	he following table:								
	Frequency (MHz)	Field strength		Measurement								


		(microvolts/meter)	distance
		()	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	Above 1GHz:		
	a. For above 1GHz. t	he EUT was placed on the top of	a rotating table 1.5 meters
		a 3 meter fully-anechoic chamber	
		the position of the highest radiat	
		3 meters away from the interferen	
		top of a variable-height antenna t	
		it is varied from one meter to four	
		ium value of the field strength. Bo	
	polarizations of the a	ntenna are set to make the meas	urement.
	d. For each suspecte	ed emission, the EUT was arrange	ed to its worst case and then
	the antenna was tune	ed to heights from 1 meter to 4 me	eters (for the test frequency
		antenna was tuned to heights 1 n	
		egrees to 360 degrees to find the	
		system was set to Peak Detect Fu	
	Bandwidth with Maxi	•	notion and opcomed
			OdP lower than the limit
		el of the EUT in peak mode was 1	
		g could be stopped and the peak	
		the emissions that did not have 10	
	-	using peak or average method as	s specified and then reported
Procedure:	in a data sheet.		
	g. Test the EUT in the	e lowest channel, the middle char	inel, the Highest channel.
	h. The radiation mea	surements are performed in X, Y,	Z axis positioning for
		and found the X axis positioning w	
		edures until all frequencies meas	
	Remark:		a. caa.c cop.c.c.
		I+ Cable Loss+ Antenna Factor- F	Preamp Factor
		to 40GHz, the disturbance above	
		ove plots are the highest emission	
	-	e points had been displayed. The	The state of the s
		adiator which are attenuated more	tnan 200B below the limit
	need not be reported		
		ection, for frequencies above 1GH	
	are based on averag	e limits. However, the peak field s	trength of any emission shall
	not exceed the maxir	num permitted average limits spe	cified above by more than 20
		on of modulation. For the emissio	
		t, only the peak measurement is	
		bove 18GHz were very low and th	
	himboot a sint and the	- facing look and the	

6.8.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

highest point could be found when testing, so only the above harmonics had been

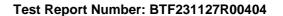
displayed.

6.8.2 Test Data:

Not:All of the mode had be tested, only the worse mode of 802.11a are show in the report: UNII-1_20M_5180MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-1_20M_5180MHz_Vertical

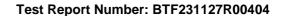

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-1_20M_5200MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-1_20M_5200MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р



UNII-1_20M_5240MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-1_20M_5240MHz_Vertical

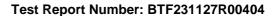
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

UNII-3 20M 5745MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

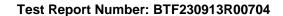

UNII-3_20M_5785MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

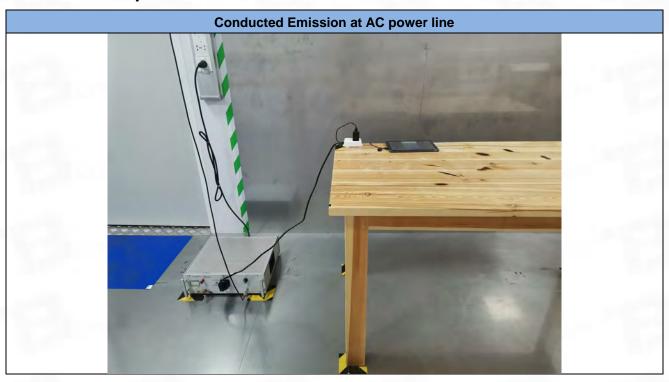
UNII-3 20M 5785MHz Vertical

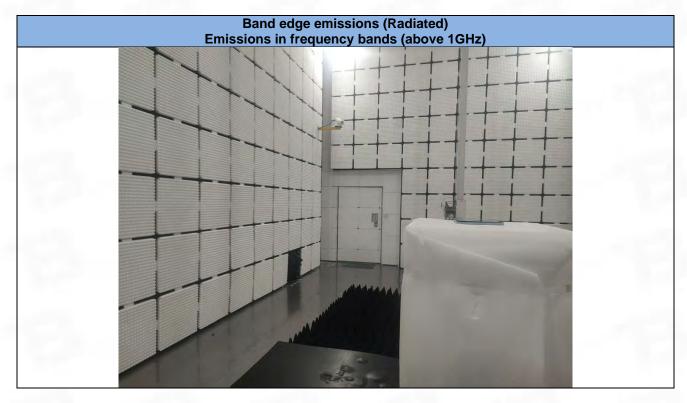
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р			
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р			
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р			
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р			
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р			
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р			

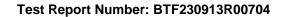
UNII-3_20M_5825MHz_Horizontal

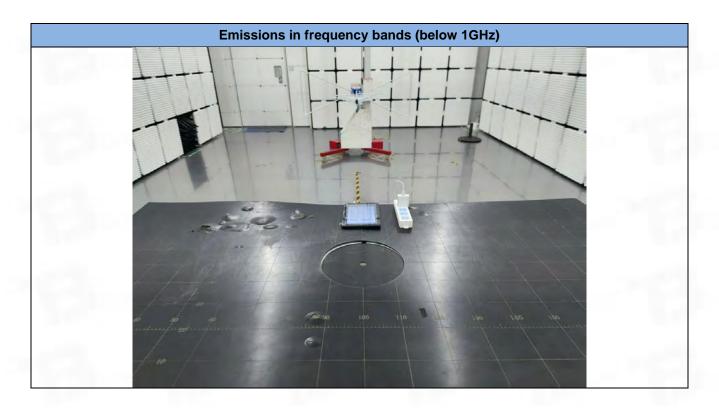


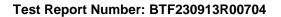
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р

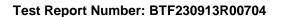

UNII-3_20M_55825MHz_Vertical

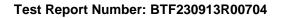

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	1304.623	65.73	-30.64	35.09	74.00	-38.91	peak	Р
2	3233.260	72.20	-29.29	42.91	74.00	-31.09	peak	Р
3	4707.887	72.27	-28.19	44.08	74.00	-29.92	peak	Р
4	5932.638	73.62	-25.54	48.08	74.00	-25.92	peak	Р
5	8295.823	77.72	-25.41	52.31	74.00	-21.69	peak	Р
6 *	11269.856	80.89	-23.24	57.65	74.00	-16.35	peak	Р




7 **Test Setup Photos**



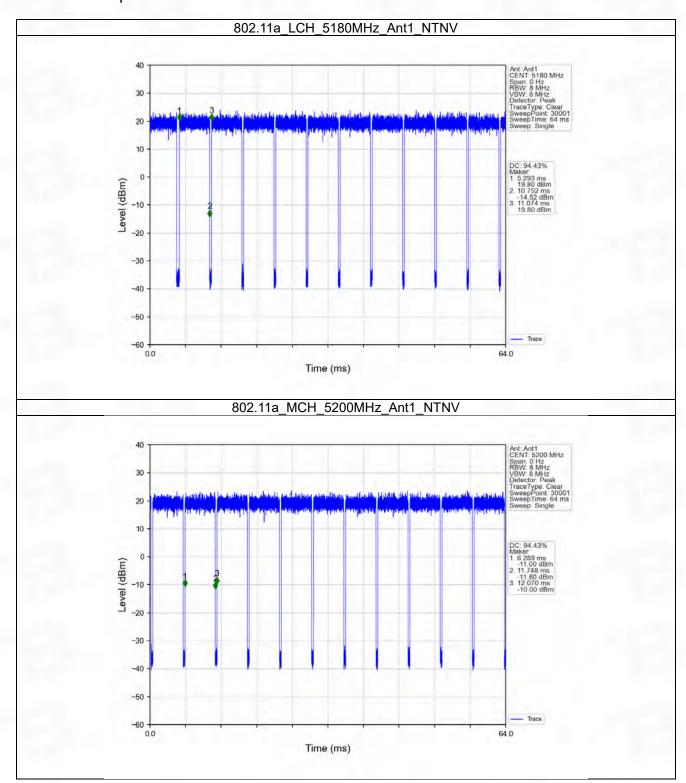



EUT Constructional Details (EUT Photos)

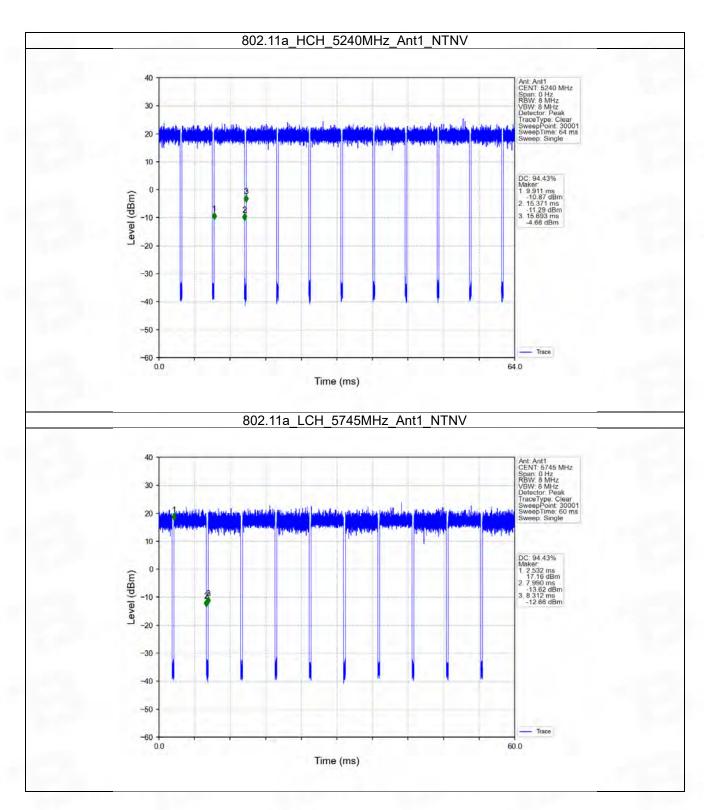
Please refer to the test report No. BTF231127E00401

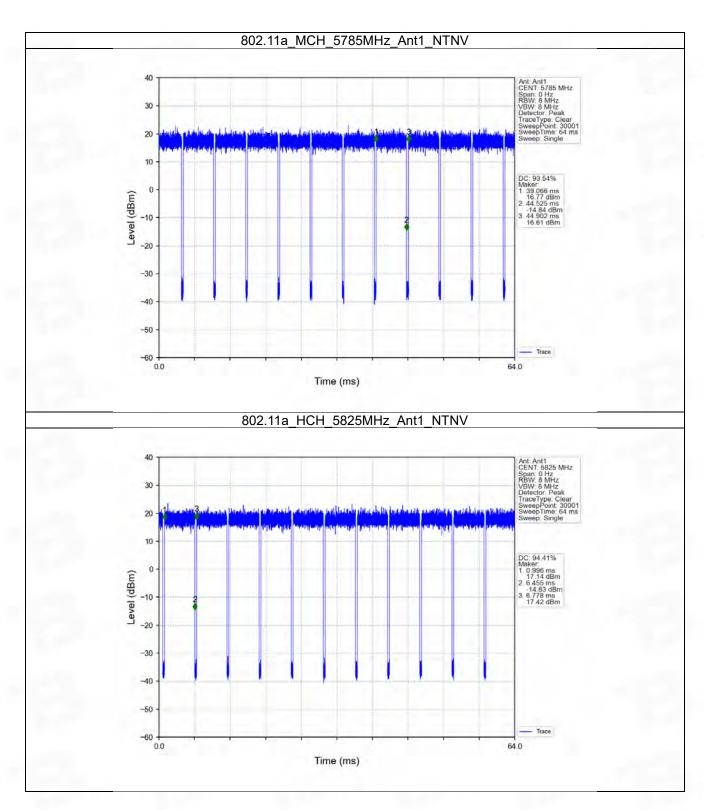
Appendix

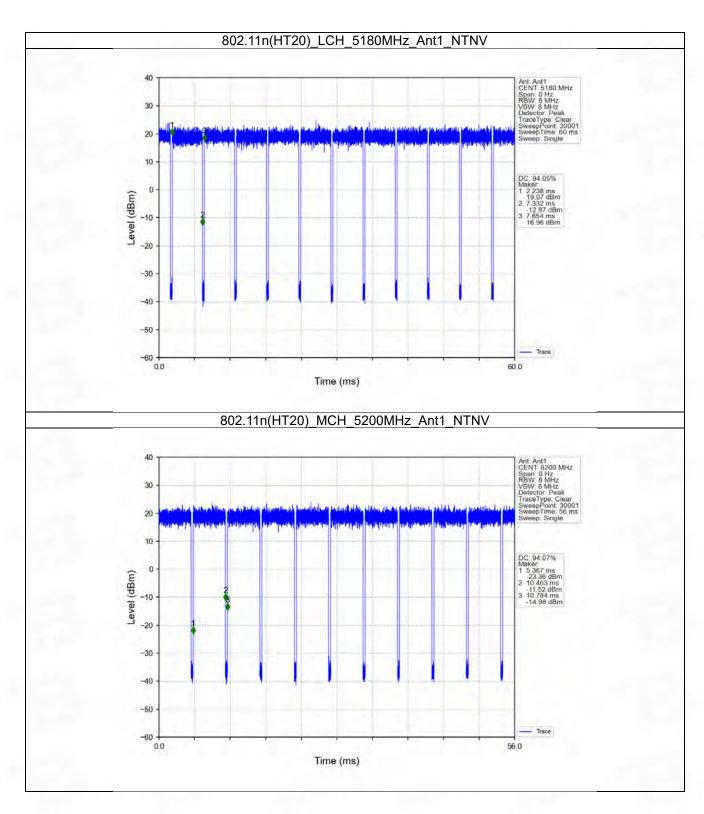
1. Duty Cycle

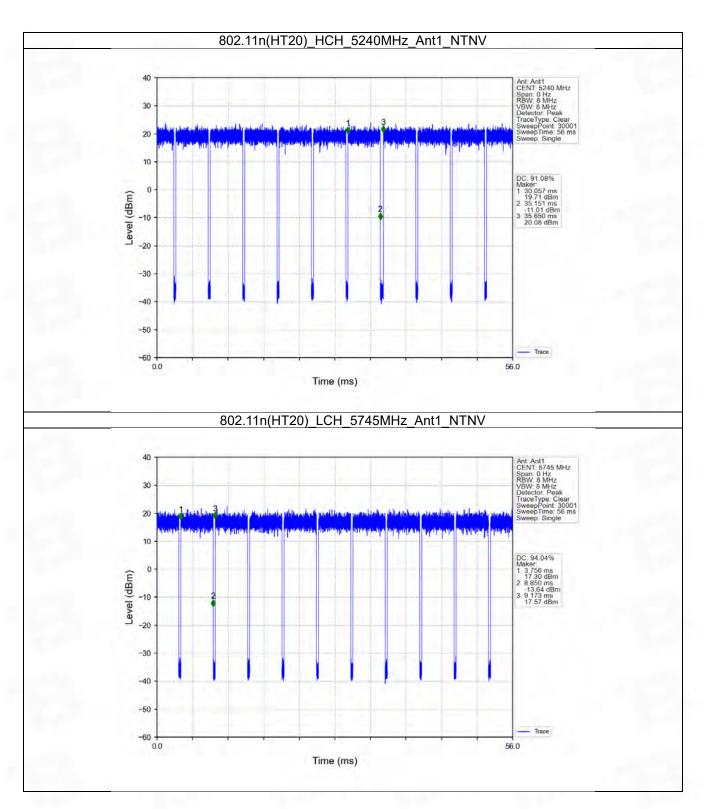

1.1 Ant1

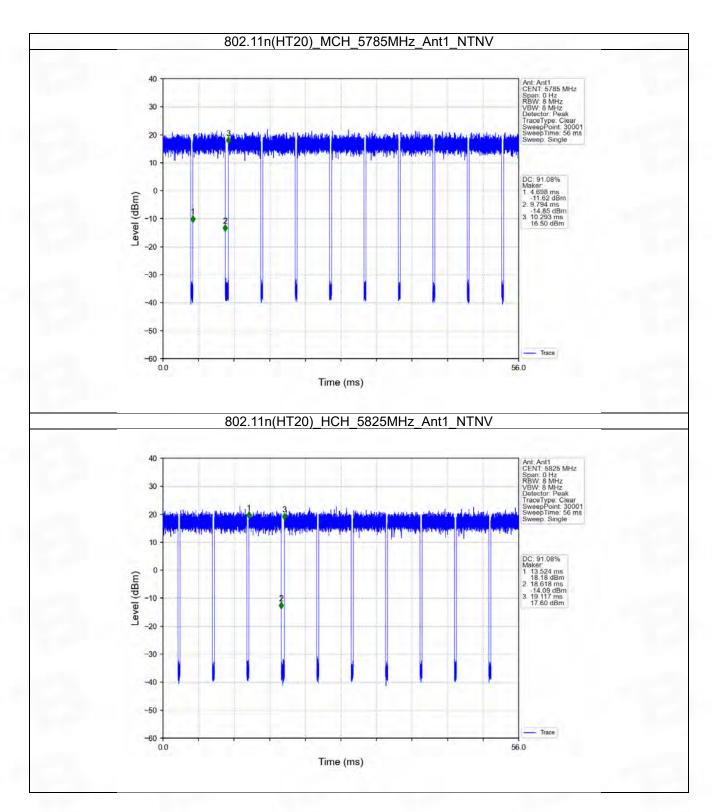
1.1.1 Test Result

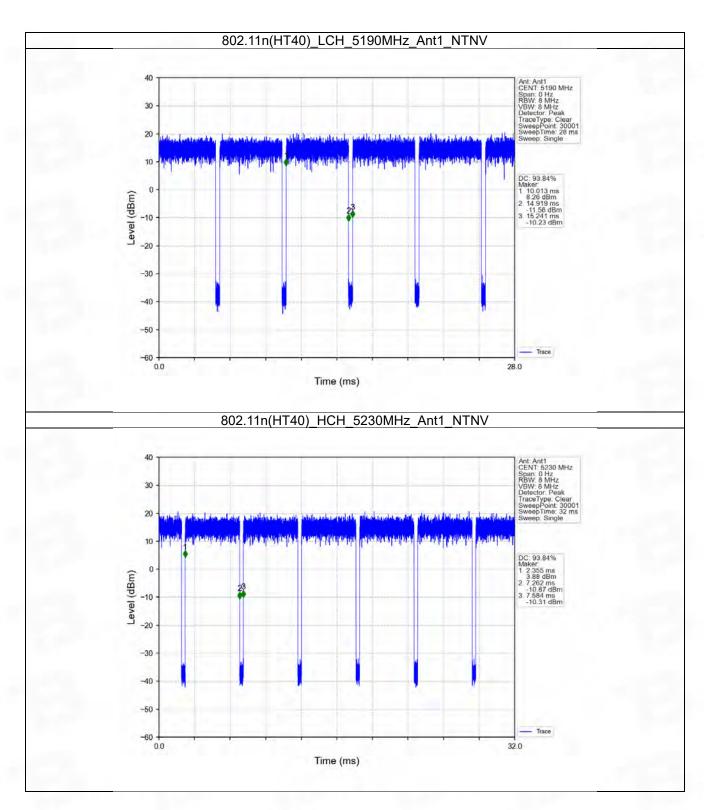

					Ant1		
Mode	TX	Frequency	T_on	Period	Duty Cycle	Duty Cycle	Max. DC
Mode	Type	(MHz)	(ms)	(ms)	(%)	Correction Factor (dB)	Variation (%)
		5180	5.459	5.781	94.43	0.25	0.03
		5200	5.459	5.781	94.43	0.25	0.03
802.11a	SISO	5240	5.460	5.782	94.43	0.25	0.03
002.11a	3130	5745	5.458	5.780	94.43	0.25	0.03
		5785	5.459	5.836	93.54	0.29	0.93
		5825	5.459	5.782	94.41	0.25	0.03
		5180	5.094	5.416	94.05	0.27	0.00
	SISO	5200	5.096	5.417	94.07	0.27	0.00
802.11n		5240	5.094	5.593	91.08	0.41	2.95
(HT20)		5745	5.094	5.417	94.04	0.27	0.03
		5785	5.096	5.595	91.08	0.41	2.98
		5825	5.094	5.593	91.08	0.41	2.95
		5190	4.906	5.228	93.84	0.28	0.02
802.11n	SISO	5230	4.907	5.229	93.84	0.28	0.00
(HT40)		5755	4.907	5.229	93.84	0.28	0.00
		5795	0.855	1.177	72.64	1.39	21.19
		5180	5.098	5.420	94.06	0.27	0.00
		5200	5.098	5.420	94.06	0.27	0.04
802.11ac	SISO	5240	5.098	5.420	94.06	0.27	0.04
(VHT20)	3130	5745	5.098	5.596	91.10	0.40	2.96
		5785	5.100	5.598	91.10	0.40	2.96
		5825	5.098	5.420	94.06	0.27	0.04
		5190	4.910	5.233	93.83	0.28	0.02
802.11ac	SISO	5230	4.909	5.232	93.83	0.28	0.04
(VHT40)	3130	5755	4.911	5.233	93.85	0.28	0.02
		5795	4.912	5.306	92.57	0.34	1.27
802.11ac	SISO	5210	4.910	5.233	93.83	0.28	0.04
(VHT80)	3130	5775	4.911	5.283	92.96	0.32	0.90

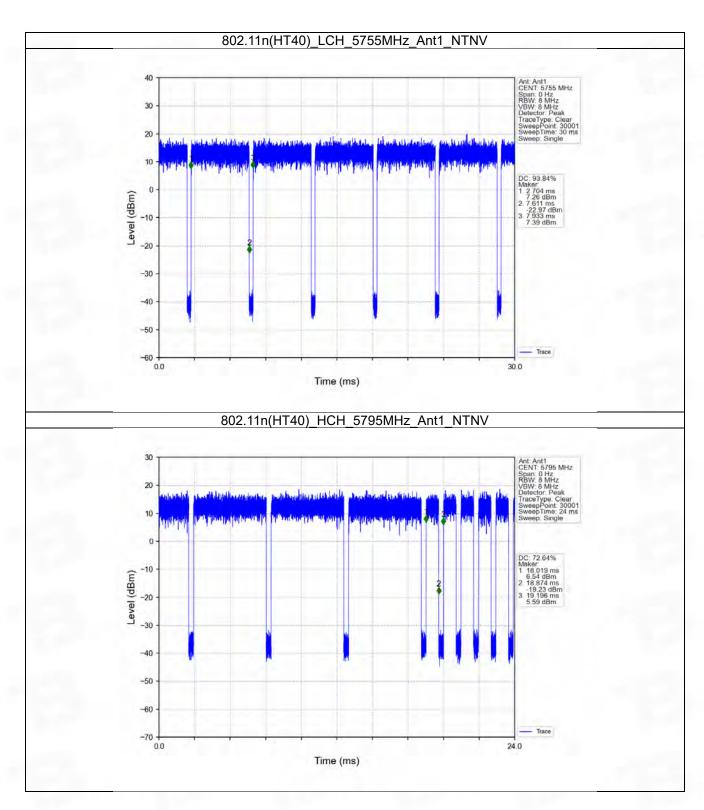

1.1.2 Test Graph

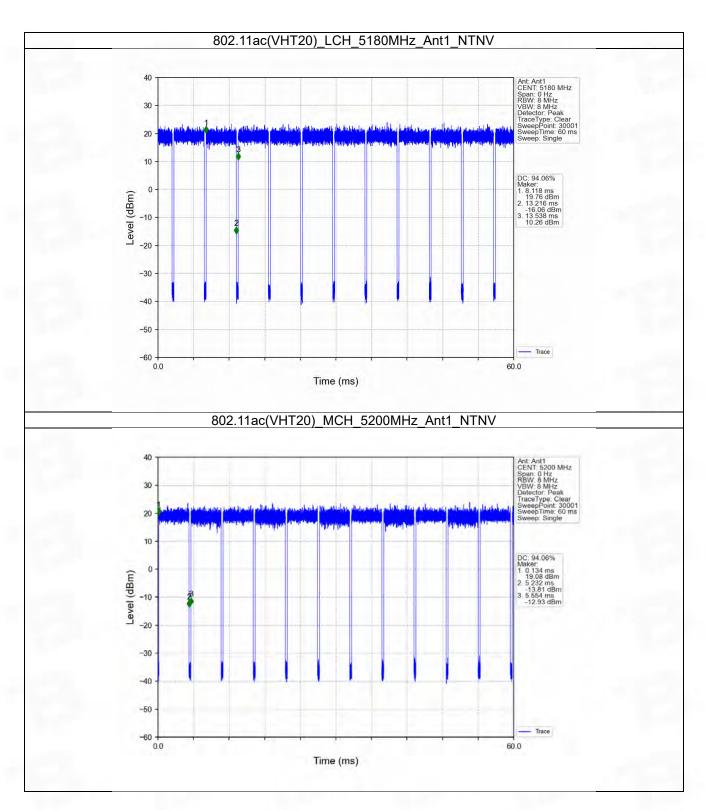


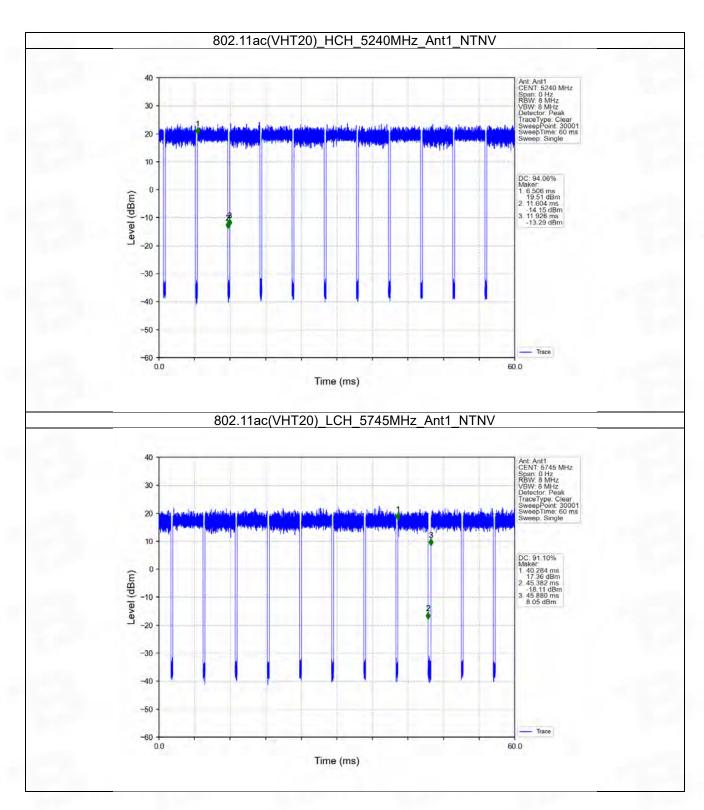


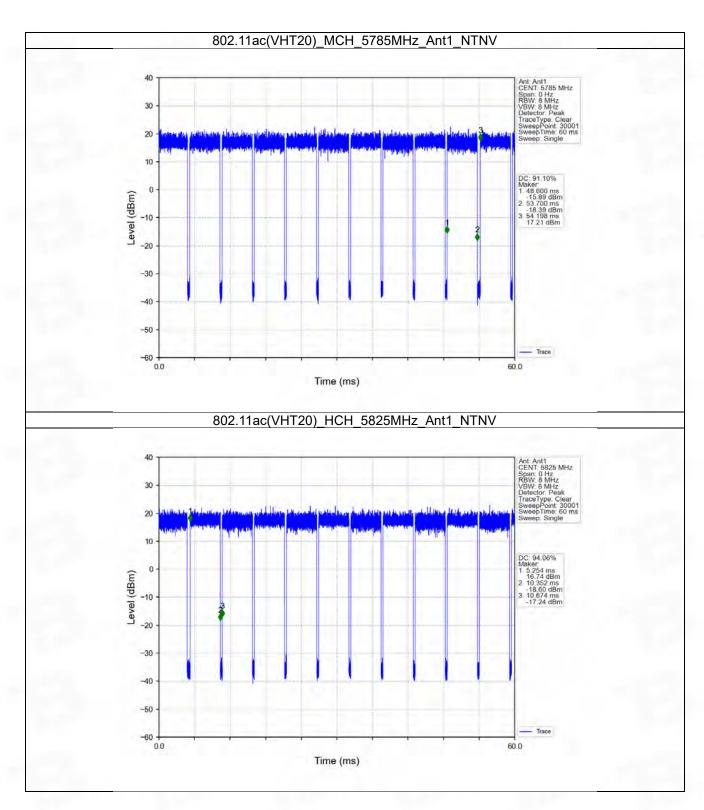


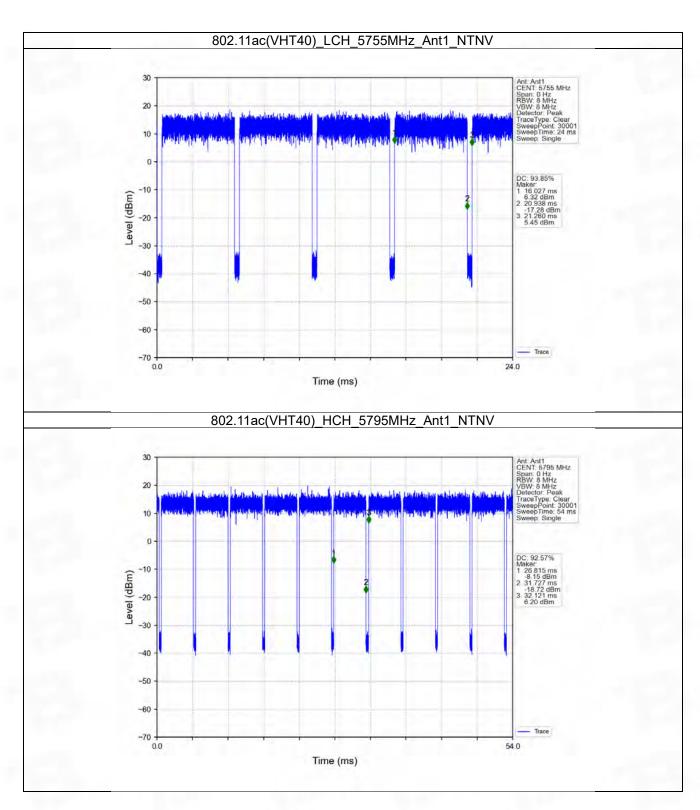


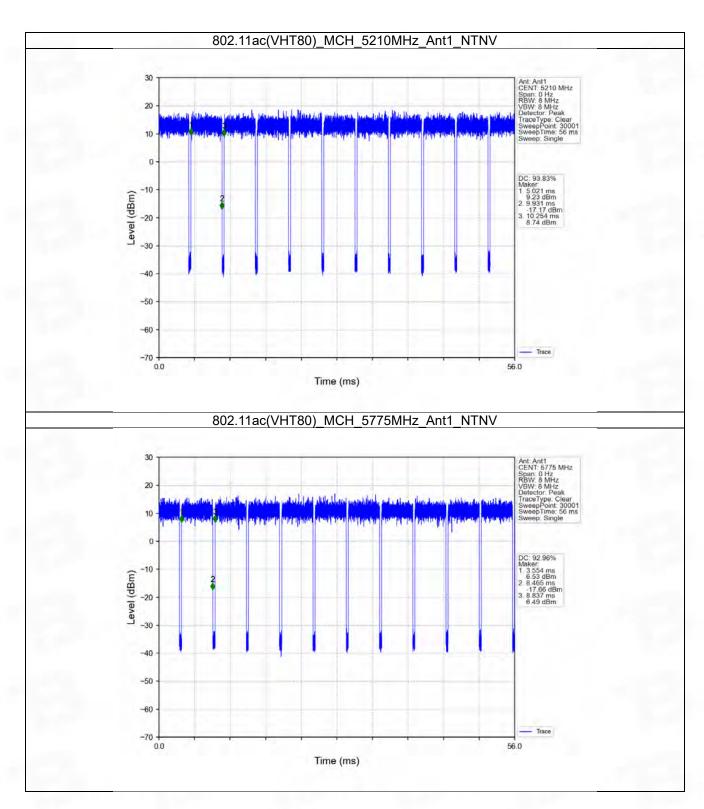


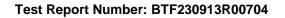




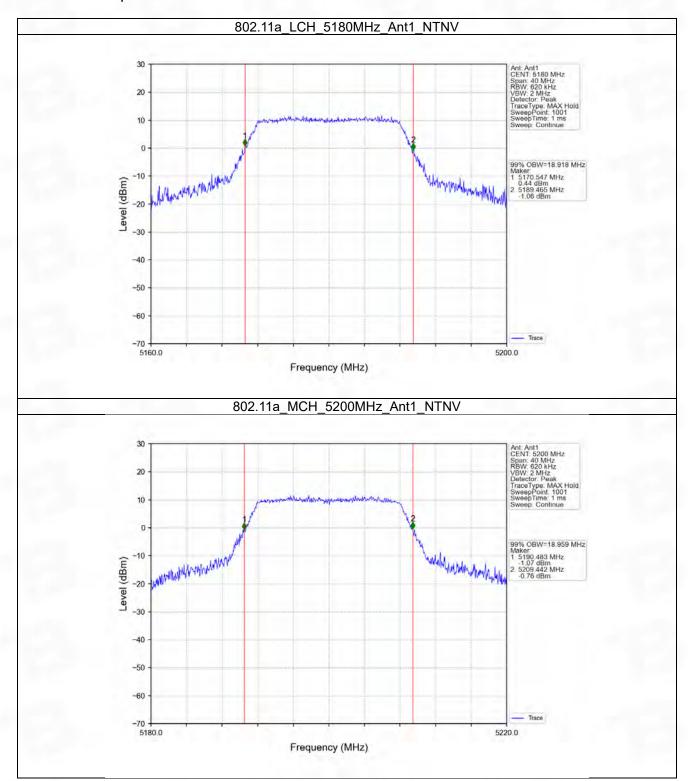




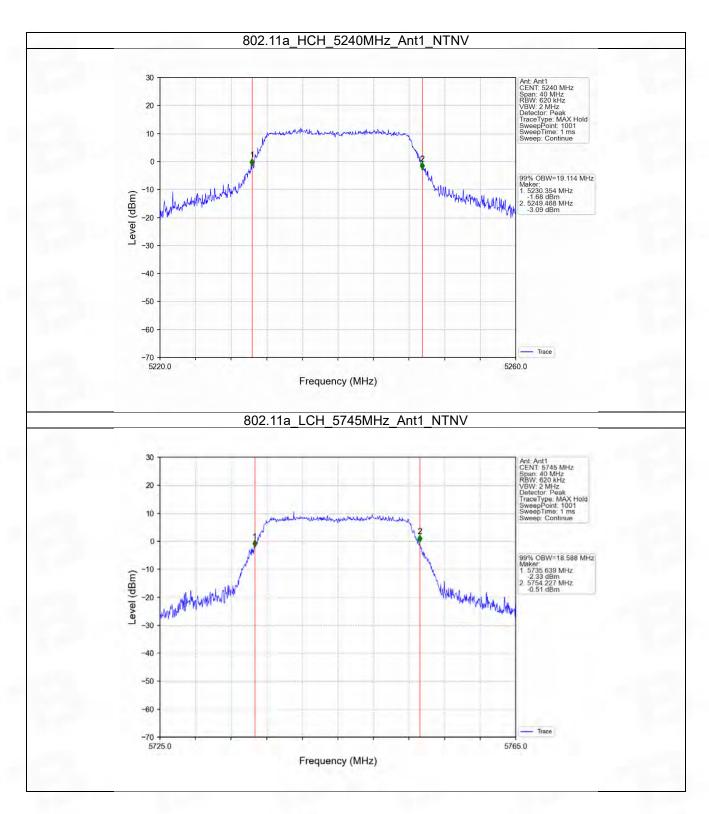


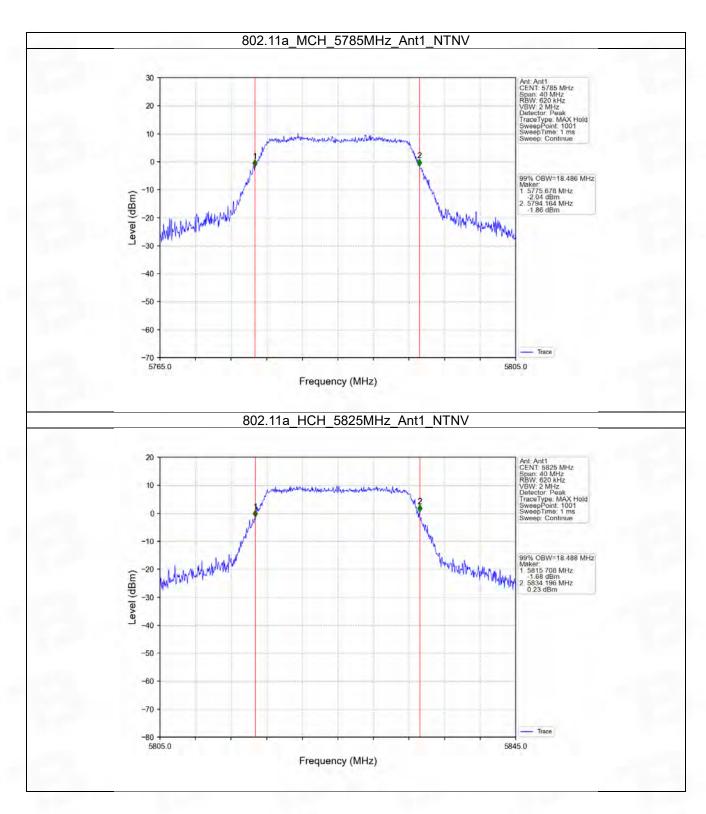


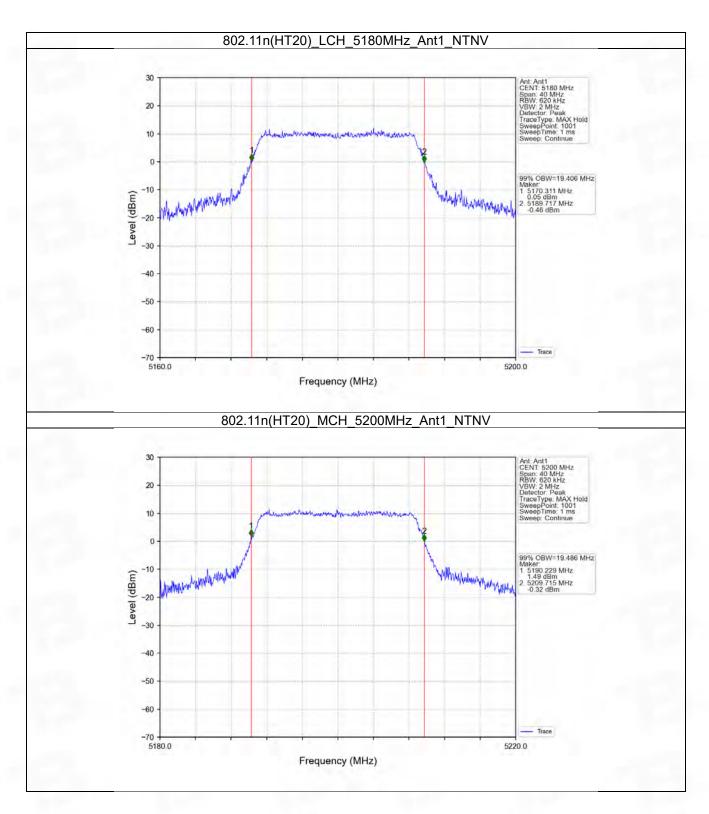
2. Bandwidth

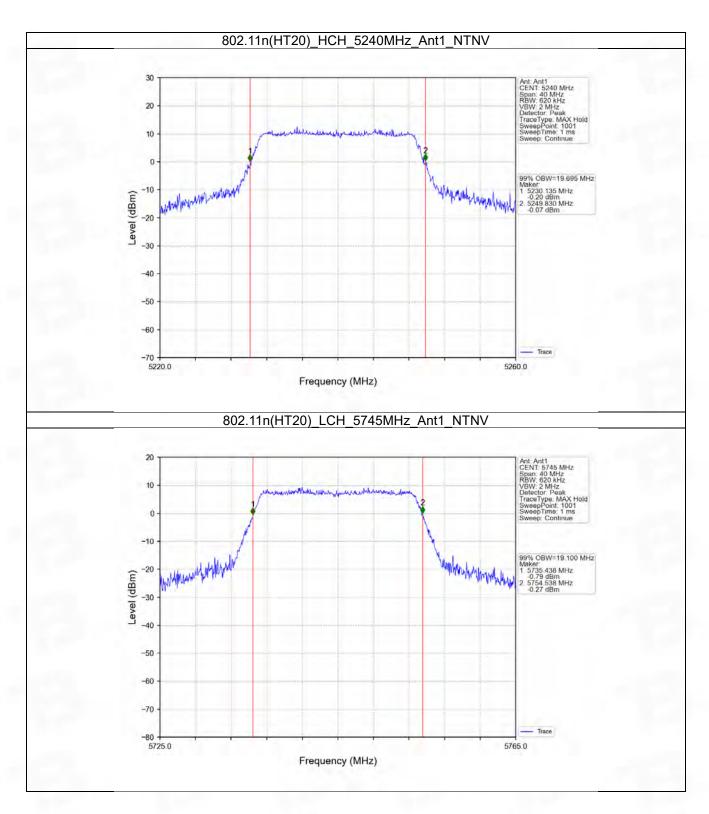

2.1 OBW

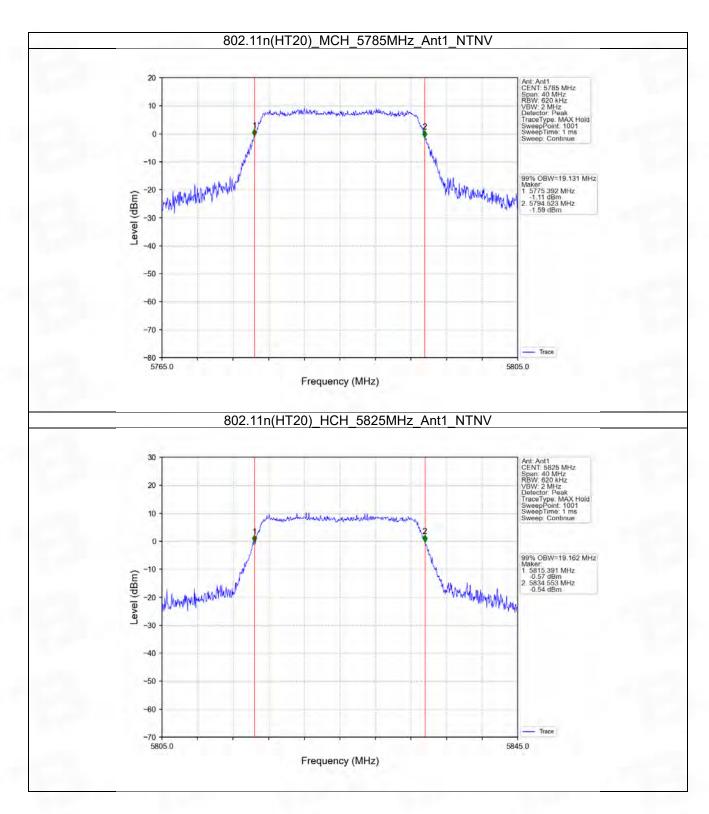
2.1.1 Test Result

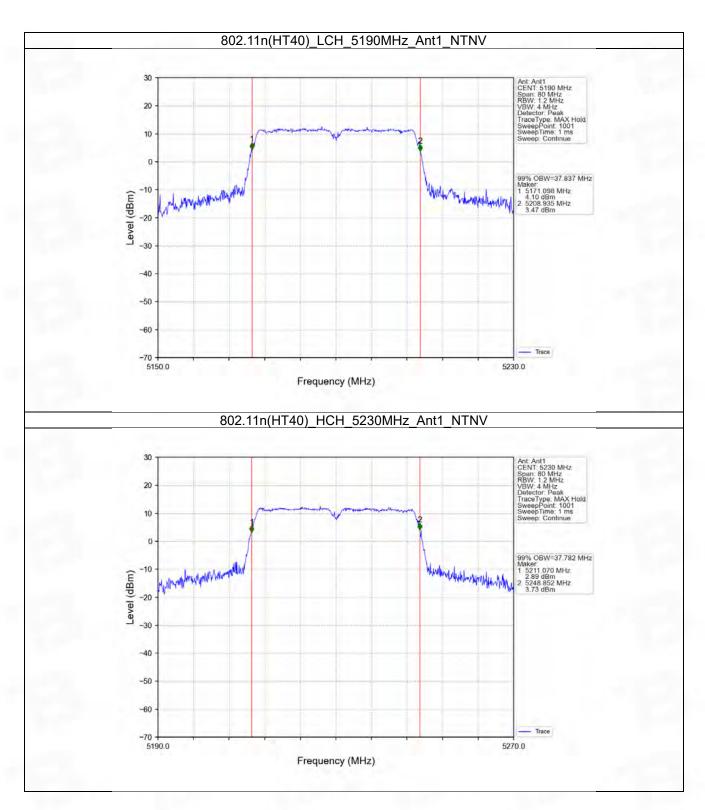

Mada	TX	Frequency	ANIT	99% Occupied Ba	andwidth (MHz)	Verdict
Mode	Туре	(MHz)	ANT	Result	Limit	verdict
		5180	1	18.918	1	Pass
		5200	1	18.959	1	Pass
000 11-	SISO	5240	1	19.114	1	Pass
802.11a	5150	5745	1	18.588	1	Pass
		5785	1	18.486	1	Pass
		5825	1	18.488	1	Pass
		5180	1	19.406	1	Pass
		5200	1	19.486	1	Pass
802.11n	CICO	5240	1	19.695	1	Pass
(HT20)	SISO	5745	1	19.100	1	Pass
		5785	1	19.131	1	Pass
		5825	1	19.162	1	Pass
	SISO	5190	1	37.837	1	Pass
802.11n		5230	1	37.782	1	Pass
(HT40)		5755	1	37.412	1	Pass
		5795	1	37.393	1	Pass
		5180	1	19.462	1	Pass
		5200	1	19.569	1	Pass
802.11ac	SISO	5240	1	19.825	1	Pass
(VHT20)	3130	5745	1	19.137	1	Pass
		5785	1	19.119	1	Pass
		5825	1	19.170	1	Pass
		5190	1	37.526	1	Pass
802.11ac	6160	5230	1	37.804	1	Pass
(VHT40)	SISO	5755	1	37.296	1	Pass
		5795	1	37.359	1	Pass
802.11ac	CICO	5210	1	76.451	1	Pass
(VHT80)	SISO	5775	1	75.965	1	Pass

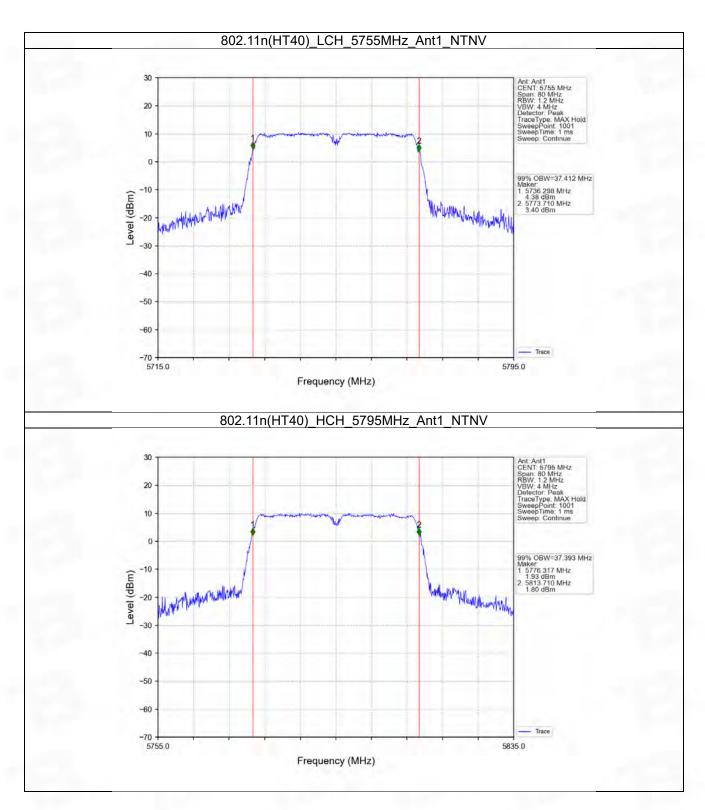

2.1.2 Test Graph

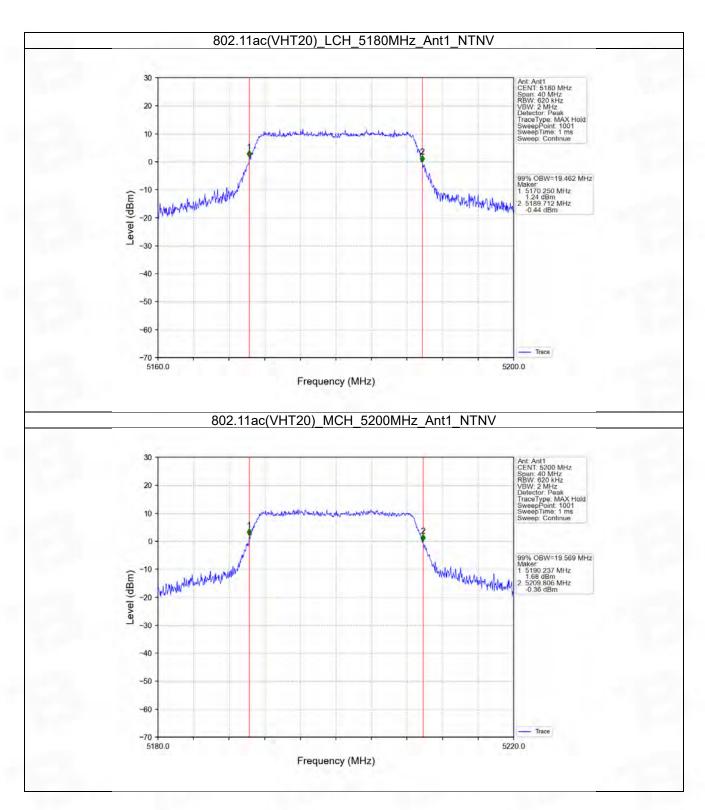


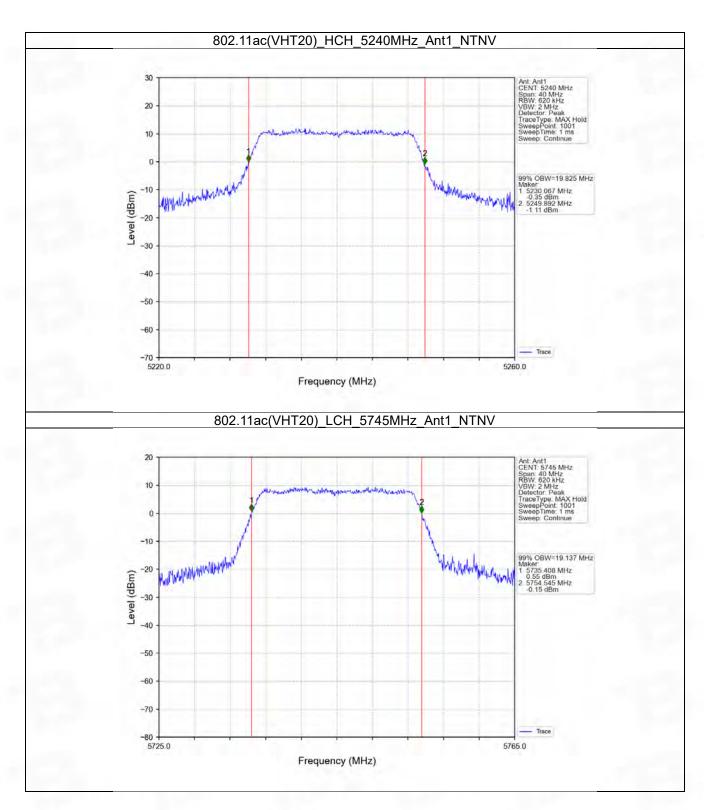


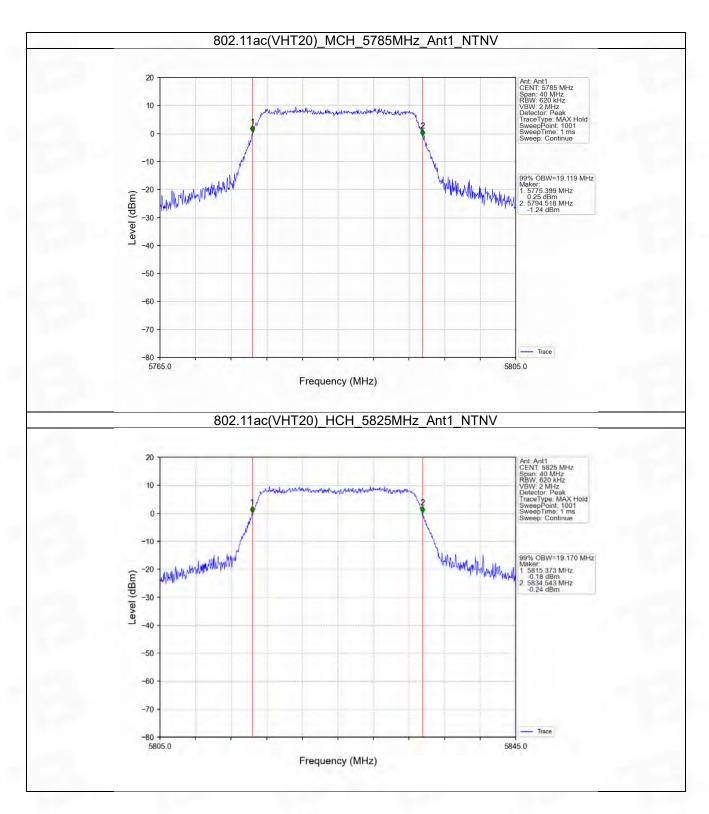


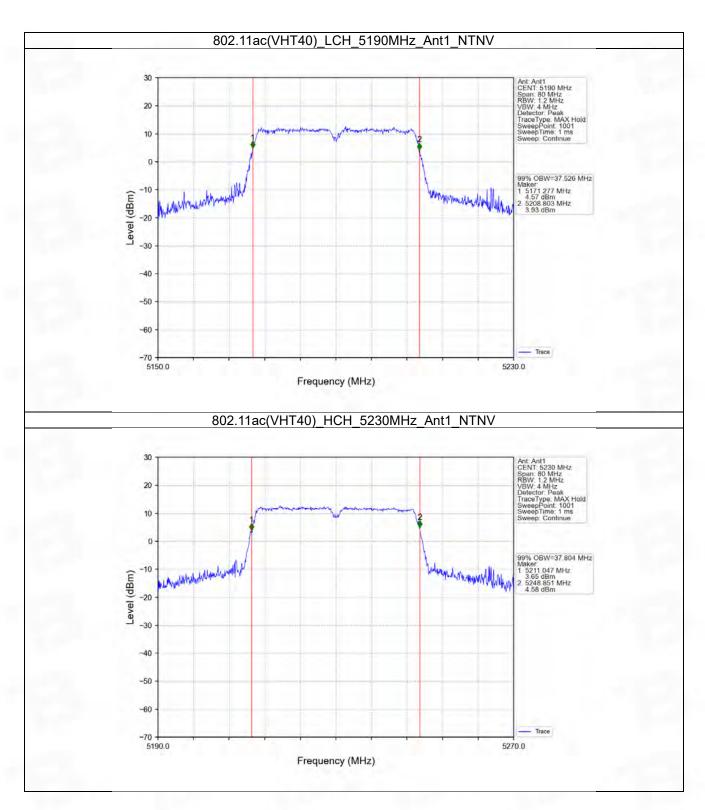


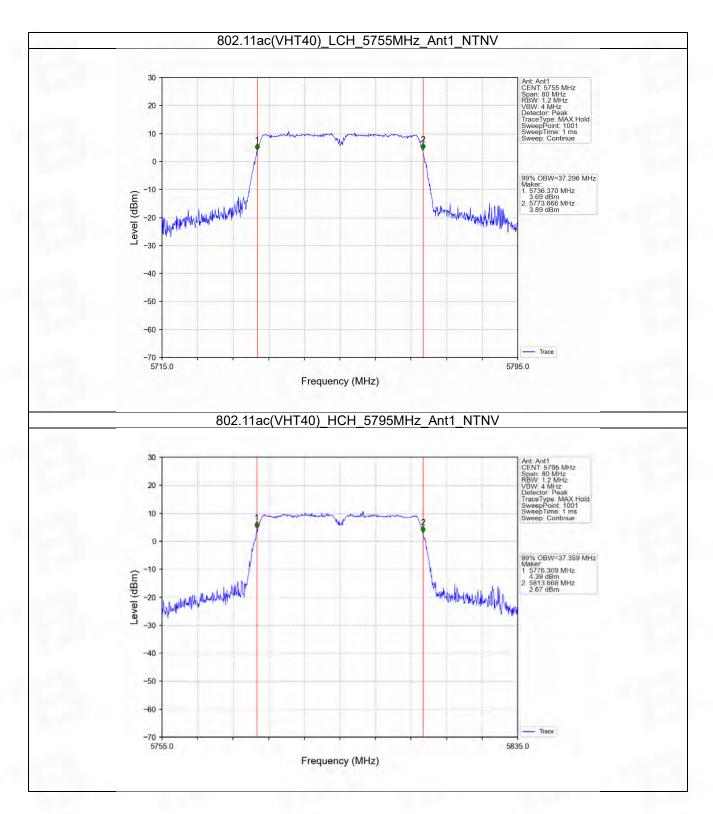


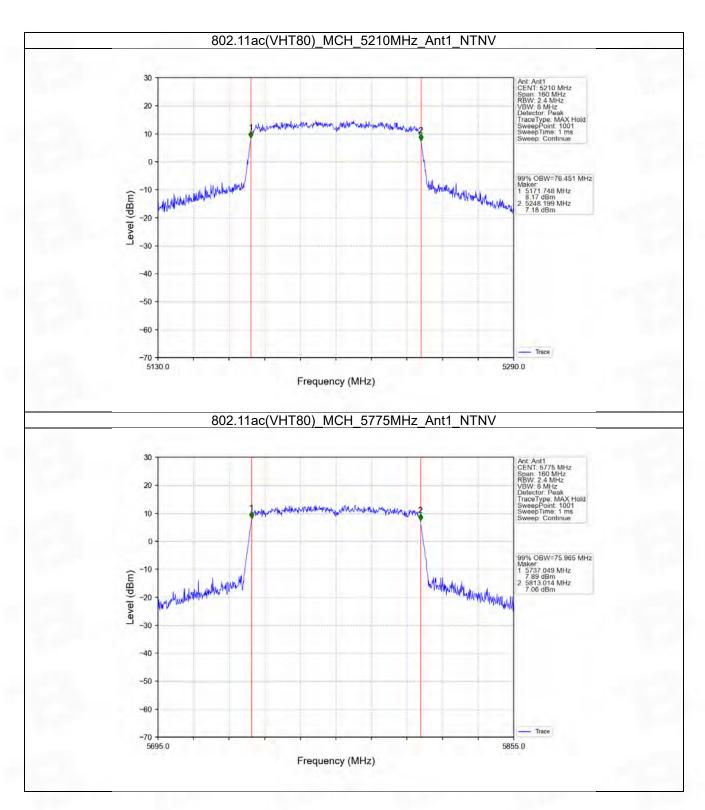


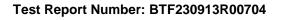


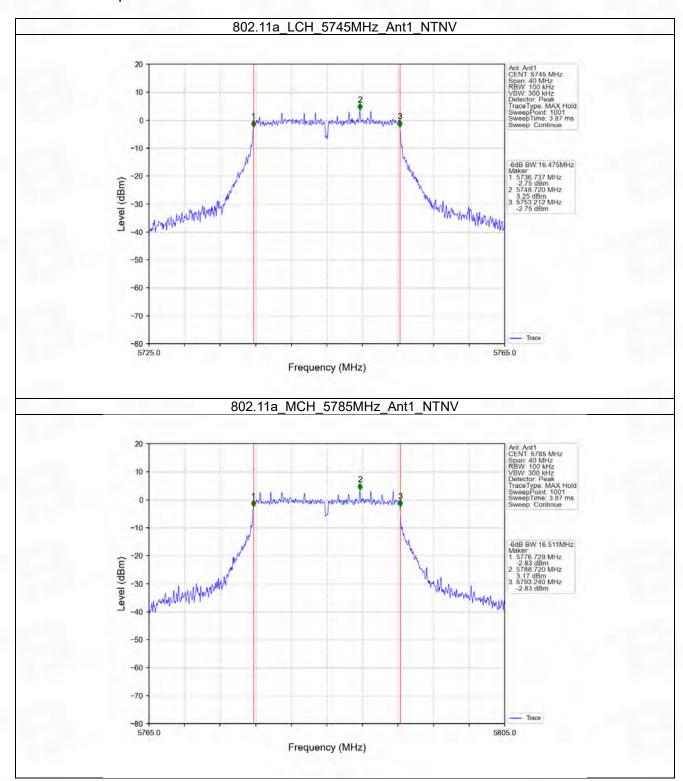




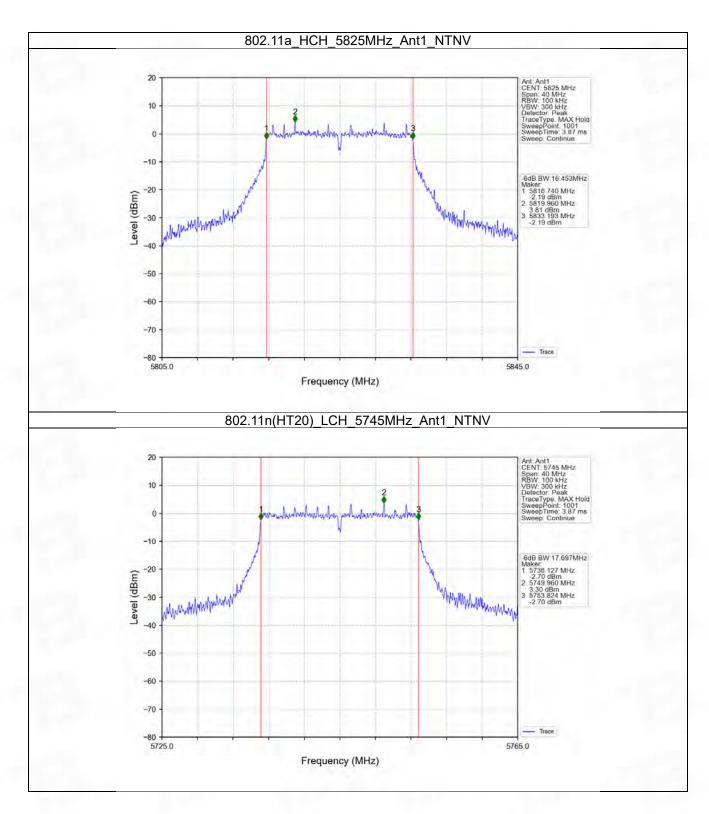


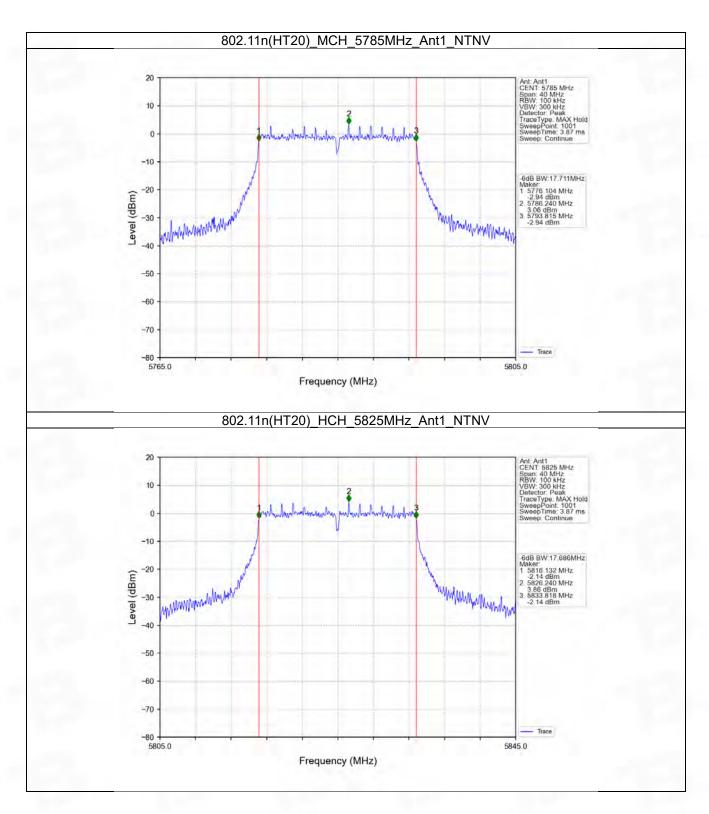


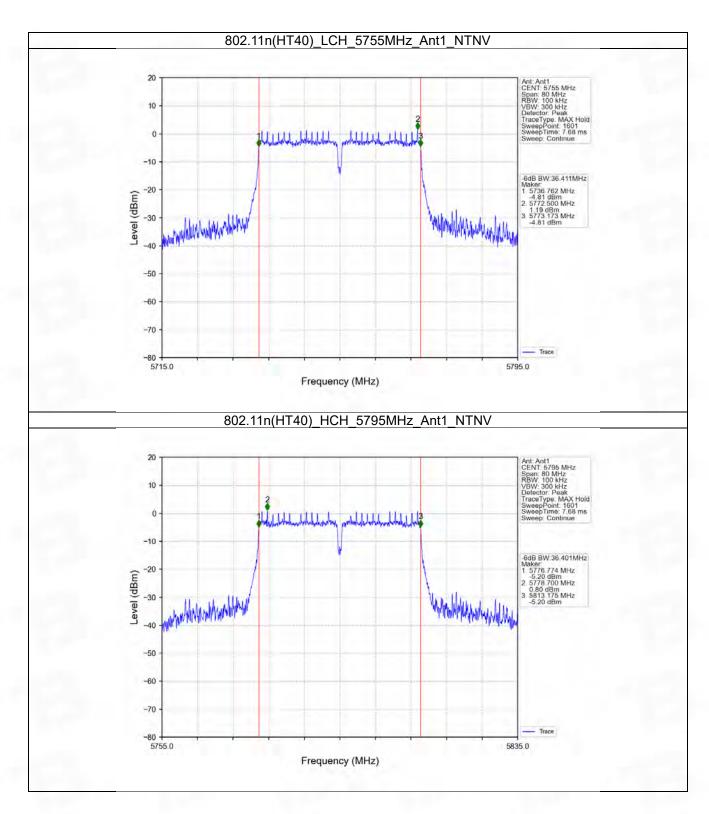


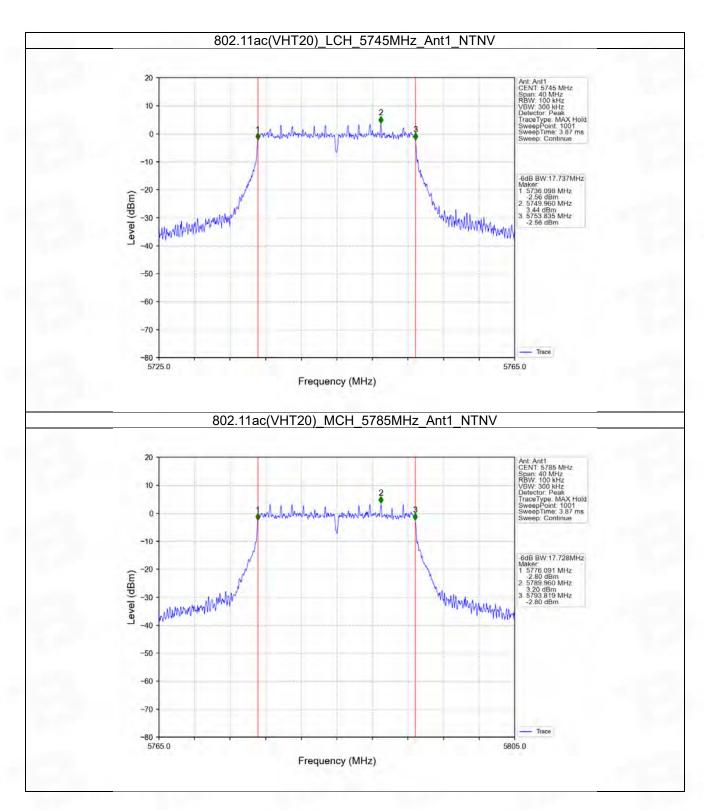

2.2 6dB BW

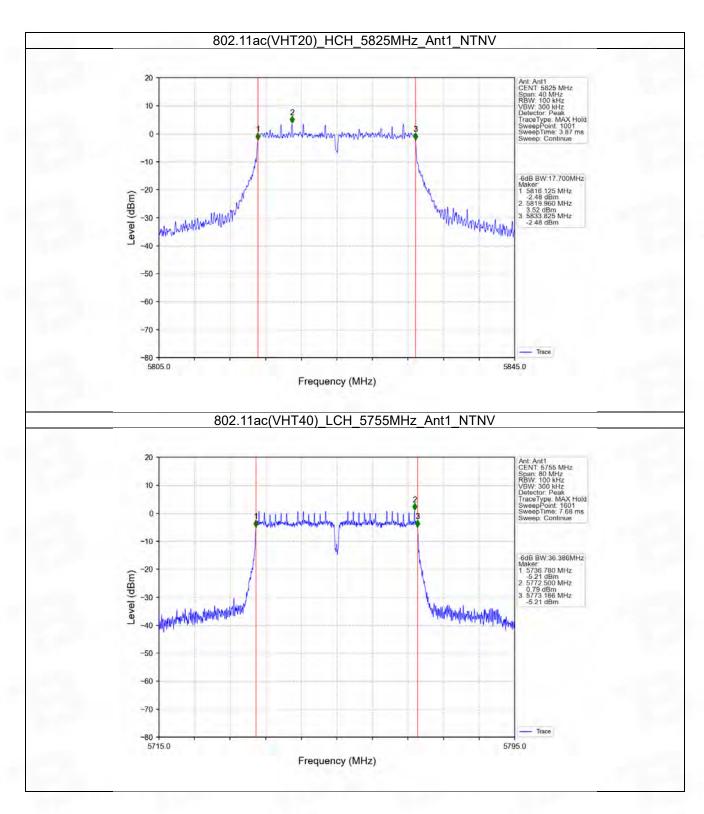
2.2.1 Test Result

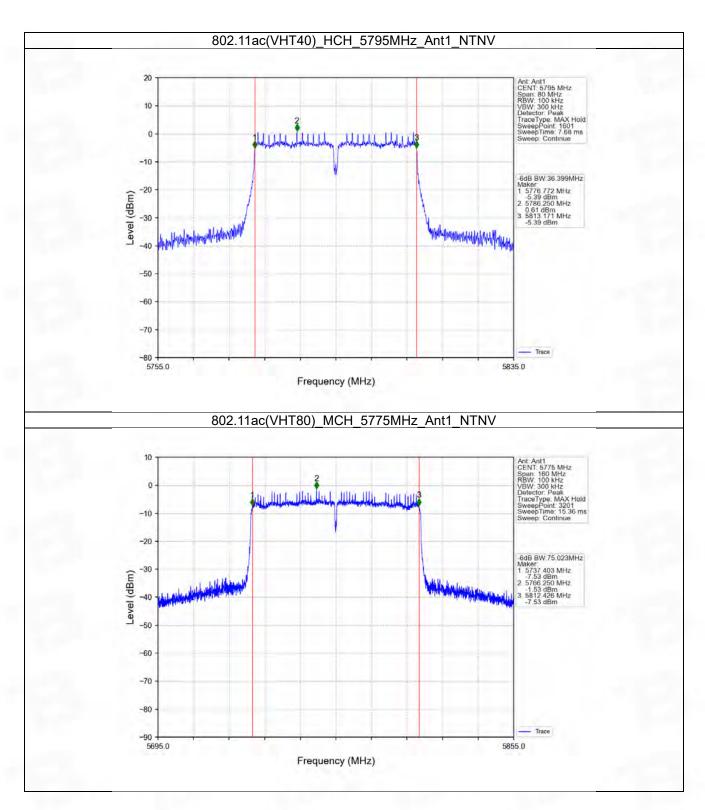

Mode	TX Type	Frequency (MHz)	ANT	6dB Bandwidth (MHz)		Voudiet
				Result	Limit	Verdict
	SISO	5745	1	16.475	>=0.5	Pass
802.11a		5785	1	16.511	>=0.5	Pass
		5825	1	16.453	>=0.5	Pass
000 11=	SISO	5745	1	17.697	>=0.5	Pass
802.11n		5785	1	17.711	>=0.5	Pass
(HT20)		5825	1	17.686	>=0.5	Pass
802.11n	SISO	5755	1	36.411	>=0.5	Pass
(HT40)		5795	1	36.401	>=0.5	Pass
000 11	SISO	5745	1	17.737	>=0.5	Pass
802.11ac (VHT20)		5785	1	17.728	>=0.5	Pass
(VH120)		5825	1	17.700	>=0.5	Pass
802.11ac	SISO	5755	1	36.386	>=0.5	Pass
(VHT40)		5795	1	36.399	>=0.5	Pass
802.11ac (VHT80)	SISO	5775	1	75.023	>=0.5	Pass

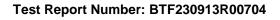

2.2.2 Test Graph

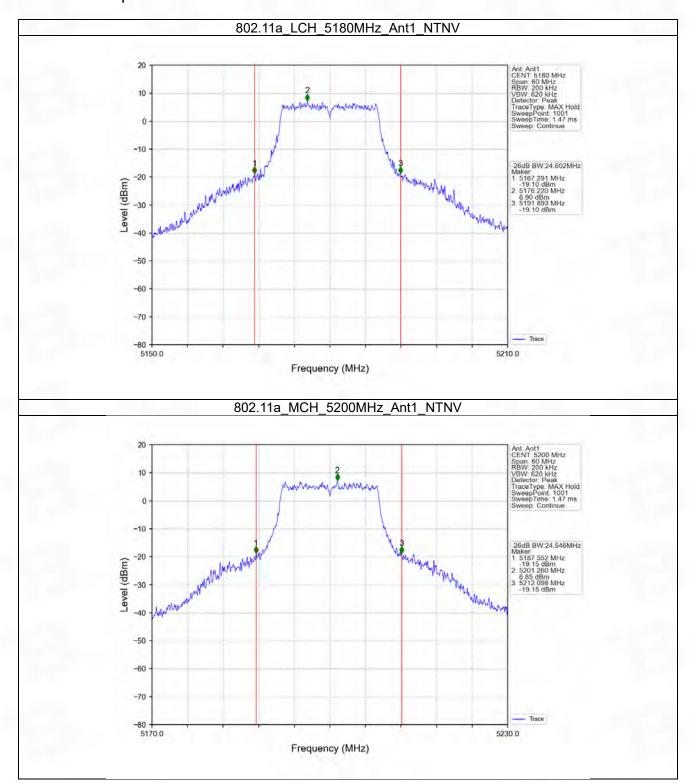




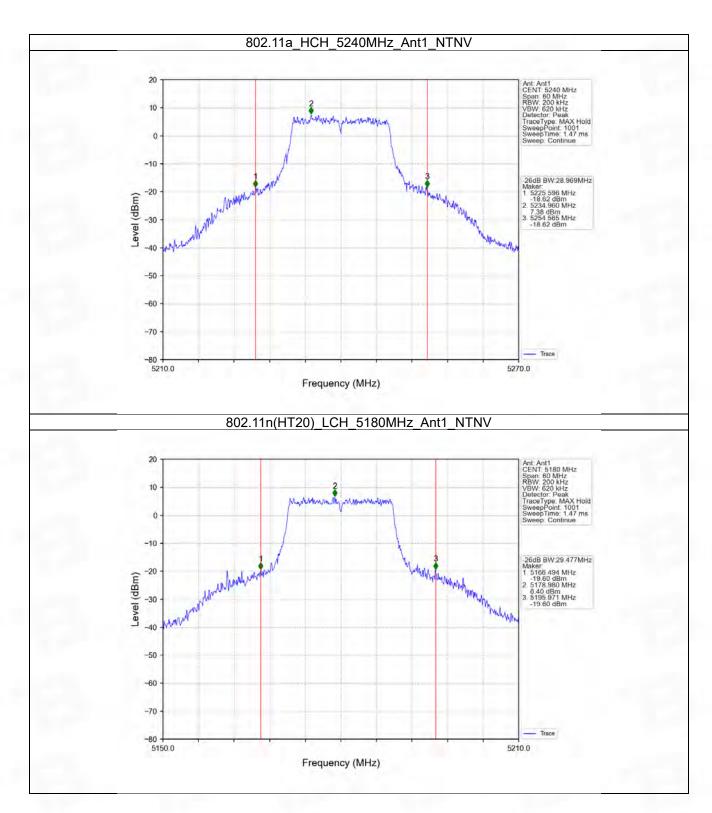


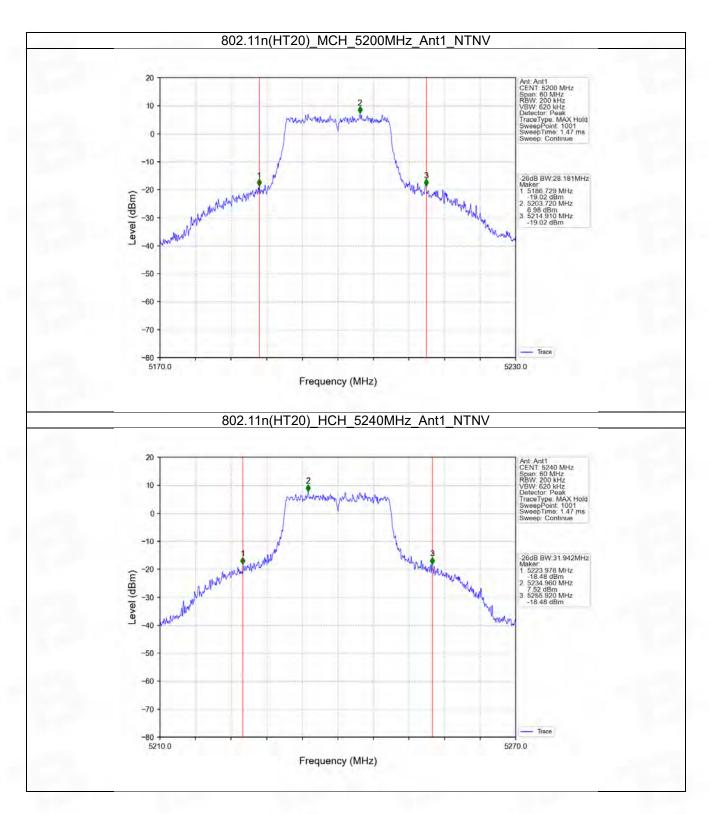


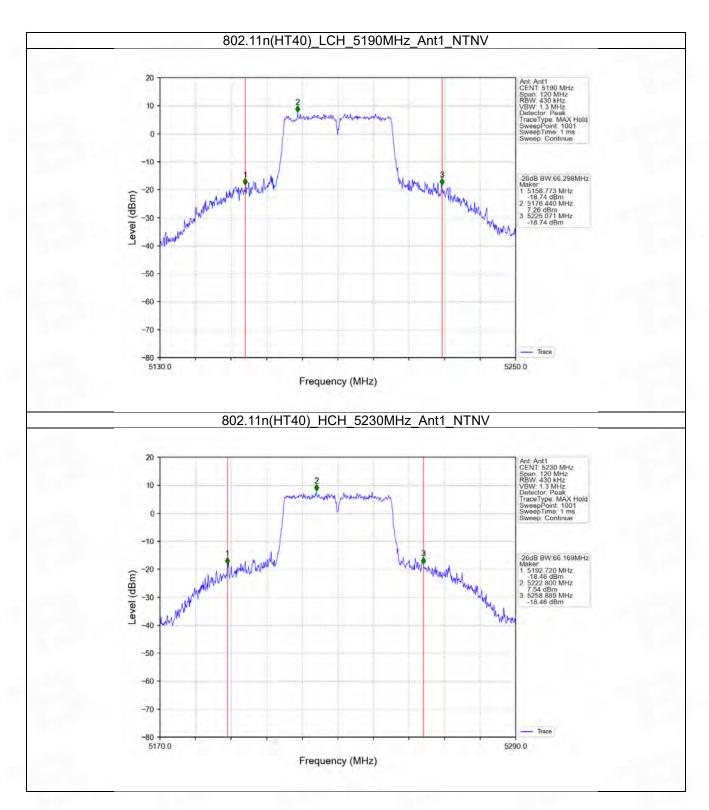


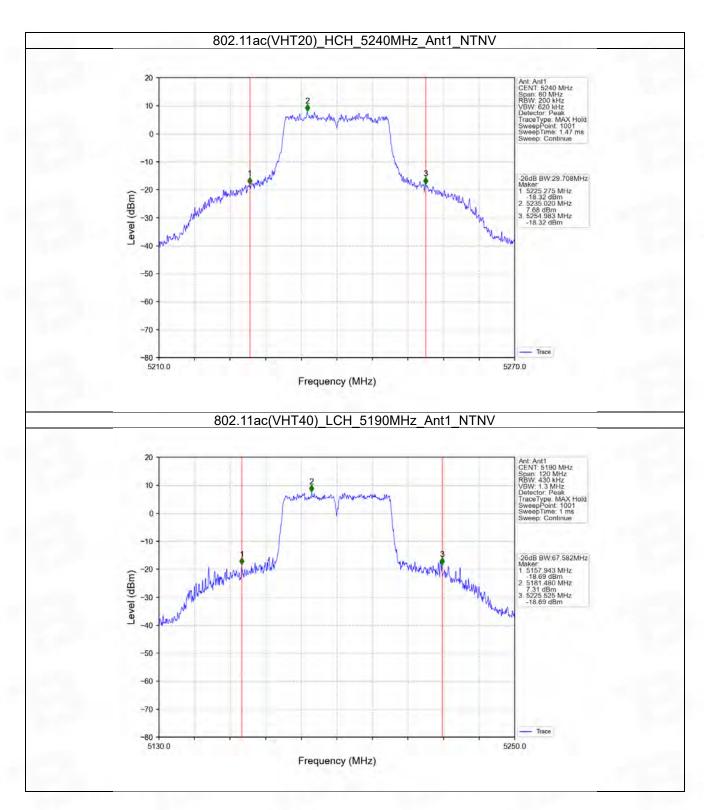

2.3 26dB BW

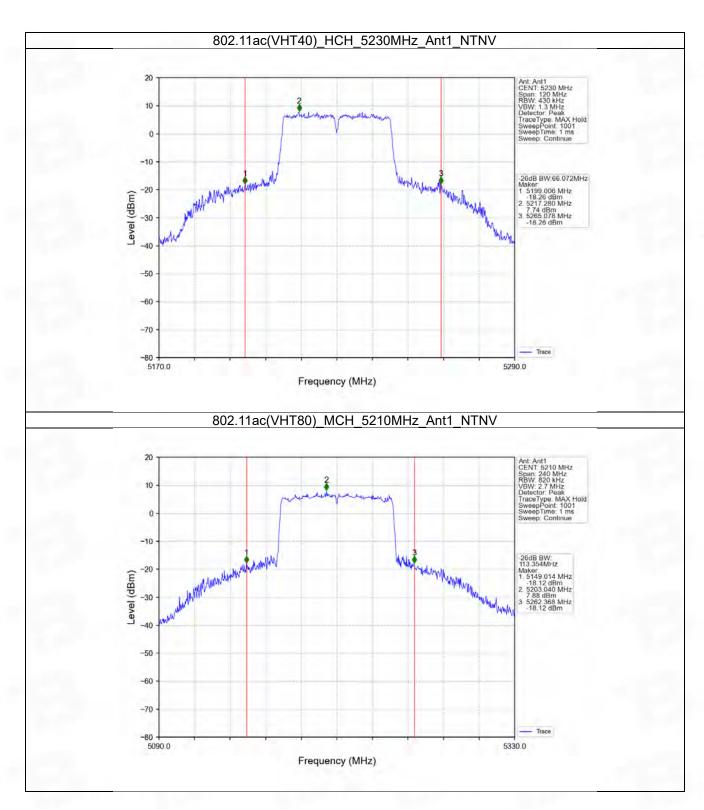
2.3.1 Test Result

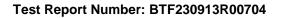

Mode	TX Type	Frequency (MHz)	ANT	26dB Bandwidth (MHz)		Vardiet
				Result	Limit	Verdict
802.11a	SISO	5180	1	24.602	1	Pass
		5200	1	24.546	1	Pass
		5240	1	28.969	1	Pass
802.11n (HT20)	SISO	5180	1	29.477	1	Pass
		5200	1	28.181	1	Pass
		5240	1	31.942	1	Pass
802.11n (HT40)	SISO	5190	1	66.298	1	Pass
		5230	1	66.169	1	Pass
802.11ac (VHT20)	SISO	5180	1	29.040	1	Pass
		5200	1	25.745	1	Pass
		5240	1	29.708	1	Pass
802.11ac (VHT40)	SISO	5190	1	67.582	1	Pass
		5230	1	66.072	1	Pass
802.11ac (VHT80)	SISO	5210	1	113.354	1	Pass

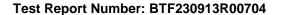

2.3.2 Test Graph





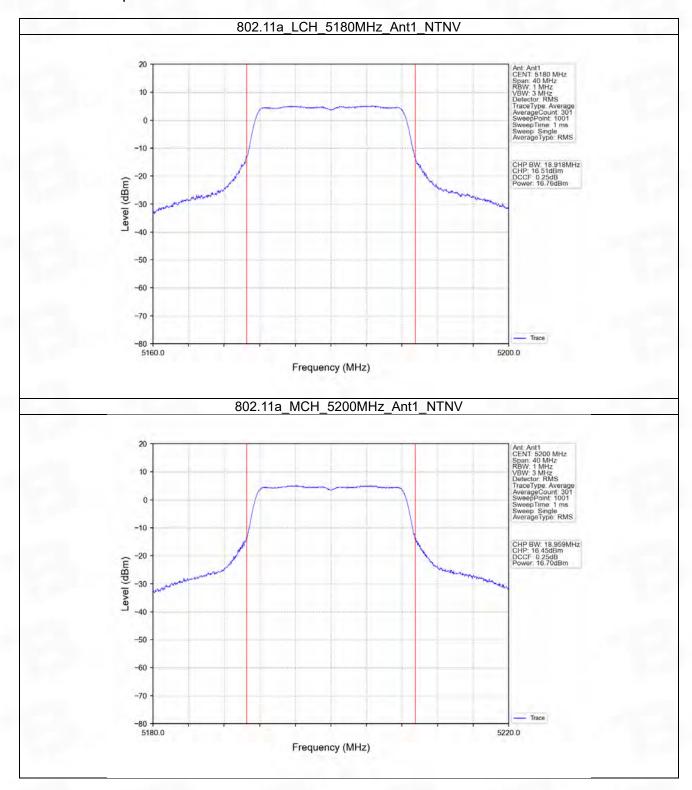




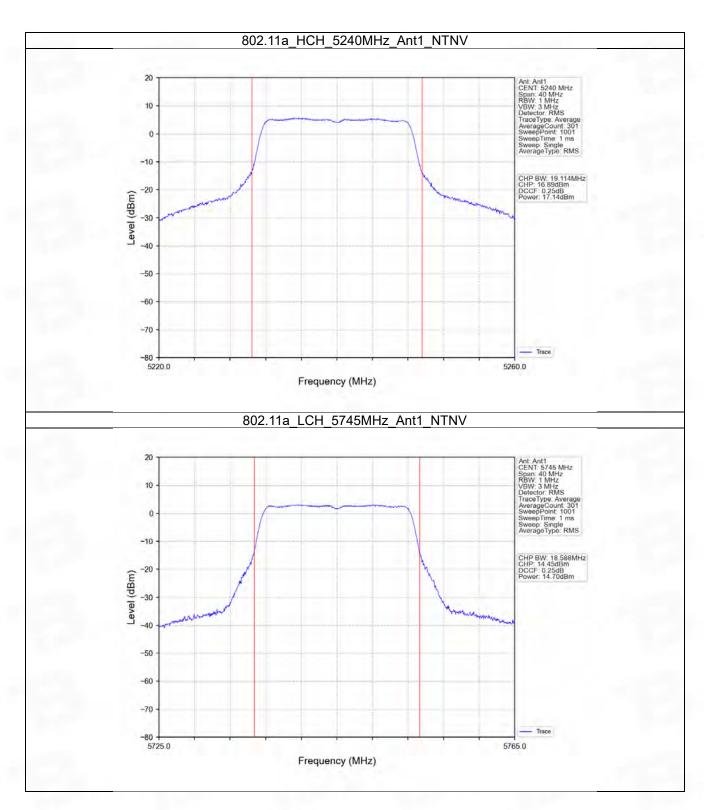


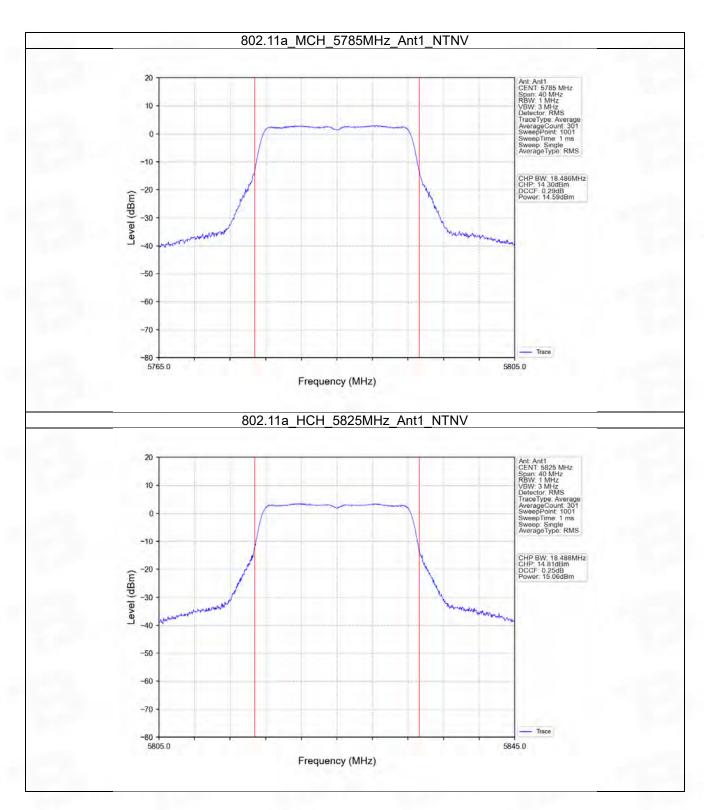
3. Maximum Conducted Output Power

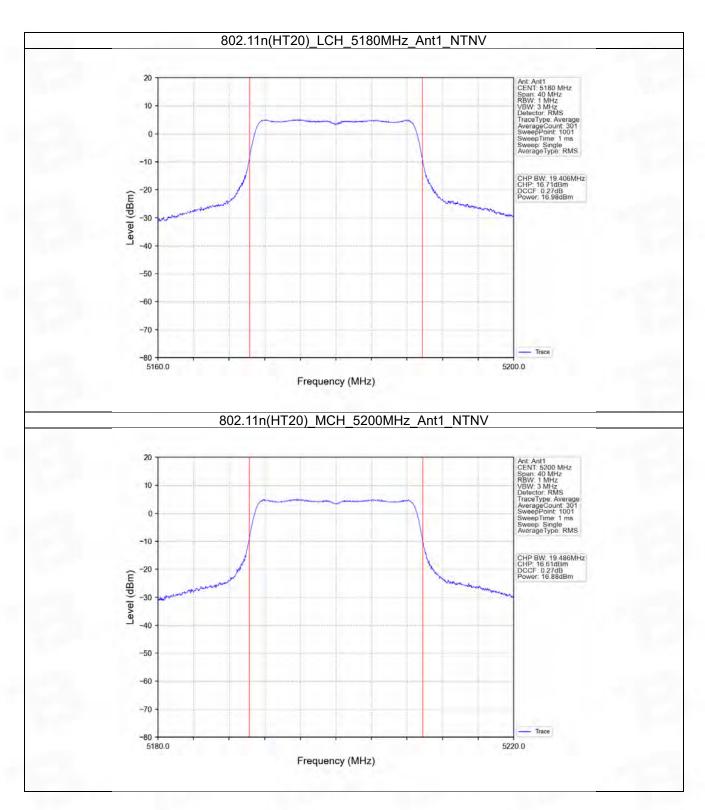
3.1 Power

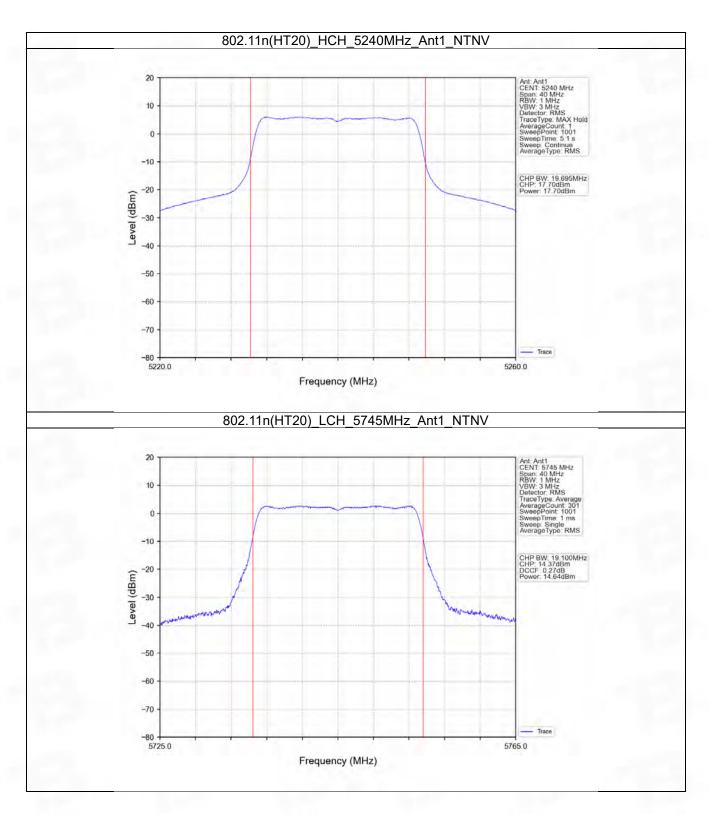

3.1.1 Test Result

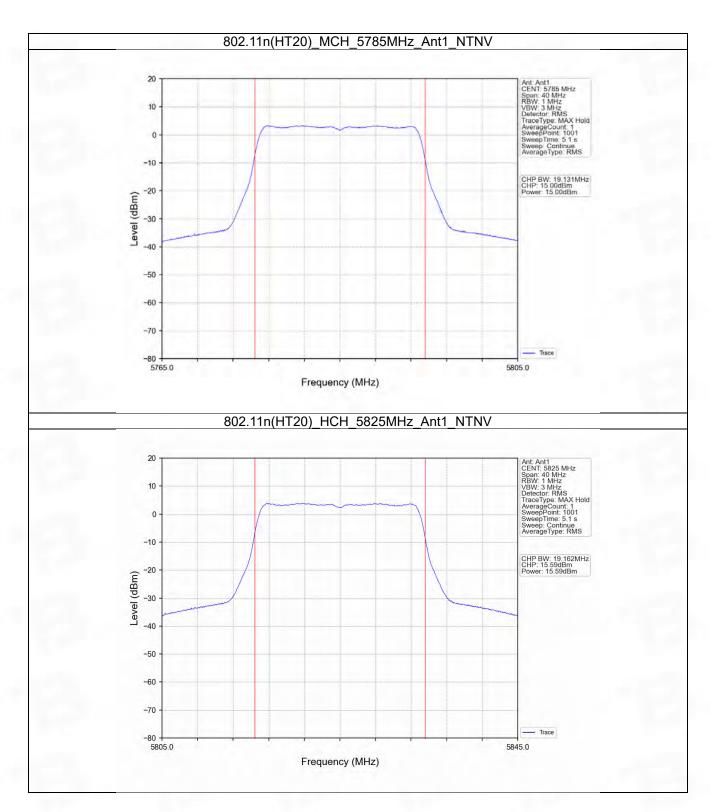
Mode	TX	Frequency	Maximum Average Condu	\/ordiot	
	Туре	(MHz)	ANT1	Limit	Verdict
802.11a	SISO	5180	16.76	<=23.98	Pass
		5200	16.70	<=23.98	Pass
		5240	17.14	<=23.98	Pass
		5745	14.70	<=30	Pass
		5785	14.59	<=30	Pass
		5825	15.06	<=30	Pass
802.11n (HT20)	SISO	5180	16.98	<=23.98	Pass
		5200	16.88	<=23.98	Pass
		5240	17.70	<=23.98	Pass
		5745	14.64	<=30	Pass
		5785	15.00	<=30	Pass
		5825	15.59	<=30	Pass
	SISO	5190	16.80	<=23.98	Pass
802.11n (HT40)		5230	16.90	<=23.98	Pass
		5755	15.14	<=30	Pass
		5795	15.48	<=30	Pass
	SISO	5180	16.96	<=23.98	Pass
		5200	16.99	<=23.98	Pass
802.11ac (VHT20)		5240	17.46	<=23.98	Pass
		5745	15.33	<=30	Pass
		5785	15.18	<=30	Pass
		5825	15.06	<=30	Pass
	SISO	5190	16.91	<=23.98	Pass
802.11ac (VHT40)		5230	17.22	<=23.98	Pass
		5755	14.76	<=30	Pass
		5795	14.59	<=30	Pass
802.11ac	CICO	5210	17.51	<=23.98	Pass
(VHT80)	SISO	5775	15.67	<=30	Pass
Note1: Antenn	a Gain: Ant1	: -0.70dBi;	•		

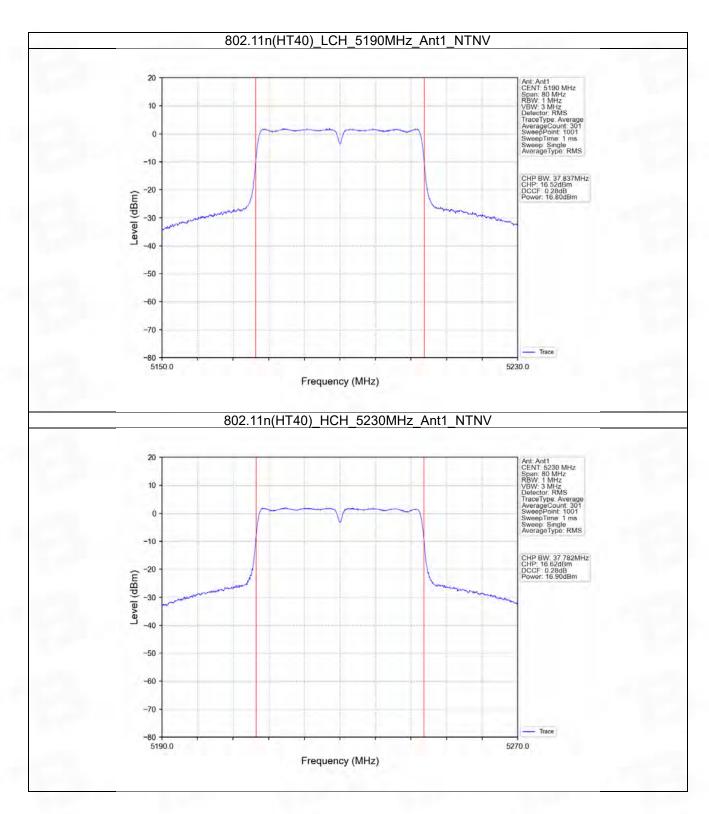


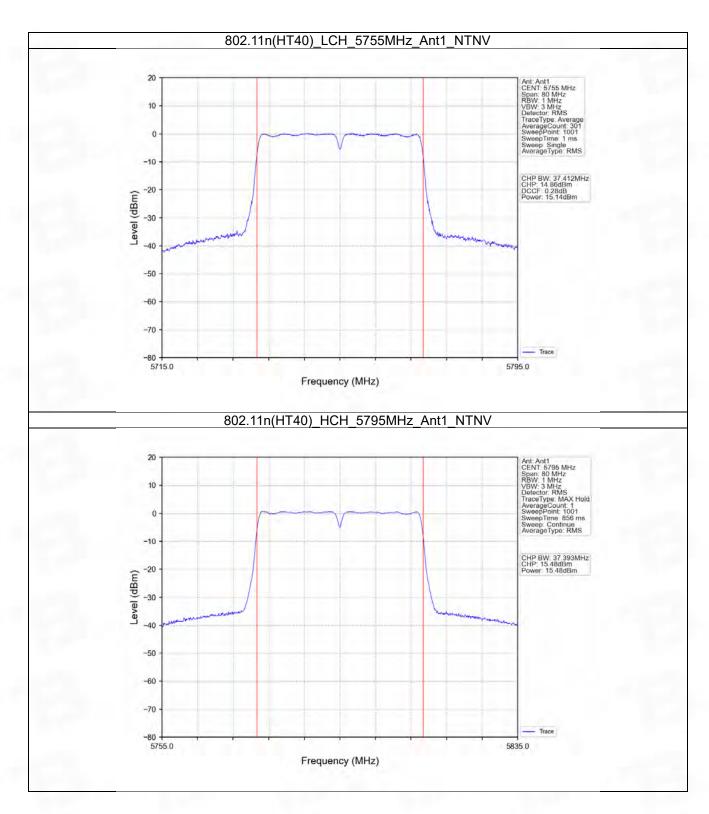

3.1.2 Test Graph

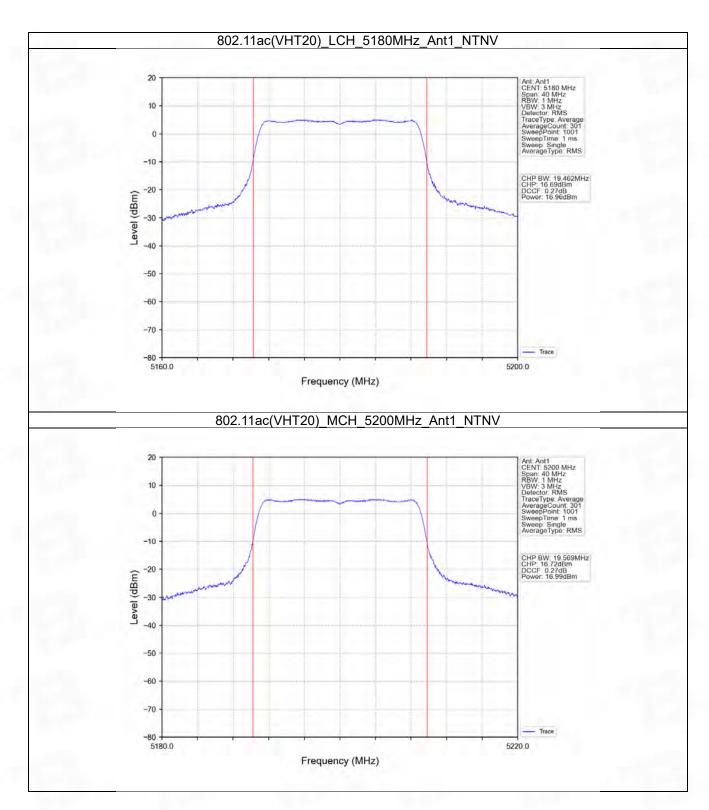


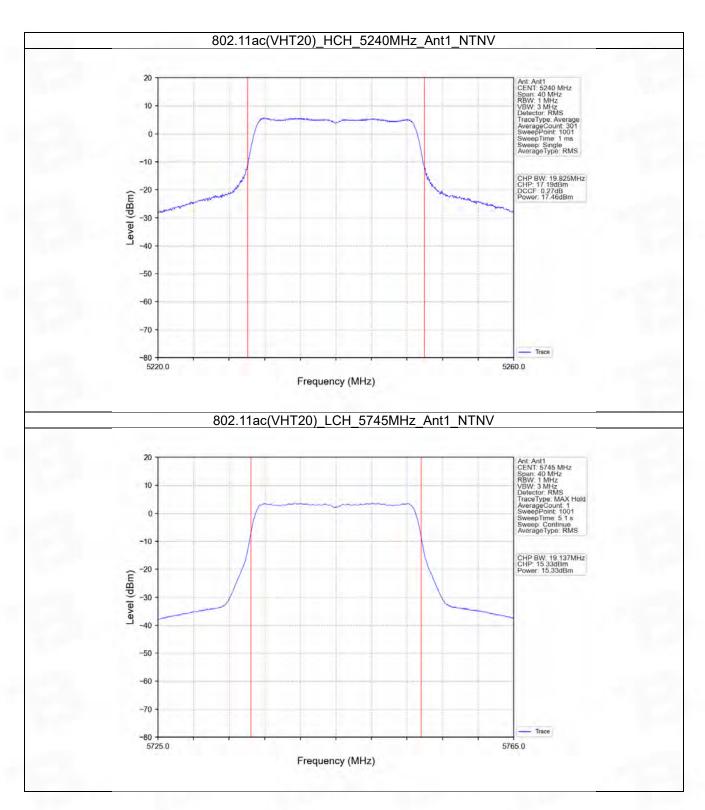


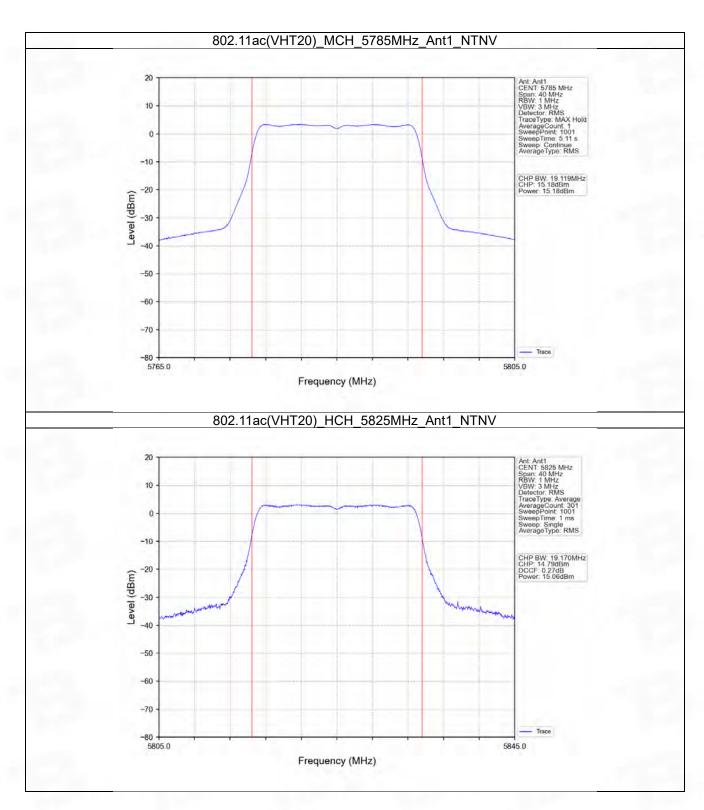


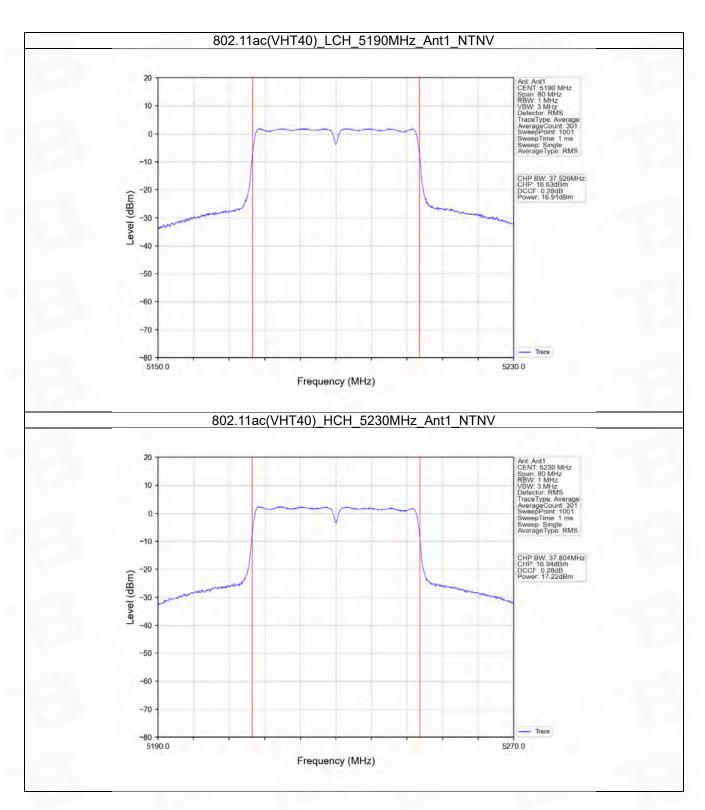


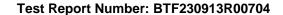


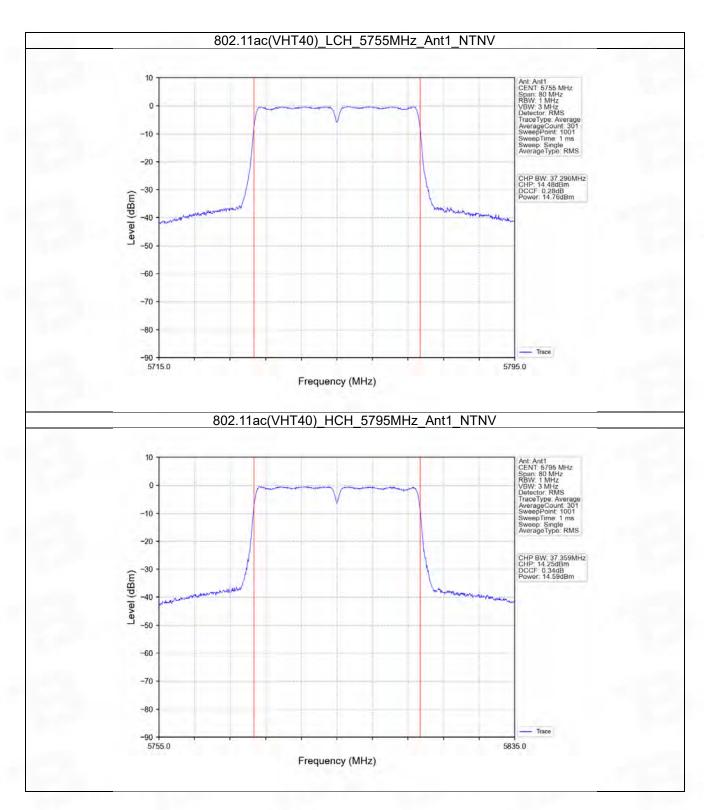


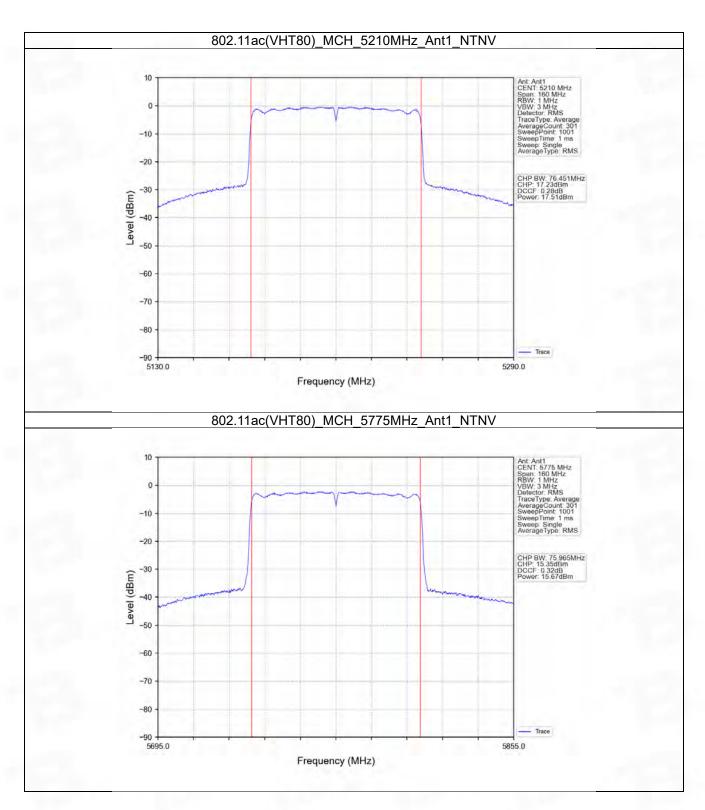


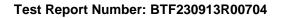


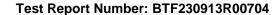






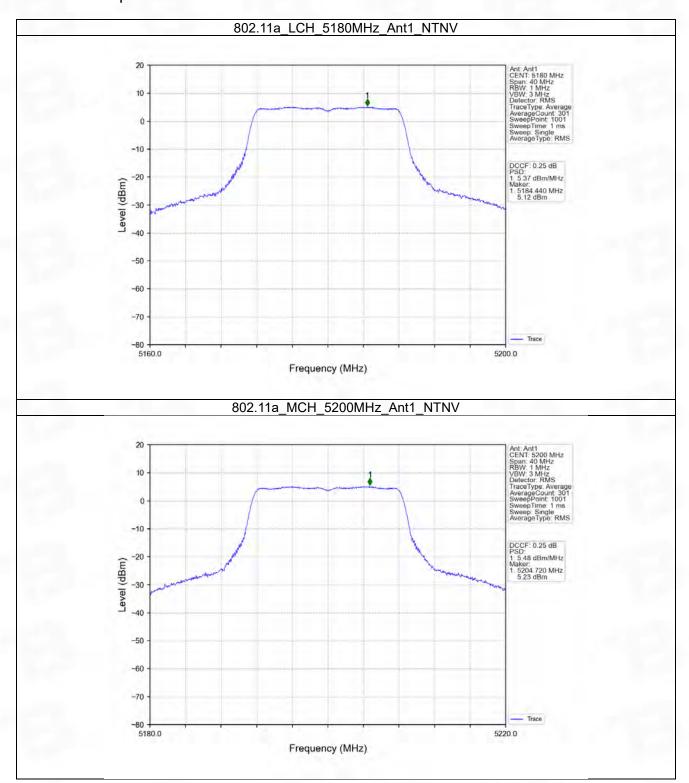




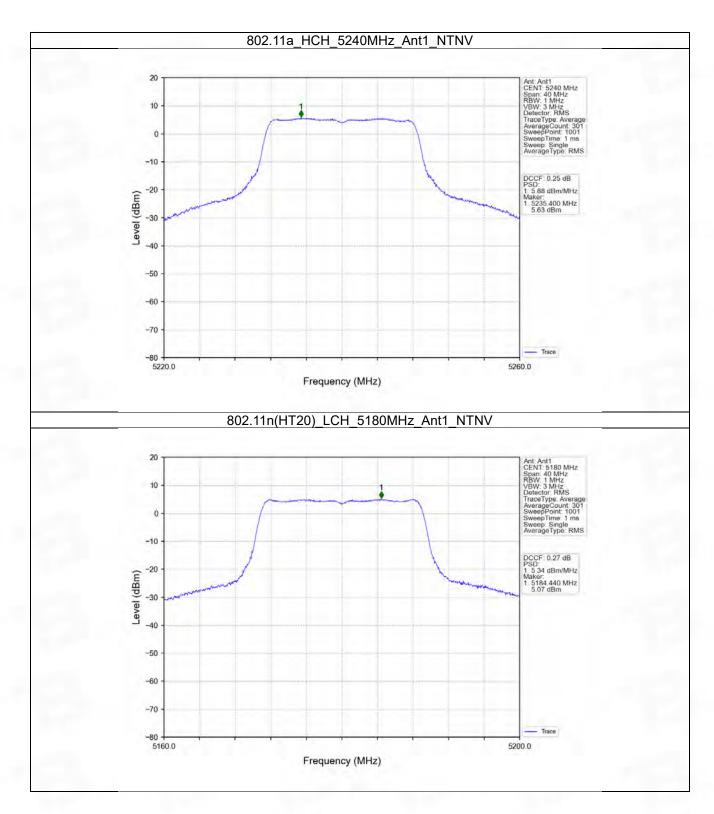


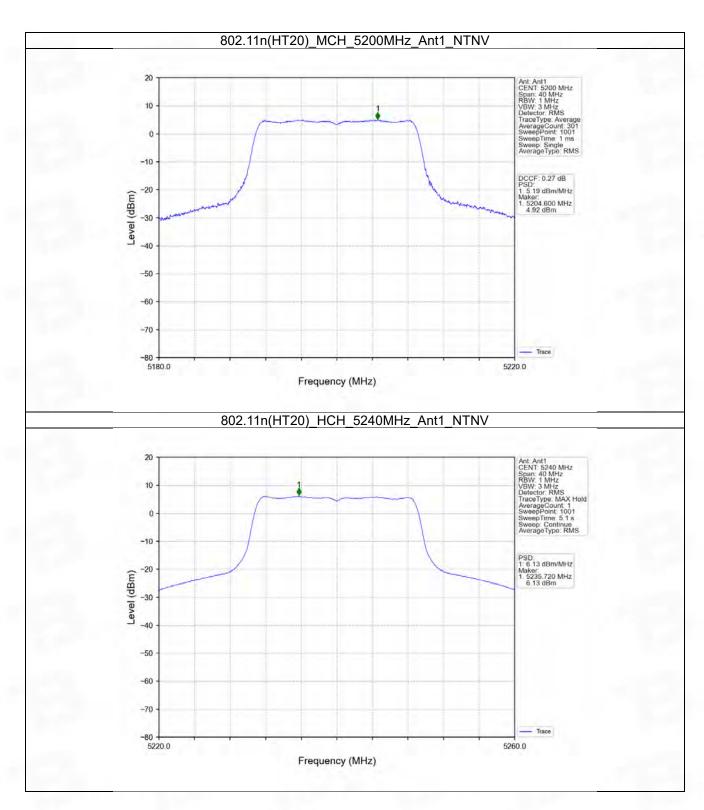
4. Maximum Power Spectral Density

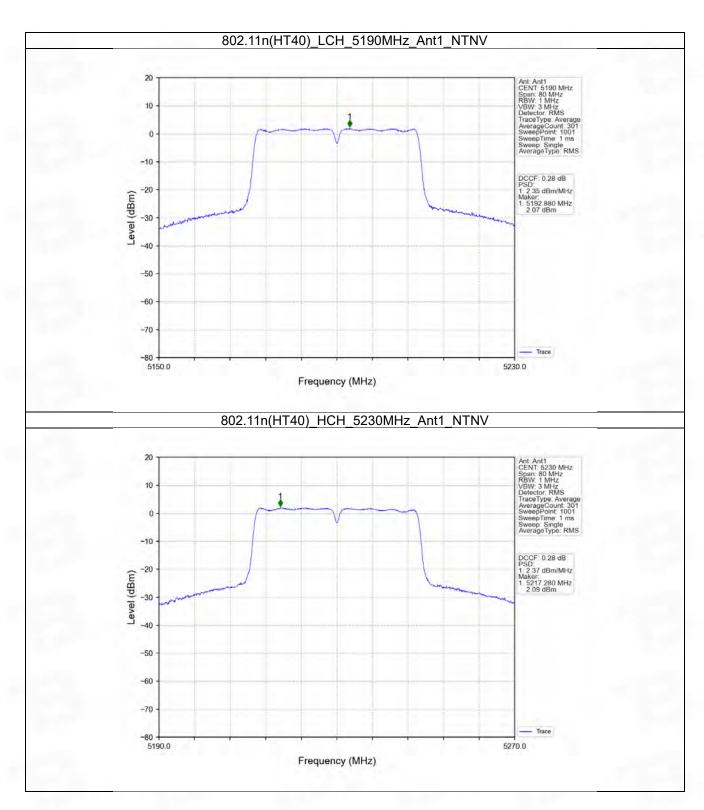
4.1 PSD

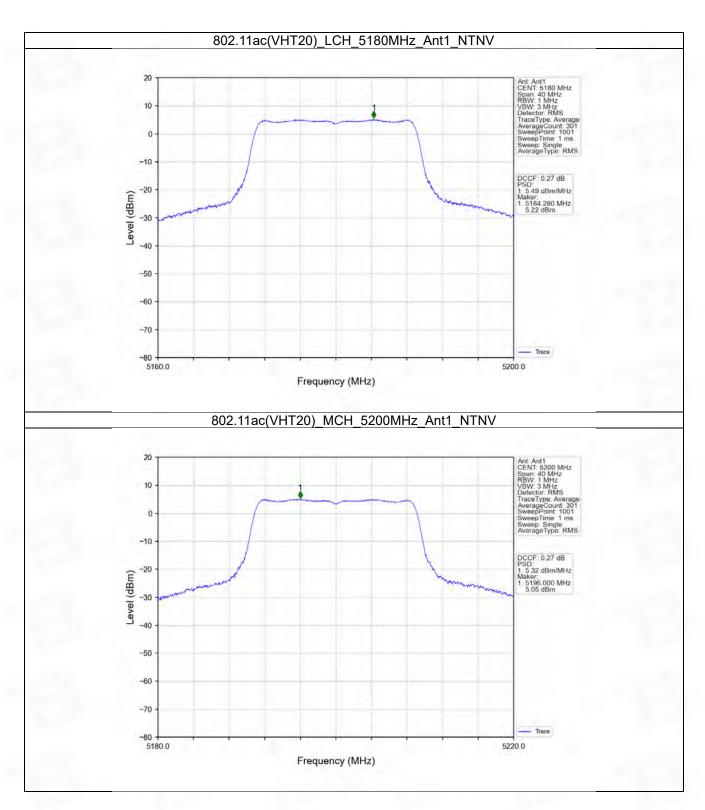

4.1.1 Test Result

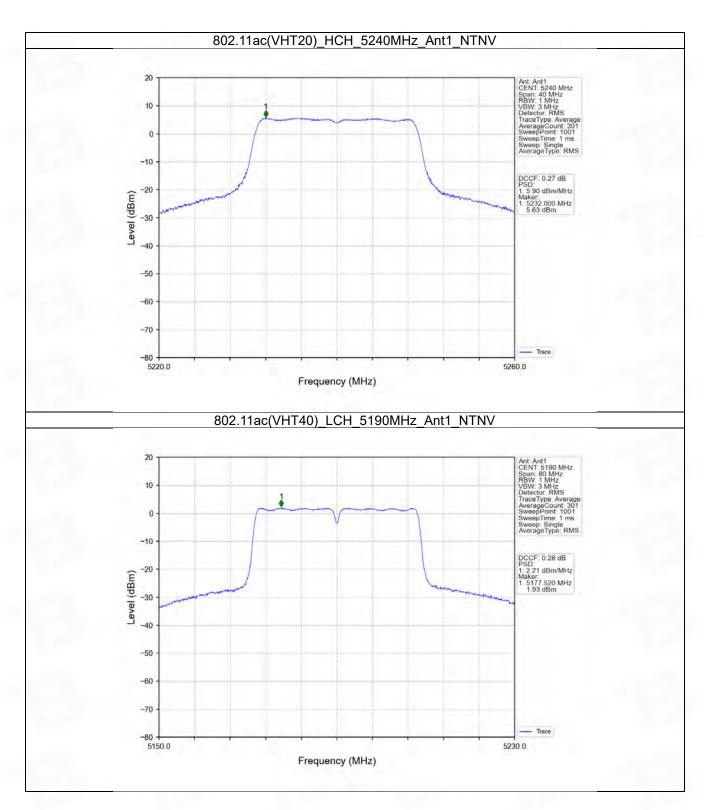
Mode	TX	Frequency	Maximum PSD (dBm/MHz)		Vardiet
	Type	(MHz)	ANT1	Limit	Verdict
	SISO	5180	5.37	<=11	Pass
802.11a		5200	5.48	<=11	Pass
		5240	5.88	<=11	Pass
000 115	SISO	5180	5.34	<=11	Pass
802.11n (HT20)		5200	5.19	<=11	Pass
(1120)		5240	6.13	<=11	Pass
802.11n	SISO	5190	2.35	<=11	Pass
(HT40)		5230	2.37	<=11	Pass
902 1100	SISO	5180	5.49	<=11	Pass
802.11ac (VHT20)		5200	5.32	<=11	Pass
(11120)		5240	5.90	<=11	Pass
802.11ac	SISO	5190	2.21	<=11	Pass
(VHT40)		5230	2.59	<=11	Pass
802.11ac (VHT80)	SISO	5210	0.09	<=11	Pass
Note1: Antenna (Gain: Ant1: -0.7	OdBi;			

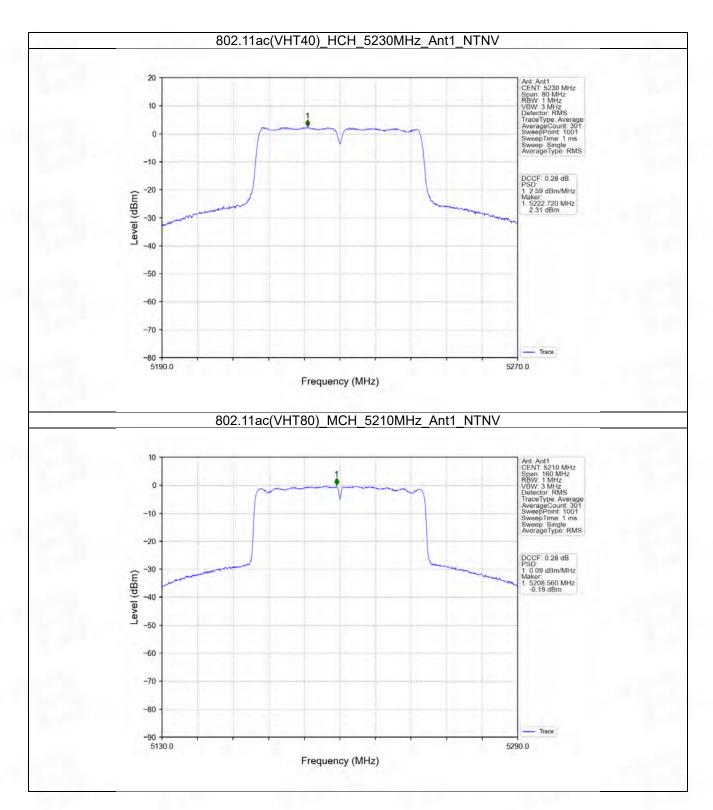


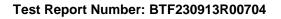

4.1.2 Test Graph

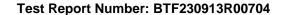




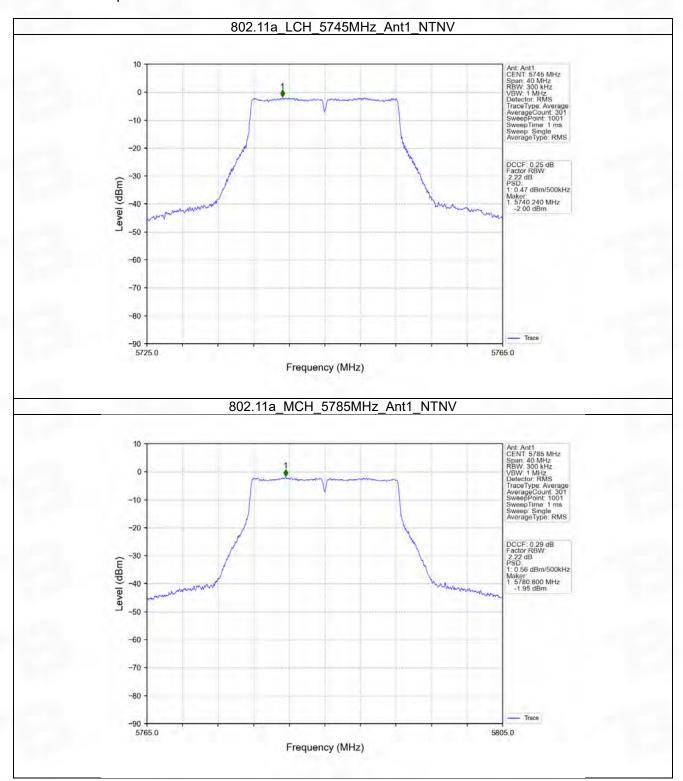




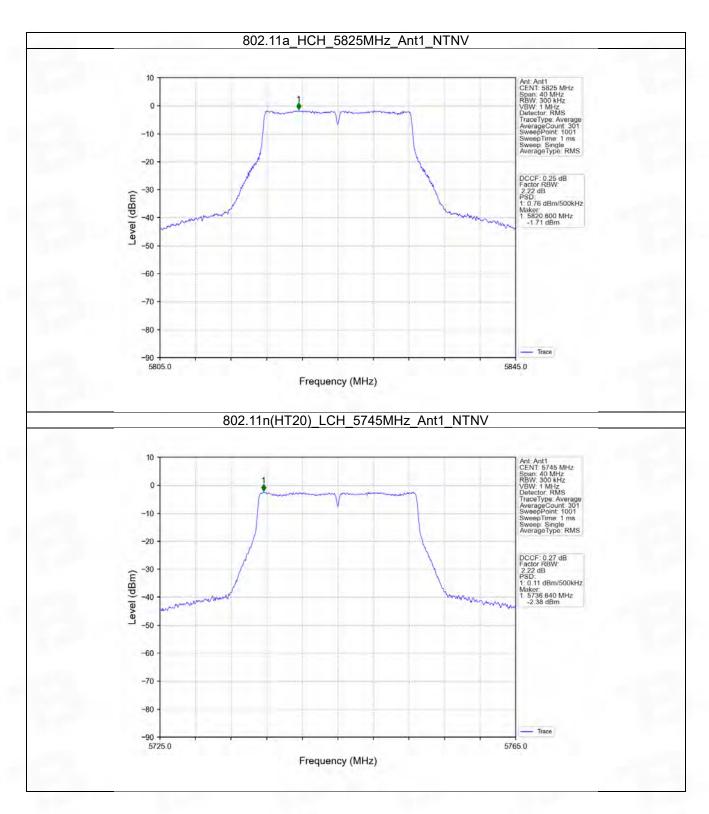


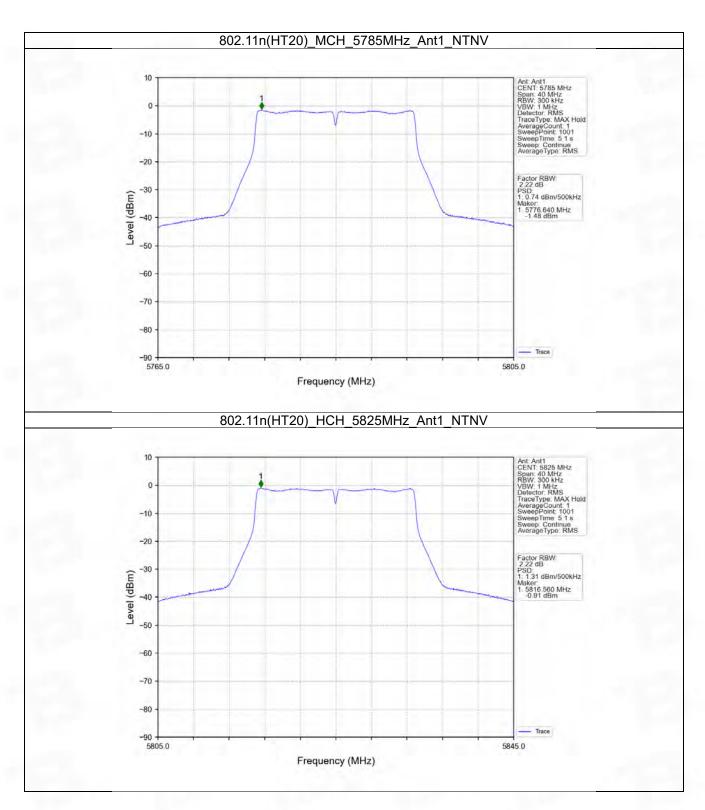


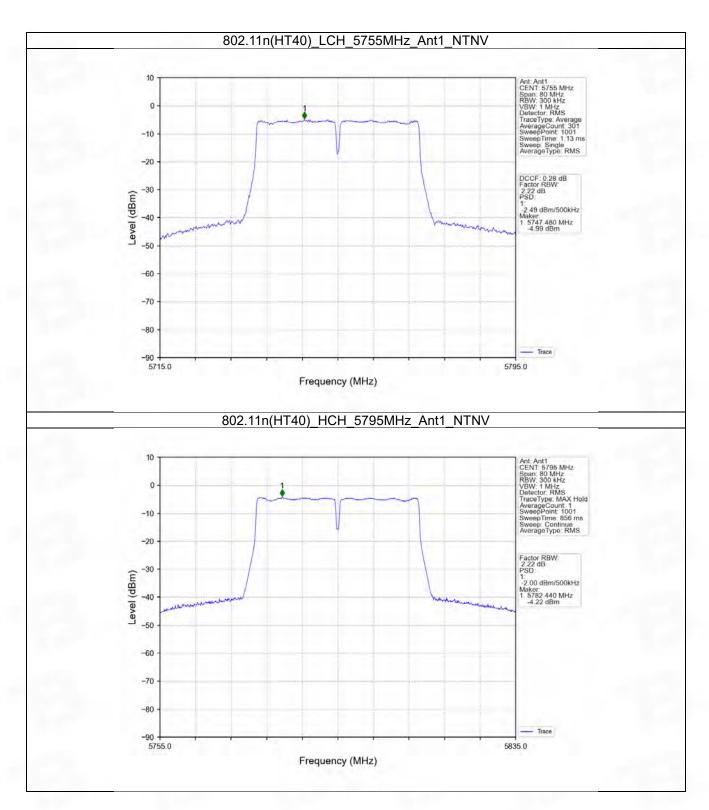
4.2 PSD-Band3

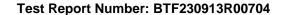

4.2.1 Test Result

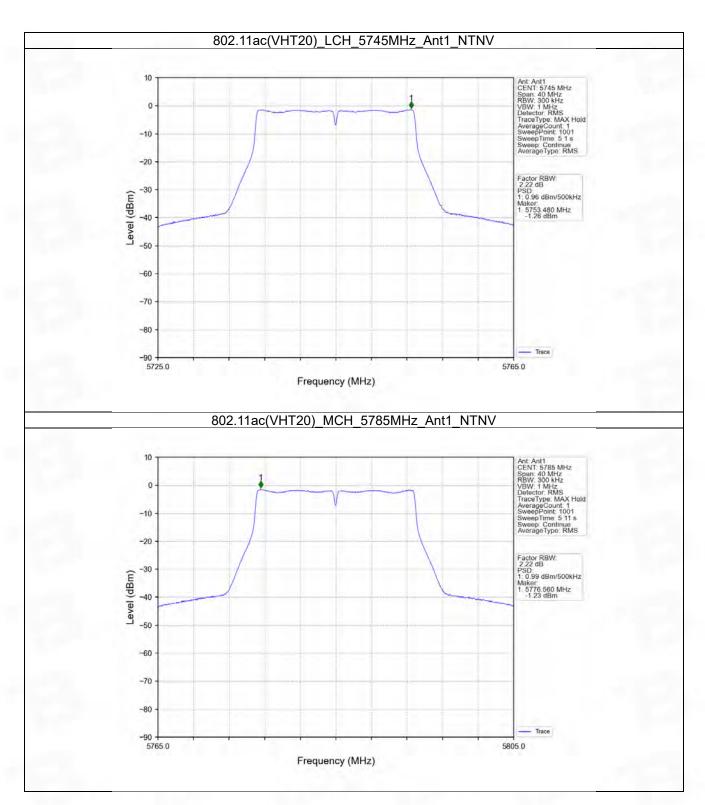
Mode	TX	Frequency	Maximum PSD	(dBm/500kHz)	Verdict
Mode	Туре	(MHz)	ANT1	Limit	verdict
		5745	0.47	<=30	Pass
802.11a	SISO	5785	0.56	<=30	Pass
		5825	0.76	<=30	Pass
000 11=		5745	0.11	<=30	Pass
802.11n	SISO	5785	0.74	<=30	Pass
(HT20)		5825	1.31	<=30	Pass
802.11n	SISO	5755	-2.49	<=30	Pass
(HT40)		5795	-2.00	<=30	Pass
000 11		5745	0.96	<=30	Pass
802.11ac	SISO	5785	0.99	<=30	Pass
(VHT20)		5825	0.74	<=30	Pass
802.11ac	CICO	5755	-2.75	<=30	Pass
(VHT40)	SISO	5795	-2.74	<=30	Pass
802.11ac (VHT80)	SISO	5775	-5.25	<=30	Pass
Note1: Antenna	Gain: Ant1: -0.	70dBi;			•

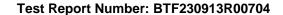


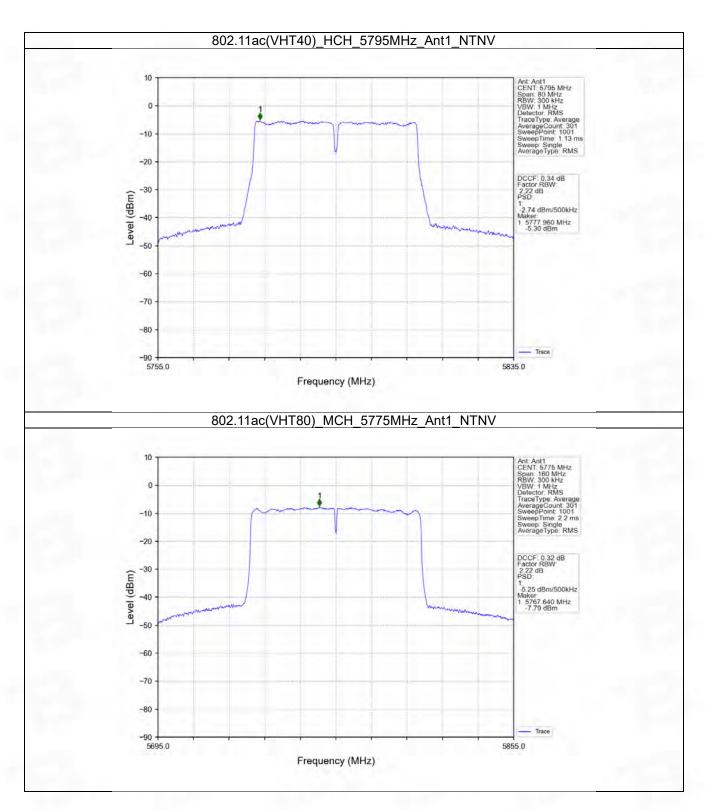

4.2.2 Test Graph

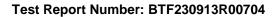




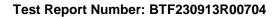








5. Frequency Stability

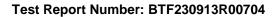

5.1 Ant1

5.1.1 Test Result

				Ant1				
Mode	TX Type	Frequency (MHz)	Temperature (°C)	Voltage (VAC)	Measured Frequency (MHz)	Limit (MHz)	Verdict	
	Турс	(1411 12)	(0)	102	5179.960	5150 to 5250	Pass	
			20	120	5179.980	5150 to 5250	Pass	
			20	138	5179.920	5150 to 5250	Pass	
			-30	120	5179.980	5150 to 5250	Pass	
			-20	120	5179.900	5150 to 5250	Pass	
		5180	-10	120	5179.980	5150 to 5250	Pass	
		0100	0	120	5179.940	5150 to 5250	Pass	
			10	120	5179.860	5150 to 5250	Pass	
			30	120	5179.960	5150 to 5250	Pass	
			40	120	5180.000	5150 to 5250	Pass	
			50	120	5180.000	5150 to 5250	Pass	
			00	102	5199.920	5150 to 5250	Pass	
			20	120	5199.980	5150 to 5250	Pass	
			20	138	5199.960	5150 to 5250	Pass	
			-30	120	5200.000	5150 to 5250	Pass	
			-20	120	5200.000	5150 to 5250	Pass	
		5200	-10	120	5199.880	5150 to 5250	Pass	
			0	120	5199.960	5150 to 5250	Pass	
			10	120	5200.000	5150 to 5250	Pass	
			30	120	5200.020	5150 to 5250	Pass	
802.11a	SISO		40	120	5199.960	5150 to 5250	Pass	
			50	120	5200.000	5150 to 5250	Pass	
					102	5239.960	5150 to 5250	Pass
			20	120	5239.940	5150 to 5250	Pass	
					138	5240.040	5150 to 5250	Pass
			-30	120	5239.940	5150 to 5250	Pass	
			-20	120	5240.000	5150 to 5250	Pass	
			-10	120	5239.980	5150 to 5250	Pass	
			0	120	5239.960	5150 to 5250	Pass	
			10	120	5240.040	5150 to 5250	Pass	
			30	120	5240.000	5150 to 5250	Pass	
			40	120	5239.960	5150 to 5250	Pass	
			50	120	5239.800	5150 to 5250	Pass	
				102	5745.000	5725 to 5850	Pass	
			20	120	5744.980	5725 to 5850	Pass	
				138	5744.840	5725 to 5850	Pass	
		574E	-30	120	5744.980	5725 to 5850	Pass	
		5745	-20	120	5744.960	5725 to 5850	Pass	
			-10	120	5744.940	5725 to 5850	Pass	
			0	120	5744.980	5725 to 5850	Pass	
			10	120	5745.000	5725 to 5850	Pass	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 121 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

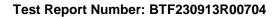
Page 121 of 128



			30	120	5744.960	5725 to 5850	Pass
			40	120	5745.000	5725 to 5850	Pass
			50	120	5744.960	5725 to 5850	Pass
				102	5784.980	5725 to 5850	Pass
			20	120	5784.960	5725 to 5850	Pass
			20	138	5784.900	5725 to 5850	Pass
			-30	120	5784.980	5725 to 5850	Pass
		5785	-20	120	5784.960	5725 to 5850	Pass
			-10	120	5784.940	5725 to 5850	Pass
		3703	0	120	5784.980	5725 to 5850	Pass
			10	120	5784.960	5725 to 5850	Pass
			30	120	5785.040	5725 to 5850	Pass
		-	40	120	5784.960	5725 to 5850	Pass
			50	120	5784.960	5725 to 5850	Pass
			30	102			
			20	120	5824.980	5725 to 5850	Pass
			20		5824.980	5725 to 5850	Pass
			20	138	5825.000	5725 to 5850	Pass
			-30	120	5824.960	5725 to 5850	Pass
		5005	-20	120	5824.960	5725 to 5850	Pass
		5825	-10	120	5824.980	5725 to 5850	Pass
			0	120	5824.980	5725 to 5850	Pass
			10	120	5824.940	5725 to 5850	Pass
			30	120	5824.960	5725 to 5850	Pass
			40	120	5824.980	5725 to 5850	Pass
			50	120	5824.960	5725 to 5850	Pass
				102	5180.020	5150 to 5250	Pass
			20	120	5180.000	5150 to 5250	Pass
				138	5179.980	5150 to 5250	Pass
			-30	120	5180.000	5150 to 5250	Pass
			-20	120	5179.940	5150 to 5250	Pass
		5180	-10	120	5179.960	5150 to 5250	Pass
			0	120	5180.000	5150 to 5250	Pass
			10	120	5180.000	5150 to 5250	Pass
			30	120	5180.000	5150 to 5250	Pass
			40	120	5180.000	5150 to 5250	Pass
			50	120	5180.020	5150 to 5250	Pass
				102	5200.040	5150 to 5250	Pass
			20	120	5199.980	5150 to 5250	Pass
802.11n	SISO	ISO		138	5199.980	5150 to 5250	Pass
(HT20)			-30	120	5199.980	5150 to 5250	Pass
			-20	120	5199.960	5150 to 5250	Pass
		5200	-10	120	5199.960	5150 to 5250	Pass
			0	120	5200.020	5150 to 5250	Pass
			10	120	5199.940	5150 to 5250	Pass
			30	120	5200.020	5150 to 5250	Pass
			40	120	5199.980	5150 to 5250	Pass
			50	120	5199.960	5150 to 5250	Pass
				102	5239.940	5150 to 5250	Pass
			20	120	5240.000	5150 to 5250	Pass
		5040		138	5240.000	5150 to 5250	Pass
		5240	-30	120	5239.960	5150 to 5250	Pass
			-20	120	5239.920	5150 to 5250	Pass
			-10	120	5239.960	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 122 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

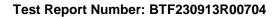
Page 122 of 128



			0	120	5239.960	5150 to 5250	Pass	
			10	120	5239.960	5150 to 5250	Pass	
			30	120	5239.980	5150 to 5250	Pass	
			40	120	5240.000	5150 to 5250	Pass	
			50	120	5239.980	5150 to 5250	Pass	
				102	5744.980	5725 to 5850	Pass	
			20	120	5745.040	5725 to 5850	Pass	
			20	138	5745.000	5725 to 5850	Pass	
			-30	120	5745.000	5725 to 5850	Pass	
			-20	120	5744.980	5725 to 5850	Pass	
		5745	-10	120	5744.960	5725 to 5850	Pass	
		07 10	0	120	5745.000	5725 to 5850	Pass	
			10	120	5744.980	5725 to 5850	Pass	
			30	120	5744.980	5725 to 5850	Pass	
			40	120	5745.040	5725 to 5850	Pass	
			50	120	5744.980	5725 to 5850	Pass	
			- 50	102	5784.960	5725 to 5850	Pass	
			20	120	5784.960	5725 to 5850	Pass	
			20	138	5785.000	5725 to 5850	Pass	
			-30	120	5785.020	5725 to 5850	Pass	
			-20	120	5784.980	5725 to 5850	Pass	
		5785	-10	120	5784.980	5725 to 5850	Pass	
		3703	0	120	5784.980	5725 to 5850	Pass	
			10	120	5784.960	5725 to 5850	Pass	
			30	120	5785.000	5725 to 5850	Pass	
			40	120	5784.940	5725 to 5850	Pass	
			50	120	5785.020	5725 to 5850	Pass	
	-		30	102	5824.980	5725 to 5850	Pass	
			20	120	5824.980	5725 to 5850	Pass	
				20	138	5824.920	5725 to 5850	Pass
			-30	120	5824.980	5725 to 5850	Pass	
			-20	120	5824.960	5725 to 5850	Pass	
		5825	-10	120	5825.000	5725 to 5850	Pass	
		3023	0	120	5824.920	5725 to 5850	Pass	
			10	120	5825.000	5725 to 5850	Pass	
			30	120	5825.000	5725 to 5850		
			40	120	5824.900	5725 to 5850	Pass Pass	
			50	120			Pass	
			50	102	5825.020 5190.040	5725 to 5850	Pass	
			20	120	5190.040	5150 to 5250 5150 to 5250	Pass	
			20	138	5190.000	5150 to 5250 5150 to 5250	Pass	
			-30	120			Pass	
			-30 -20	120	5189.920	5150 to 5250		
		5100		120	5190.000	5150 to 5250	Pass Pass	
		5190	-10	120	5190.000 5189.960	5150 to 5250		
802.11n	SISO		0 10	120	5189.960	5150 to 5250	Pass	
(HT40)	3130		30	120	5190.040	5150 to 5250	Pass	
			40	120		5150 to 5250	Pass	
					5190.040	5150 to 5250	Pass	
			50	120	5190.080	5150 to 5250	Pass	
			20	102	5229.920	5150 to 5250	Pass	
		5230	20	120	5230.000	5150 to 5250	Pass	
			20	138	5229.960	5150 to 5250	Pass	
			-30	120	5230.000	5150 to 5250	Pass	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 123 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

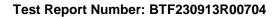
Page 123 of 128



			-20	120	5230.040	5150 to 5250	Pass
		-	-10	120	5229.960	5150 to 5250	Pass
		-	0	120	5229.960	5150 to 5250	Pass
			10	120	5230.040	5150 to 5250	Pass
			30	120		5150 to 5250	
			40	120	5230.000 5229.920	5150 to 5250 5150 to 5250	Pass
		-					Pass
	-		50	120	5229.960	5150 to 5250	Pass
			00	102	5755.000	5725 to 5850	Pass
			20	120	5755.000	5725 to 5850	Pass
			20	138	5754.960	5725 to 5850	Pass
			-30	120	5755.000	5725 to 5850	Pass
		F7FF	-20	120	5755.000	5725 to 5850	Pass
		5755	-10	120	5754.960	5725 to 5850	Pass
			0	120	5755.040	5725 to 5850	Pass
			10	120	5755.000	5725 to 5850	Pass
			30	120	5755.040	5725 to 5850	Pass
			40	120	5755.040	5725 to 5850	Pass
			50	120	5754.960	5725 to 5850	Pass
				102	5795.000	5725 to 5850	Pass
			20	120	5795.000	5725 to 5850	Pass
				138	5794.960	5725 to 5850	Pass
			-30	120	5795.040	5725 to 5850	Pass
			-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
			0	120	5794.960	5725 to 5850	Pass
			10	120	5794.960	5725 to 5850	Pass
			30	120	5795.040	5725 to 5850	Pass
			40	120	5795.040	5725 to 5850	Pass
			50	120	5795.000	5725 to 5850	Pass
				102	5179.960	5150 to 5250	Pass
			20	120	5179.980	5150 to 5250	Pass
				138	5180.000	5150 to 5250	Pass
			-30	120	5179.980	5150 to 5250	Pass
			-20	120	5179.980	5150 to 5250	Pass
		5180	-10	120	5180.040	5150 to 5250	Pass
			0	120	5179.960	5150 to 5250	Pass
			10	120	5179.960	5150 to 5250	Pass
			30	120	5179.980	5150 to 5250	Pass
			40	120	5179.980	5150 to 5250	Pass
	_		50	120	5179.960	5150 to 5250	Pass
802.11ac	SISO			102	5199.960	5150 to 5250	Pass
(VHT20)	0.00		20	120	5199.980	5150 to 5250	Pass
				138	5200.000	5150 to 5250	Pass
			-30	120	5199.960	5150 to 5250	Pass
			-20	120	5199.980	5150 to 5250	Pass
		5200	-10	120	5199.980	5150 to 5250	Pass
			0	120	5200.040	5150 to 5250	Pass
			10	120	5200.040	5150 to 5250	Pass
			30	120	5200.000	5150 to 5250	Pass
			40	120	5199.980	5150 to 5250	Pass
			50	120	5199.980	5150 to 5250	Pass
		5240	20	102	5239.980	5150 to 5250	Pass
		0240	20	120	5239.940	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 124 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

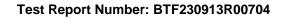
Page 124 of 128



			40	120	5239.960	5150 to 5250	Pass
			0 10	120 120	5239.940 5239.980	5150 to 5250 5150 to 5250	Pass Pass
		-	30	120	5239.980	5150 to 5250	Pass
		-	50	120	5239.960	5150 to 5250	Pass
			50	102	5744.980	5725 to 5850	Pass
			20	120	5745.000	5725 to 5850	Pass
			20	138	5745.020	5725 to 5850	Pass
			-30	120	5744.980	5725 to 5850	Pass
			-20	120	5744.980	5725 to 5850	Pass
		5745	-10	120	5745.000	5725 to 5850	Pass
			0	120	5744.980	5725 to 5850	Pass
			10	120	5745.000	5725 to 5850	Pass
			30	120	5744.960	5725 to 5850	Pass
			40	120	5745.000	5725 to 5850	Pass
			50	120	5745.020	5725 to 5850	Pass
				102	5785.040	5725 to 5850	Pass
			20	120	5784.980	5725 to 5850	Pass
				138	5784.980	5725 to 5850	Pass
			-30	120	5784.980	5725 to 5850	Pass
			-20	120	5784.960	5725 to 5850	Pass
		5785	-10	120	5784.980	5725 to 5850	Pass
			0	120	5784.920	5725 to 5850	Pass
			10	120	5785.020	5725 to 5850	Pass
			30	120	5784.960	5725 to 5850	Pass
			40	120	5785.000	5725 to 5850	Pass
			50	120	5784.980	5725 to 5850	Pass
				102	5824.960	5725 to 5850	Pass
			20	120	5824.960	5725 to 5850	Pass
				138	5824.980	5725 to 5850	Pass
			-30	120	5824.960	5725 to 5850	Pass
			-20	120	5824.960	5725 to 5850	Pass
		5825	-10	120	5825.000	5725 to 5850	Pass
			0	120	5825.020	5725 to 5850	Pass
			10	120	5825.000	5725 to 5850	Pass
			30	120	5824.940	5725 to 5850	Pass
			40	120	5824.960	5725 to 5850	Pass
			50	120	5824.960	5725 to 5850	Pass
				102	5190.000	5150 to 5250	Pass
			20	120	5189.960	5150 to 5250	Pass
				138	5190.000	5150 to 5250	Pass
			-30	120	5190.000	5150 to 5250	Pass
802.11ac			-20	120	5190.040	5150 to 5250	Pass
(VHT40)	SISO	5190	-10	120	5190.000	5150 to 5250	Pass
(011140)			0	120	5189.960	5150 to 5250	Pass
			10	120	5190.000	5150 to 5250	Pass
			30	120	5190.080	5150 to 5250	Pass
			40	120	5190.040	5150 to 5250	Pass
			50	120	5190.000	5150 to 5250	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 125 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

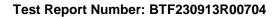
Page 125 of 128



	1			100	5220 000	5150 to 5250	Door
			20	102 120	5230.000 5230.000	5150 to 5250 5150 to 5250	Pass Pass
		5230	20	138	5230.000	5150 to 5250 5150 to 5250	Pass
			-30	120	5230.000	5150 to 5250 5150 to 5250	
				120			Pass
			-20	120	5229.960 5229.960	5150 to 5250 5150 to 5250	Pass
			-10 0				Pass
				120	5229.960	5150 to 5250	Pass
			10	120	5229.880	5150 to 5250	Pass
			30	120	5230.000	5150 to 5250	Pass
		-	40	120	5230.000	5150 to 5250	Pass
	-		50	120	5229.880	5150 to 5250	Pass
			20	102	5754.960	5725 to 5850	Pass
			20	120	5755.040	5725 to 5850	Pass
			20	138	5755.000	5725 to 5850	Pass
			-30	120	5754.960	5725 to 5850	Pass
		F7FF	-20	120	5755.000	5725 to 5850	Pass
		5755	-10	120	5755.000	5725 to 5850	Pass
			0	120	5755.040	5725 to 5850	Pass
			10	120	5754.960	5725 to 5850	Pass
			30	120	5755.000	5725 to 5850	Pass
			40	120	5754.920	5725 to 5850	Pass
			50	120	5755.040	5725 to 5850	Pass
			00	102	5794.960	5725 to 5850	Pass
			20	120	5795.040	5725 to 5850	Pass
			00	138	5795.040	5725 to 5850	Pass
		-	-30	120	5795.040	5725 to 5850	Pass
		5705	-20	120	5795.040	5725 to 5850	Pass
		5795	-10	120	5795.000	5725 to 5850	Pass
		_	0	120	5795.000	5725 to 5850	Pass
			10	120	5795.040	5725 to 5850	Pass
			30	120	5794.920	5725 to 5850	Pass
			40	120	5795.040	5725 to 5850	Pass
			50	120	5795.000	5725 to 5850	Pass
			00	102	5210.000	5150 to 5250	Pass
			20	120	5209.925	5150 to 5250	Pass
			00	138	5210.000	5150 to 5250	Pass
		-	-30	120	5210.000	5150 to 5250	Pass
		5040	-20	120	5210.000	5150 to 5250	Pass
		5210	-10	120	5210.000	5150 to 5250	Pass
		-	0	120	5210.000	5150 to 5250	Pass
			10	120	5210.000	5150 to 5250	Pass
000 44			30	120	5210.000	5150 to 5250	Pass
802.11ac	SISO		40	120	5210.000	5150 to 5250	Pass
(VHT80)			50	120	5210.000	5150 to 5250	Pass
			00	102	5775.000	5725 to 5850	Pass
			20	120	5775.000	5725 to 5850	Pass
			20	138	5775.000	5725 to 5850	Pass
			-30	120	5775.000	5725 to 5850	Pass
		5775	-20	120	5775.000	5725 to 5850	Pass
			-10	120	5775.000	5725 to 5850	Pass
			0	120	5775.000	5725 to 5850	Pass
			10	120	5775.000	5725 to 5850	Pass
			30	120	5775.000	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 126 of 12 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 126 of 128


	40	120	5775.000	5725 to 5850	Pass
	50	120	5775.000	5725 to 5850	Pass

6. Form731

6.1 Form731

6.1.1 Test Result

Lower Freq (MHz)	High Freq (MHz)	MAX Power (W)	MAX Power (dBm)
5180	5240	0.0589	17.70
5745	5825	0.0362	15.59
5190	5230	0.0527	17.22
5755	5795	0.0353	15.48
5210	5210	0.0564	17.51

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --