

FCC SDoC Test Report

For

Applicant Name: SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD

A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU

Address: INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX

China

EUT Name: Tablet
Brand Name: OUKITEL
Model Number: OT5

Series Model Number: Refer to section 2

Issued By

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,

Address: Tantou Community, Songgang Street, Bao'an District, Shenzhen,

China

Report Number: BTF230921E00401

Test Standards: 47 CFR Part 15, Subpart B

Test Conclusion: Pass

FCC ID: 2ANMU-OT5

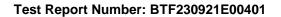
Test Date: 2023-09-21 to 2023-10-13

Date of Issue: 2023-10-16

Prepared By:

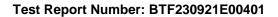
Chris Liu / Project Engineer

Date: 2023-10-16


Approved By:

Ryan.CJ / EMC Manager

Date: 2023-10-16


Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

b (Shenzh

Revision History					
Version Issue Date Revisions Content					
R_V0 2023-10-16		Original			
Note: Once the	revision has been made, then pre	vious versions reports are invalid.			

Table of Contents

1	INTR	ODUC.	TION	4
	1.1		ification of Testing Laboratory	
	1.2		ification of the Responsible Testing Location	
	1.3		ouncement	
2	PRO	DUCT I	INFORMATION	5
	2.1	Appli	ication Information	5
	2.2		ufacturer Information	
	2.3	Facto	ory Information	5
	2.4		eral Description of Equipment under Test (EUT)	
	2.5		nical Information	
3	SUM	MARY	OF TEST RESULTS	6
	3.1	Test S	Standards	6
	3.2		rtainty of Test	
	3.3		mary of Test Result	
4	TES	T CONF	FIGURATION	7
	4.1	Test E	Equipment List	7
	4.2	Test A	Auxiliary Equipment	8
	4.3	Test N	Modes	8
5	EMIS	SSION	TEST RESULTS (EMI)	g
	5.1	Cond	lucted emissions on AC mains	g
		5.1.1	E.U.T. Operation:	g
		5.1.2	·	
		5.1.3		
	5.2	Radia	ated emissions (Below 1GHz)	12
		5.2.1		
		5.2.2		
		5.2.3		
	5.3		ated emissions (Above 1GHz)	
		5.3.1		
		5.3.2		
		5.3.3		
6			JP PHOTOS	
7	EUT	CONS	TRUCTIONAL DETAILS (EUT PHOTOS)	19

Test Report Number: BTF230921E00401

1 Introduction

1.1 Identification of Testing Laboratory

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.		
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name:	BTF Testing Lab (Shenzhen) Co., Ltd.
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tan Community, Songgang Street, Bao'an District, Shenzhen, China	
Phone Number:	+86-0755-23146130
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Test Report Number: BTF230921E00401

2 Product Information

2.1 Application Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.2 Manufacturer Information

Company Name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

2.3 Factory Information

Company Name:		SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD			
	Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE,			
	Address.	GUANLAN, LONGHUA SHENZHEN, 518XXX China			

2.4 General Description of Equipment under Test (EUT)

EUT Name:	Tablet
Test Model Number:	OT5
Series Model Number:	OT5 S, OT5 Pro, OT5 Ultra
Description of Model name differentiation:	Only the model name is different, everything else is the same
Hardware Version:	Q2_TV1.0
Software Version:	OUKITEL_OT5_EEA_V04

2.5 Technical Information

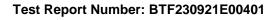
Power Supply:	AC 120V 60HZ
Power Adaptor:	Fast Charger Model:HJ-PD20W-US Input:100-240v~50/60Hz 0.6A Output:5.0V==3.0A 15.0W OR 9.0V==2.22A 19.98W OR 12.0V==1.67V 20.0W MAX

Test Report Number: BTF230921E00401

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards: **47 CFR Part 15, Subpart B:** Unintentional Radiators

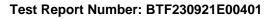

3.2 Uncertainty of Test

Item	Measurement Uncertainty	
Conducted Emission (150 kHz-30 MHz)	±2.64dB	
Radiated Emissions (30M - 1GHz)	±4.12dB	
Radiated Emissions (above 1GHz)	1-6GHz: ±3.94dB 6-18GHz: ±4.16dB	

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Conducted emissions on AC mains	47 CFR Part 15, Subpart B	15.107, Class B	Pass
Radiated emissions (Below 1GHz)	47 CFR Part 15, Subpart B	15.109, Class B	Pass
Radiated emissions (Above 1GHz)	47 CFR Part 15, Subpart B	15.109, Class B	Pass

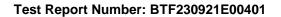


Test Configuration

Test Equipment List

Conducted emissions on AC mains					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2022-11-24	2023-11-23
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2022-11-24	2023-11-23
V-LISN	SCHWARZBECK	NSLK 8127	01073	2022-11-24	2023-11-23
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2022-11-24	2023-11-23

Radiated emissions (I					
Radiated emissions (· · · · · · · · · · · · · · · · · · ·		NI	0.15.4	0.10.0.
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2022-11-24	2023-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2021-11-28	2023-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2022-11-24	2023-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2022-11-24	2023-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	1	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2021-11-28	2023-11-27



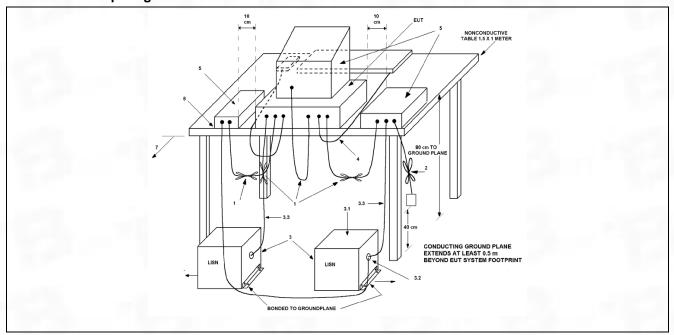
4.2 Test Auxiliary Equipment

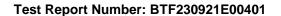
The EUT was tested as an independent device.

4.3 Test Modes

No.	Test Modes	Description
TM1	TM1	DATA TRANSMISSION
TM2	TM2	VIDEO RECORD
TM3	TM3	Memory Playing

5 Emission Test Results (EMI)

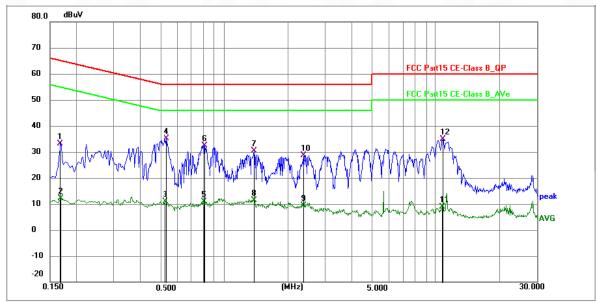

5.1 Conducted emissions on AC mains


Test Requirement:	15.107, Class B							
Test Method:	ANSI C63.4a-2017							
	Frequency of emission (MHz)	Conducted limit (d	dBμV)					
		Quasi-peak	Average					
Test Limit:	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	*Decreases with the logarithm of t	*Decreases with the logarithm of the frequency.						
Procedure:		An initial pre-scan was performed with peak detector.Quasi-Peak or Average measurement were performed at the frequencies with maximized peak emission						
	Remark: Level= Read Level+ Cable	e Loss+ LISN Factor						

5.1.1 E.U.T. Operation:

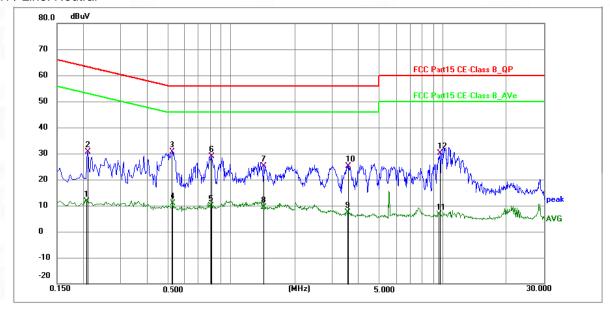
Operating Environment:	
Temperature:	24 °C
Humidity:	52.2 %
Atmospheric Pressure:	1010 mbar

5.1.2 Test Setup Diagram:

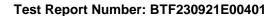


5.1.3 Test Data:

TM1 / Line: Line

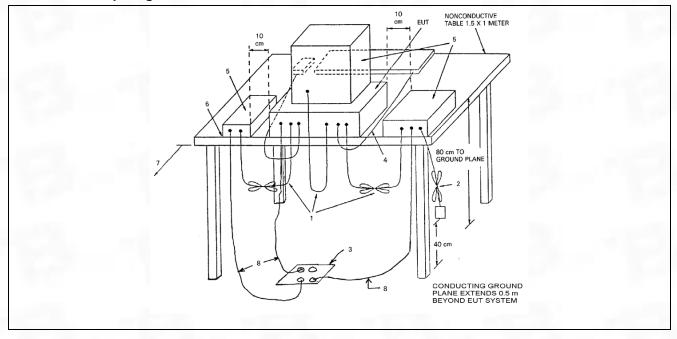


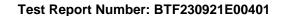
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1675	22.64	10.56	33.20	65.08	-31.88	QP	Р	
2	0.1680	1.47	10.56	12.03	55.06	-43.03	AVG	Р	
3	0.5231	0.35	10.62	10.97	46.00	-35.03	AVG	Р	
4 *	0.5322	24.42	10.63	35.05	56.00	-20.95	QP	Р	
5	0.8024	0.09	10.75	10.84	46.00	-35.16	AVG	Р	
6	0.8114	21.53	10.75	32.28	56.00	-23.72	QP	Р	
7	1.3872	19.76	10.74	30.50	56.00	-25.50	QP	Р	
8	1.3872	0.65	10.74	11.39	46.00	-34.61	AVG	Р	
9	2.3774	-1.29	10.70	9.41	46.00	-36.59	AVG	Р	
10	2.3909	18.05	10.70	28.75	56.00	-27.25	QP	Р	
11	10.7475	-2.06	10.94	8.88	50.00	-41.12	AVG	Р	
12	10.8375	23.99	10.95	34.94	60.00	-25.06	QP	Р	



TM1 / Line: Neutral

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.2071	0.96	10.59	11.55	53.32	-41.77	AVG	Р	
2	0.2084	19.98	10.59	30.57	63.27	-32.70	QP	Р	
3 *	0.5264	19.97	10.62	30.59	56.00	-25.41	QP	Р	
4	0.5280	0.35	10.62	10.97	46.00	-35.03	AVG	Р	
5	0.8070	-0.82	10.75	9.93	46.00	-36.07	AVG	Р	
6	0.8114	18.01	10.75	28.76	56.00	-27.24	QP	Р	
7	1.4280	14.45	10.74	25.19	56.00	-30.81	QP	Р	
8	1.4280	-1.27	10.74	9.47	46.00	-36.53	AVG	Р	
9	3.5565	-3.32	10.72	7.40	46.00	-38.60	AVG	Р	
10	3.5655	14.51	10.72	25.23	56.00	-30.77	QP	Р	
11	9.6674	-4.28	10.93	6.65	50.00	-43.35	AVG	Р	
12	9.7440	19.16	10.93	30.09	60.00	-29.91	QP	Р	

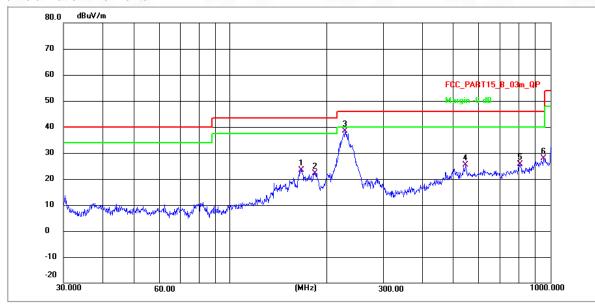

5.2 Radiated emissions (Below 1GHz)

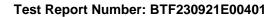

Test Requirement:	15.109, Class B							
Test Method:	ANSI C63.4a-2017							
	Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:							
	Frequency of emission	Field stre	ngth	Field str	ength @10m			
To at I insite	(MHz)	@3m		/++\//pa\	(dDuV/m)			
Test Limit:		(uV/m)	(dBuV/ m)	(uV/m)	(dBuV/m)			
	30 – 88	100	40	30	29.5			
	88 – 216	150	43.5	45	33.1			
	216 – 960	200	46	60	35.6			
	Above 960	500	54	150	43.5			
Procedure:	An initial pre-scan was performed in the chamber using the spectrum analyser in peak detection mode. Quasi-peak measurements were conducted based on the peak sweep graph. The EUT was measured by BiConiLog antenna with 2 orthogonal polarities. Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor							

5.2.1 E.U.T. Operation:

Operating Environment:					
Temperature:	24 °C				
Humidity:	52.2 %				
Atmospheric Pressure:	1010 mbar				

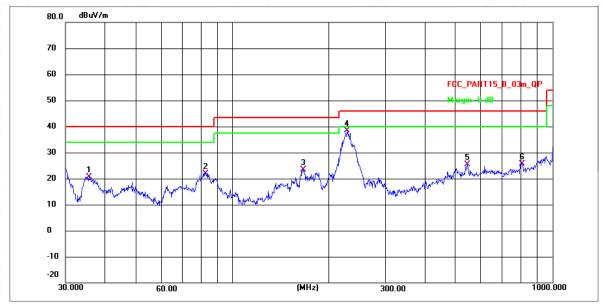
5.2.2 Test Setup Diagram:



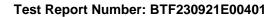


5.2.3 Test Data:

TM1 / Polarization: Horizontal

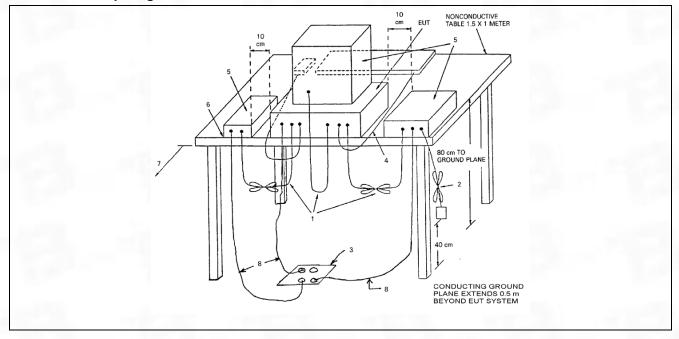


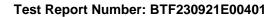
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	166.9438	40.22	-16.84	23.38	43.50	-20.12	QP	Р
2	184.1667	40.13	-17.97	22.16	43.50	-21.34	QP	Р
3 *	228.4904	54.76	-16.38	38.38	46.00	-7.62	QP	Р
4	544.2276	37.42	-11.95	25.47	46.00	-20.53	QP	Р
5	808.8459	49.31	-23.57	25.74	46.00	-20.26	QP	Р
6	952.0937	49.72	-21.77	27.95	46.00	-18.05	QP	Р



TM1 / Polarization: Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	35.5615	41.31	-20.62	20.69	40.00	-19.31	QP	Р
2	82.5034	40.79	-18.86	21.93	40.00	-18.07	QP	Р
3	166.9438	37.65	-14.27	23.38	43.50	-20.12	QP	Р
4 *	228.4904	52.95	-14.57	38.38	46.00	-7.62	QP	Р
5	544.2276	37.06	-11.59	25.47	46.00	-20.53	QP	Р
6	808.8459	49.31	-23.57	25.74	46.00	-20.26	QP	Р

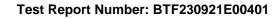

5.3 Radiated emissions (Above 1GHz)


Test Requirement:	15.109, Class B							
Test Method:	ANSI C63.4a-2017	ANSI C63.4a-2017						
	Frequency of emission (MHz)	Field streng	gth @3m					
Test Limit:		Average Average(d (uV/m) BuV/m)		Peak (dBuV/m)				
	Above 1GHz	500	54	74				
Procedure:	An initial pre-scan was performed it peak detection mode. For below 10 conducted based on the peak sweet antenna with 2 orthogonal polarities were conducted based on the peak antenna with 2 orthogonal polarities Remark: Level= Read Level+ Cabl	GHz test, Quas ep graph. The I s. For above 10 s sweep graph. s.	ii-peak measure EUT was measu GHz test, Averao The EUT was n	ements were ired by BiConiL ge measuremer neasured by Ho				

5.3.1 E.U.T. Operation:

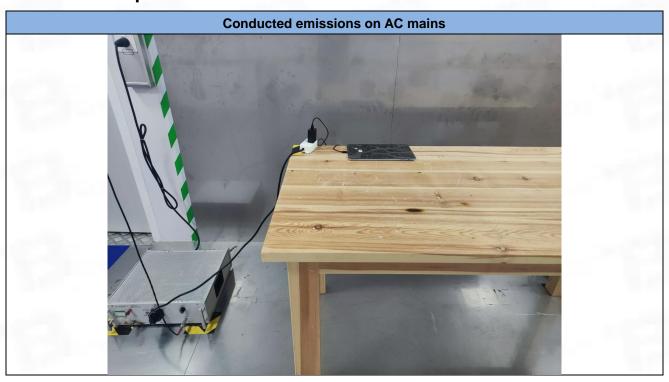
Operating Environment:						
Temperature:	24 °C					
Humidity:	52.2 %					
Atmospheric Pressure:	1010 mbar					

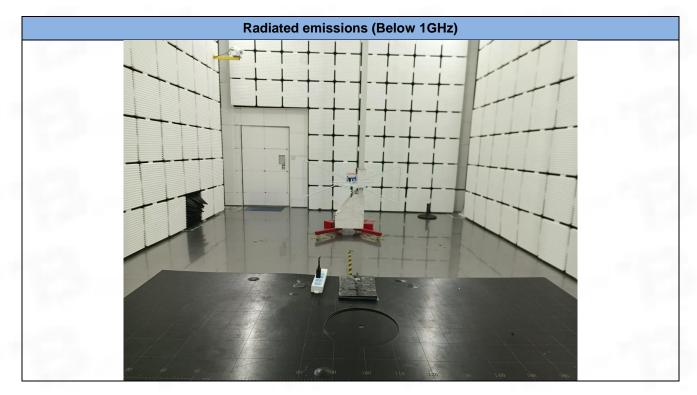
5.3.2 Test Setup Diagram:

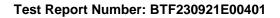

5.3.3 Test Data:

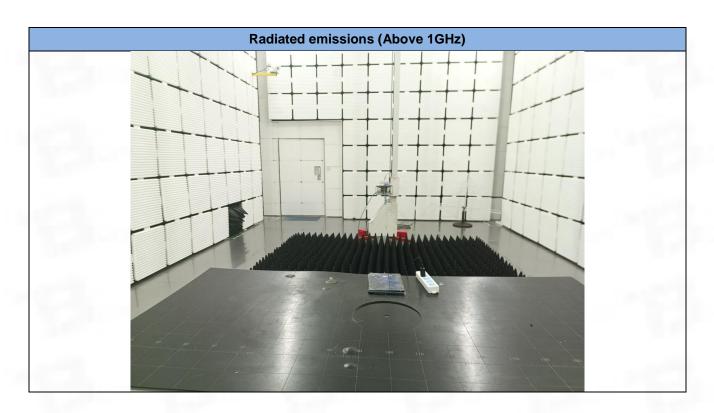
TM1 / Polarization: Horizontal

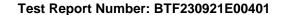
No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1580.983	79.15	-29.95	49.20	68.20	-19.00	peak	Р
2	1732.012	80.94	-30.46	50.48	68.20	-17.72	peak	Р
3	1951.338	82.60	-30.68	51.92	68.20	-16.28	peak	Р
4	2931.608	79.17	-31.46	47.71	68.20	-20.49	peak	Р
5	4065.278	81.20	-31.95	49.25	68.20	-18.95	peak	Р
6	5356.008	83.61	-31.04	52.57	68.20	-15.63	peak	Р

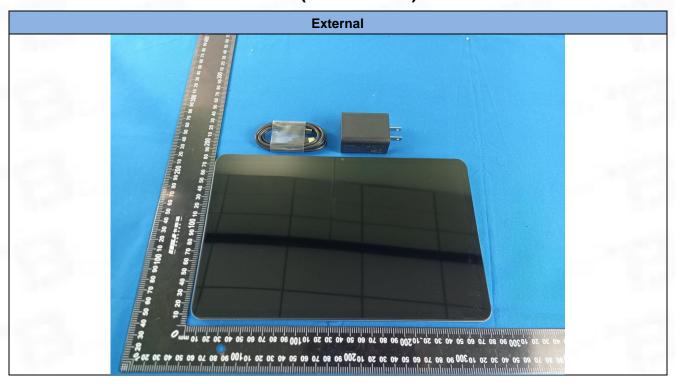

TM1 / Polarization: Vertical

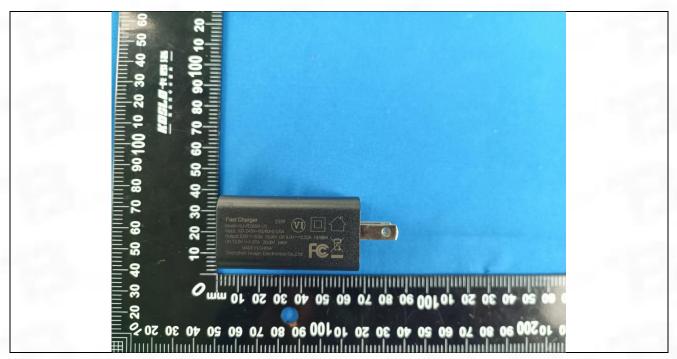

No.	Frequency	Reading	Factor	Level	Limit	Margin	Detector	P/F
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		
1	1336.694	79.29	-29.85	49.44	68.20	-18.76	peak	Р
2	1487.723	81.08	-30.36	50.72	68.20	-17.48	peak	Р
3	1707.049	82.74	-30.58	52.16	68.20	-16.04	peak	Р
4	2687.319	79.31	-31.36	47.95	68.20	-20.25	peak	Р
5	3820.989	81.34	-31.85	49.49	68.20	-18.71	peak	Р
6	5111.719	83.75	-30.94	52.81	68.20	-15.39	peak	Р
	1 2 3 4 5	No. (MHz) 1 1336.694 2 1487.723 3 1707.049 4 2687.319 5 3820.989	No. (MHz) (dBuV) 1 1336.694 79.29 2 1487.723 81.08 3 1707.049 82.74 4 2687.319 79.31 5 3820.989 81.34	No. (MHz) (dBuV) (dB/m) 1 1336.694 79.29 -29.85 2 1487.723 81.08 -30.36 3 1707.049 82.74 -30.58 4 2687.319 79.31 -31.36 5 3820.989 81.34 -31.85	No. (MHz) (dBuV) (dB/m) (dBuV/m) 1 1336.694 79.29 -29.85 49.44 2 1487.723 81.08 -30.36 50.72 3 1707.049 82.74 -30.58 52.16 4 2687.319 79.31 -31.36 47.95 5 3820.989 81.34 -31.85 49.49	No. (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 1 1336.694 79.29 -29.85 49.44 68.20 2 1487.723 81.08 -30.36 50.72 68.20 3 1707.049 82.74 -30.58 52.16 68.20 4 2687.319 79.31 -31.36 47.95 68.20 5 3820.989 81.34 -31.85 49.49 68.20	No. (MHz) (dBuV) (dB/m) (dB/m) (dBuV/m) (dBuV/m) (dB) 1 1336.694 79.29 -29.85 49.44 68.20 -18.76 2 1487.723 81.08 -30.36 50.72 68.20 -17.48 3 1707.049 82.74 -30.58 52.16 68.20 -16.04 4 2687.319 79.31 -31.36 47.95 68.20 -20.25 5 3820.989 81.34 -31.85 49.49 68.20 -18.71	No. (MHz) (dBuV) (dB/m) (dBwV/m) (dBuV/m) (dB) Detector 1 1336.694 79.29 -29.85 49.44 68.20 -18.76 peak 2 1487.723 81.08 -30.36 50.72 68.20 -17.48 peak 3 1707.049 82.74 -30.58 52.16 68.20 -16.04 peak 4 2687.319 79.31 -31.36 47.95 68.20 -20.25 peak 5 3820.989 81.34 -31.85 49.49 68.20 -18.71 peak

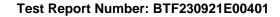


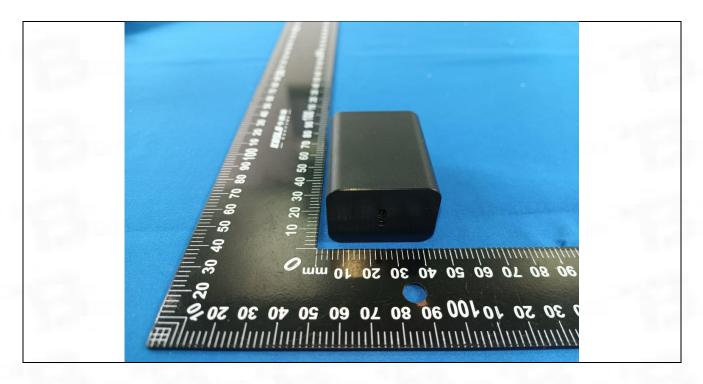

Test Setup Photos 6

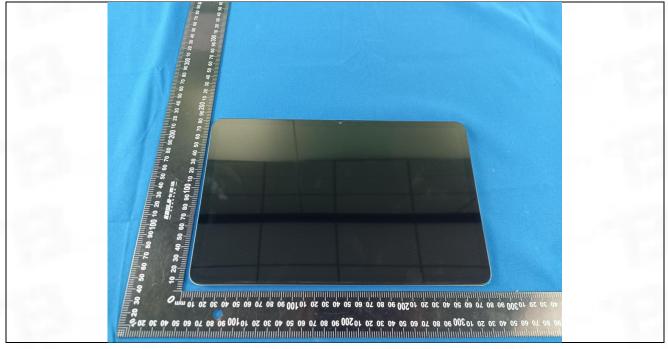


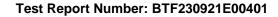


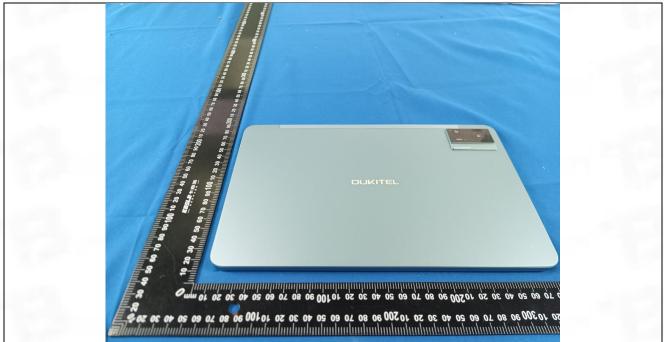


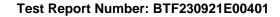


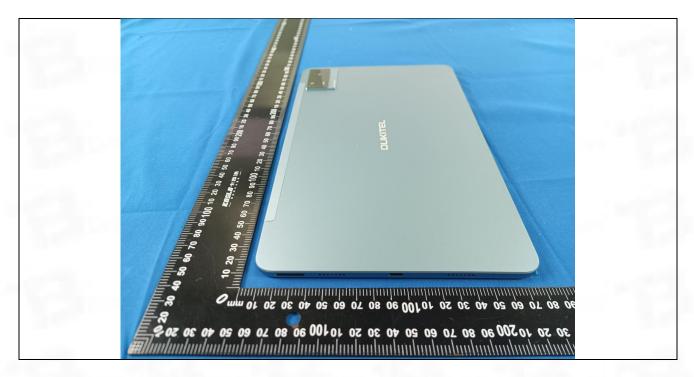

7 EUT Constructional Details (EUT Photos)

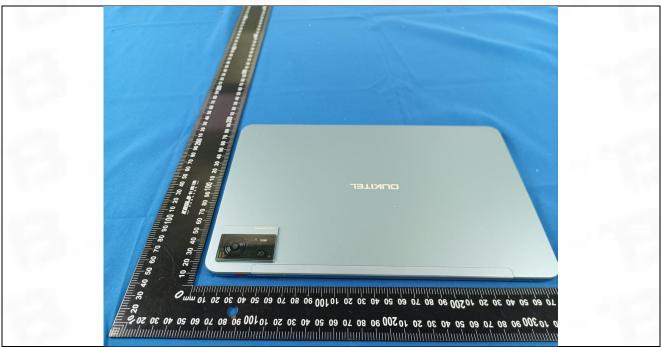


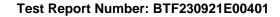


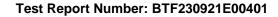


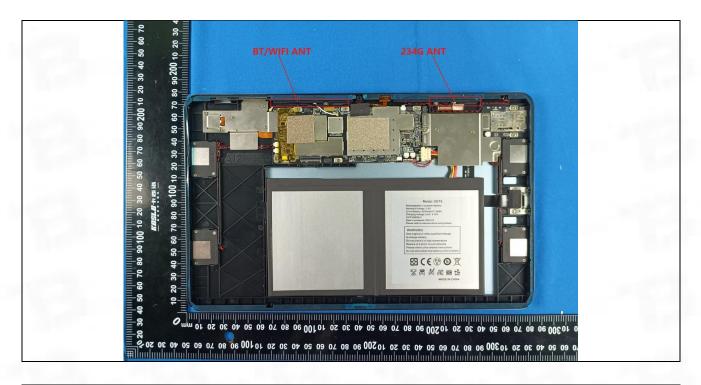


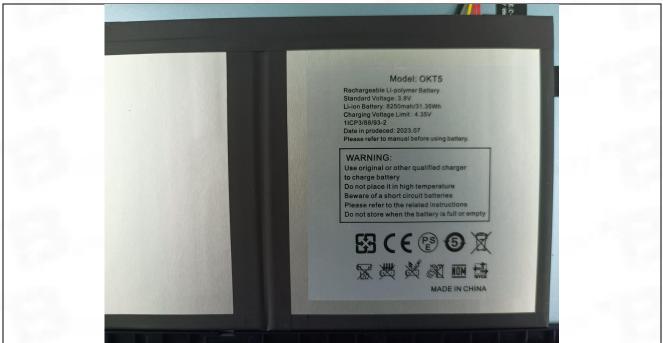


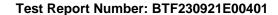


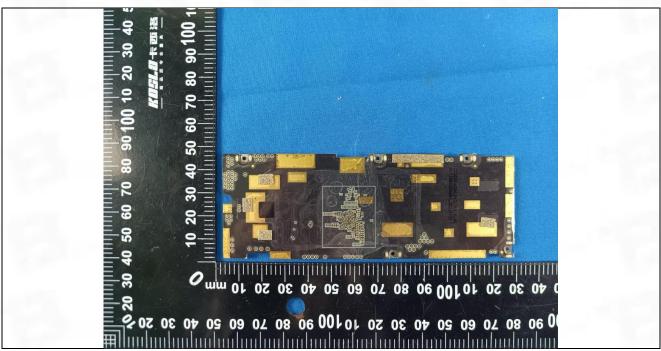


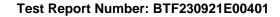


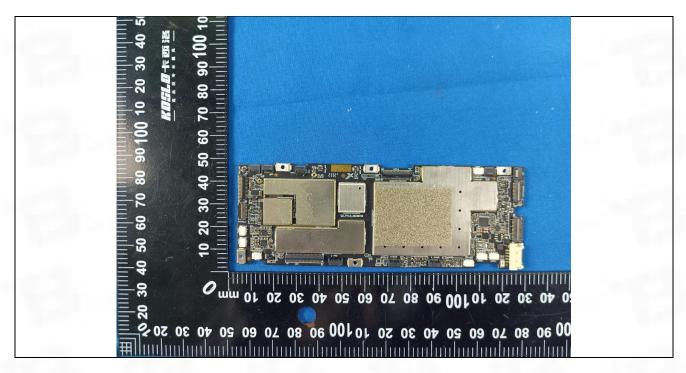


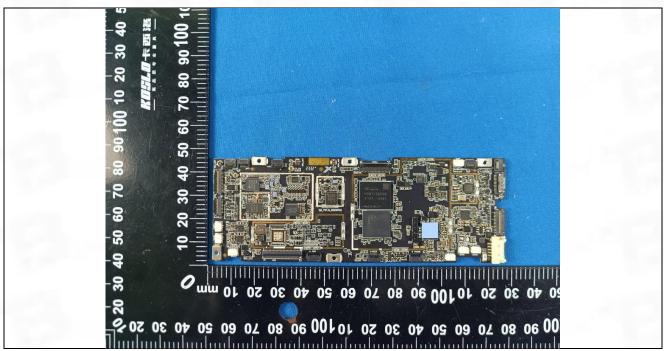


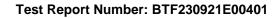


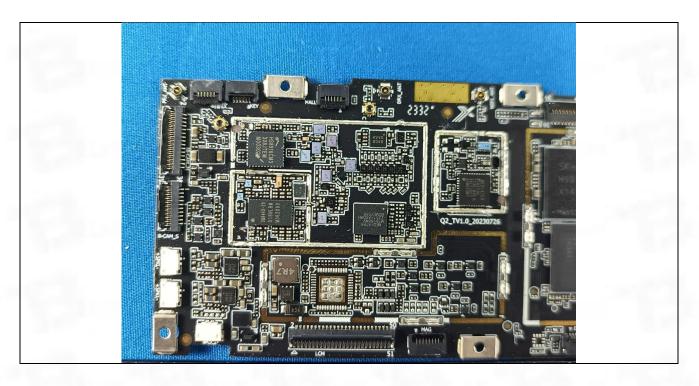


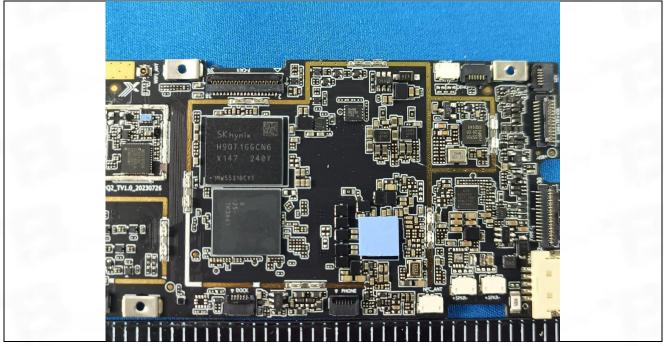


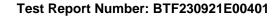












BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --