

FCC RADIO TEST REPORT FCC ID: 2ANMU-C19

Product: Smart Phone Trade Mark: OUKITEL Model No.: C19 Family Model: N/A Report No.: S20072301103003 Issue Date: 20 Aug.2020

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

1		ST RESULT CERTIFICATION	2
1			
2	SUI	MMARY OF TEST RESULTS	4
3	FA	CILITIES AND ACCREDITATIONS	5
	3.1 FA	CILITIES	5
	3.2 LA	BORATORY ACCREDITATIONS AND LISTINGS	
	2.3	MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DE	SCRIPTION OF TEST MODES	8
6		FUP OF EQUIPMENT UNDER TEST	
-			
	6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	6.2	SUPPORT EQUIPMENT	
	6.3	EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TE	ST REQUIREMENTS	14
	7.1	CONDUCTED EMISSIONS TEST	14
	7.2	RADIATED SPURIOUS EMISSION	17
	7.3	6DB BANDWIDTH	26
	7.4	DUTY CYCLE	
	7.5	MAXIMUM OUTPUT POWER	30
	7.6	POWER SPECTRAL DENSITY	32
	7.7	CONDUCTED BAND EDGE MEASUREMENT	
	7.8	SPURIOUS RF CONDUCTED EMISSIONS	
	7.9	ANTENNA APPLICATION	37
8	TES	ST RESULTS	38
	8.1	MAXIMUM CONDUCTED OUTPUT POWER	38
	8.2	Occupied Channel Bandwidth	
	8.3	MAXIMUM POWER SPECTRAL DENSITY LEVEL	
	8.4	BAND EDGE	
	8.5	CONDUCTED RF SPURIOUS EMISSION	

Report No.: S20072301103003

1 TEST RESULT CERTIFICATION

Applicant's name:	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Manufacturer's Name	SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD
Address:	A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China
Product description	
Product name:	Smart Phone
Model and/or type reference:	C19
Family Model:	N/A

Measurement Procedure Used:

APPLICABLE STANDARDS

APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J		
FCC 47 CFR Part 15, Subpart C	Complied	
ANSI C63.10-2013	Complied	
KDB 558074 D01 15.247 Meas Guidance v05r02		

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: 23 Jul. 2020 ~ 20 Aug. 2020
	Krang. Hu
Testing Engineer	
	(Mary Hu)
	Jason chen
Technical Manager	4.
	(Jason Chen)
	Alese
Authorized Signatory	G ·
0,	(Alex Li)

ilac-MR **NTEK北**测 ACCREDITED Certificate #4298.01

CIIMMADV OF TEST DESIII TS

2 SUMMARY OF TEST RESULTS							
FCC Part15 (15.247), Subpart C							
Standard Section Test Item Verdict Remark							
15.207	PASS						
15.247 (a)(2)	6dB Bandwidth	PASS					
15.247 (b) Maximum Output Power		PASS					
15.209 (a) 15.205 (a)							
15.247 (e) Power Spectral Density		PASS					
15.247 (d) Band Edge Emission		PASS					
15.247 (d) Spurious RF Conducted Emission		PASS					
15.203 Antenna Requirement PASS							

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab. :	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm :	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location :	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

2.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(<1G)	±4.68dB
5	All emissions, radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification						
Equipment	Smart Phone					
Trade Mark	OUKITEL					
FCC ID	2ANMU-C19					
Model No.	C19					
Family Model	N/A					
Model Difference	N/A					
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);					
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;					
Number of Channels	11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);					
Antenna Type	PIFA Antenna					
Antenna Gain	1 dBi					
	DC supply: DC 3.85V/4000mAh from Battery or DC 5V from Adapter.					
Power supply	⊠Adapter supply: Model: HJ-050100E1-US Input: AC 100~240V 150mA 50/60Hz Output: 5.0V1.0A 5.0W					
HW Version	TE598_MAIN_PCB_V1.1					
SW Version OUKITEL_C19_ROW_V01_20200730						
· · · · · · · · · · · · · · · · · · ·						

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Revision History						
Report No.	Version	Description	Issued Date			
S20072301103003	Rev.01	Initial issue of report	20 Aug, 2020			

5 DESCRIPTION OF TEST MODES

NTEK北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

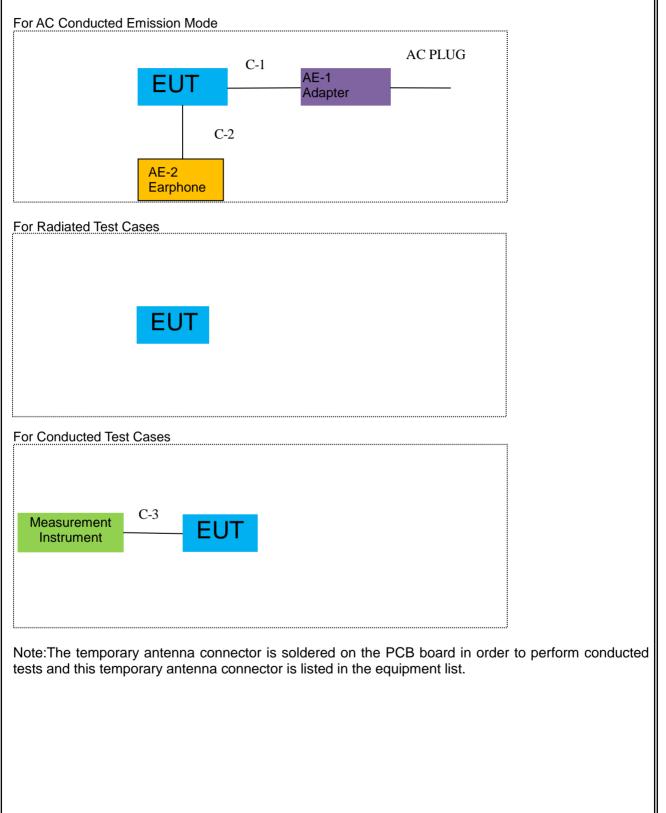
The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
10	2457
11	2462

Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

EUT built-in battery-powered, the battery is fully-charged.


Report No.: S20072301103003

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbpa	1/6/11	1
Device Creativel Density	11g/BPSK	1 Mbps 6 Mbps	1/6/11	1
Power Spectral Density	11g/BF3K	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Radiated Emissions Above			1/6/11	1
1GHz	11g/BPSK	6 Mbps		
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Band Edge Emissions	11b/CCK	1 Mbps	1/11	1
	11g/BPSK	6 Mbps	1/11	1
	11n HT20	MCS0	1/11	1
	11n HT40	MCS0	3/9	1

6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

Report No.: S20072301103003

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	HJ-050100E1-US	N/A	Peripherals
AE-2	Earphone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Report No.: S20072301103003

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Radiation& Conducted 1		corequipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibra tion period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2019.08.28	2020.08.27	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2019.08.28	2020.08.27	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.7.13	2021.7.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.7.13	2021.7.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.06	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2020.7.13	2021.7.12	1 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.7.13	2021.7.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Co	AC Conduction Test equipment						
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	1 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

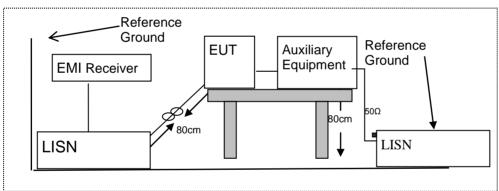
7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Frequency(MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency


2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

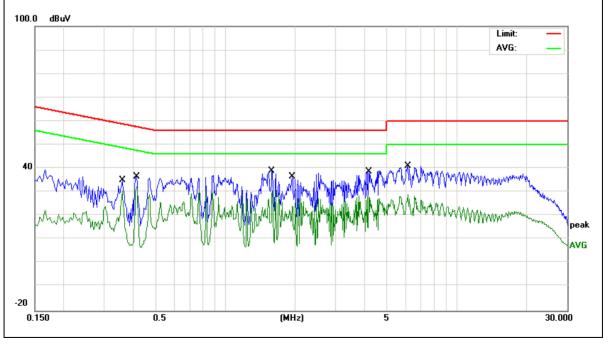
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.6 Test Results

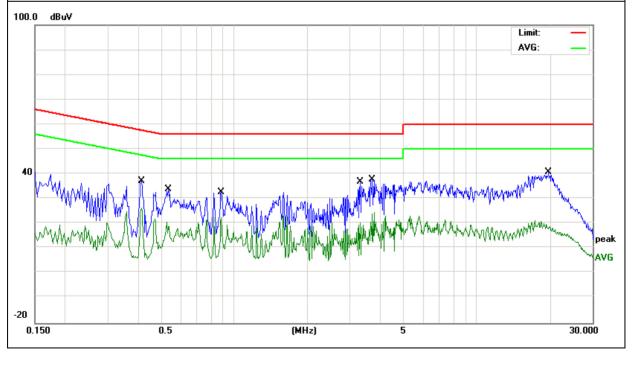

EUT:	Smart Phone	Model Name :	C19
Temperature:	22 °C	Relative Humidity:	59%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 230V/50Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.3578	25.35	9.74	35.09	58.78	-23.69	QP
0.3578	20.96	9.74	30.70	48.78	-18.08	AVG
0.4138	26.93	9.74	36.67	57.57	-20.90	QP
0.4138	22.71	9.74	32.45	47.57	-15.12	AVG
1.5900	29.19	9.77	38.96	56.00	-17.04	QP
1.5900	21.71	9.77	31.48	46.00	-14.52	AVG
1.9458	26.82	9.78	36.60	56.00	-19.40	QP
1.9458	17.61	9.78	27.39	46.00	-18.61	AVG
4.1779	28.67	9.85	38.52	56.00	-17.48	QP
4.1779	18.34	9.85	28.19	46.00	-17.81	AVG
6.1220	31.20	9.88	41.08	60.00	-18.92	QP
6.1220	19.24	9.88	29.12	50.00	-20.88	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Smart Phone	Model Name :	C19
Temperature:	22 °C	Relative Humidity:	59%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 230V/50Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.4140	27.48	9.74	37.22	57.57	-20.35	QP
0.4140	16.64	9.74	26.38	47.57	-21.19	AVG
0.5340	24.06	9.74	33.80	56.00	-22.20	QP
0.5340	10.95	9.74	20.69	46.00	-25.31	AVG
0.8820	22.97	9.74	32.71	56.00	-23.29	QP
0.8820	12.64	9.74	22.38	46.00	-23.62	AVG
3.3060	26.97	9.84	36.81	56.00	-19.19	QP
3.3060	10.55	9.84	20.39	46.00	-25.61	AVG
3.7139	27.95	9.84	37.79	56.00	-18.21	QP
3.7139	14.73	9.84	24.57	46.00	-21.43	AVG
19.8060	30.55	10.22	40.77	60.00	-19.23	QP
19.8060	10.94	10.22	21.16	50.00	-28.84	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to Fee Fait 13:203, Restricted bands				
MHz	MHz	MHz	GHz	
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	(2)	
13.36-13.41				

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
Frequency(MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

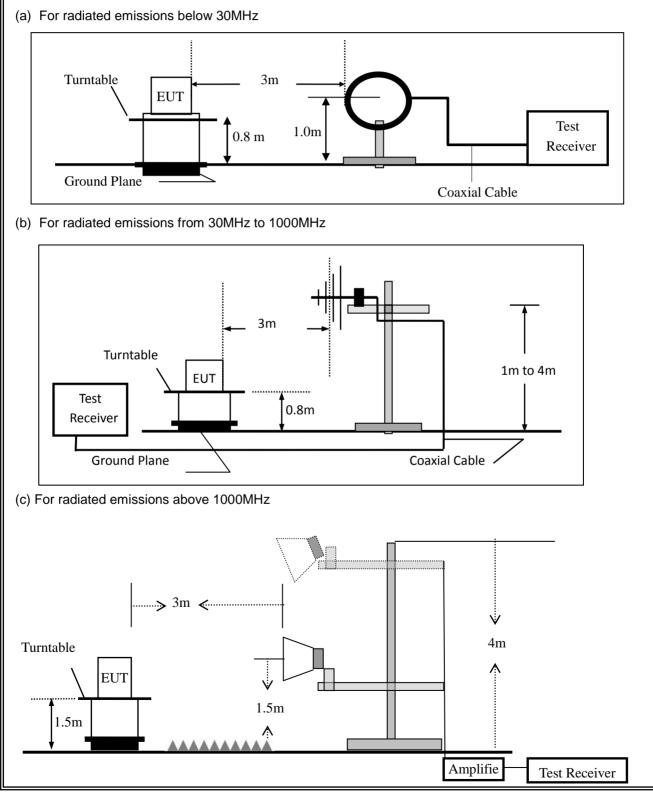
Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting			
Attenuation	Auto			
Start Frequency	1000 MHz			
Stop Frequency	10th carrier harmonic			
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average			

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,

- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

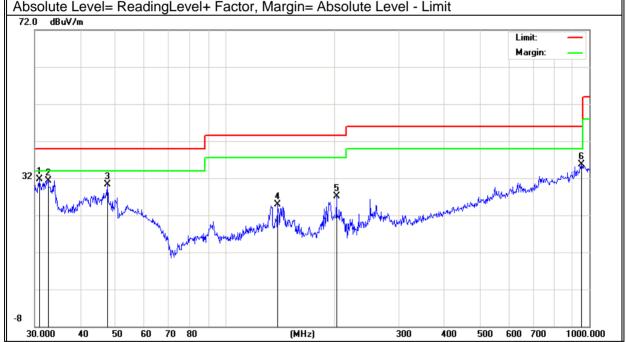
■ Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	M	lodel No.:	C19
Temperature:	20 ℃	Re	elative Humidity:	48%
Test Mode:	802.11b/g/n(HT20, H	T40) Te	est By:	Mary Hu

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz)


All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	C19
Temperature:	25 ℃	Relative Humidity:	52%
Pressure:	1010hPa	Test Mode:	Normal Link
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.8535	13.32	18.39	31.71	40.00	-8.29	peak
V	32.6340	13.68	17.63	31.31	40.00	-8.69	peak
V	47.4917	19.40	10.81	30.21	40.00	-9.79	peak
V	139.3611	12.48	12.43	24.91	43.50	-18.59	peak
V	202.1005	17.71	9.40	27.11	43.50	-16.39	peak
V	952.0937	7.23	28.40	35.63	46.00	-10.37	peak

Remark:

Absolute Level= ReadingLevel+ Factor, Margin= Absolute Level - Limit

Polar	Frequer	су		eter ading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz))	(dl	BuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	rtoman
Н	32.519	7	5	5.81	17.66	23.47	40.00	-16.53	peak
Н	193.094	45	16	6.10	8.92	25.02	43.50	-18.48	peak
Н	231.71	78	1:	5.78	10.94	26.72	46.00	-19.28	peak
Н	306.75	36	12	2.50	15.22	27.72	46.00	-18.28	peak
Н	661.15)3	8	3.34	22.58	30.92	46.00	-15.08	peak
Н	955.43	79	7	.70	28.41	36.11	46.00	-9.89	peak
								Margin:	
72.0 dE	3uV/m							Limit: Margin:	
									6
32	har wanter and the second				with the state of	2 MM MM	Month and the second second	M. M. Maryon	And the Contraction
		htelinet av	Mayneed	4~V/ ~~~M	Mina and an and and and				
-8									

NTEK北测

Report No.: S20072301103003

Spurious E	Emission	Above 1G	iHz (1GHz	to 25GHz	<u>(</u>)				
EUT:		Smart Pho	ne		Model	No.:	C19		
Temperature:		20 °C			Relativ	e Humidity:	48%		
Test Mode:		802.11b/g/	n(HT20, H	IT40)	Test B	y:	Mary H	Hu	
All the modulat	ion mod	es have be	en tested	, and the v	vorst result	was report	as below		
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
		l	ow Channe	el (2412 MF	lz)(802.11b)	Above 1G			
4824.06	63.49	5.21	35.59	44.30	59.99	74.00	-14.01	Pk	Vertical
4824.06	43.42	5.21	35.59	44.30	39.92	54.00	-14.08	AV	Vertical
7236.13	63.97	6.48	36.27	44.60	62.12	74.00	-11.88	Pk	Vertical
7236.13	43.20	6.48	36.27	44.60	41.35	54.00	-12.65	AV	Vertical
4824.19	62.78	5.21	35.55	44.30	59.24	74.00	-14.76	Pk	Horizontal
4824.19	42.19	5.21	35.55	44.30	38.65	54.00	-15.35	AV	Horizontal
7236.91	65.29	6.48	36.27	44.52	63.52	74.00	-10.48	Pk	Horizontal
7236.91	43.63	6.48	36.27	44.52	41.86	54.00	-12.14	AV	Horizontal
		М	iddle Chanr	nel (2437 N	IHz)(802.11b)Above 1G			
4874.65	67.73	5.21	35.66	44.20	64.40	74.00	-9.60	Pk	Vertical
4874.65	43.50	5.21	35.66	44.20	40.17	54.00	-13.83	AV	Vertical
7311.85	63.95	7.10	36.50	44.43	63.12	74.00	-10.88	Pk	Vertical
7311.85	43.96	7.10	36.50	44.43	43.13	54.00	-10.87	AV	Vertical
4874.47	60.97	5.21	35.66	44.20	57.64	74.00	-16.36	Pk	Horizontal
4874.47	40.01	5.21	35.66	44.20	36.68	54.00	-17.32	AV	Horizontal
7311.88	65.00	7.10	36.50	44.43	64.17	74.00	-9.83	Pk	Horizontal
7311.88	41.16	7.10	36.50	44.43	40.33	54.00	-13.67	AV	Horizontal
	High Channel (2462 MHz)(802.11b)Above 1G								
4925.31	63.53	5.21	35.52	44.21	60.05	74.00	-13.95	Pk	Vertical
4925.31	43.74	5.21	35.52	44.21	40.26	54.00	-13.74	AV	Vertical
7386.00	63.10	7.10	36.53	44.60	62.13	74.00	-11.87	Pk	Vertical
7386.00	42.96	7.10	36.53	44.60	41.99	54.00	-12.01	AV	Vertical
4924.26	59.43	5.21	35.52	44.21	55.95	74.00	-18.05	Pk	Horizontal
4924.26	42.80	5.21	35.52	44.21	39.32	54.00	-14.68	AV	Horizontal
7386.09	63.84	7.10	36.53	44.60	62.87	74.00	-11.13	Pk	Horizontal
7386.09	42.94	7.10	36.53	44.60	41.97	54.00	-12.032	AV	Horizontal

Note:

- (1) Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor
- (2) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (3)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz. All the modulation modes have been tested, and the worst result was report as below:

nodulation	n modes h	ave been	tested, ai	nd the wo	orst result	was repo	ort as bel	ow:	
Frequenc y	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detecto r	Commen
(MHz)	(dBµV)	(dB)	dB/m	(dB)		(dBµV/m)	(dB)	Туре	
				802.1	1b				
2310.00	67.47	2.97	27.80	43.80	54.44	74	-19.56	Pk	Horizonta
2310.00	40.49	2.97	27.80	43.80	27.46	54	-26.54	AV	Horizonta
2310.00	63.30	2.97	27.80	43.80	50.27	74	-23.73	Pk	Vertical
2310.00	42.12	2.97	27.80	43.80	29.09	54	-24.91	AV	Vertical
2390.00	52.06	3.14	27.21	43.80	38.61	74	-35.39	Pk	Vertical
2390.00	43.37	3.14	27.21	43.80	29.92	54	-24.08	AV	Vertical
2390.00	52.15	3.14	27.21	43.80	38.70	74	-35.30	Pk	Horizonta
2390.00	40.20	3.14	27.21	43.80	26.75	54	-27.25	AV	Horizonta
2483.50	53.24	3.58	27.70	44.00	40.52	74	-33.48	Pk	Vertical
2483.50	42.62	3.58	27.70	44.00	29.90	54	-24.10	AV	Vertical
2483.50	51.22	3.58	27.70	44.00	38.50	74	-35.50	Pk	Horizonta
2483.50	43.46	3.58	27.70	44.00	30.74	54	-23.26	AV	Horizonta
				802.1	1g				
2310.00	65.73	2.97	27.80	43.80	52.70	74	-21.30	Pk	Horizonta
2310.00	40.52	2.97	27.80	43.80	27.49	54	-26.51	AV	Horizonta
2310.00	54.96	2.97	27.80	43.80	41.93	74	-32.07	Pk	Vertical
2310.00	41.41	2.97	27.80	43.80	28.38	54	-25.62	AV	Vertical
2390.00	53.62	3.14	27.21	43.80	40.17	74	-33.83	Pk	Vertical
2390.00	43.11	3.14	27.21	43.80	29.66	54	-24.34	AV	Vertical
2390.00	52.73	3.14	27.21	43.80	39.28	74	-34.72	Pk	Horizonta
2390.00	40.94	3.14	27.21	43.80	27.49	54	-26.51	AV	Horizonta
2483.50	50.97	3.58	27.70	44.00	38.25	74	-35.75	Pk	Vertical
2483.50	42.44	3.58	27.70	44.00	29.72	54	-24.28	AV	Vertical
2483.50	52.48	3.58	27.70	44.00	39.76	74	-34.24	Pk	Horizonta
2483.50	42.61	3.58	27.70	44.00	29.89	54	-24.11	AV	Horizonta
			-	802.11	n20		-		-
2310.00	60.21	2.97	27.80	43.80	47.18	74	-26.82	Pk	Horizonta
2310.00	40.80	2.97	27.80	43.80	27.77	54	-26.23	AV	Horizonta
2310.00	61.10	2.97	27.80	43.80	48.07	74	-25.93	Pk	Vertical
2310.00	42.20	2.97	27.80	43.80	29.17	54	-24.83	AV	Vertical
2390.00	54.52	3.14	27.21	43.80	41.07	74	-32.93	Pk	Vertical
2390.00	40.68	3.14	27.21	43.80	27.23	54	-26.77	AV	Vertical
2390.00	54.45	3.14	27.21	43.80	41.00	74	-33.00	Pk	Horizonta
2390.00	44.93	3.14	27.21	43.80	31.48	54	-22.52	AV	Horizonta
2483.50	51.29	3.58	27.70	44.00	38.57	74	-35.43	Pk	Vertical
2483.50	43.69	3.58	27.70	44.00	30.97	54	-23.03	AV	Vertical
2483.50	50.25	3.58	27.70	44.00	37.53	74	-36.47	Pk	Horizonta
2483.50	44.10	3.58	27.70	44.00	31.38	54	-22.62	AV	Horizonta
				802.11	n40				
2310.00	61.80	2.97	27.80	43.80	48.77	74	-25.23	Pk	Horizonta
2310.00	41.72	2.97	27.80	43.80	28.69	54	-25.31	AV	Horizonta
2310.00	64.52	2.97	27.80	43.80	51.49	74	-22.51	Pk	Vertical
2310.00	44.39	2.97	27.80	43.80	31.36	54	-22.64	AV	Vertical
2390.00	54.17	3.14	27.21	43.80	40.72	74	-33.28	Pk	Vertical
2390.00	40.06	3.14	27.21	43.80	26.61	54	-27.39	AV	Vertical
2390.00	51.90	3.14	27.21	43.80	38.45	74	-35.55	Pk	Horizonta
2390.00	40.78	3.14	27.21	43.80	27.33	54	-26.67	AV	Horizonta
2483.50	52.23	3.58	27.70	44.00	39.51	74	-34.49	Pk	Vertical
2483.50	44.89	3.58	27.70	44.00	32.17	54	-21.83	AV	Vertical
2483.50	53.48	3.58	27.70	44.00	40.76	74	-33.24	Pk	Horizonta
2483.50	44.06	3.58	27.70	44.00	31.34	54	-22.66	AV	Horizonta

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	63.07	4.04	29.57	44.70	51.98	74	-22.02	Pk	Vertical
3260	54.91	4.04	29.57	44.70	43.82	54	-10.18	AV	Vertical
3260	64.73	4.04	29.57	44.70	53.64	74	-20.36	Pk	Horizontal
3260	57.22	4.04	29.57	44.70	46.13	54	-7.87	AV	Horizontal
3332	60.37	4.26	29.87	44.40	50.10	74	-23.90	Pk	Vertical
3332	56.15	4.26	29.87	44.40	45.88	54	-8.12	AV	Vertical
3332	62.43	4.26	29.87	44.40	52.16	74	-21.84	Pk	Horizontal
3332	54.50	4.26	29.87	44.40	44.23	54	-9.77	AV	Horizontal
17797	45.82	10.99	43.95	43.50	57.26	74	-16.74	Pk	Vertical
17797	35.46	10.99	43.95	43.50	46.90	54	-7.10	AV	Vertical
17788	46.67	11.81	43.69	44.60	57.57	74	-16.43	Pk	Horizontal
17788	33.37	11.81	43.69	44.60	44.27	54	-9.73	AV	Horizontal

"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW = 100KHz VBW \geq 3*RBW Sweep = auto Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	C19
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Mary Hu

Test data reference attachment.

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

The transmitter output is connected to the Spectrum Analyzer. We tested accroding to the zero-span measurement method, 6.0)b) in KDB 558074

The largest available value of RBW is 8 MHz and VBW is 50 MHz. The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Zero Span RBW = 8MHz(the largest available value) VBW = 8MHz (\geq RBW) Number of points in Sweep >100 Detector function = peak Trace = Clear write Measure T_{total} and T_{on} Calculate Duty Cycle = T_{on}/T_{total}

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	C19
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	N/A	Test By:	N/A

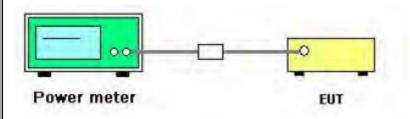
Note: Not applicable

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting
Detector	Peak

7.5.4 Test Setup

7.5.5 Test Procedure

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the *DTS bandwidth* and shall utilize a fast-responding diode detector.

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

7.5.7 Test Results

EUT:	Smart Phone	Model No.:	C19
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Mary Hu

Test data reference attachment.

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

a) Set analyzer center frequency to DTS channel center frequency.

b) Set the span to 1.5 times the DTS bandwidth.

c) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.

d) Set the VBW \geq 3 *RBW.

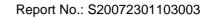
e) Detector = peak.

f) Sweep time = auto couple.

g) Trace mode = max hold.

h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.


j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	C19
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Mary Hu

Test data reference attachment.

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	C19
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Mary Hu

Test data reference attachment.

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

1. Below -30dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength , and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

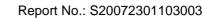
7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The EUT antenna is permanent attached PIFA Antenna (Gain: 1 dBi). It comply with the standard requirement.

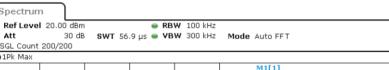

8 TEST RESULTS

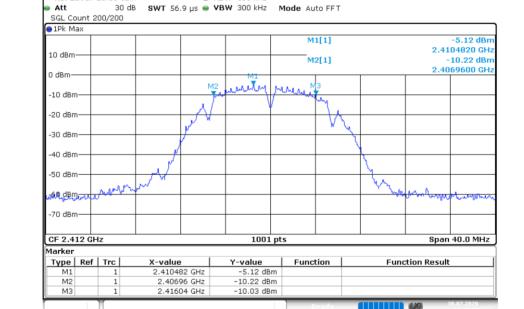
8.1 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict
		(MHz)		Power	(dBm)	
				(dBm)		
NVNT	802.11b	2412	Ant 1	12.21	30	Pass
NVNT	802.11b	2437	Ant 1	11.47	30	Pass
NVNT	802.11b	2462	Ant 1	12.15	30	Pass
NVNT	802.11g	2412	Ant 1	11.82	30	Pass
NVNT	802.11g	2437	Ant 1	11.46	30	Pass
NVNT	802.11g	2462	Ant 1	12.42	30	Pass
NVNT	802.11n(HT20)	2412	Ant 1	11.9	30	Pass
NVNT	802.11n(HT20)	2437	Ant 1	11.27	30	Pass
NVNT	802.11n(HT20)	2462	Ant 1	12.54	30	Pass
NVNT	802.11n(HT40)	2422	Ant 1	11.22	30	Pass
NVNT	802.11n(HT40)	2437	Ant 1	11.97	30	Pass
NVNT	802.11n(HT40)	2452	Ant 1	10.85	30	Pass

ACCREDITED

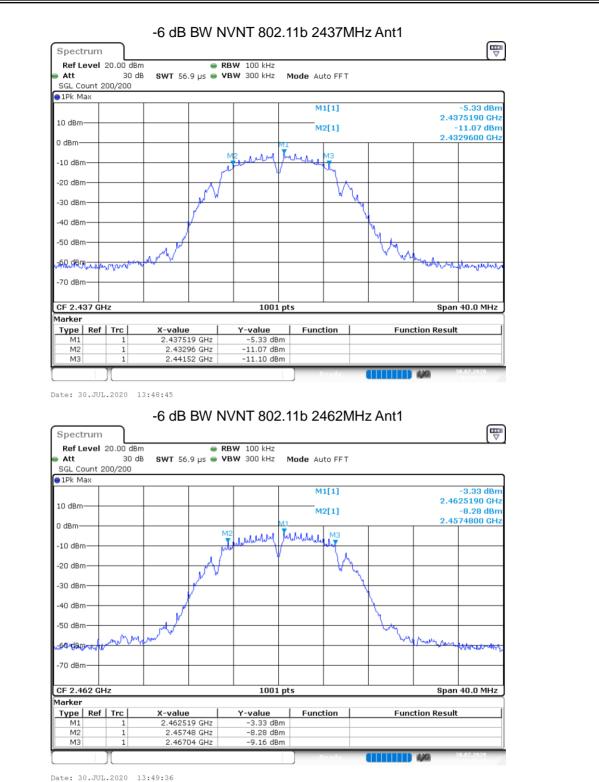
Certificate #4298.01


₽

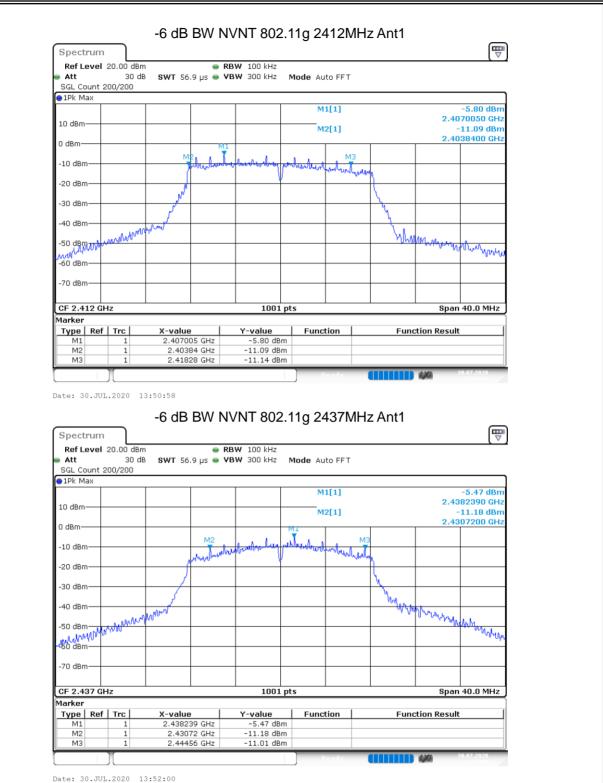

8.2 **OCCUPIED CHANNEL BANDWIDTH**

Spectrum

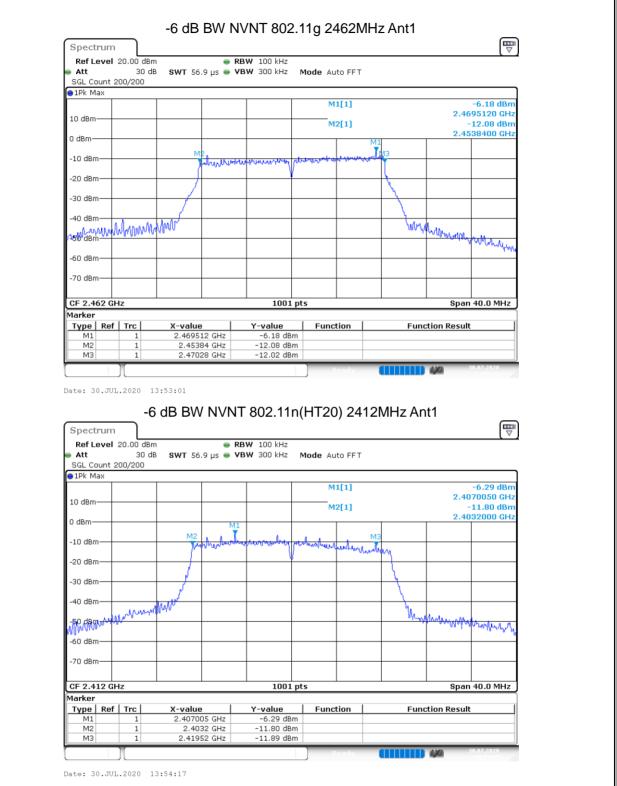
Condition	Mode	Frequency	Antenna	-6 dB	Limit -6	Verdict
		(MHz)		Bandwidth	dB	
				(MHz)	Bandwidth	
					(MHz)	
NVNT	802.11b	2412	Ant 1	9.08	0.5	Pass
NVNT	802.11b	2437	Ant 1	8.56	0.5	Pass
NVNT	802.11b	2462	Ant 1	9.56	0.5	Pass
NVNT	802.11g	2412	Ant 1	14.44	0.5	Pass
NVNT	802.11g	2437	Ant 1	13.84	0.5	Pass
NVNT	802.11g	2462	Ant 1	16.44	0.5	Pass
NVNT	802.11n(HT20)	2412	Ant 1	16.32	0.5	Pass
NVNT	802.11n(HT20)	2437	Ant 1	13.92	0.5	Pass
NVNT	802.11n(HT20)	2462	Ant 1	17.316	0.5	Pass
NVNT	802.11n(HT40)	2422	Ant 1	36	0.5	Pass
NVNT	802.11n(HT40)	2437	Ant 1	26.32	0.5	Pass
NVNT	802.11n(HT40)	2452	Ant 1	36.08	0.5	Pass
	NVNT NVNT NVNT NVNT NVNT NVNT NVNT NVNT	NVNT 802.11b NVNT 802.11b NVNT 802.11b NVNT 802.11g NVNT 802.11g NVNT 802.11g NVNT 802.11g NVNT 802.11g NVNT 802.11g NVNT 802.11n(HT20) NVNT 802.11n(HT20) NVNT 802.11n(HT40) NVNT 802.11n(HT40)	NVNT 802.11b 2412 NVNT 802.11b 2437 NVNT 802.11b 2462 NVNT 802.11g 2412 NVNT 802.11g 2442 NVNT 802.11g 2437 NVNT 802.11g 2442 NVNT 802.11g 2442 NVNT 802.11g 2462 NVNT 802.11n(HT20) 2412 NVNT 802.11n(HT20) 2437 NVNT 802.11n(HT40) 2422 NVNT 802.11n(HT40) 2437	NVNT 802.11b 2412 Ant 1 NVNT 802.11b 2437 Ant 1 NVNT 802.11b 2462 Ant 1 NVNT 802.11g 2462 Ant 1 NVNT 802.11g 2412 Ant 1 NVNT 802.11g 2437 Ant 1 NVNT 802.11g 2462 Ant 1 NVNT 802.11g 2462 Ant 1 NVNT 802.11g 2462 Ant 1 NVNT 802.11n(HT20) 2412 Ant 1 NVNT 802.11n(HT20) 2437 Ant 1 NVNT 802.11n(HT20) 2462 Ant 1 NVNT 802.11n(HT20) 2437 Ant 1 NVNT 802.11n(HT40) 2422 Ant 1 NVNT 802.11n(HT40) 2437 Ant 1	NVNT802.11b2412Ant 19.08NVNT802.11b2437Ant 19.08NVNT802.11b2437Ant 18.56NVNT802.11b2462Ant 19.56NVNT802.11g2412Ant 114.44NVNT802.11g2437Ant 113.84NVNT802.11g2462Ant 116.44NVNT802.11n(HT20)2412Ant 116.32NVNT802.11n(HT20)2437Ant 113.92NVNT802.11n(HT20)2462Ant 117.316NVNT802.11n(HT40)2422Ant 136NVNT802.11n(HT40)2437Ant 126.32	Image: NVNT 802.11b 2412 Ant 1 9.08 0.5 NVNT 802.11b 2412 Ant 1 9.08 0.5 NVNT 802.11b 2437 Ant 1 8.56 0.5 NVNT 802.11b 2462 Ant 1 9.56 0.5 NVNT 802.11g 2412 Ant 1 14.44 0.5 NVNT 802.11g 2437 Ant 1 13.84 0.5 NVNT 802.11g 2462 Ant 1 16.44 0.5 NVNT 802.11n(HT20) 2412 Ant 1 16.32 0.5 NVNT 802.11n(HT20) 2412 Ant 1 16.32 0.5 NVNT 802.11n(HT20) 2437 Ant 1 13.92 0.5 NVNT 802.11n(HT20) 2462 Ant 1 13.92 0.5 NVNT 802.11n(HT20) 2462 Ant 1 13.92 0.5 NVNT 802.11n(HT40) 2422 Ant 1 17.316 0.5

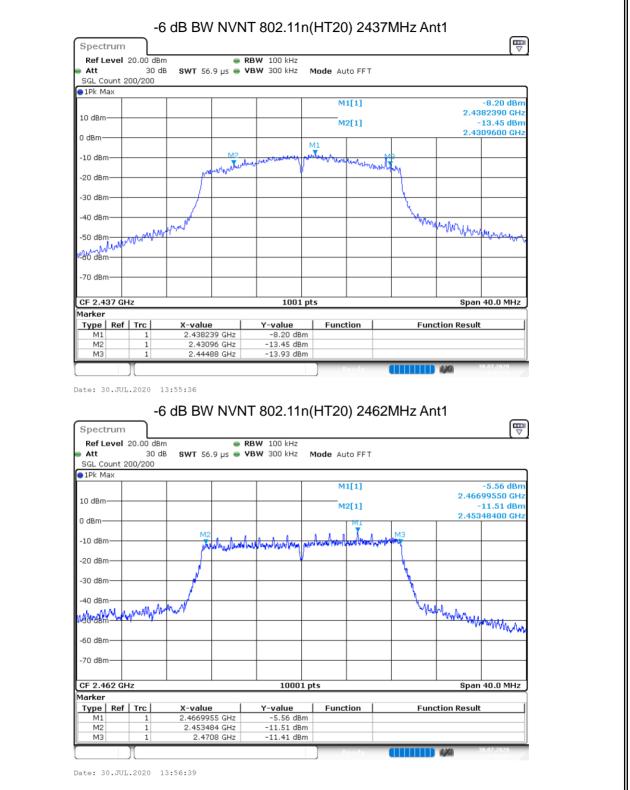


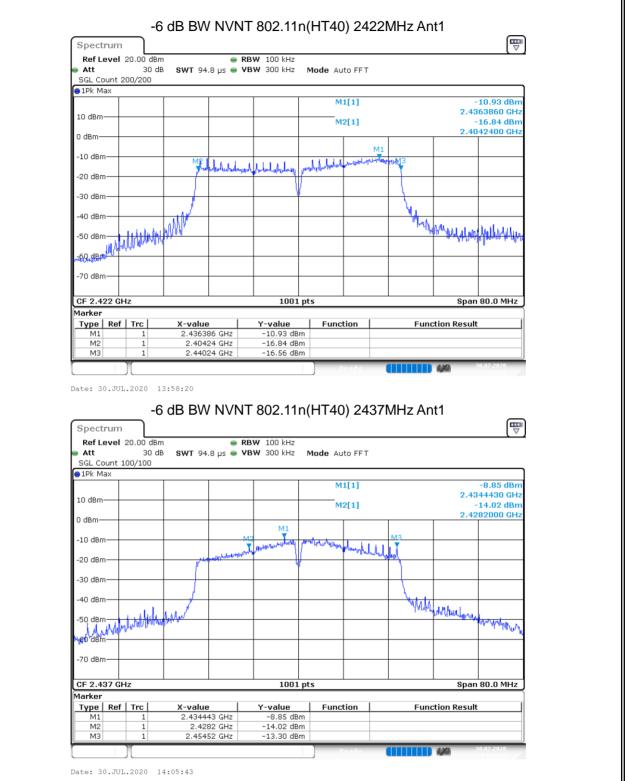
-6 dB BW NVNT 802.11b 2412MHz Ant1



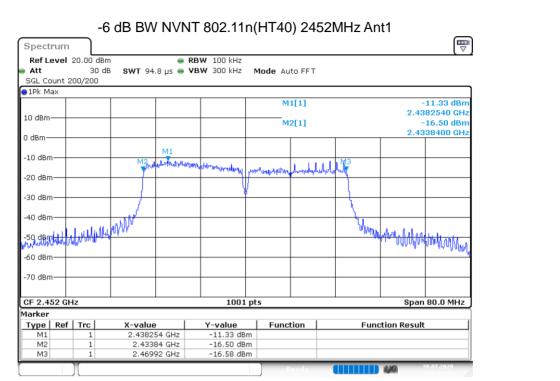
Date: 30.JUL.2020 13:47:49

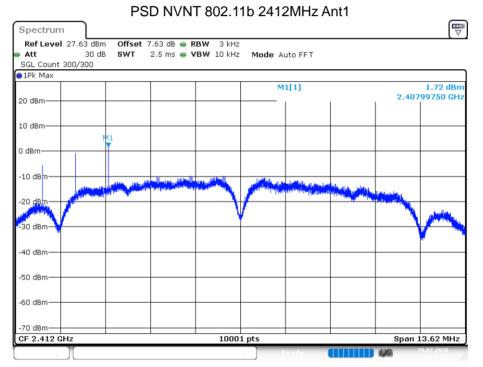




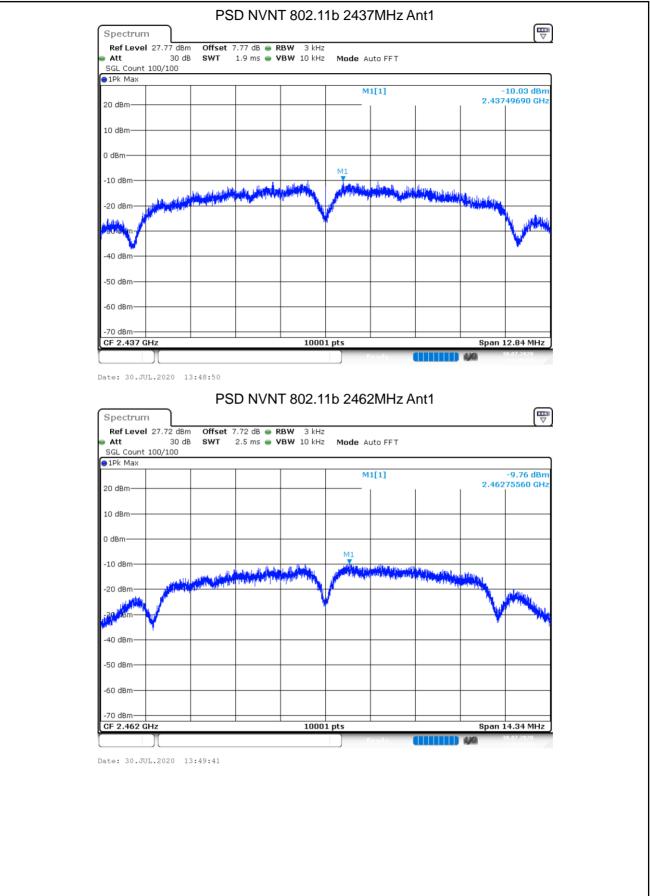


Version.1.3



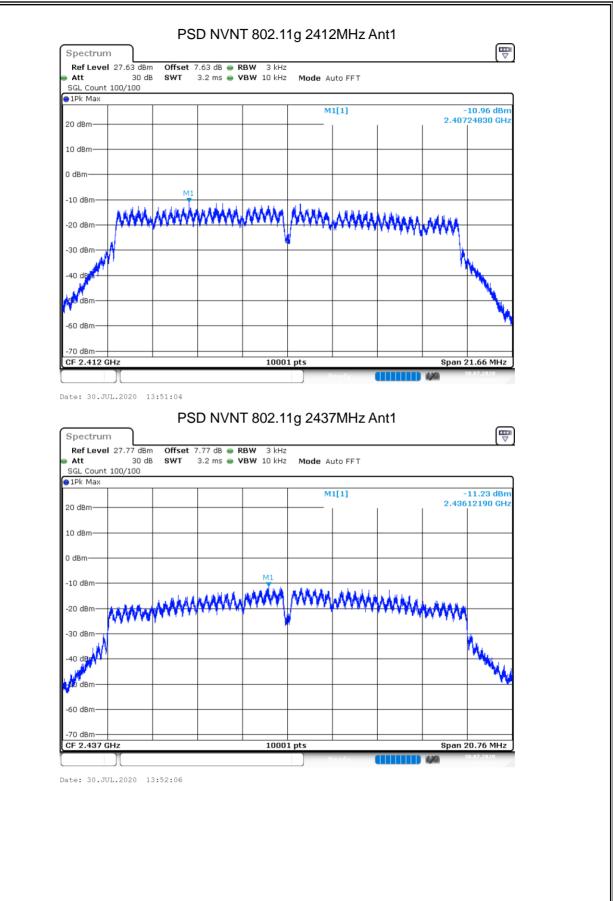


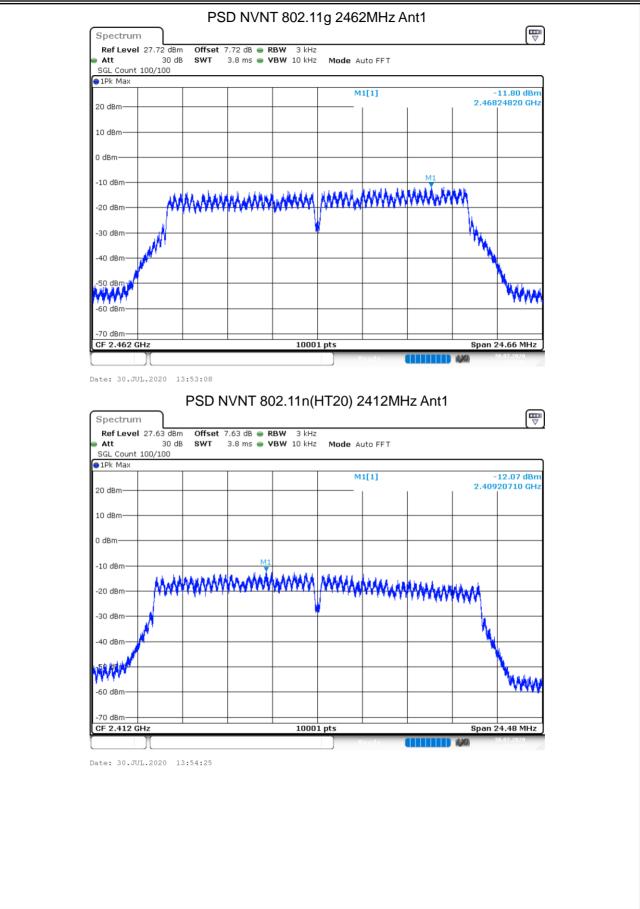
Date: 30.JUL.2020 14:01:03


8.3 MAXIMUM POWER SPECTRAL DENSITY LEVEL

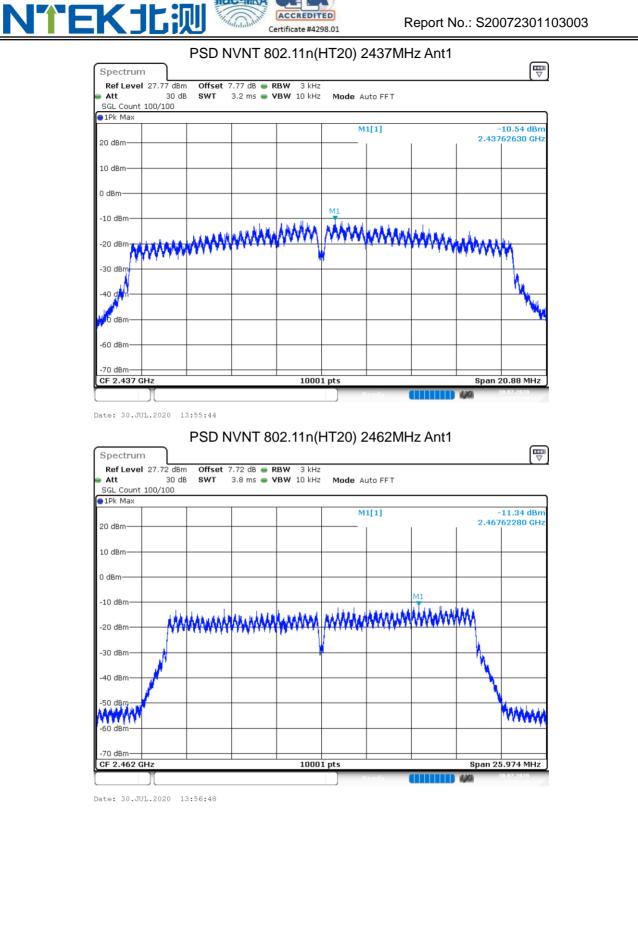
0.5 IVIANI	NUM FOWER SPECT	KAL DENSITT L				
Condition	Mode	Frequency	Antenna	Max PSD	Limit	Verdict
		(MHz)		(dBm/3kHz)	(dBm/3kHz)	
NVNT	802.11b	2412	Ant 1	1.72	8	Pass
NVNT	802.11b	2437	Ant 1	-10.03	8	Pass
NVNT	802.11b	2462	Ant 1	-9.76	8	Pass
NVNT	802.11g	2412	Ant 1	-10.96	8	Pass
NVNT	802.11g	2437	Ant 1	-11.23	8	Pass
NVNT	802.11g	2462	Ant 1	-11.80	8	Pass
NVNT	802.11n(HT20)	2412	Ant 1	-12.07	8	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-10.54	8	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-11.34	8	Pass
NVNT	802.11n(HT40)	2422	Ant 1	-14.34	8	Pass
NVNT	802.11n(HT40)	2437	Ant 1	-12.16	8	Pass
NVNT	802.11n(HT40)	2452	Ant 1	-14.94	8	Pass

Date: 30.JUL.2020 13:47:56

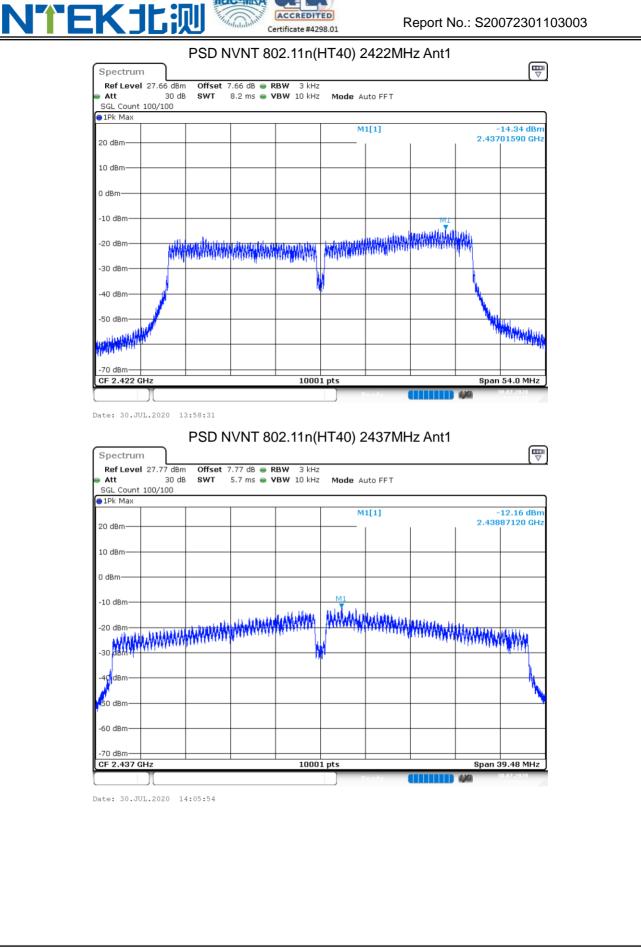


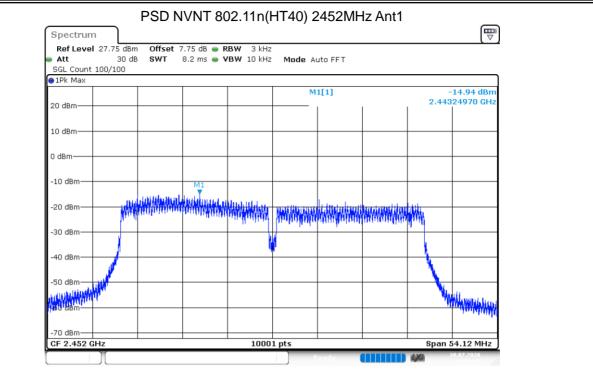

ACCREDITED

Certificate #4298.01



ACCREDITED


Certificate #4298.01


AC-MR

ACCREDITED

Date: 30.JUL.2020 14:01:15

8.4 BAND EDGE

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11b	2412	Ant 1	-52.03	-20	Pass
NVNT	802.11b	2462	Ant 1	-55.03	-20	Pass
NVNT	802.11g	2412	Ant 1	-49.95	-20	Pass
NVNT	802.11g	2462	Ant 1	-47.91	-20	Pass
NVNT	802.11n(HT20)	2412	Ant 1	-52.39	-20	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-46.51	-20	Pass
NVNT	802.11n(HT40)	2422	Ant 1	-42.55	-20	Pass
NVNT	802.11n(HT40)	2452	Ant 1	-38.82	-20	Pass

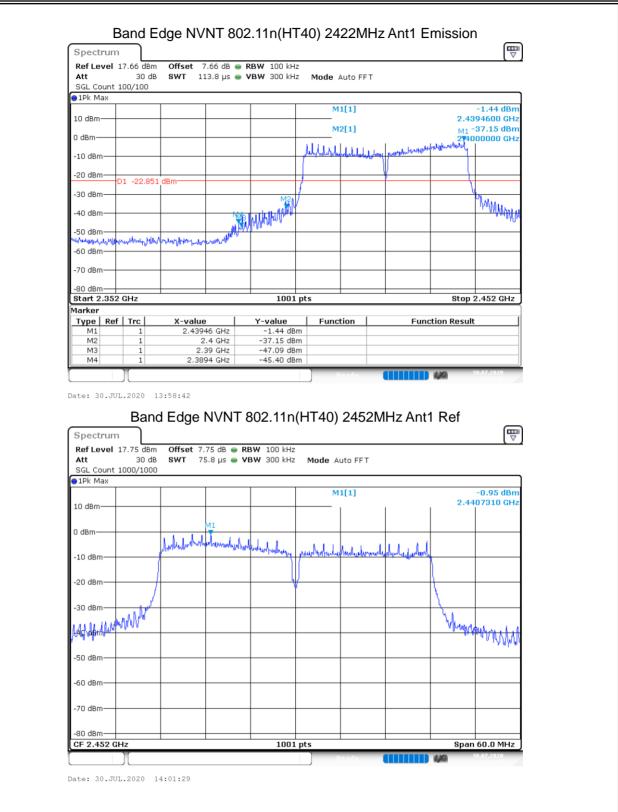
Date: 30.JUL.2020 13:47:59

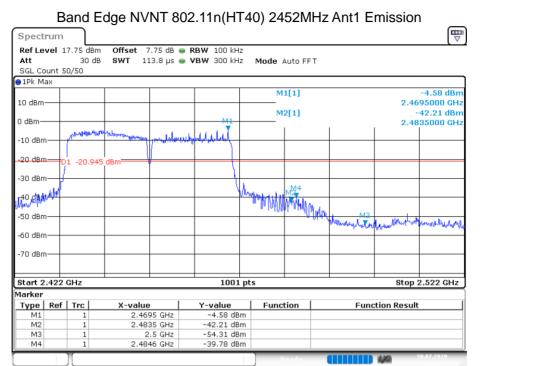
			M1[1]		2.6	i0 dBm
10 dBm			M2[1]		M1 2.41097	00 GHz 11 dBm
0 dBm				1	white the booo	DO GHZ
-10 dBm				<u></u> ∦	· 1	
-20 dBm D1 -1	18.060 dBm					
-30 dBm						
-40 dBm	M4			M2		1.
-50 dBm	resonated multimeted and	Marrianteral marked marries	M3	NJ Marth Control of the second second		Manda
-60 dBm			- Point deserve	·		
-70 dBm						
-80 dBm		1001			01 0.40	
Start 2.327 GHz Marker	2	1001 pts			Stop 2.42	7 GHZ
Type Ref Tro	c X-value 1 2.41097 G		Function	Functio	on Result	
	1 2.4 G 1 2.39 G					
Spectrum Ref Level 17.72 Att	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB swT 37.9 μ	Hz -50.09 dBm NVNT 802.11b	Produ 2462MHz de Auto FFT	z Ant1 Ref	30.07.2	1020
Spectrum Ref Level 17.72	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB swT 37.9 μ	Hz -50.09 dBm NVNT 802.11b	de Auto FFT	z Ant1 Ref		
Spectrum Ref Level 17.72 Att SGL Count 100/1 ●1Pk Max	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB swT 37.9 μ	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT	z Ant1 Ref		8 dBm
Spectrum Ref Level 17.72 Att SGL Count 100/1 PIPk Max 10 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 	z Ant1 Ref	4.8	8 dBm
Spectrum Ref Level 17.72 Att SGL Count 100/1 ●1Pk Max	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT	z Ant1 Ref	4.8	8 dBm
Spectrum Ref Level 17.72 Att SGL Count 100/1 PIPk Max 10 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 	z Ant1 Ref	4.8	8 dBm
Spectrum Ref Level 17.72 Att 5 SGL Count 100/1 @ IPk Max 10 dBm 0 dBm -10 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 	z Ant1 Ref	4.8	8 dBm
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att SGL Count 100/3 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 	z Ant1 Ref	4.8	8 dBm
Date: 30.JUL.20; Spectrum Ref Level 17.72 Att SGL Count 100/1 ● IPk Max 10 dBm 0 dBm -10 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 	z Ant1 Ref	4.8	8 dBm
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att 35 SGL Count 100/1 9 IO dBm 9 -10 dBm -20 dBm -30 dBm -40 dBm	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	8 dBm
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att 35 SGL Count 100/1 9 IO dBm 9 -10 dBm -20 dBm -30 dBm -40 dBm	1 2.348 G 20 13:48:02 Band Edge 2 dBm Offset 7.72 d 30 dB SWT 37.9 μ 100	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	18 dBm 90 GHz
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att 35 SGL Count 100/3 9 IO dBm 9 10 dBm 9 -10 dBm 9 -20 dBm 9 -30 dBm 9 -40 dBm 9	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	8 dBm
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att 35 SGL Count 100/1 9 IO dBm 9 -10 dBm -20 dBm -30 dBm -40 dBm	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	18 dBm 90 GHz
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att 35 SGL Count 100/3 9 IO dBm 9 10 dBm 9 -10 dBm 9 -20 dBm 9 -30 dBm 9 -40 dBm 9	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	18 dBm 90 GHz
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att SGL Count 100/1 SGL Count 100/1 10/1 ● 1Pk Max 10 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm - -50 dBm - -70 dBm - -80 dBm -	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.6	וא dBm 90 GHz יי ^{אל} נקאט
Date: 30.JUL.20: Spectrum Ref Level 17.72 Att :: SGL Count 100/1 ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm	1 2.348 G	Hz -50.09 dBm NVNT 802.11b B RBW 100 kHz JS VBW 300 kHz Mo	de Auto FFT 		4.8	וא dBm 90 GHz יי ^{אל} נקאט

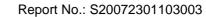
M1[1] 3.05 dBm 0 dBm M1[1] 3.05 dBm 10 dBm M2[1] -53.46 dBm 10 dBm 2.4835000 GHz -53.46 dBm 10 dBm 101 -15.118 dBm 101 -15.118 dBm 20 dBm 10 dBm 101 -15.118 dBm 30 dBm 101 -15.118 dBm 101 -15.118 dBm 20 dBm 100 dBm 100 - 1	M1 3.05 dBm M1 2.4625300 GHz .53.46 dBm 2.4835000 GHz .600 2.4835000 GHz .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .710 .700 .7100 .700 .7100 .700 .7100 .700 .7100 .700 .7100 .700 .7100	1Pk Max 10 dBm 0 dBm 10 dBm		,		VBW 300 kH	- moue	Auto FFT			
dBm M2[1] -53.46 dBm 10 dBm 2.4835000 GHz 10 dBm 1 20 dBm 1 20 dBm 1 30 dBm 1 40 dBm 1 40 dBm 1 10 dBm 1 10 dBm 1 11 dBm 1 12 dBm 1 12 dBm 1 10 dBm 1	M2[1] -53.46 dBm 2.4835000 GHz M101 -15.118 dBm M101 -15.118 dBm M101 -15.118 dBm M101 -15.118 dBm M2 M3 M3 M4 M3 M3 M4 M3 M3 M3 M4 M4 M3 M4 M4 M4 M4 <th>0 dBm</th> <th></th> <th></th> <th></th> <th></th> <th>м</th> <th>1[1]</th> <th></th> <th></th> <th>3.05 dBm</th>	0 dBm					м	1[1]			3.05 dBm
0 dBm 0 dBm 2.4835000 GHz 10 dBm 0 l 0 0 20 dBm 0 l 0 0 30 dBm 0 0 0 30 dBm 0 0 0 40 dBm 0 0 0 40 dBm 0 0 0 40 dBm 0 0 0 60 dBm 0 0 0 70 dBm 0 0 0 80 dBm 0 0 0 1001 pts Stop 2.547 GHz Type Ref Trc X-value Y-value Function Result M1 1 2.46253 GHz	2.4835000 GHz M		M1								
20 dBm 01 -15.118 dBm 0 0 20 dBm 0 0 0 0 30 dBm 0 0 0 0 40 dBm 0 0 0 0 40 dBm 0 0 0 0 60 dBm 0 0 0 0 60 dBm 0 0 0 0 70 dBm 0 0 0 0 80 dBm 0 0 0 0 1001 pts Stop 2.547 GHz Type Ref Trc X-value Y-value Function Result M1 1 2.46253 GHz 3.05 dBm	M 1-15.118 dBm M 1	10 dBm	week produce				M	2[1]			
20 dBm 01 -15.118 dBm 0 0 20 dBm 0 0 0 0 30 dBm 0 0 0 0 40 dBm 0 0 0 0 40 dBm 0 0 0 0 60 dBm 0 0 0 0 60 dBm 0 0 0 0 70 dBm 0 0 0 0 80 dBm 0 0 0 0 1001 pts Stop 2.547 GHz Type Ref Trc X-value Y-value Function Result M1 1 2.46253 GHz 3.05 dBm	M 1-15.118 dBm M 1		"	J.							
30 dBm 40 dBm 41 4 40 dBm 44 4 40 dBm 44 4 50 dBm 44 4 50 dBm 44 4 60 dBm 44 4 70 dBm 50 2.547 GHz 1001 pts 50 2.547 GHz 3001 pts 50 2.547 GHz 3001 pts 50 2.547 GHz	M M4 M3 M M4 M4 M M4 M3 M M4 M3 M M4 M4 M M4 M4 M M4 M4 M M4 M3 M M4 M3 M M4 M4 M4 M3 M4 M4 M3 M4 M4 M3 M4 M4 M3 M4 M M4 M3 M M4 M3 M M4 M3 M M4 M4 M M4 M4 M M4 M4 M4 M4 M4		D1 -15.118	dBm		_					
40 dBm M4 M2 M4 60 dBm M4 M2 M4 60 dBm M4 M2 M4 70 dBm M4 M2 M4 80 dBm M4 M2 M4 60 dBm M4 M2 M4 70 dBm M1 M1 M1	M M4 M3 M4 M3 M M4 M3 M4 M4 M M4 M4 M4 M4 M M4 M4 M4 M4 M M4 M4 M4 M4 M4	-20 dBm		1							
Mit Mit <td>Mail Mail <th< td=""><td>-30 dBm</td><td></td><td>_{</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<></td>	Mail Mail <th< td=""><td>-30 dBm</td><td></td><td>_{</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td></th<>	-30 dBm		_{		-					
Store Store <th< td=""><td>Image: Stop 2.547 GHz 1001 pts Stop 2.547 GHz 1001 pts</td><td>-40 dBm</td><td></td><td>_\</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Image: Stop 2.547 GHz 1001 pts Stop 2.547 GHz 1001 pts	-40 dBm		_\							
Store Store <th< td=""><td>Image: Stop 2.547 GHz 1001 pts Stop 2.547 GHz 1001 pts</td><td>wheel was</td><td></td><td>M</td><td>M4 M</td><td></td><td>MO</td><td></td><td></td><td></td><td></td></th<>	Image: Stop 2.547 GHz 1001 pts Stop 2.547 GHz 1001 pts	wheel was		M	M4 M		MO				
TO dBm Image: Constraint of the second	m	≁2@ .αBm—			murble	englin Minor man	Multun	marthernation	Ungano man	howwww.	whentpen
B0 dBm Image: Constraint of the second	m log	-60 dBm									
Stop 2.547 GHz 1001 pts Stop 2.547 GHz arker Type Ref Trc X-value Y-value Function Function Result M1 1 2.46253 GHz 3.05 dBm	2.447 GHz Stop 2.547 GHz Ref Trc X-value Y-value Function Function Result	-70 dBm									
Stop 2.547 GHz 1001 pts Stop 2.547 GHz arker Type Ref Trc X-value Y-value Function Function Result M1 1 2.46253 GHz 3.05 dBm	2.447 GHz Stop 2.547 GHz Ref Trc X-value Y-value Function Function Result	-80 dBm									
Type Ref Trc X-value Y-value Function Function Result M1 1 2.46253 GHz 3.05 dBm	Ref Trc X-value Y-value Function Function Result		GHz			1001	pts			Stop 2	2.547 GHz
M1 1 2.46253 GHz 3.05 dBm		Marker	1		1		1 -		-		
M2 1 2.4835 GHz -53.46 dBm	1 2.46253 GHz 3.05 dBm							tion	Func	tion Result	
M3 1 2.5 GHz -54.73 dBm											
M3 1 2.5 GHz -54.73 dBm M4 1 2.484 GHz -50.15 dBm											
Beady 30.07.2020								eady		1)(1)	0.07.2020
	1 2.484 GHz -50.15 dBm 0.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum well 17.63 dBm Offset 7.63 dB • RBW 100 kHz	SGL Count	100/100								
Att 30 dB SWT 37.9 μs 👄 VBW 300 kHz Mode Auto FFT SGL Count 100/100	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 10.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum evel 17.63 dBm Offset 7.63 dB • RBW 100 kHz 30 dB SWT 37.9 μs • YBW 300 kHz Mode Auto FFT ount 100/100						М	1[1]			0.26 dBm
Att 30 dB SWT 37.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 0.26 dBm	1 2.494 GHz -50.15 dBm 00.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum well 17.63 dB e RBW 100 kHz 30 dB swT 37.9 μs e VBW 300 kHz Mode Auto FFT ount 100/100 Tax M1[1] 0.26 dBm	10 dBm						I	1	2.41	07410 GHz
Att 30 dB SWT 37.9 μs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 0.26 dBm 2 4102410 CH=	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 1 2.492 020 10.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum swel 17.63 dBm Offset 7.63 dB • RBW 100 kHz 30 dB SWT 37.9 μs • VBW 300 kHz Mode Auto FFT ount 100/100 tax M1[1] 2.492 0.26 dBm 2.210 CHz					M1					
Att 30 dB SWT 37.9 μs ♥ VBW 300 kHz Mode Auto FFT SGL Count 100/100 100/100 100/100 100/100 0.26 dBm 1Pk Max	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 20.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum wel 17.63 dB • RBW 100 kHz 30 dB swr 37.9 μs • VBW 300 kHz Mode Auto FFT ount 100/100 M1[1] 0.26 dBm 0.26 dBm 0.26 dBm 0.26 dBm M1	0 dBm		mound	rentered	policializing	pertonent	CALLER .			
Att 30 dB SWT 37.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max 0 dBm	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 20.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum wel 17.63 dBm Offset 7.63 dB • RBW 100 kHz 30 dB SWT 37.9 μs • YBW 300 kHz Mode Auto FFT ount 100/100 M1[1] 0.26 dBm 2.4107410 GHz	-10 dBm						- www.V	mound		
Att 30 dB SWT 37.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100 100/100 100/100 0.26 dBm .0 dBm	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 20.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum Image: Colspan="2">Image: Colspan="2" Image: Cols			ا لر					L		
Att 30 dB SWT 37.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100 100/100 100/100 0.26 dBm .0 dBm	1 2.484 GHz -50.15 dBm 1 2.484 GHz -50.15 dBm 20.JUL.2020 13:49:47 Band Edge NVNT 802.11g 2412MHz Ant1 Ref trum Image: Colspan="2">Image: Colspan="2" Image: Cols		L. L.	F.					4 4		
Att 30 dB SWT 37.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max 0.26 dBm 0.26 dBm 0.26 dBm 0 dBm	1 2.494 GHz -50.15 dBm 20.72020 2	-20 dBm	7							ГL ₄	I I
Att 30 dB SWT 37.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100 10k Max 0.26 dBm 0 dBm M1[1] 0.26 dBm 1 dBm M1 2.4107410 GHz 10 dBm M1 10 dBm 20 dBm M1 10 dBm	1 2.484 GHz -50.15 dBm 207200 200100 20100 20100 20100 20100 20100 20100 20100 20100 20100 20100 20100 20100										

●1Pk Max			M1[1]			1.44 dBm
10 dBm					2.43 M1	132600 GHz
0 dBm			M2[1]	الد	manon humber 14	-37.71 dBm 00000 GHz
-10 dBm						www.
- -20 dBm D 1 -19.73	8 dBm					
-30 dBm						
-40 dBm				ART .		http
FO JD			Ma	Brow William		-10 MH
-60 dBm	dempersion of the second	torre dependence	K. Marther Marther Marth	`		
-70 dBm						
-80 dBm						
Start 2.327 GHz		1001	pts		Stop	2.427 GHz
Marker Type Ref Trc	X-value	Y-value	Function	Fu	nction Resul	t
M1 1 M2 1	2.41326 GHz 2.4 GHz					
M3 1 M4 1	2.39 GHz 2.3463 GHz					
			Ready	amm	1,70	30.07.2020
	Band Edge N		Mode Auto F	FT.	lef	
Spectrum Ref Level 17.72 dBn Att 30 dd SGL Count 100/100	Band Edge N	e RBW 100 kHz		FT.		0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 P1Pk Max 10 dBm	Band Edge N	e RBW 100 kHz	Mode Auto F	FT.		0.97 dBm
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 91Pk Max	Band Edge N offset 7.72 dB (swr 37.9 µs (RBW 100 kHz VBW 300 kHz	Mode Auto F M1[1]	FT		0.97 dBm
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 P1Pk Max 10 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1		0.97 dBm
Spectrum Ref Level 17.72 dBn Att 30 di SGL Count 100/100 P1Pk Max 10 dBm 0 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1		0.97 dBm
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1		0.97 dBm
Spectrum Ref Level 17.72 dBr Att 30 di SGL Count 100/100 IN Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBr Att 30 di SGL Count 100/100 IN Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm
Spectrum Ref Level 17.72 dBr Att 30 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 di SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F M1[1]	FT M1	2.40	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBr Att 30 di SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (RBW 100 kHz VBW 300 kHz	Mode Auto F	FT M1	2.4	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -60 dBm	Band Edge N offset 7.72 dB (swr 37.9 µs (• RBW 100 kHz	Mode Auto F	FT	2.4	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBn Att 30 dl SGL Count 100/100 ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm CF 2.462 GHz	Band Edge N	RBW 100 kHz VBW 300 kHz	Mode Auto F	FT M1	2.4	0.97 dBm 594930 GHz
Spectrum Ref Level 17.72 dBr Att 30 di SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	Band Edge N	RBW 100 kHz VBW 300 kHz	Mode Auto F	FT	2.4	0.97 dBm 594930 GHz

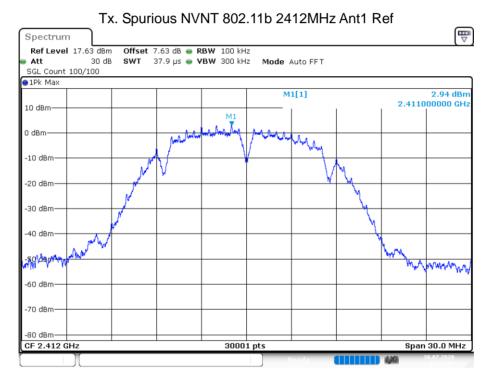
●1Pk Max		1		M1[1]			-0.57 dBm
10 dBm						2.46	82300 GHz
0 dBm	M1			M2[1]			47.93 dBm 35000 GHz
-10 dBm							
-20 dgm-D1 -19.034	⊢dBm						
-30 dBm							
-30 dpm	JAN W						
Bayer dBm	1	M24					
-50 dBm		- nostroffer	all and when a work of	M3 WWWWWWWWWW	hoter more shall will be	whelph man	hard hard hard hard hard hard hard hard
-60 dBm							
-70 dBm							
-80 dBm							
Start 2.447 GHz Marker			1001 p	ts		Stop 2	2.547 GHz
Type Ref Trc	X-value		Y-value	Function	Func	tion Result	
M1 1 M2 1		23 GHz 35 GHz	-0.57 dBm -47.93 dBm				
M3 1 M4 1		2.5 GHz 46 GHz	-54.14 dBm -46.95 dBm				
		TU GHZ	-40.95 übili				
Att 30 dB	d Edge I	.63 dB 👄 RI	BW 100 kHz	HT20) 2412 Mode Auto FFT		Ref	0.07.2020
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm	d Edge I	.63 dB 👄 RI	BW 100 kHz			Ref	0.07.2020
Ref Level 17.63 dBm Att 30 dB SGL Count 100/100	d Edge I	.63 dB 👄 RI	BW 100 kHz				1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100	d Edge I	.63 dB 👄 RI 7.9 µs 👄 VI	BW 100 kHz	Mode Auto FFT			
Ref Level 17.63 dBm Att 30 dB SGL Count 100/100	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·		1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm	d Edge I	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·		1.94 dBm
Atte: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 IPk Max 10 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·		1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·		1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·		1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm
Date: 30.JUL.2020 1 Band Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 IPK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -60 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz
Date: 30.JUL.2020 1 Banc Spectrum Ref Level 17.63 dBm Att 30 dB SGL Count 100/100 ● 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm	offset 7. swt 37	63 dB ● Ri 7.9 μs ● V i	BW 100 kHz BW 300 kHz	Mode Auto FFT M1[1]	· · · · · · · · · · · · · · · · · · · ·	2.40	1.94 dBm 69950 GHz




● 1Pk Max 10 dBm					М	1[1]		0.41	-1.41 dBm L11700 GHz
0 dBm					м	2[1]		M1 -	-38.09 dBm
-10 dBm							personal	burnaget potition	00000 GHz
	D1 -18.057	dBm							
-30 dBm									
-40 dBm							AL MAR		haka
-50 dBm	M4	Caller Art - La				Mahanyaalili			
/՝՝/սպոսուսէլ/ -60 dBm	ultur Hurr	an way the work	M. W. W. W. W.	white	at mouth with				
-70 dBm									
-80 dBm-				1000	Inte			01	9 497 0115
Start 2.327 Marker				1001					2.427 GHz
Type Ref	1		17 GHz	Y-value -1.41 dB		tion	Fund	tion Resul	t
M2 M3	1	2.	2.4 GHz 39 GHz	-38.09 dB -50.65 dB	3m				
M4	1	2.34	42 GHz	-50.45 dB	3m			4.96	30 07 2020
Spectrum Ref Level Att SGL Count	Banc 17.72 dBm 30 dB	I Edge	.72 dB 😑	802.11n	2		1Hz Ant	1 Ref	(THE STREET
Spectrum Ref Level Att	Banc 17.72 dBm 30 dB	I Edge	.72 dB 😑	RBW 100 kHz	Mode A				-0.82 dBm 03620 GHz
Ref Level Att SGL Count 1Pk Max	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant		-0.82 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz	Mode A	uto FFT 1[1]	IHz Ant [,]		-0.82 dBm
Spectrum Ref Level Att SGL Count 1Pk Max	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant		-0.82 dBm
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant		-0.82 dBm
Spectrum Ref Level Att SGL Count IPk Max 0 dBm -10 dBm -20 dBm -30 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm
Spectrum Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count ● 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -70 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm 203620 GHz
Spectrum Ref Level Att SGL Count 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Banc 17.72 dBm 30 dB 100/100	Offset 7. swT 3	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm /03620 GHz
Spectrum Ref Level Att SGL Count ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	Banc 17.72 dBm 30 dB 100/100	I Edge	.72 dB 👄 7.9 µs 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto FFT 1[1]	IHz Ant	2.47	-0.82 dBm 203620 GHz


Spectrum Image: Construction of the cons	●1Pk Max			M1[1]			0.05 dBm		
0 dBm 2.4835000 GHz -20 dBm -2.4835000 GHz -30 dBm -0.120,817 dBm -30 dBm -2.487 GHz -30 dBm -2.480 GHz -30 dBm -2.480 GHz -30 dBm -2.480 GHz		M1		M2[1]					
-10 dBn -10 - 20.817 dBm -30 dBn -10 - 20.817 dBm -30 dBn -10 - 20.817 dBm -50 dBn -10 - 20.817 dBm Marker -10 - 20.817 dBm Marker -10 - 20.85 dBm Spectrum -20.85 dBm Net 20 - 13:56:56 -20.85 dBm 10 dBm -0 - 00 - 00 - 00 - 00 - 00 - 00 - 00	0 dBm	warm			I				
-0 dpm	-10 dBm								
480 dbm 490 dbm 100 pts	-20 dBm-D1 -20.8	17 dBm							
S0 dBm		- h.							
about the second provide the description of the descriptio	M40 dBm	- Cumpulation	M2 M4						
-0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -0 dBm -0 dBm Marker -0 dBm -0 dBm Function Result -0 dBm Mail 1 2.4935 GHz -49.55 GBm -0 dBm -0 dBm Mail 1 2.493 GHz -49.52 dBm -0 dBm -0 dBm Mail 1 2.497 GHz -47.33 dBm -0 dBm -0 dBm Mail 1 2.497 GHz -47.33 dBm -0 dBm -0 dBm Core Spectrum -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -10 dBm -0 dB	-50 dBm	· · ·	"Marilan and Hill have weekly	M3 Juntanesessander	when the anthrough the	hereentynnese	Hannerstowegan		
Bit Stop 2.547 GHz Narker 100 pts Stop 2.547 GHz Miking 1 2.46943 GHz 0.05 dBm Mai 1 2.46943 GHz 0.05 dBm Mai 1 2.46943 GHz 0.05 dBm Mai 1 2.4695 GHz -482.55 dBm Date: 30.JUL.2020 13:56156 Date: 30.JUL.2020 13:56156 Spectrum Image: Comparison of the	-60 dBm								
Stot 2.447 GHz 1001 pts Stop 2.547 GHz Marker Tro X-value Y-value Function Function Result M3 1 2.4693 GHz -40.55 GBm -40.55 GBm -40.55 GBm M3 1 2.4635 GHz -40.55 GBm -40.55 GBm -40.55 GBm Date: 30.JUL.2020 13:56:56 -47.33 dBm -47.33 dBm -47.33 dBm Date: 30.JUL.2020 13:56:56 Spectrum Image: Comparison of the second of t	-70 dBm								
Interker Type Ref Trc X-value Function Function Result M1 1 2.46943 GHz 0.05 dBm 1 2.46943 GHz 0.05 dBm M3 1 2.46943 GHz -49.55 dBm 1 2.4697 GHz -49.55 dBm M4 1 2.4697 GHz -47.33 dBm 1 2.4697 GHz -47.33 dBm Date: 30.JUL.2020 13:56:56 Band Edge NVNT 802.11n(HT40) 2422MHz Ant1 Ref Image: Control of the transformed			1001	pts		Stop	2.547 GHz		
M1 1 2.4933 GHz -0.05 dBm M2 1 2.4933 GHz -44.53 GHz M3 1 2.493 GHz -44.53 GHz M4 1 2.493 GHz -44.33 dBm Date: 30.401.2020 13:56:56 Date: 30.401.2020 Sector OPEN: OPEN: <td colspan="2" open:<="" t<="" td=""><td>Marker</td><td></td><td></td><td></td><td>1 -</td><td></td><td></td></td>	<td>Marker</td> <td></td> <td></td> <td></td> <td>1 -</td> <td></td> <td></td>		Marker				1 -		
Main 1 2.5 GHz -52.92 dBm Main 1 2.487 GHz -47.33 dBm Date: 30.001.2020 13:56:56 Band Edge NVNT 802.11n(HT40) 2422MHz Ant1 Ref Image: Control of the text of the text of t	M1 1	2.46943 GH	Hz 0.05 dB	m	Fun	ction Result			
Date: 30.JUL.2020 13:56:56 Band Edge NVNT 802.11n(HT40) 2422MHz Ant1 Ref Spectrum Ref Level 17.66 dB Offset 7.66 dB O RBW 100 kHz SGL Count 100/100 IPK Max 10 dBm -10 dBm -2.85 dBm -0 dBm -30 dB -30 dBm -0									
Spectrum Image: Construction of the cons		2.487 GH	Hz -47.33 dB	m			20.07.2020		
ID dBm	Date: 30.JUL.2020	13:56:56	NT 802.11n	(HT40) 24	22MHz Ant	1 Ref	Ē		
10 dBm 2.4394430 GHz 0 dBm 10 dBm -10 dBm 10 dBm -20 dBm 10 dBm -30 dBm 10 dBm -50 dBm 10 dBm -60 dBm 10 dBm -70 dBm 10 dBm -80 dBm 1001 pts Span 60.0 MHz	Date: 30.JUL.2020 Bar Spectrum Ref Level 17.66 dB Att 30 d	13:56:56 nd Edge NV m Offset 7.66 df	B 👄 RBW 100 kHz			1 Ref			
-10 dBm	Date: 30.JUL.2020 Bar Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100	13:56:56 nd Edge NV m Offset 7.66 df	B 👄 RBW 100 kHz	Mode Auto F		1 Ref			
-10 dBm	Date: 30.JUL.2020 Bar Spectrum Ref Level 17.66 dB Att SGL Count 100/100 IPk Max	13:56:56 nd Edge NV m Offset 7.66 df	B 👄 RBW 100 kHz	Mode Auto F			-2.85 dBm		
-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 c SGL Count 100/100 IPk Max 10 dBm	13:56:56 nd Edge NV m Offset 7.66 df	B 👄 RBW 100 kHz	Mode Auto F			-2.85 dBm		
-30 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 c SGL Count 100/100 IPk Max 10 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT	2.43	-2.85 dBm		
40 dBr -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 c SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT	2.43	-2.85 dBm		
40 dBr -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm -60 dBm -60 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm -10 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT	2.43	-2.85 dBm		
-50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -72 dBm -72 dBm -72 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT	2.43	-2.85 dBm		
-50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -70 dBm -80 dBm -80 dBm -80 dBm -70 dBm -70 dBm -70 dBm -80 dBm -70 dBm -70 dBm -80	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT	2.43	-2.85 dBm		
-70 dBm -80 dBm CF 2.422 GHz 1001 pts Span 60.0 MHz Pr adv 20.07.2020	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm		
-80 dBm CF 2.422 GHz 1001 pts Span 60.0 MHz Practy 20.07.2020	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 c SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm		
-80 dBm CF 2.422 GHz 1001 pts Span 60.0 MHz Practy 20.07.2020	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm		
CF 2.422 GHz 1001 pts Span 60.0 MHz Prady 30.07.2020	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm		
Peady 30.07.2020	Date: 30.JUL.2020 Bai Spectrum Ref Level 17.66 dB Att 30 of SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B • RBW 100 kHz • VBW 300 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm		
Date: 30.JUL.2020 13:58:40	Date: 30.JUL.2020 Bar Spectrum Ref Level 17.66 dB Att SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B RBW 100 kHz	Mode Auto F	FT MARK		-2.85 dBm 194430 GHz		
	Date: 30.JUL.2020 Bar Spectrum Ref Level 17.66 dB Att SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm	13:56:56 nd Edge NV m Offset 7.66 dt ив swт 75.8 µ;	B RBW 100 kHz	Mode Auto F	FT MARK	2.43	-2.85 dBm 194430 GHz		

Date: 30.JUL.2020 14:01:31



8.5 CONDUCTED RF SPURIOUS EMISSION

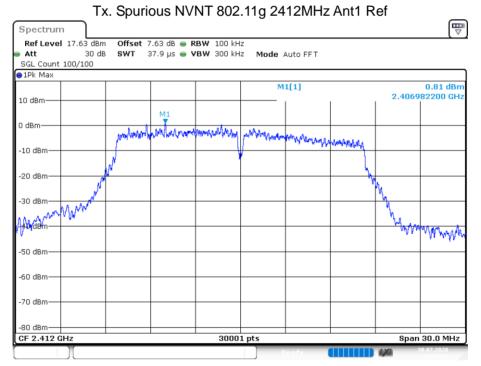
0.0 00	DUCTED KF SPURI					
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	802.11b	2412	Ant 1	-43.99	-20	Pass
NVNT	802.11b	2437	Ant 1	-41.89	-20	Pass
NVNT	802.11b	2462	Ant 1	-45.91	-20	Pass
NVNT	802.11g	2412	Ant 1	-41.29	-20	Pass
NVNT	802.11g	2437	Ant 1	-39.79	-20	Pass
NVNT	802.11g	2462	Ant 1	-40.54	-20	Pass
NVNT	802.11n(HT20)	2412	Ant 1	-43.08	-20	Pass
NVNT	802.11n(HT20)	2437	Ant 1	-43.2	-20	Pass
NVNT	802.11n(HT20)	2462	Ant 1	-41.39	-20	Pass
NVNT	802.11n(HT40)	2422	Ant 1	-40.75	-20	Pass
NVNT	802.11n(HT40)	2437	Ant 1	-42.52	-20	Pass
NVNT	802.11n(HT40)	2452	Ant 1	-39.91	-20	Pass

ACCREDITED

Certificate #4298.01

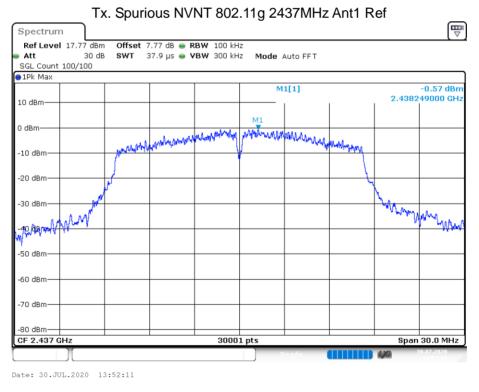
Date: 30.JUL.2020 13:48:05

SGL Count 10/: 1Pk Max	.0			M1	[1]			2.20 dBm
10 dBm				M2	[1]			10810 GHz 41.06 dBm
-10 dBm							20.2	252371 GHz
	-17.057 dBm							
-30 dBm								
-40 dBm		Md	MS				M2	
-50.dBm	MB North	M4	M5	a da a se da s Esta da se da s				المالية بين المالية في الأقرار الم
-60 dBm	and a second							
-70 dBm								
Start 30.0 MHz Marker			3000	1 pts			Stop	25.0 GHz
Type Ref T M1		value	Y-value 2.20 dB	Functi	ion	Fund	ction Result	:
M2 M3	1 20.	252371 GHz 970731 GHz	-41.06 dB -49.70 dB	m				
M4 M5	1 7	7.08236 GHz 539408 GHz	-47.66 dB -46.77 dB	Im				
L 1913	1 9.	339408 GH2	-40.77 08		varley		130	30.07.2020
Date: 30.JUL.2 Spectrum Ref Level 17. Att SGL Count 100. PIPk Max	Tx. Sp	Set 7.77 dB	IVNT 802	iz Iz Mode Au	uto FFT	Ant1 R	ef	[₩ ▼
Ref Level 17. Att SGL Count 100, 1Pk Max	Tx. Sp	Set 7.77 dB	RBW 100 kH	z	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. • Att SGL Count 100,	Tx. Sp	Set 7.77 dB	RBW 100 kH	iz Iz Mode Au	uto FFT	Ant1 R		
Spectrum Ref Level 17. Att SGL Count 100, PIPk Max	Tx. Sp	Set 7.77 dB	RBW 100 kH	Z Mode Au	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100, 1Pk Max 10 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100. IPk Max 10 dBm 0 dBm -10 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100, IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100. IPk Max 10 dBm 0 dBm -10 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R		1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100, IPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100. 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100, PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100. 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm
Spectrum Ref Level 17. Att SGL Count 100, PIPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100. PRK Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	M1	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100, ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	Z Mode Au	uto FFT	Ant1 R	2.4385	1.53 dBm 600900 GHz
Spectrum Ref Level 17. Att SGL Count 100. ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -80 dBm	Tx. Sp	Set 7.77 dB	RBW 100 kH	Z Mode Au	uto FFT	Ant1 R	2.4385	1.53 dBm 00900 GHz
Spectrum Ref Level 17. Att SGL Count 100. ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -60 dBm -70 dBm -80 dBm	Tx. Sp 77 dBm off 30 dB sw /100	set 7.77 dB (T 37.9 μs (RBW 100 kH	Z Mode Au	uto FFT	Ant1 R	2.4385	1.53 dBm 00900 GHz

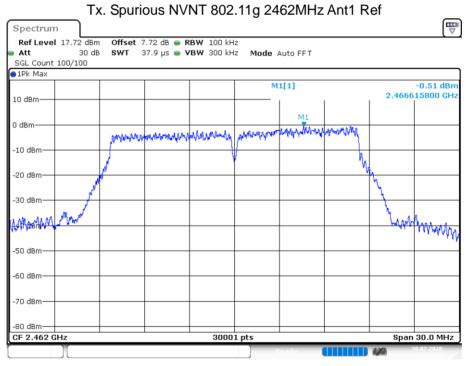


● 1Pk Max 10 dBm				M1[1]			3.67 dBm 38280 GHz
0 dBm				M2[1]	I		40.37 dBm 60694 GHz
-10 dBm							
Loubin	1.467 dBm						
-30 dBm						M2	
-50 dBm	M3 M4	MS Land	and the second second				الي المحكمة المحمورة برياسة الم مراجع محمودة التاريخ المحمودة المحمودة
-60 dBm		Hearth Constraints and the					
-70 dBm							
Start 30.0 MHz Marker			30001 pts			Stop	25.0 GHz
Type Ref Trc			value 3.67 dBm	Function	Fun	ction Result	:]
M2 1 M3 1	20.260694	GHz -4	10.37 dBm 18.95 dBm				
M4 1	7.124809	GHz -4	6.16 dBm 5.85 dBm				
ME 1	9.309372	GH2	15.65 Ubili	Ready		100	30.07.2020
Spectrum Ref Level 17.72	Tx. Spuriou	IS NVNT 2 dB ● RBW 9 µs ● VBW	100 kHz	0 2462MH			
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 3 SGL Count 100/10	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			
Spectrum Ref Level 17.72 Att 35 SGL Count 100/10	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 3 SGL Count 100/10 IPk Max 10 dBm	Tx. Spuriou	2 dB 👄 RBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 PIPk Max 10 dBm 0 dBm -10 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 ID dBm 0 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 PIPk Max 10 dBm 0 dBm -10 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 3 SGL Count 100/10 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level Ref Level 17.72 Att 3 SGL Count 100/10 1Pk Max 10 0 dBm -10 -10 dBm -20 dBm -30 dBm -30 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 10 1Pk Max 10 0 dBm - -10 dBm - -30 dBm - -40 dBm -	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]			4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 34 10 dBm 35 0 dBm 36 -10 dBm 30 -20 dBm -30 -40 dBm -40 -50 dBm -60 -70 dBm -80	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 ID dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -70 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz
Date: 30.JUL.2020 Spectrum Ref Level 17.72 Att 33 SGL Count 100/10 34 10 dBm 30 -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -60 dBm -70 dBm -80 dBm	Tx. Spuriou	2 dB e RBW 9 μs e VBW	100 kHz 300 kHz M	ode Auto FFT M1[1]		2.4634	4.69 dBm 98000 GHz

RefLevel 17.72	dBm Offset	_	RBW 100 kHz				[♥
SL Count 10/10	IU AB SWI	250 ms 🖷	VBW 300 kHz	Mode Auto Swe	ер		
Pk Max							
				M1[1]		2.92	
Bm M1						2.462410	
Bm				M2[1]		-41.22	
				1	1 1	19.847024	i GHz
dBm							
dBm D1 -15	.305 dBm				+ +		
JBm							-
IdBm					_		
					M2		
	Ma	1 14	MIS		M2	hade a second and a de	
dBm	M3 ^M	74 	IV 5	A second	M2	langs finda saya yang melakti melang sakilangan galawan Tang sakilang sakilang sakilang sakilang sakilang sakilang	
dBm	M3	74 		la construction de la construction de la construction de la construcción de la construcci	alard a second state	المراجع المراجع ومعارضة المراجع	ere direction erection
dBm	M3	//4-			alard a second state		
dBm	M3 P				alard a second state		
dBm	M3 F				alard a second state		an an Angel An Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Angel Ang Angel Angel Ang Angel Angel Ang
dBm	M3 P				alard a second state	han de anna an tao tao ann an tao	
) dBm) dBm) dBm) dBm) dBm) dBm art 30.0 MHz	M3 f		10 <mark>5</mark>		alard a second state	Stop 25.0	GHz
) dBm dBm dBm dBm dBm dBm	M3 P		30001 pt		alard a second state	Stop 25.0 0	GHz
dBm dBm dBm dBm rt 30.0 MHz ker	M3 M	e	Y-value			Stop 25.0 (GHz
dBm dBm dBm dBm rt 30.0 MHz ker <u>be</u> Ref Trc M1 1 1	2.462	241 GHz	Y-value 2.92 dBm	ts			GHz
iBm iBm iBm iBm iBm t 30.0 MHz er er er er er ft Trc 11 11 12 1	2.462 19.8470	241 GHz 024 GHz	Y-value 2.92 dBm -41.22 dBm	ts			GHz
dBm dBm dBm dBm dBm t 30.0 MHz ker pe Ref Trc M1 1	2.462 19.8470 5.0656	241 GHz	Y-value 2.92 dBm	ts			GHz


Date: 30.JUL.2020 13:50:02

Date: 30.JUL.2020 13:51:16



ket Level	17.63 dB	m Offset 7.63 dB	RBW 100 kHz					
Att	30 (Mode Auto St	weep			
GL Count :	10/10							
Pk Max								
				M1[1]		-0.45		
dBm						2.4	415800 GHz	
ML				M2[1]			-40.48 dBm	
iBm 🕂						20.2	270682 GHz	
dBm								
ubiii								
	01 -19.18	35_dBm						
) dBm 🕂						_	+	
						M2		
) dBm			45	and a second by	والمراجع والمراجع والمراجع	A A A A A A A A A A A A A A A A A A A	والرقم بتدابر الأبيان	
) dBm		مى الليس بد <mark>ار بە (100 باللحد _{ما}ي ال</mark>		a survey and the second		1. 1. 1		
a series and the	and an and a link man	and the surface of the second s	design of the second					
dBm								
) dBm —							+	
art 30.0 M	/IHz		30001 pt	s		Stor	p 25.0 GHz	
rker				-				
	Trc	X-value	Y-value	Function	l Eu	inction Result	t	
M1	1	2.4158 GHz	-0.45 dBm				-	
M2	1	20.270682 GHz	-40.48 dBm					
MЗ	1	4.903312 GHz	-48.83 dBm					
		7.426946 GHz	-47.07 dBm					
M4	1	7.420940 GHZ	47.07 0011					

Ref Level	17.77 dBr 30 d		RBW 100 kHz				
Att GL Count 1		8 SWI 250 ms	🔵 VBW 300 kHz	Mode Auto Sv	weep		
1Pk Max							
						-1.22 dBm	
) dBm				MOLTI			37440 GHz
dBm 🕂				M2[1]			40.37 dBn 09922 GH:
				1			
.0 dBm							
	1 -20.574	t dBm					
	2 20.07						
0 dBm						40	
0 dBm						12	
	M		M5 		and the second second second second		Subplication shifts
0 dBm	a call a call a call a call	and the second s	A designed and the second s	Phylics in the second second second	The second se	The other states and the	the log of shareh sharehol
0 dBm	Hore .						
O dBm							
tart 30.0 M	IHz	I	30001 pt	s		Stop	25.0 GHz
arker							
	Trc	X-value	Y-value	Function	Fund	tion Result	
M1	1	2.43744 GHz	-1.22 dBm				
M2 M3	1	20.209922 GHz 4.731851 GHz	-40.37 dBm -48.72 dBm				
M4	1	7.174749 GHz	-46.85 dBm				
	1	9.896479 GHz	-47.02 dBm				

Date: 30.JUL.2020 13:53:22

■ Att 31		RBW 100 kHz VBW 300 kHz Ma	de Auto Sweep		
SGL Count 10/10 91Pk Max					
10 dBm			M1[1]	2.37 2.469900	
0 dBm			M2[1]	-41.06	dBm
-10 dBm				20.259029	GHZ
	.505_dBm				
-30 dBm					
-40 dBm				M2	
-50 dBm-	M3 M4				in and S []. In Sec. Sec. ()
-60 dBm	The second s				
-70 dBm					
Start 30.0 MHz		30001 pts		Stop 25.0	GHz
Marker _Type Ref Trc	X-value		unction	Function Result	
M1 1 M2 1	2.4699 GHz 20.259029 GHz	2.37 dBm -41.06 dBm			
M2 1 M3 1 M4 1 M5 1 Date: 30.JUL.2020 TX. Spectrum Ref Level 17.63	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN dBm Offset 7.63 dB	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT		39.07.20 1Hz Ant1 Ref	
M2 1 M3 1 M4 1 M5 1 M5 1 Oate: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 31 SGL Count 100/100	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN dBm Offset 7.63 dB 0 0 dB SWT 37.9 μs	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT		1Hz Ant1 Ref	
M2 1 M3 1 M4 1 M5 1 Date: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 30	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN dBm Offset 7.63 dB 0 0 dB SWT 37.9 μs	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT		1.88	dBm
M2 1 M3 1 M4 1 M5 1 M5 1 Oate: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 31 SGL Count 100/100	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVNT dBm Offset 7.63 dB Φ 0 dB SWT 37.9 μs Φ 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT	ode Auto FFT		dBm
M2 1 M3 1 M4 1 M5 1 M6 1 M8 1 M4 1 M5 1 M6 1 M8 1	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M5 1 M4 1 M5 1 Date: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 30 SGL Count 100/100 1Pk Max 10 0 dBm 0	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M5 1 M4 1 M5 1 Date: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 30 SGL Count 100/100 1Pk Max 10 dBm 10	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVNT dBm Offset 7.63 dB Φ 0 dB SWT 37.9 μs Φ 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M5 1 M4 1 M5 1 Date: 30.JUL.2020 TX. Spectrum Ref Level 17.63 Att 30 SGL Count 100/100 1Pk Max 10 0 dBm 0	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M5 1 M5 1 M6 1 M8 1 M4 1 M5 1 M6 1 M5 1 M6 1 M8 1 M8 3 SGL Count 100/100 1 PIPK Max 1 0 dBm 0 -10 dBm -20 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M4 1 M5 1 M4 1 M5 1 M6 1 M5 1 M6 1 M6 1 M6 1 M6 1 M6 1 M8 1 M8 1 M8 10 M8 1 M8 1	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm
M2 1 M3 1 M4 1 M5 1 M5 1 M6 1 M8 1 M4 1 M5 1 M6 1 M5 1 M6 1 M8 1 M8 3 SGL Count 100/100 1 PIPK Max 1 0 dBm 0 -10 dBm -20 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz VBW 300 kHz Mc	M1[1]	1.88 2.40699520(dBm I GHz
M2 1 M3 1 M4 1 M4 1 M5 1 M4 1 M5 1 M6 1 M5 1 M6 1 M6 1 M6 1 M6 1 M6 1 M8 1 M8 1 M8 10 M8 1 M8 1	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz
M2 1 M3 1 M4 1 M5 1 M4 1 M5 1 M4 1 M5 1 M4 1 M5 1 M6 1 M4 1 M5 1 Date: 30.JUL.2020 TX. 30 Ref Level 17.63 Att 30 O dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz
M2 1 M3 1 M4 1 M4 1 M5 1 M4 1 M5 1 M6 1 M6 1 M6 1 M7 1 M8 1 M8 1 M8 1 M8 1 Spectrum Ref Level 17.63 Att 33 SGL Count 100/100 IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz
M2 1 M3 1 M4 1 M5 1 M4 1 M5 1 M4 1 M5 1 M4 1 M5 1 M6 1 M8 1	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz
M2 1 M3 1 M4 1 M5 1 M6 1 M8 1 M4 1 M5 1 M6 1 M8 1 M8 1 M8 1 M8 1 M8 10 M8 10 M4 3 SGL Count 100/100 PIK Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz
M2 1 M3 1 M4 1 M5 1 M6 10.2020 TX. Spectrum Ref Level 17.63 30 Att 30 SGL Count 100/100 100/100 ID dBm 0 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -60 dBm	20.259029 GHz 5.096413 GHz 7.417791 GHz 9.977216 GHz 13:53:32 Spurious NVN [¬] dBm Offset 7.63 dB • 0 dB SWT 37.9 μs • 0	-41.06 dBm -48.35 dBm -47.61 dBm -46.06 dBm T 802.11n(HT RBW 100 kHz yBW 300 kHz Mc	M1[1]	1.88 2.406995200	dBm I GHz

Ref Level 17.63 dB Att 30 c SGL Count 10/10		B 👄 RBW 100 kH: Is 👄 VBW 300 kH:	z z Mode Auto Swee	эр	
●1Pk Max			M1[1]		-1.47 dBm
10 dBm			M2[1]		2.410810 GHz -41.21 dBm
0 dBm				1 1	20.237389 GHz
-10 dBm	2 d0m				
-20 dBm D1 -18.12					
-30 dBm				1/12	
-40 dBm	13 M4	M5	and the second		فالمتحافظ والروار والمحمد المتناف
-50 dBm	and the second	and the second			
-70 dBm					
Start 30.0 MHz Marker	- I	30001	1 pts		Stop 25.0 GHz
Type Ref Trc M1 1	X-value 2.41081 GH	Y-value z -1.47 dB	Function	Function R	esult
M2 1	20.237389 GH	z -41.21 dB	m		
M3 1 M4 1	4.741007 GH 7.12148 GH 9.589348 GH	z -46.86 dB	m		
		z -46.57 dB	m i i		
M5 1 Date: 30.JUL.2020	13:54:49	′NT 802.11r	(HT20) 2437	′MHz Ant1 R	
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100	13:54:49 Spurious NV m offset 7.77 d	8 👄 RBW 100 kH:	n(HT20) 2437	′MHz Ant1 R	20.07.2020 ef
Date: 30.JUL.2020 Tx. S Spectrum Ref Level 17.77 dB Att 30 c	13:54:49 Spurious NV m offset 7.77 d	8 👄 RBW 100 kH:	(HT20) 2437		
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100	13:54:49 Spurious NV m offset 7.77 d	8 👄 RBW 100 kH:	n(HT20) 2437		
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100 IPk Max	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2.	
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100 IPk Max 10 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2.	
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 of SGL Count 100/100 PIPk Max 10 dBm 0 dBm -10 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; is • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2.	
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 c SGL Count 100/100 IPk Max 10 dBm 0 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 of SGL Count 100/100 PIPk Max 10 dBm 0 dBm -10 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 of SGL Count 100/100 PIPk Max 10 dBm -10 dBm -20 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 d SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -40 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 c SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 of SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm -70 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 ² Mode Auto FFT M1[1]	2. WMMMMany	2.42 dBm 438274000 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.77 dB Att 30 of SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	13:54:49 Spurious NV m Offset 7.77 d IB swт 37.9 µ	B • RBW 100 kH; s • VBW 300 kH;	Prodv n(HT20) 2437 2 Mode Auto FFT M1[1] M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	2.	2.42 dBm 438274000 GHz

■ Att 30 SGL Count 10/10 ● 1Pk Max	dB SWT 250 ms 🖷	● VBW 300 kHz	Mode Auto Sweep)	
10 dBm-			M1[1]	0.7 2.43495	8 dBm 50 GHz
0 dBm			M2[1]		9 dBm
-10 dBm					
-20 dBm D1 -17.57	78 dBm				
-30 dBm					
-40 dBm	M3 M#	MS		M2	ation distances
-50 dBm					No. of Concession, Name
-60 dBm					
-70 dBm					
Start 30.0 MHz		30001	pts	Stop 25.0) GHz
Marker Type Ref Trc	X-value	Y-value	Function	Function Result	
M1 1 M2 1	2.43495 GHz 20.293987 GHz	0.78 dBm -40.79 dBm			
M3 1 M4 1	5.05979 GHz 7.466898 GHz	-49.28 dBm -46.85 dBm			
Spectrum Ref Level 17.72 dE	Spurious NVN	• RBW 100 kHz	(HT20) 2462	MHz Ant1 Ref	020 ₩
Date: 30.JUL.2020 TX. Spectrum	13:56:00 Spurious NVN 3m Offset 7.72 dB	T 802.11n((HT20) 24621 Mode Auto FFT		
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 de Att 30 SGL Count 100/100	13:56:00 Spurious NVN 3m Offset 7.72 dB	T 802.11n((HT20) 2462		8 dBm
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 IPk Max 10 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.46947380 M1	8 dBm
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.72 de Att 300 SGL Count 100/100 9 1Pk Max	13:56:00 Spurious NVN 3m Offset 7.72 dB	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT	0.4 2.46947380 M1	8 dBm
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 dE Att 301 SGL Count 100/100 PIPk Max 10 dBm 0 dBm -10 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.46947380 M1	8 dBm
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 dE Att 301 SGL Count 100/100 IPk Max 10 dBm 0 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.46947380 M1	8 dBm
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 dE Att 30 i SGL Count 100/100 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.4694738(M1 M/M/M/M	8 dBm)0 GHz
Date: 30.JUL.2020 TX. 5 Spectrum Ref Level 17.72 dE Att 30 SGL Count 100/100 PIPk Max 10 dBm -10 dBm -20 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.4694738(M1 M/M/M/M	8 dBm)0 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.46947380 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1 M1	8 dBm)0 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.4694738(M1 MANN/MA	8 dBm)0 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.4694738(M1 MANN/MA	8 dBm)0 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	(HT20) 24621 Mode Auto FFT M1[1]	0.4 2.4694738(M1 MANN/MA	8 dBm)0 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 df Att 30 SGL Count 100/100 P1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -50 dBm -50 dBm -60 dBm -70 dBm -80 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(CHT20) 24621	0.4 2.4694738(M1 MMMMMM MMMMM MMMMMM MMMMMM MMMMMM MMMMM	8 dBm 30 GHz
Date: 30.JUL.2020 TX. S Spectrum Ref Level 17.72 dE Att 30 f SGL Count 100/100 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	13:56:00 Spurious NVN вт Offset 7.72 dB dB swr 37.9 µs	T 802.11n(RBW 100 kHz VBW 300 kHz	CHT20) 24621	0.4 2.4694738(M1 MANN/MA	8 dBm 30 GHz

SGL Count 10/10	odb SWT	250 ms 👄	VBW 300 kH	z Mode	Auto Swee	p		,
1Pk Max 10 dBm				М	1[1]			-1.27 dBm
0 dBm				м	2[1]		-	+70740 GHz -40.92 dBm 185312 GHz
-10 dBm							19.0	
-20 dBm-D1 -19	.522 dBm							
-30 dBm								
-40 dBm	МЗ М4		M5	an II. and the	ales, it also see	M. Maria and A. M. M. Maria	: Nada a kanata	المراجع والمراجع
-50 dBm		had an any family for		a dagbar man	nakes distincts and	a an	1994), and a star star star	
-60 dBm								
-70 dBm								
Start 30.0 MHz Marker			3000	1 pts			Stop	25.0 GHz
Type Ref Trc	X-value	9	Y-value -1.27 dB	Func	tion	Fund	tion Result	:
M1 1 M2 1 M3 1		12 GHz	-40.92 dB -49.00 dB	Im				
M4 1	7.2147	01 GHz	-47.15 dB -46.18 dB	Im				
			10.10 00	/111				
TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10	13:57:13 Spurious dBm Offset 3 0 dB SWT	7.66 dB 👄	802.11r RBW 100 kH VBW 300 kH	z		MHz Ant	1 Ref	
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 • Att SGL Count 100/10 • 1Pk Max	13:57:13 Spurious dBm Offset 3 0 dB SWT	7.66 dB 👄	RBW 100 kH	z Iz Mode i		MHz Ant		0.41 dBm
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10	13:57:13 Spurious dBm Offset 3 0 dB SWT	7.66 dB 👄	RBW 100 kH	z Iz Mode i	Auto FFT	MHz Ant		
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 • Att SGL Count 100/10 • 1Pk Max	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L		0.41 dBm
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 IPk Max 10 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH	z Z Mode /	Auto FFT			0.41 dBm
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 9 1Pk Max 10 dBm 0 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L		0.41 dBm
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L		0.41 dBm 049940 GHz
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 9 IPk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	z Z Mode /	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.66 Att 3 SGL Count 100/10 9 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH VBW 300 kH	Z Mode A	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 049940 GHz
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.66 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm -80 dBm	13:57:13 Spurious dBm offset : 0 dB swr : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH	Z Mode A	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 149940 GHz
Date: 30.JUL.2020 Tx. Spectrum Ref Level 17.66 Att SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -50 dBm -60 dBm -70 dBm -80 dBm	13:57:13 Spurious dBm Offset : 0 dBm SwT : 0	7.66 dB 👄 75.8 µs 👄	RBW 100 kH	Z Mode A	Auto FFT	L L L L L L L L L L L L L L L L L L L	2.439	0.41 dBm 149940 GHz

Spectrum							
Ref Level :			RBW 100 kHz				
Att SGL Count 10	30 dB 0/10	8 SWT 250 ms	VBW 300 kHz	Mode Auto Swe	зер		
●1Pk Max							
10 dBm				M1[1]		2.4	-3.25 dBm
				M2[1]			05820 GHz 40.34 dBm
0 dBm					I	17.8	30281 GHz
-10 dBm						+	
- 20 dBm D	1 -19.590	dBm					
-30 dBm							
-40 dBm—					M2		
	M	8 M4	M5	and a first on the Local State of the Local State	the second states	il en Al de la bill a billensitte	فالأمام مراقون
-50 dBm		And the second			Name of the second second	in the second second	energi e da julik mana ikada ya d
-60 dBm						-	
-70 dBm							
Start 30.0 M	Hz		30001	pts		Stop	25.0 GHz
Marker					 	tion Bocult	
Type Ref M1	1	X-value 2.40582 GHz	Y-value -3.25 dBr		Fun	ction Result	
M2 M3	1	17.830281 GHz	-40.34 dBr -49.19 dBr				
M3 M4	1	4.894156 GHz 7.461904 GHz	-46.86 dBr	n			
	-						
M5 Date: 30.JUL	1	9.605995 GHz	-47.25 dBr	Ready	7MHz An	t1 Ref	
Spectrum Ref Level : Att	1 .2020 1: Tx. S 17.77 dBm 30 dB	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB	NT 802.11n	(HT40) 243		t1 Ref	0.07/2020
Spectrum Ref Level 3 Att SGL Count 10	1 .2020 1: Tx. S 17.77 dBm 30 dB	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB	NT 802.11n	(HT40) 243		t1 Ref	10.07,2020
Spectrum Ref Level :	1 .2020 1: Tx. S 17.77 dBm 30 dB	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB	NT 802.11n	(HT40) 243		it1 Ref	10.07.2020
Spectrum Ref Level 3 Att SGL Count 10	1 .2020 1: Tx. S 17.77 dBm 30 dB	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB	NT 802.11n	Prody (HT40) 243 2 Mode Auto FF1			
Spectrum Ref Level : • Att SGL Count 11 • IPk Max	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : Att SGL Count 11 1Pk Max	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : Att SGL Count 11 9 IPk Max 10 dBm 0 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : Att SGL Count 10 1Pk Max 10 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	Prody (HT40) 243 2 Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : SGL Count 11 9 TPK Max 10 dBm 0 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : • Att SGL Count 11 • 1Pk Max 10 dBm - 10 dBm - 10 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm
Spectrum Ref Level : • Att SGL Count 11 • 1Pk Max 10 dBm - 10 dBm - 10 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 		1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum RefLevel : Att SGL Count 11 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum RefLevel : Att SGL Count 11 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 D dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level :: Att SGL Count 1/ PTPk Max 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 D dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 .2020 1. Tx. S 17.77 dBm 30 dB 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	(HT40) 243 (Mode Auto FF1 M1[1]	r 	2.439	1.32 dBm 50790 GHz
Date: 30.JUL Spectrum Ref Level : Att SGL Count 11 ID dBm ID dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	1 .2020 1. TX. S 17.77 dBm 30 de 000/1000	9.605995 GHz 3:59:00 purious NVN 0 Offset 7.77 dB 3 swτ 75.8 μs	JT 802.11n • RBW 100 kHz • VBW 300 kHz	Printy	r 	2.439	1.32 dBm 50790 GHz

Att 30 SGL Count 10/10		B 🖷 RBW 100 kHz Is 🖶 VBW 300 kHz		/eep		
●1Pk Max			M1[1]		-0.14 (dBm
10 dBm ML			M2[1]		2.440770 -41.21 (dBm
0 dBm					17.851089	GHz
-20 dBm	33 dBm					
-30 dBm						
-40 dBm		Mp Notice to the	La la se da sera ha de la des Martes	M2 Marine California		and log d
-SUIDBIII			the part of the second s	the second s	الله عليه ورياده ويتعلم المتعلمين ويتباهد عليه المحالية المراجعة المحالية والمحالية والمحالية المحالية المحالية	
-60 dBm-						
-70 dBm						
Start 30.0 MHz Marker		30001	l pts		Stop 25.0 G	SHZ
Type Ref Trc M1 1 M2 1 M3 1	X-value 2.44077 GH: 17.851089 GH: 4.81009 GH:	z -41.21 dBr z -49.71 dBr	m m	Fur	nction Result	
M4 1 M5 1	7.345378 GH: 9.908964 GH:					
	14:00:17 Spurious NV	′NT 802.11n) Foods (HT40) 245	52MHz Ar	t1 Ref	111
Date: 30.JUL.2020 TX. Spectrum Ref Level 17.75 df Att 30 SGL Count 1000/100 IPk Max	Spurious NV 3m Offset 7.75 di dB swr 75.8 µ	/NT 802.11n B RBW 100 kHz Is VBW 300 kHz	2		t1 Ref	
Tx. 5 Spectrum Ref Level 17.75 dd Att 30 SGL Count 1000/100	Spurious NV	B 🖷 RBW 100 kHz	2		-0.79 2.43699650	dBm
Tx. 5 Spectrum Ref Level 17.75 df Att 30 SGL Count 1000/100 P1Pk Max 10 dBm 0 dBm	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	z 2 Mode Auto FF	т	-0.79 (dBm
Tx. S Spectrum Ref Level 17.75 dd Att 30 SGL Count 1000/100 P1Pk Max 10 dBm	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	2 Mode Auto FF M1[1]	т	-0.79 (dBm
Tx. 5 Spectrum Ref Level 17.75 df Att 30 SGL Count 1000/100 PIPK Max 10 dBm 0 dBm -10 dBm	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	2 Mode Auto FF M1[1]	т	-0.79 (2.43699650	dBm
Tx. \$	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	2 Mode Auto FF M1[1]	т	-0.79 (dBm
Tx. 5	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	2 Mode Auto FF M1[1]	т	-0.79 (2.43699650	dBm
Tx. 5	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	2 Mode Auto FF M1[1]	т	-0.79 (2.43699650	dBm
Tx. \$ Spectrum Ref Level 17.75 df Att 30 SGL Count 1000/100 PIPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Spurious NV	B • RBW 100 kHz s • VBW 300 kHz	22 Mode Auto FF	т	-0.79 (2.43699650	dBm GHz

Att GL Count :	17.75 dBm 30 dB		🖷 RBW 100 kHz			
GL Count :		0.UUT 0.50				
		SWT 250 ms	🔵 VBW 300 kHz	Mode Auto Sv	veep	
	.0/10					
1Pk Max						
				M1[1]		-5.01 dBm
) dBm —						2.436610 GHz
dBm M				M2[1]		-40.71 dBm
						19.823719 GHz
0 dBm						
dBm	1 -20.794	dBm				
) dBm						
o abiii					ма	
+0 dBm	мз	M4	M5			. All all di base a colore debuid
		And the second sec	والمحافظ والمعاط المحافظ والمحافظ والمراجع	A CONTRACTOR OF A CONTRACTOR A	and the second	an a
) dBm	(1994)	Contraction of the state of the	the surface of the su	(h)		
dBm—						
0 dBm —						
art 30.0 M	1Hz		30001 pt	s		Stop 25.0 GHz
arker						
	Trc	X-value	Y-value	Function	Function I	Result
			-5.01 dBm			
	1	2.43661 GHz	-3.01 UDIII			
ype Ref		2.43661 GHz 19.823719 GHz	-40.71 dBm			
ype Ref	1	19.823719 GHz 4.889162 GHz	-40.71 dBm -48.25 dBm			
M1 M2	1	19.823719 GHz	-40.71 dBm			

Date: 30.JUL.2020 14:01:57

END OF REPORT