

RADIO TEST REPORT FCC ID: 2ANMU-BISON2021

Product:	Smart Phone
Trade Mark:	F150
Model No.:	Bison2021
Family Model:	N/A
Report No.:	S20102202703001
Issue Date:	26 Nov, 2020

Prepared for

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel.: +86-755-6115 6588 Fax.: +86-755-6115 6599 Website:http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED

Certificate #4298.01

1 TE	ST RESULT CERTIFICATION	3
2 SU	MMARY OF TEST RESULTS	4
3 FA	CILITIES AND ACCREDITATIONS	5
3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4 GE	NERAL DESCRIPTION OF EUT	6
5 DE	SCRIPTION OF TEST MODES	8
6 SE	TUP OF EQUIPMENT UNDER TEST	9
6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	9 10 11
7 TE	ST REQUIREMENTS	13
	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL. HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION	16 25 26 27 29 30 31 32 33 34
8 TE	ST RESULTS	
8.1 8.2 8.3 8.4 8.5 8.6 8.7	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER OCCUPIED CHANNEL BANDWIDTH CARRIER FREQUENCIES SEPARATION NUMBER OF HOPPING CHANNEL BAND EDGE CONDUCTED RF SPURIOUS EMISSION.	40 45 50 55 56

NTEK北测

1 TEST RESULT CERTIFICATION

SHENZHEN YUNJI INTELLIGENT TECHNOLOGY CO.,LTD		
A2 2F BUILDING ENET NEW INDUSTRIAL PARK, DAFU INDUSTRIAL ZONE, GUANLAN, LONGHUA SHENZHEN, 518XXX China		
Shenzhen KaiCheng Technology Co. Ltd		
Room 2005, 20th floor, Block C, DaChong business center, No.5 Tong		
Gu road, NanShan district, Shenzhen, China		
Smart Phone		
Bison2021		
N/A		

Certificate #4298.01

Measurement Procedure Used:

APPLICABLE STANDARDS STANDARD/TEST PROCEDURE TEST RESULT FCC 47 CFR Part 2, Subpart J Complied FCC 47 CFR Part 15, Subpart C Complied ANSI C63.10-2013 Complied

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	:	23 Oct. 2020 ~ 25 Nov, 2020
Testing Engineer	:	prany. Hu
Technical Manager		(Mary Hu) Jason chen
rechnical Manager	•	(Jason Chen)
Authorized Signatory	:	Ales
		(Alex Li)

NTEK北测

SUMMARY OF TEST RESULTS 2

FCC Part15 (15.247), Subpart C			
Standard Section	Test Item	Verdict	Remark
15.207	Conducted Emission	PASS	
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS	
15.247(a)(1)	Hopping Channel Separation	PASS	
15.247(b)(1)	Peak Output Power	PASS	
15.247(a)(iii)	Number of Hopping Frequency	PASS	
15.247(a)(iii)	Dwell Time	PASS	
15.247(a)(1)	Bandwidth	PASS	
15.247 (d)	Band Edge Emission	PASS	
15.247 (d)	Spurious RF Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	

ACC

Certificate #4298.01

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	The Laboratory has been assessed and proved to be in compliance with
	CNAS-CL01:2006 (identical to ISO/IEC 17025:2005)
	The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
	This laboratory is accredited in accordance with the recognized
	International Standard ISO/IEC 17025:2005 General requirements for
	the competence of testing and calibration laboratories.
	This accreditation demonstrates technical competence for a defined
	scope and the operation of a laboratory quality management system
	(refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).
Name of Firm	Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%

NTEK北测

4 GENERAL DESCRIPTION OF EUT

ilac.

ACCRED

Certificate #4298.01

Product Feature and Specification		
Equipment	Smart Phone	
Trade Mark	F150	
FCC ID	2ANMU-BISON2021	
Model No.	Bison2021	
Family Model	N/A	
Model Difference	N/A	
Operating Frequency 2402MHz~2480MHz		
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PIFA Antenna	
Antenna Gain	0.3dBi	
	DC supply: DC 3.85V/8000mAh from battery or DC 5V from Adapter.	
Power supply	Adapter supply: Model: TPA-46050200UU Input: 100-240V~50/60Hz 0.3A Output: 5.0V2.0A	
HW Version	1900_MAINBOARD_P1/1900_SUBBOARD_P2	
SW Version	ASW1900B_2201_T00xx	

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

ACCREDITED

Certificate #4298.01

		-	
Report No.	Version	Description	Issued Date
S20102202703001	Rev.01	Initial issue of report	26 Nov, 2020

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

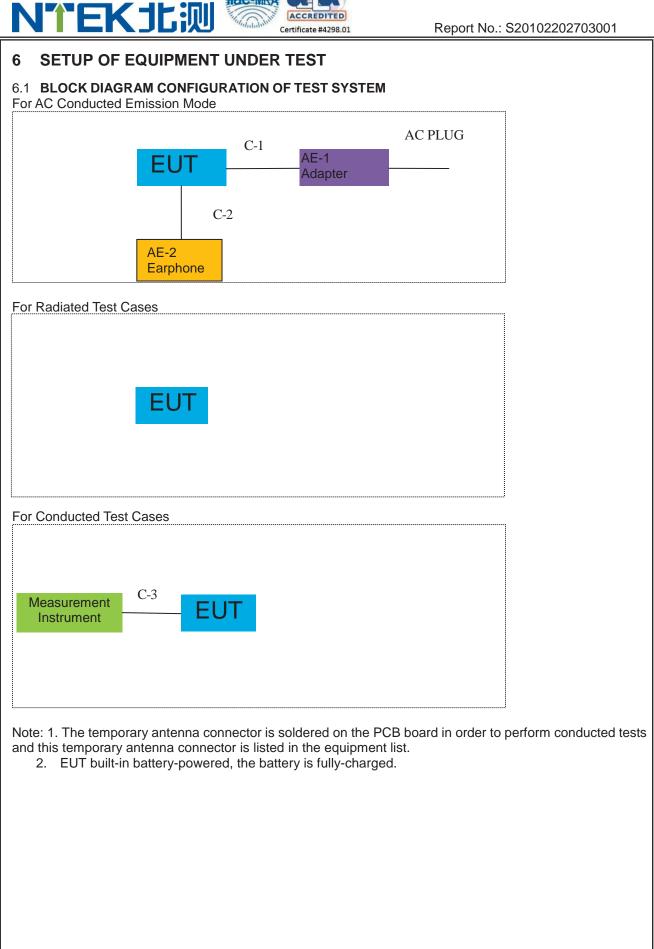
Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode Description				
Mode 1 normal link mode				

Note: AC power line Conducted Emission was tested under maximum output power.


For Radiated Test Cases		
Final Test Mode	Description	
Mode 1	normal link mode	
Mode 2	CH00(2402MHz)	
Mode 3	CH39(2441MHz)	
Mode 4	CH78(2480MHz)	

Note: For radiated test cases, the worst mode data rate 1Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Description				
CH00(2402MHz)				
CH39(2441MHz)				
CH78(2480MHz)				
Hopping mode				
-				

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

Certificate #4298.01

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
AE-1	Adapter	N/A	TPA-46050200UU	N/A	Peripherals
AE-2	Earphone	N/A	N/A	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.0m
C-2	Earphone Cable	NO	NO	1.2m
C-3	RF Cable	YES	NO	1.2m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK北测

Report No.: S20102202703001

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

		rest equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2020.05.11	2021.05.10	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2020.07.13	2021.07.12	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2020.07.13	2021.07.12	1 year
4	Test Receiver	R&S	ESPI7	101318	2020.05.11	2021.05.10	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2020.04.11	2021.04.10	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11	2023.05.10	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2020.04.11	2021.04.10	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2019.12.10	2020.12.09	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2020.07.13	2021.07.12	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2019.12.11	2020.12.10	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2020.07.13	2021.07.12	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2019.08.6	2022.08.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2019.08.6	2022.08.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2019.06.28	2022.06.27	3 year
15	High Test Cable(1G-40G Hz)	N/A	R-04	N/A	2020.04.11	2021.04.10	1 year
16	Filter	TRILTHIC	2400MHz	29	2020.07.13	2021.07.12	1 year
17	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2020.05.11	2021.05.10	1 year
2	LISN	R&S	ENV216	101313	2020.04.11	2021.04.10	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2020.05.11	2021.05.10	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11	2023.05.10	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11	2023.05.10	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11	2023.05.10	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11	2021.05.10	3 year

ACCREI

Certificate #4298.01

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

NTEKJLIM CEREDITED

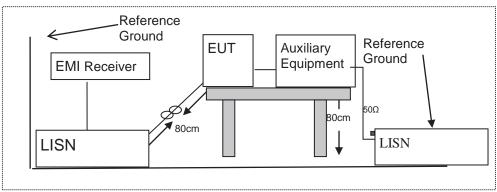
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


Frequency(MHz)	Conducted Emission Limit		
Frequency(MI12)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

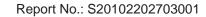
- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass


7.1.6 Test Results

EUT:	Smart Phone	Model Name :	Bison2021
Temperature:	25 ℃	Relative Humidity:	49%
Pressure:	1010hPa	Phase :	L
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

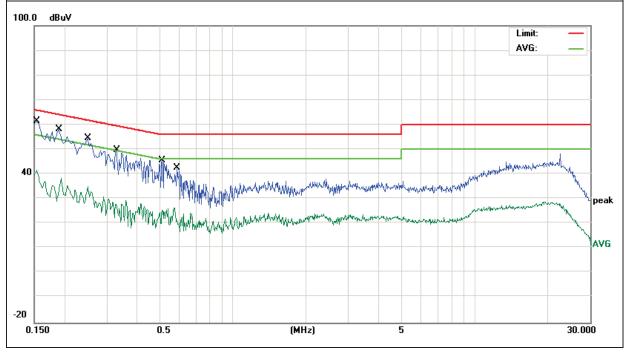

	T	1	I			1
Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	46.94	9.56	56.50	65.78	-9.28	QP
0.1539	28.47	9.56	38.03	55.78	-17.75	AVG
0.2020	44.52	9.55	54.07	63.52	-9.45	QP
0.2020	22.75	9.55	32.30	53.52	-21.22	AVG
0.2500	41.63	9.54	51.17	61.75	-10.58	QP
0.2500	21.99	9.54	31.53	51.75	-20.22	AVG
0.5460	33.25	9.55	42.80	56.00	-13.20	QP
0.5460	19.28	9.55	28.83	46.00	-17.17	AVG
1.0940	32.94	9.56	42.50	56.00	-13.50	QP
1.0940	18.35	9.56	27.91	46.00	-18.09	AVG
2.1459	33.51	9.58	43.09	56.00	-12.91	QP
2.1459	17.61	9.58	27.19	46.00	-18.81	AVG

Remark:

All readings are Quasi-Peak and Average values.
 Factor = Insertion Loss + Cable Loss.

EUT:	Smart Phone	Model Name :	Bison2021
Temperature:	25 ℃	Relative Humidity:	49%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	DC 5V from Adapter AC 120V/60Hz	Test Mode:	Mode 1

ACCRED


Certificate #4298.01

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Morgin	
Frequency	Reading Level		weasure-mem	LIITIIIS	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	
0.1539	51.77	9.55	61.32	65.78	-4.46	QP
0.1539	31.99	9.55	41.54	55.78	-14.24	AVG
0.1900	48.65	9.54	58.19	64.03	-5.84	QP
0.1900	28.83	9.54	38.37	54.03	-15.66	AVG
0.2500	45.11	9.53	54.64	61.75	-7.11	QP
0.2500	25.40	9.53	34.93	51.75	-16.82	AVG
0.3300	40.33	9.53	49.86	59.45	-9.59	QP
0.3300	21.22	9.53	30.75	49.45	-18.70	AVG
0.5100	35.98	9.54	45.52	56.00	-10.48	QP
0.5100	18.68	9.54	28.22	46.00	-17.78	AVG
0.5858	33.09	9.54	42.63	56.00	-13.37	QP
0.5858	16.68	9.54	26.22	46.00	-19.78	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

According to 1 CC 1 art 13.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/	′m) (at 3M)
Fiequency(iviriz)	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

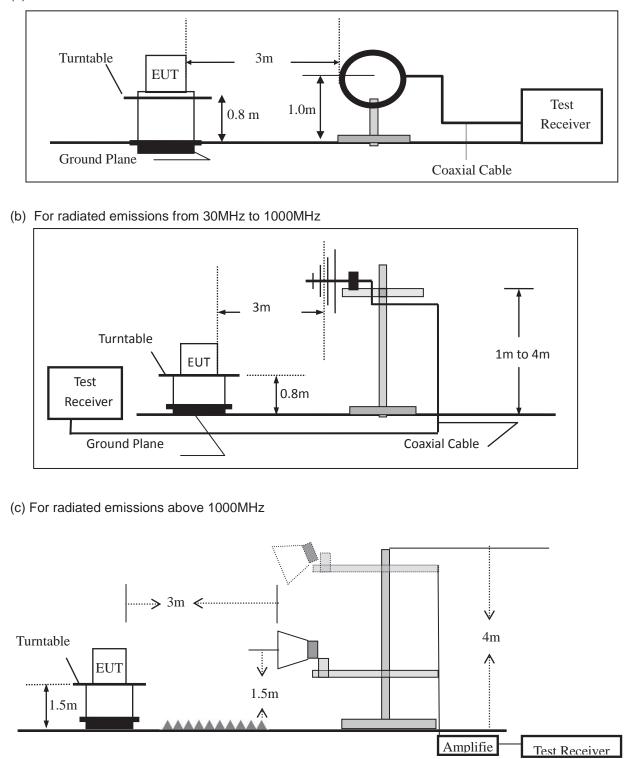
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

NTEKJLW

7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

ACC

Certificate #4298.01

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission to	est, the Spectrum An	alyzer was set with the follow	ving configurations:	
Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth	
30 to 1000	QP	120 kHz	300 kHz	
Ab ave 4000	Peak	1 MHz	1 MHz	
Above 1000	Average	1 MHz	1 MHz	

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

Spurious Emission below 30MHz (9KHz to 30MHz)

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Freq.	Ant.Pol.	Emission L	.evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)		
(MHz)	H/V	PK	PK AV		AV	PK	AV	

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Smart Phone	Model Name :	Bison2021
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	DC 3.85V		

Polar	Frequency	Meter ReadingFactorEmission LevelLimits		Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	125.4457	18.46	12.19	30.65	43.50	-12.85	QP
V	154.2786	24.02	11.72	35.74	43.50	-7.76	QP
V	178.7584	23.62	10.07	33.69	43.50	-9.81	QP
V	221.3921	19.00	10.94	29.94	46.00	-16.06	QP
V	731.9202	6.84	25.17	32.01	46.00	-13.99	QP
V	962.1622	6.90	28.40	35.30	54.00	-18.70	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

(H/V) H H H H H Remark: 72.0 dBuV/		(dBuV) 16.57 18.22 20.98 18.15 7.12 7.38 Reading+ Fac	(dB) 10.52 10.30 14.84 16.98 25.15 28.35 ctor, Margin=	(dBuV/m) 27.09 28.52 35.82 35.13 32.27 35.73 = Emission Lev	(dBuV/m) 43.50 43.50 46.00 46.00 46.00 46.00 vel - Limit	(dB) -16.41 -14.98 -10.18 -10.87 -13.73 -10.27 Limit: Margin:	Remar
H H H H Remark: Emission L	173.8135 301.4224 379.9141 734.4913 948.7609	18.22 20.98 18.15 7.12 7.38	10.30 14.84 16.98 25.15 28.35	28.52 35.82 35.13 32.27 35.73	43.50 46.00 46.00 46.00 46.00	-14.98 -10.18 -10.87 -13.73 -10.27	QP QP QP QP
H H H Remark: Emission L	301.4224 379.9141 734.4913 948.7609 Level= Meter F	20.98 18.15 7.12 7.38	14.84 16.98 25.15 28.35	35.82 35.13 32.27 35.73	46.00 46.00 46.00 46.00	-10.18 -10.87 -13.73 -10.27	QP QP QP
H H H Remark: Emission L	379.9141 734.4913 948.7609 Level= Meter F	18.15 7.12 7.38	16.98 25.15 28.35	35.13 32.27 35.73	46.00 46.00 46.00	-10.87 -13.73 -10.27	QP QP
H H Remark: Emission L	734.4913 948.7609 _evel= Meter F	7.12 7.38	25.15 28.35	32.27 35.73	46.00 46.00	-13.73 -10.27	QP
H Remark: Emission L	948.7609 _evel= Meter F	7.38	28.35	35.73	46.00	-10.27	
Remark: Emission L	_evel= Meter F				•	Limit:	
Emission L		Reading+ Fac	ctor, Margin	= Emission Lev	vel - Limit		
				į	4 X	5	6 X
32			4.18	ž	Mun My	w Alum mount and w	howard
mapphen		M	mannah	n Mar	Hard Markellow		
116	www.www.www.	XAN	w iv	'Yww			
	V V	NC NC					
-8							
30.000	40 50 60	70 80	(MHz] 3	300 400 50	0 600 700	1000.000

EUT:	Sm	nart Pho	ne		Mod	del No.:		Bis	on2021		
Cemperature:	20	°C			Rela	ative Humi	dity:	489	%		
est Mode:	Мо	de2/Mo	de3/Mode	4	Tes	it By:		Ma	ry Hu		
Ithe module	ation mod	les have	been tes	ted, an	nd th	ne worst res	sult was	report as below:			
Frequency	Read Level	Cable loss	Antenna Factor	Prear Facto		Emission Level	Limits	6	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB))	(dBµV/m)	(dBµV/	m)	(dB)		
			Low Ch	annel (240	2 MHz)(GFS	K)Abo	ve 1	G		
4804.99	67.60	5.21	35.59	44.3	0	64.10	74.00)	-9.90	Pk	Vertical
4804.99	43.56	5.21	35.59	44.3	0	40.06	54.00)	-13.94	AV	Vertical
7206.73	64.53	6.48	36.27	44.6	0	62.68	74.00)	-11.32	Pk	Vertical
7206.73	42.66	6.48	36.27	44.6	0	40.81	54.00)	-13.19	AV	Vertical
4804.88	64.90	5.21	35.55	44.30		61.36	74.00		-12.64	Pk	Horizontal
4804.88	41.68	5.21	35.55	44.3	0	38.14	54.00		-15.86	AV	Horizontal
7206.65	62.32	6.48	36.27	44.5	2	60.55	74.00)	-13.45	Pk	Horizontal
7206.65	42.52	6.48	36.27	44.5		40.75	54.00		-13.25	AV	Horizontal
Mid Channel (2441 MHz)(GFSK)Above 1G											
4882.05	66.47	5.21	35.66	44.2		63.14	74.00)	-10.86	Pk	Vertical
4882.05	43.23	5.21	35.66	44.2	20 39.90		54.00)	-14.10	AV	Vertical
7323.45	63.61	7.10	36.50	44.4	3	62.78	74.00)	-11.22	Pk	Vertical
7323.45	42.07	7.10	36.50	44.4	3	41.24	54.00)	-12.76	AV	Vertical
4882.39	62.44	5.21	35.66	44.2		59.11	74.00)	-14.89	Pk	Horizontal
4882.39	40.84	5.21	35.66	44.2		37.51	54.00)	-16.49	AV	Horizontal
7324.08	60.14	7.10	36.50	44.4		59.31	74.00		-14.69	Pk	Horizontal
7324.08	42.45	7.10	36.50	44.4	-	41.62	54.00		-12.38	AV	Horizontal
	1	1			Т	0 MHz)(GFS					
4960.07	65.16	5.21	35.52	44.2		61.68	74.00		-12.32	Pk	Vertical
4960.07	43.63	5.21	35.52	44.2		40.15	54.00		-13.85	AV	Vertical
7439.27	60.86	7.10	36.53	44.6		59.89	74.00		-14.11	Pk	Vertical
7439.27	43.76	7.10	36.53	44.6		42.79	54.00		-11.21	AV	Vertical
4960.77	63.04	5.21	35.52	44.2	1	59.56	74.00		-14.44	Pk	Horizontal
4960.77	40.54	5.21	35.52	44.2		37.06	54.00)	-16.94	AV	Horizontal
7440.55	62.56	7.10	36.53	44.6		61.59	74.00		-12.41	Pk	Horizontal
7440.55	40.25	7.10	36.53	44.6	0	39.28	54.00)	-14.72	AV	Horizontal

ACC

Certificate #4298.01

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S20102202703001

Spurious	Emission	in Restr	icted Band	231	0-239	0MHz and 2	2483.	5-250	OMHz		
EUT:	Smart Pl	none			Mode	el No.:		Bison	2021		
Temperature	: 20 ℃				Relat	ive Humidity	y:	48%			
Test Mode:	Mode2/ I	Vode4			Test	By:		Mary	Hu		
All the modu	ulation mod	des have	e been test	ed, a	nd th	e worst resu	ult wa	s repo	rt as belo	W:	
Frequency	Meter Reading	Cable Loss	Antenna Factor		amp ctor	Emission Level	Lir	nits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(d	B)	(dBµV/m)	(dBµ	ıV/m)	(dB)	Туре	
			11	Mbps(GFSK	()- Non-hop	ping				
2310.00	52.30	2.97	27.80	43	.80	39.27	7	74	-34.73	Pk	Horizontal
2310.00	43.54	2.97	27.80	43	.80	30.51	5	54	-23.49	AV	Horizontal
2310.00	50.92	2.97	27.80	43	.80	37.89	7	74	-36.11	Pk	Vertical
2310.00	40.28	2.97	27.80	43	.80	27.25	5	54	-26.75	AV	Vertical
2390.00	51.27	3.14	27.21	43	.80	37.82	7	74	-36.18	Pk	Vertical
2390.00	44.32	3.14	27.21	43	.80	30.87	5	54	-23.13	AV	Vertical
2390.00	51.74	3.14	27.21	43	.80	38.29	7	74	-35.71	Pk	Horizontal
2390.00	42.66	3.14	27.21	43	.80	29.21	5	54	-24.79	AV	Horizontal
2483.50	54.87	3.58	27.70	44	.00	42.15	7	74	-31.85	Pk	Vertical
2483.50	41.37	3.58	27.70	44	.00	28.65	5	54	-25.35	AV	Vertical
2483.50	50.17	3.58	27.70	44	.00	37.45	7	74	-36.55	Pk	Horizontal
2483.50	41.03	3.58	27.70	44	.00	28.31	5	54	-25.69	AV	Horizontal
				1Mb	ps (Gl	FSK)- hoppin	g				
2310.00	50.04	2.97	27.80	43	.80	37.01	7	74	-36.99	Pk	Horizontal
2310.00	42.48	2.97	27.80	43	.80	29.45	5	54	-24.55	AV	Horizontal
2310.00	50.18	2.97	27.80	43	.80	37.15	7	74	-36.85	Pk	Vertical
2310.00	42.94	2.97	27.80	43	.80	29.91	5	54	-24.09	AV	Vertical
2390.00	50.91	3.14	27.21	43	.80	37.46	7	74	-36.54	Pk	Vertical
2390.00	41.92	3.14	27.21	43	.80	28.47	5	54	-25.53	AV	Vertical
2390.00	54.55	3.14	27.21	43	.80	41.10	7	74	-32.90	Pk	Horizontal
2390.00	43.28	3.14	27.21	43	.80	29.83	5	54	-24.17	AV	Horizontal
2483.50	52.48	3.58	27.70	44	.00	39.76	7	74	-34.24	Pk	Vertical
2483.50	42.49	3.58	27.70	44	.00	29.77	5	54	-24.23	AV	Vertical
2483.50	54.09	3.58	27.70	44	.00	41.37	7	74	-32.63	Pk	Horizontal
2483.50	41.58	3.58	27.70	44	.00	28.86	5	54	-25.14	AV	Horizontal

ACCRED

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

UT:	Smar	t Phone		Mod	Model No.:			Bison2021			
emperature:	20 ℃			Rela	tive Humidit	y:	48%				
Fest Mode:	Mode	e2/ Mode	e4	Test	By:		Mary	Hu			
All the modula	ation mode	es have	been teste	ed, and th	ne worst res	ult was	s repo	ort as bel	ow:		
Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	nits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m) (dBµV		V/m)	(dB)	Туре		
3260	58.23	4.04	29.57	44.70	47.14	74	4	-26.86	Pk	Vertical	
3260	48.29	4.04	29.57	44.70	37.20	54	4	-16.80	AV	Vertical	
3260	55.09	4.04	29.57	44.70	44.00	74	4	-30.00	Pk	Horizontal	
3260	45.11	4.04	29.57	44.70	34.02	54	4	-19.98	AV	Horizontal	
3332	63.75	4.26	29.87	44.40	53.48	74	4	-20.52	Pk	Vertical	
3332	46.15	4.26	29.87	44.40	35.88	54	4	-18.12	AV	Vertical	
3332	63.73	4.26	29.87	44.40	53.46	74	4	-20.54	Pk	Horizontal	
3332	47.27	4.26	29.87	44.40	37.00	54	4	-17.00	AV	Horizontal	
17797	50.69	10.99	43.95	43.50	62.13	74	4	-11.87	Pk	Vertical	
17797	36.20	10.99	43.95	43.50	47.64	54	4	-6.36	AV	Vertical	
17788	52.49	11.81	43.69	44.60	63.39	74	4	-10.61	Pk	Horizontal	
17788	37.12	11.81	43.69	44.60	48.02	54	4	-5.98	AV	Horizontal	

ACC

Certificate #4298.01

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.

VBW ≥ RBW

Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Mary Hu

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = Measurement Bandwidth or Channel Separation RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel. VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.4.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4 DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4×20) (s), Hops Over Occupancy Time comes to $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$ hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

7.7.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Mary Hu

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Smart Phone	Model No.:	Bison2021
Temperature:	20 °C	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Mary Hu

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PIFA antenna (Gain: 0.3dBi). It comply with the standard requirement.

ACCRED

Certificate #4298.01

NTEK北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Certificate #4298.01

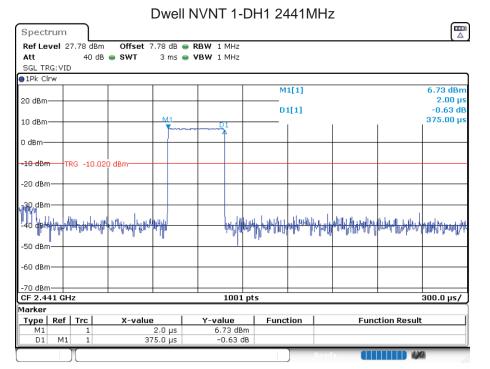
7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.


The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8 TEST RESULTS

8.1 **DWELLTIME**

Condition	Mada	Fraguanay	Pulse Time	Total Durall	Period Time	Lincit	Verdict
Condition	Mode	Frequency	Puise Time	Total Dwell	Penod Time	Limit	verdici
		(MHz)	(ms)	Time (ms)	(ms)	(ms)	
NVNT	1-DH1	2441	0.375	120	31600	400	Pass
NVNT	1-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	1-DH5	2441	2.88	307.2	31600	400	Pass
NVNT	2-DH1	2441	0.381	121.92	31600	400	Pass
NVNT	2-DH3	2441	1.63	260.8	31600	400	Pass
NVNT	2-DH5	2441	2.872	306.347	31600	400	Pass
NVNT	3-DH1	2441	0.384	122.88	31600	400	Pass
NVNT	3-DH3	2441	1.625	260	31600	400	Pass
NVNT	3-DH5	2441	2.88	307.2	31600	400	Pass

Date: 24.0CT.2020 15:19:34

ACCREDITED

Ref Le	rum vel 2	27.78 dB	m (Offset	7.78 dB	🖷 RE	W 1 MHz					
Att		40 0	iB 😑 S				3W 1 MHz					
SGL TF		D										
JIPK CI	irw							м	1[1]			6.63 dBm
20 dBm	_		_									5.00 µs
10 dBm			M1					D	1[1]			-4.20 dB 1.63000 ms
TO OPIN			·									
0 dBm-												
-10 dBn -20 dBn		RG -10.	020 aB	m								
-30 dBn												
Understy	heyrod	HIM SI A	while					What had			allan gerinden og for ander og fo Ander og for ander og	and the second second
-50 dBn	∩+		-									
-60 dBn	n-+		_			\rightarrow						
-70 dBn												
CF 2.4		Ηz					1001	pts				500.0 µs/
Marker		1				1		1 -				
Type M1	Ref	1		X-value	e 5.0 μs		<u>Y-value</u> 6.63 dB	Func	tion	Fui	nction Resul	t
D1	M1			1	1.63 ms		-4.20					
		.2020	15:20		Dwel	II N'	VNT 1-	DH5 24	441MI	Hz		
Spect Ref Le Att	rum vel 2	27.78 dB 40 d		Offset 7	7.78 dB	e Re	VNT 1- 3w 1 MHz 3w 1 MHz	DH5 24	441MI	Ηz		
Spect Ref Le Att SGL TF	rum vel 2 RG: VII	27.78 dB 40 d	m (Offset 7	7.78 dB	e Re	3W 1 MHz	DH5 24	441MI	Hz		
Spect Ref Le Att SGL TF 1Pk Cl	rum vel 2 RG: VII Irw	27.78 dB 40 d	m (Offset 7	7.78 dB	e Re	3W 1 MHz		141MI	Hz		6.48 dBm
Spect Ref Le Att SGL TF 1Pk Cl	rum vel 2 RG: VII Irw	27.78 dB 40 d	m (Offset 7	7.78 dB	e Re	3W 1 MHz	M		Hz		
Spect Ref Le Att SGL TF 1Pk Cl 20 dBm	rum vel 2 RG: VII Irw	27.78 dB 40 d	m (Offset 7	7.78 dB	e Re	3W 1 MHz	M	1[1]	Hz		Δ 6.48 dBm 8.00 μs
Spect Ref Le SGL TF 1Pk Cl 20 dBm 10 dBm	rum vel 2 RG: VII Irw	27.78 dB 40 c	m (Offset 7	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	M	1[1]	Hz		Δ 6.48 dBm 8.00 μs -0.67 dB
Spect Ref Le Att SGL TF 1Pk Cl 20 dBm 10 dBm 0 dBm-	RG: VII	27.78 dB 40 c	m (Offset 7	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	M	1[1]	Hz		Δ 6.48 dBm 8.00 μs -0.67 dB
Spect Ref Le Att SGL TF 1Pk Cl 20 dBm 10 dBm 0 dBm-	RG: VII	27.78 dB 40 c	m (Offset 7	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	M	1[1]	Hz		Δ 6.48 dBm 8.00 μs -0.67 dB
Spect Ref Le SGL TF 1Pk Cl 20 dBm 10 dBm -10 dBm -20 dBm	rum vel 2 RG: VII irw	27.78 dB 40 c	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	M	1[1]	Hz		Δ 6.48 dBm 8.00 μs -0.67 dB
Spect Ref Le SGL TF 1Pk Cl 20 dBm 10 dBm -10 dBm -20 dBn -30 dBn	rum xvel 2 RG: VII irw	27.78 dB 40 c	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D	1[1]			6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TF 1Pk Cl 20 dBm 10 dBm- -10 dBm- -10 dBm- -30 dBm	rum vel 2 RG: VII Irw	27.78 dB 40 c	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D	1[1]			6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TF 1Pk Cl 20 dBm 10 dBm- -10 dBm- -10 dBm- -30 dBm	rum vel 2 RG: VII Irw	27.78 dB 40 c	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D D	1[1]	Real alex us as a suband		6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TF SGL TF 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm		27.78 dB 40 c	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D D	1[1]	Real alex us as a suband		6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TFF 1Pk Cl 20 dBm 10 dBm- 10 dBm- -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm		RG -20.	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D Nikulashirase	1[1]	Real alex us as a suband		6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TFF 1Pk Cl 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm CF 2.4	rum rvel 2 RG: VII rw n n n n 1 1 1 1 1 1 1 1 1 1 1 1 1	RG -20.	m (iB = S	Offset SWT	7.78 dB	e Re	3W 1 MHz 3W 1 MHz	D Nikulashirase	1[1]	Real alex us as a suband		6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le Att SGL TF T 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -70 dBm CF 2.4 Varker Type	rum vel 2 RG:VII rw n n n n 1 41 G	27.78 dB 40 c 2 RG -20.	m (B § §) 020 dB	Offset SWT	7.78 dB 8 ms	e Re	3W 1 MHz 3W 1 MHz	D D D D D D D D D D D D D D D D D D D	1[1] 1[1]			6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TF SGL TF	rum xg:VII rw n	RG -20.	m (B § §) 020 dB	m X-value	7.78 dB 8 ms	e Re	3W 1 MHz 3W 1 MHz 01 01 01 1001 Y-value 6.48 de	D D Utwo with the second topts The second se	1[1] 1[1]			6.48 dBm 8.00 µs -0.67 dB 2.88000 ms
Spect Ref Le SGL TF 9 IPk Cl 20 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 30 dBm - 30 dBm - 30 dBm - 40 dBm - 70 dBm CF 2.4 Warker Type	rum vel 2 RG:VII rw n n n n 1 41 G	RG -20.	m (B § §) 020 dB	m X-value	7.78 dB 8 ms	e Re	3W 1 MHz 3W 1 MHz	D D Utwo with the second topts The second se	1[1] 1[1]			6.48 dBm 8.00 µs -0.67 dB 2.88000 ms

ACCREDITED

●1Pk Clrw	ID								
					M1	[1]			5.86 dBm
20 dBm					D1	[1]			2.00 µs -2.62 dB
10 dBm			M1	51	I			I	381.00 µs
0 dBm			- Tur	roburger 1					
-10 dBm	TRG -10.020	I dBm							
-20 dBm									
-30 dBm									
http://www.	th with white	444	hyp	- WWWWW	HANNA MA	A MUNANA MANA	WWWWWWW	Mar Milli Mar Mar	ad a contraction of the second se
-50 dBm	. 1	10012		1		1 IV .	U		• 1 1
-60 dBm									
-70 dBm									
CF 2.441 G	Hz			1001 p	its				300.0 µs/
Marker Type Ref	Trol	X-value	1	Y-value	Functi	ion I	Eupe	tion Result	. 1
M1	1		2.0 µs	5.86 dBm			Func	cion kesui	
			1.0 µs	-2.62 dB					
Spectrum Ref Level	T.2020 15	:20:22		VNT 2-D	DH3 24	Poot 41MHz			
Spectrum Ref Level Att SGL TRG: VI	T.2020 15 T.2020 15 1 27.78 dBm 40 dB	:20:22		VNT 2-D	DH3 24	Proof 41MHz			
Date: 24.00 Spectrum Ref Level Att	T.2020 15 T.2020 15 1 27.78 dBm 40 dB	:20:22		VNT 2-D	DH3 24			****	-3.86 dBm
Spectrum Ref Level Att SGL TRG: VI	T.2020 15 T.2020 15 27.78 dBm 40 dB	:20:22		VNT 2-D	M1	[1]		****	-3.86 dBm 5.00 μs
Spectrum Ref Level Att SGL TRG:VI • 1Pk Clrw	T.2020 15 T.2020 15 27.78 dBm 40 dB	:20:22		VNT 2-D		[1]			-3.86 dBm
Spectrum Ref Level Att SGL TRG:VI • 1Pk Clrw 20 dBm 10 dBm	T.2020 15 T.2020 15 27.78 dBm 40 dB	:20:22		VNT 2-D	M1	[1]			-3.86 dBm 5.00 μs -2.52 dB
Spectrum Ref Level Att SGL TRG: VI PIPk Clrw 20 dBm	T.2020 15 T.2020 15 27.78 dBm 40 dB	:20:22 Offset 7 • SWT	Dwell N .78 dB • R 5 ms • V	VNT 2-D	M1 D1	[1]			-3.86 dBm 5.00 μs -2.52 dB
Spectrum Ref Level Att SGL TRG: VI • 1Pk Clrw 20 dBm 10 dBm -10 dBm	T.2020 15 T.2020 15 27.78 dBm 40 dB	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz		[1]			-3.86 dBm 5.00 μs -2.52 dB
Date: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 10 dBm -10 dBm -20 dBm	T.2020 15 27.78 dBm 40 dB	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz		[1]			-3.86 dBm 5.00 μs -2.52 dB
Spectrum Ref Level Att SGL TRG: VI 9 1Pk Clrw 20 dBm -10 dBm -20 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz	M1 D1 4 4	(1) (1)		-lueta j.doda.ll.cod	-3.86 dBm 5.00 µs -2.52 dB 1.63000 ms
Spectrum Ref Level Att SGL TRG: VI @1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm	T.2020 15 27.78 dBm 40 dB D	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz	M1 D1 4 4	(1) (1)		-lueta j.doda.ll.cod	-3.86 dBm 5.00 µs -2.52 dB 1.63000 ms
Date: 24.00 Spectrum Ref Level Att SGL TRG: VI 9 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz	M1 D1 4 4	(1) (1)		-lueta j.doda.ll.cod	-3.86 dBm 5.00 µs -2.52 dB 1.63000 ms
Spectrum Ref Level Att SGL TRG: VI P1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -50 dBm -60 dBm	T.2020 15 27.78 dBm 40 dB ID	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz		(1) (1)		-hardling-gradient	-3.86 dBm 5.00 µs -2.52 dB 1.63000 ms
Date: 24.00 Spectrum Ref Level Att SGL TRG:VI ● 1Pk Clrw 20 dBm 10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	T.2020 15 27.78 dBm 40 dB ID	:20:22	Dwell N .78 dB • R 5 ms • V	VNT 2-E BW 1 MHz BW 1 MHz		(1) (1)		-hardling-gradient	-3.86 dBm 5.00 µs -2.52 dB 1.63000 ms
Spectrum Ref Level Att SGL TRG: VJ • 1Pk Clrw 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm	T.2020 15	:20:22	Dwell N	VNT 2-E BW 1 MHz BW 1 MHz	M1 D1	[1] [1]	jel-ville-vielpy	-hardling-gradient	-3.86 dBm 5.00 μs -2.52 dB .63000 ms

ACCREDITED

Certificate #4298.01

Att SGL TRG		e swt		RBW 1 MH VBW 1 MH	IZ					
●1Pk Clrw	/					M1[1]				-9.10 dBe-
20 dBm—						M1[1]				-3.19 dBm 8.00 µs 0.46 dB
10 dBm—					+	- 1	I		2	2.87200 ms
0 dBm—	M1	anned at the star of	المتعادية والمراجع		1					
-10 dBm–		้หางปีปัจจุกราช เหตุ	h dhadhadadha	and way and a second	₽ 					
-20 dBm		0 dBm				_				
-30 dBm-										
nuududbally	alphill				HANDAR CONTRACTOR	erald frank Market	tar af the second s	rthy he was a second	hhiliuppermite	And the former of the second
-50 dBm-										
-60 dBm-										
-70 dBm-				10	01 pts					800.0 µs/
Marker				10	51 pt3					550.0 µ37
Type F	Ref Trc	X-value		Y-value		unction		Fund	ction Result	:
M1 D1	1 M1 1	2.8	8.0 µs 372 ms	-3.19 0.46						
							Boads			-
Spectru Ref Leve	el 27.78 dBm	Offset 7	7.78 dB 😑	NVNT 3	IZ	2441	MHz			
Spectru Ref Leve Att SGL TRG	um el 27.78 dBm 40 dB : VID		7.78 dB 😑		IZ	2441	MHz			
Spectru Ref Leve Att	um el 27.78 dBm 40 dB : VID	Offset 7	7.78 dB 😑	RBW 1 MH	IZ		MHz			
Spectru Ref Leve Att SGL TRG	um el 27.78 dBm 40 dB : VID	Offset 7	7.78 dB 😑	RBW 1 MH	IZ	2441	MHz			5.87 dBm 2.00 µs -2.57 dB
Spectru Ref Leve Att SGL TRG 1Pk Clrw	um el 27.78 dBm 40 dB : VID	Offset 7	7.78 dB ● 3 ms ●	RBW 1 MH	IZ	M1[1]	MHz			5.87 dBm 2.00 μs
Spectru Ref Leve Att SGL TRG 1Pk Clrw 20 dBm—	um el 27.78 dBm 40 dB : VID	Offset 7	7.78 dB ● 3 ms ●	RBW 1 MH	IZ	M1[1]	MHz			5.87 dBm 2.00 µs -2.57 dB
Spectru Ref Leve Att SGL TRG 1Pk Clrw 20 dBm— 10 dBm—	um el 27.78 dBm 40 dB : VID	Offset 7 SWT	7.78 dB ● 3 ms ●	RBW 1 MH	IZ	M1[1]	MHz			5.87 dBm 2.00 µs -2.57 dB
Spectru Ref Leve Att SGL TRG • 1Pk Clrw 20 dBm- 0 dBm- -10 dBm- -20 dBm-	um el 27.78 dBm 40 dB : VID /	Offset 7 SWT	7.78 dB ● 3 ms ●	RBW 1 MH	IZ	M1[1]	MHz			5.87 dBm 2.00 µs -2.57 dB
Spectru Ref Leve Att SGL TRG • IPk Cirv 20 dBm- 10 dBm- -10 dBm- -20 dBm-	um 27.78 dBm 40 dB VID 7	Offset 7 • SWT	7.78 dB • 3 ms •	RBW 1 MH		M1[1] D1[1]				5.87 dBm 2.00 µs -2.57 dB 384.00 µs
Spectru Ref Leve Att SGL TRG • 1Pk Cirv 20 dBm- 10 dBm- -10 dBm- -20 dBm- -40 dbm-	um el 27.78 dBm 40 dB : VID /	Offset 7 • SWT	7.78 dB • 3 ms •	RBW 1 MH		M1[1] D1[1]				5.87 dBm 2.00 µs -2.57 dB
Spectru Ref Leve Att SGL TRG • IPk Cirv 20 dBm- 10 dBm- -10 dBm- -20 dBm-	um 27.78 dBm 40 dB VID 7	Offset 7 • SWT	7.78 dB • 3 ms •	RBW 1 MH		M1[1] D1[1]			Kiter fill the filler of the f	5.87 dBm 2.00 µs -2.57 dB 384.00 µs
Spectru Ref Leve Att SGL TRG • 1Pk Cirv 20 dBm- 10 dBm- 0 dBm- -20 dBm- -20 dBm- -40 dBm- -50 dBm-	um 27.78 dBm 40 dB VID 7	Offset 7 • SWT	7.78 dB • 3 ms •	RBW 1 MH		M1[1] D1[1]			Girdyddyrdio	5.87 dBm 2.00 µs -2.57 dB 384.00 µs
Spectru Ref Leve Att SGL TRG • 1Pk Clrw 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -50 dBm -50 dBm -60 dBm -70 dBm CF 2.441	IIII 27.78 dBm 40 dB :VID 7 TRG -10.021	Offset 7 • SWT	7.78 dB • 3 ms •	RBW 1 MH		M1[1] D1[1]				5.87 dBm 2.00 µs -2.57 dB 384.00 µs
Spectru Ref Levi Att SGL TRG • 1Pk Clrv 20 dBm	UTTRG -10.021	Offset 7 SWT	*.78 dB • 3 ms •	RBW 1 MH	12 12 14 14 14 14 14 14 14 14 14 14 14 14 14			10.11 Parla 10 - 17 (14)		5.87 dBm 2.00 µs -2.57 dB 384.00 µs 384.00 µs
Spectru Ref Levi Att SGL TRG • 1Pk Clrv 20 dBm	IIII 27.78 dBm 40 dB :VID 7 TRG -10.021	Offset 7 SWT	*.78 dB • 3 ms •	RBW 1 MH	IZ IZ DI pts EBM	M1[1] D1[1]		10.11 Parla 10 - 17 (14)		5.87 dBm 2.00 µs -2.57 dB 384.00 µs 384.00 µs

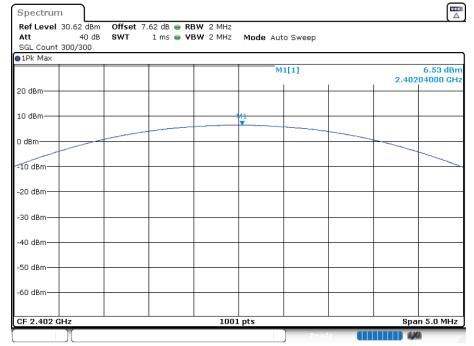
Dwell NVNT 3-DH3 2441MHz

SGL TRG:VI	ID								
JIFK CIIW					м	1[1]			-3.90 dBm
20 dBm					D	1[1]			5.00 μs 0.67 dB
10 dBm						1	I	1	L.62500 ms
0 dBm	M	1							
-10 dBm	TRG -10.020		htsprom helle	when a construction of the second	"WA				
	180 -10.020	UBIII							
-20 dBm									
-30 dBm									
udd ydeithilliwyd	<u>K huhandahuh</u> u				Ակեսերի	and the second	the state of the sector of the	the production of the	holy fill the second
-50 dBm						· ·	1		
-60 dBm									
-70 dBm	Hz			1001	nts				500.0 µs/
Marker									
Type Ref		X-value		Y-value	Func	tion	Fun	ction Result	:
	1 1		5.0 µs 525 ms	-3.90 dE 0.67					
D1 M		1.0							
D1 M: ate: 24.00 Spectrum Ref Level	T.2020 15	5:22:03	Dwell	NVNT 3-) Pe 141MH	adv 🛄 Hz		
D1 M ate: 24.00 Spectrum	T.2020 15 T.2020 15 27.78 dBm 40 dB	5:22:03	Dwell	NVNT 3-) Pe 141MH	Hz		
D1 M ate: 24.00 Spectrum Ref Level Att SGL TRG: VI	T.2020 15 T.2020 15 27.78 dBm 40 dB	5:22:03	Dwell	NVNT 3-	DH5 24		adv 🕕		
D1 M ate: 24.00 Spectrum Ref Level Att SGL TRG: VI J1Pk Clrw	T.2020 15 T.2020 15 27.78 dBm 40 dB	5:22:03	Dwell	NVNT 3-	DH5 24) Ro 141MH 1[1]	adv 🔲		5.83 dBm
D1 M ate: 24.00 Spectrum Ref Level Att SGL TRG: VI	T.2020 15 T.2020 15 27.78 dBm 40 dB	5:22:03	Dwell	NVNT 3-	DH5 24		ladv ()		5.83 dBm 8.00 μs -2.65 dB
D1 M ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 1Pk Clrw	T.2020 15 27.78 dBm 40 dB	0ffset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3- RBW 1 MHz VBW 1 MHz	DH5 24	1[1]	Hz		5.83 dBm 8.00 μs
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm	T.2020 15 T.2020 15 27.78 dBm 40 dB	5:22:03	Dwell	NVNT 3- RBW 1 MHz	DH5 24	1[1]	adv () Hz		5.83 dBm 8.00 μs -2.65 dB
D1 M ate: 24.00 Spectrum Ref Level Att SGL TRG:VI D1Pk Clrw 20 dBm 10 dBm 0 dBm	T.2020 15 27.78 dBm 40 dB	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3- RBW 1 MHz VBW 1 MHz	DH5 24	1[1]			5.83 dBm 8.00 μs -2.65 dB
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG: VI 1Pk Clrw 20 dBm 10 dBm 0 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3- RBW 1 MHz VBW 1 MHz	DH5 24	1[1]			5.83 dBm 8.00 μs -2.65 dB
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 0 dBm -10 dBm -20 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3- RBW 1 MHz VBW 1 MHz	DH5 24	1[1]			5.83 dBm 8.00 μs -2.65 dB
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 9 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1]			5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 9 1Pk Clrw 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1] 1[1]	adv		5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1] 1[1]	Ana Aliperak		5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG: VI 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1] 1[1]	Ana Aliperak		5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	T.2020 15 27.78 dBm 40 dB D	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1] 1[1]	Ana Aliperak		5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	T.2020 15 27.78 dBm 40 dB 10 10 11 10 10 10 10 10 10 10 10 10 10	5:22:03 Offset 7 ● SWT	2.78 dB • 8 ms •	NVNT 3-	DH5 24	1[1] 1[1]	Ana Aliperak	alurpartmetel	5.83 dBm 8.00 µs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG: VI 10 dBm 10 dBm 10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm CF 2.441 G	T.2020 15 27.78 dBm 40 dB D TRG -10.020	0ffset 7 ● SWT	Dwell 7.78 dB 8 ms	NVNT 3-	DH5 24	1[1] 1[1]	jljagglisjogender	alagendhutdh	5.83 dBm 8.00 μs -2.65 dB 2.88000 ms
D1 M: ate: 24.00 Spectrum Ref Level Att SGL TRG:VI 10 dBm 0 dBm 0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm	T.2020 15 27.78 dBm 40 dB D TRG -10.020	Offset 7 SWT	Dwell 7.78 dB 8 ms	NVNT 3-	DH5 24	1[1] 1[1]	jljagglisjogender	alurpartmetel	5.83 dBm 8.00 μs -2.65 dB 2.88000 ms

NTEKJL测

Report No.: S20102202703001

8.2 MAXIMUM CONDUCTED OUTPUT POWER

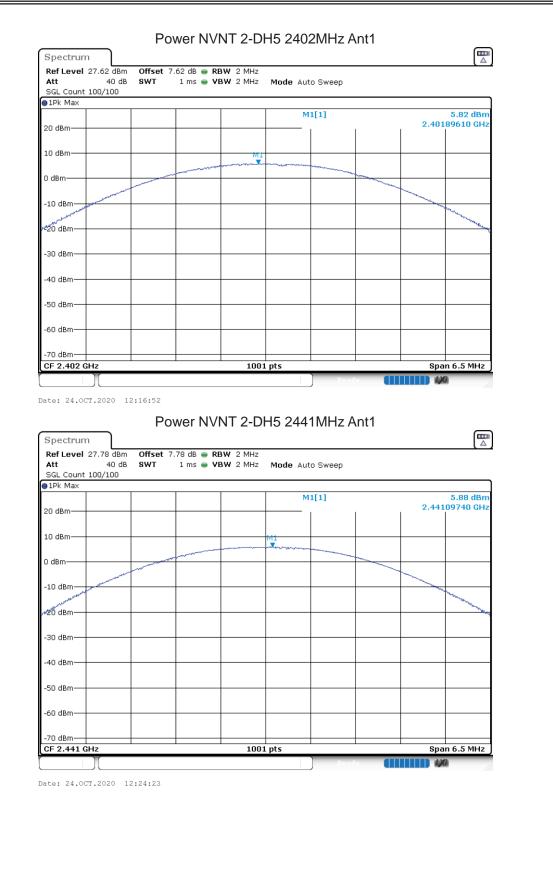

Condition	Mode	Frequency (MHz)	Antenna	Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant 1	6.526	30	Pass
NVNT	1-DH5	2441	Ant 1	6.687	30	Pass
NVNT	1-DH5	2480	Ant 1	5.083	30	Pass
NVNT	2-DH5	2402	Ant 1	5.824	20.97	Pass
NVNT	2-DH5	2441	Ant 1	5.876	20.97	Pass
NVNT	2-DH5	2480	Ant 1	4.254	20.97	Pass
NVNT	3-DH5	2402	Ant 1	5.835	20.97	Pass
NVNT	3-DH5	2441	Ant 1	6.071	20.97	Pass
NVNT	3-DH5	2480	Ant 1	4.231	20.97	Pass

ACCREDITED

Certificate #4298.01

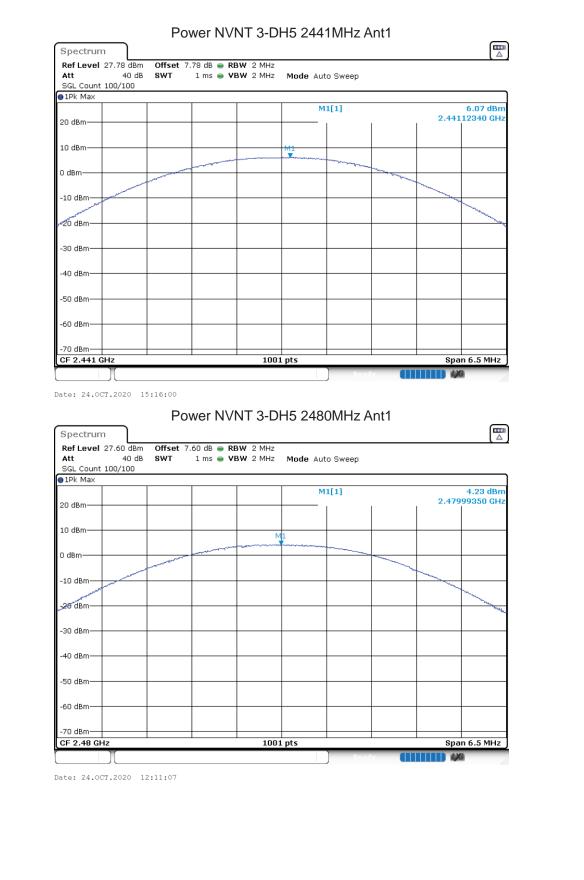
ilac-MR

Power NVNT 1-DH5 2402MHz Ant1

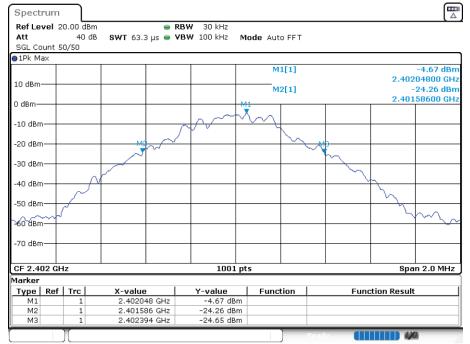


Date: 24.0CT.2020 11:55:32

Att 40 SGL Count 100/10 1Pk Max	IdB SWT O	1 ms 👄 VBW	2 MHz Mode	e Auto Sweep			
20 dBm				M1[1]			6.69 dBm 9500 GHz
10 dBm			M1				
0 dBm							
-10 dBm							
-20 dBm							
-30 dBm							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm						Span	5.0 MHz
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40	Bm Offset	7.60 dB 👄 RBW		2480MHz A	Ant1	426)	
CF 2.441 GHz	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 • 1Pk Max	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2		Ant1		lii
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 1Pk Max 20 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm 0 dBm 40 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 IPk Max 20 dBm 10 dBm 0 dBm 40 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 PR Max 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 PPk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 PPk Max 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 10k Max 20 dBm 10 dBm 10 dBm - -10 dBm - -20 dBm - -30 dBm - -50 dBm - -60 dBm -	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1		5.08 dBm
CF 2.441 GHz ate: 24.0CT.2020 Spectrum Ref Level 27.60 c Att 40 SGL Count 100/10 1Pk Max 20 dBm 0 dBm 10 dBm -0 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Bm Offset	7.60 dB 👄 RBW	T 1-DH5 2	e Auto Sweep	Ant1	2.4799	5.08 dBm



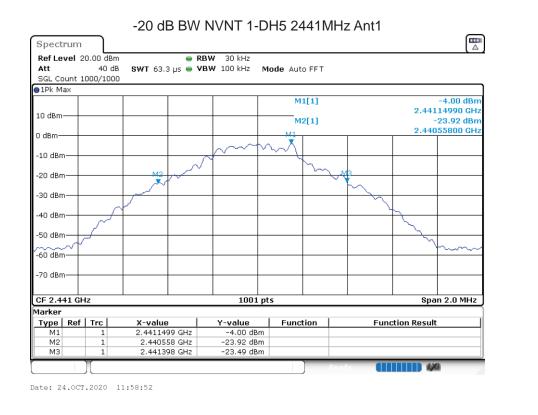
8.3 OCCUPIED CHANNEL BANDWIDTH

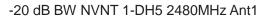

Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant 1	0.808	Pass
NVNT	1-DH5	2441	Ant 1	0.84	Pass
NVNT	1-DH5	2480	Ant 1	0.856	Pass
NVNT	2-DH5	2402	Ant 1	1.266	Pass
NVNT	2-DH5	2441	Ant 1	1.252	Pass
NVNT	2-DH5	2480	Ant 1	1.25	Pass
NVNT	3-DH5	2402	Ant 1	1.284	Pass
NVNT	3-DH5	2441	Ant 1	1.248	Pass
NVNT	3-DH5	2480	Ant 1	1.248	Pass

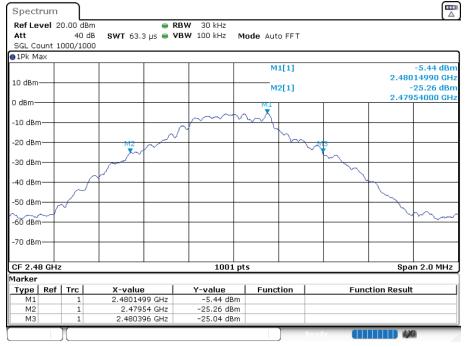
ACCREDITED

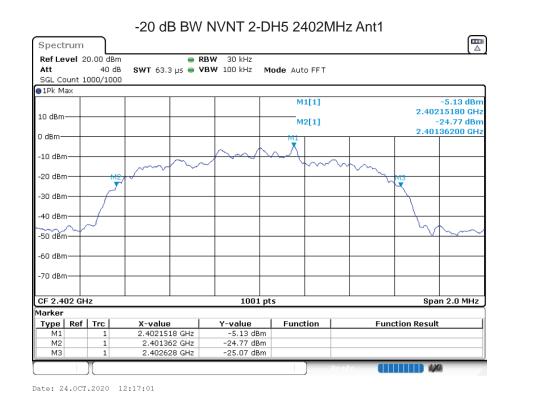
Certificate #4298.01

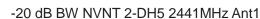
ilac-MR

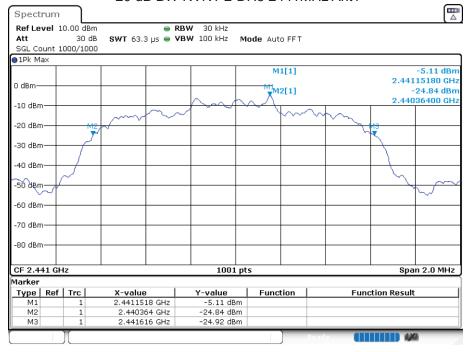

-20 dB BW NVNT 1-DH5 2402MHz Ant1

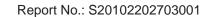


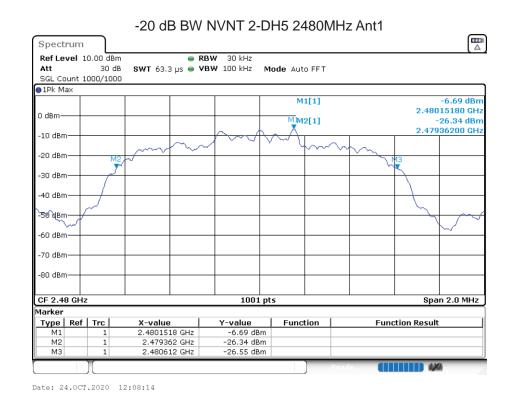

Date: 24.0CT.2020 11:55:38

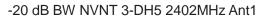


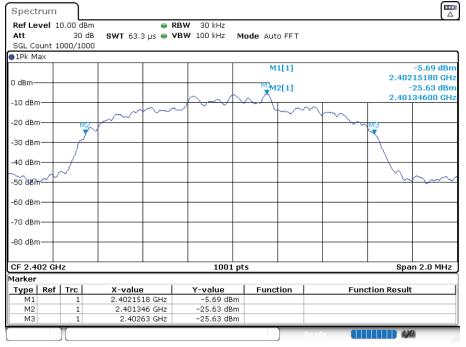



Date: 24.0CT.2020 12:04:10

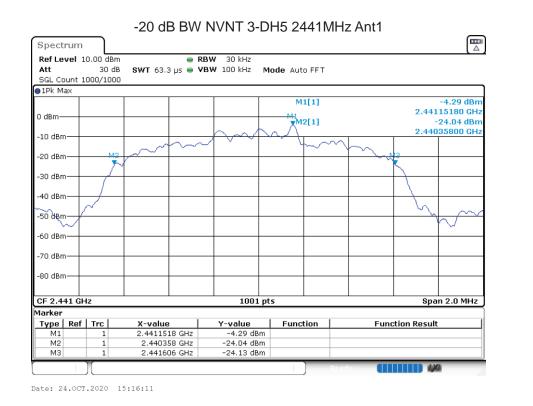


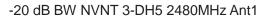


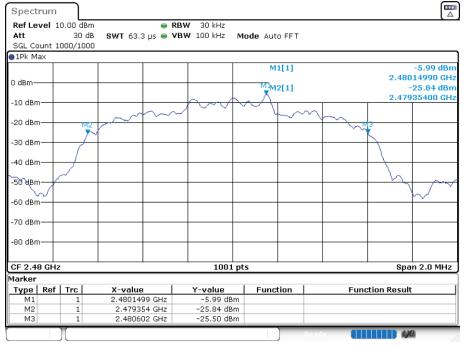


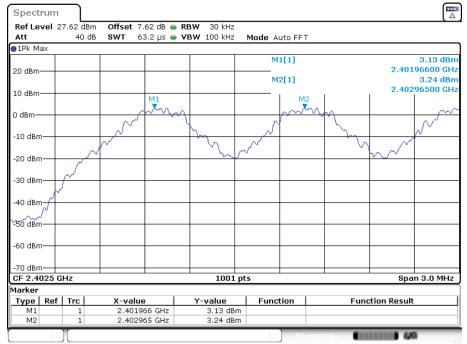

Date: 24.0CT.2020 12:24:33








Date: 24.0CT.2020 12:28:06


Date: 24.0CT.2020 12:11:16

8.4 CARRIER FREQUENCIES SEPARATION

Condition	Mode	Hopping Freq1	Hopping Freq2	HFS	Limit	Verdict
		(MHz)	(MHz)	(MHz)	(MHz)	
NVNT	1-DH5	2401.966	2402.965	0.999	0.808	Pass
NVNT	1-DH5	2441.044	2441.965	0.921	0.84	Pass
NVNT	1-DH5	2479.047	2480.046	0.999	0.856	Pass
NVNT	2-DH5	2402.152	2403.154	1.002	0.844	Pass
NVNT	2-DH5	2441.152	2442.154	1.002	0.835	Pass
NVNT	2-DH5	2479.152	2480.154	1.002	0.833	Pass
NVNT	3-DH5	2402.152	2403.154	1.002	0.856	Pass
NVNT	3-DH5	2441.152	2442.154	1.002	0.832	Pass
NVNT	3-DH5	2479.152	2480.151	0.999	0.832	Pass

CFS NVNT 1-DH5 2402MHz

Date: 24.0CT.2020 11:56:46

1001 pts

Function

Y-value

2.24 dBm

1.88 dBm

Version.1.3

-50 dBm--60 dBm--70 dBm-

Marker Type Ref Trc

M1

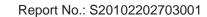
M2

CF 2.4795 GHz

1

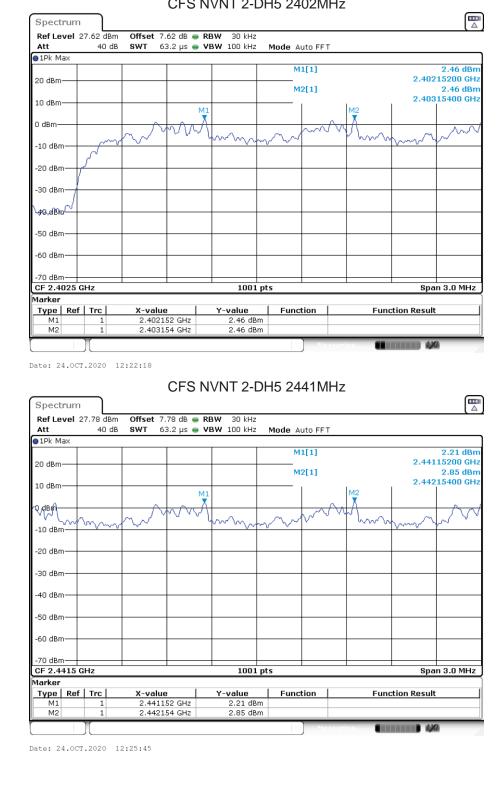
1

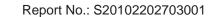
Date: 24.0CT.2020 12:06:55

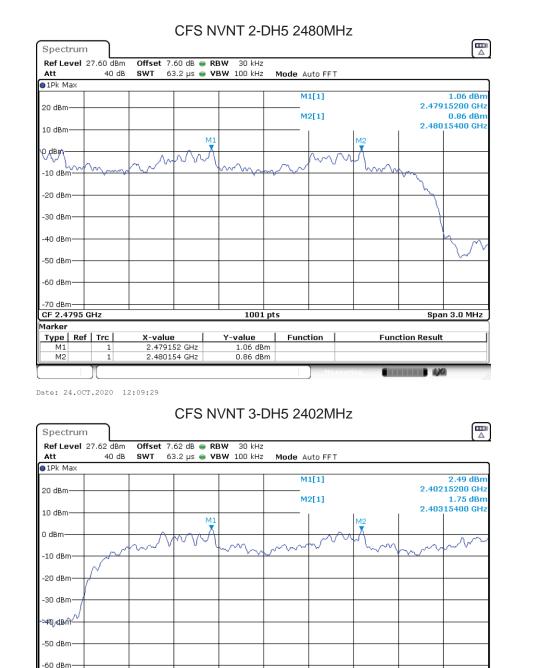

X-value

2.479047 GHz

2.480046 GHz


Span 3.0 MHz


Function Result



1001 pts

Function

Y-value

2.49 dBm

1.75 dBm

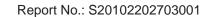
Date: 24.0CT.2020 15:15:26

X-value

2.402152 GHz

2.403154 GHz

-70 dBm-


M2

Marker


CF 2.4025 GHz

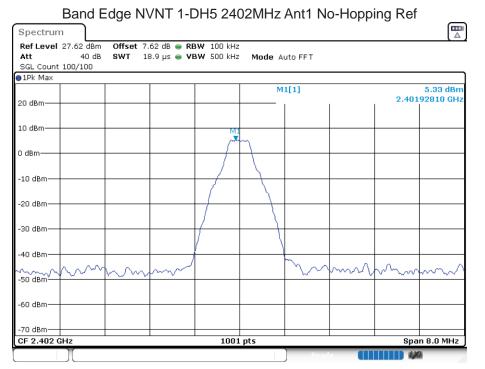
Type Ref Trc M1 1 Span 3.0 MHz

Function Result

8.5 NUMBER OF HOPPING CHANNEL

Condition	Mode		Number		Verd	ict				
NVNT	1-DH5	7	9	15	Pas	S				
	Spect	rum	Норрі	ng No.	NVNT	- 1-D⊦	15 2402	MHz		
	Att SGL C	evel 27.62 dBm 40 dB ount 5000/5000		dB 👄 RBW ms 👄 VBW		Mode	Auto Sweep			
	●1Pk M	lax					41[1]			5.58 dBm
	20 dBm						42[1]			019205 GHz 1.88 dBm 302435 GHz
	101dBm 0 dBm -10 dBr	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA								
	-20 dBr									
	-40 dBr									hours
	-50 dBr -60 dBr									
	-70 dBr				1001	pts			Stop 2	.4835 GHz
	Marker									
	M1 M2	Ref Trc 1 1	X-value 2.4019205 (2.4802435 (GHz	/-value 5.58 dBn 1.88 dBn	n	ction	Func	tion Resul	t
							Rea	iy Al		9

ACCREDIT

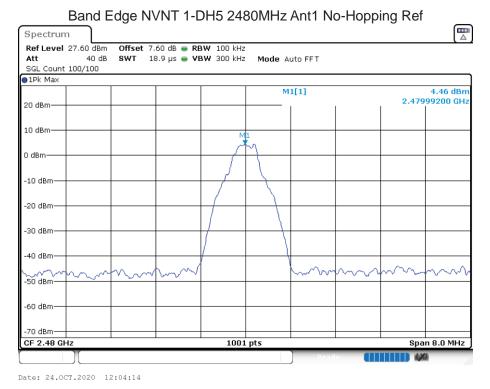

Certificate #4298.01

Date: 24.0CT.2020 11:57:01

8.6 BAND EDGE

Condition	Mode	Frequency	Antenna	Hopping	Max Value	Limit	Verdict
		(MHz)		Mode	(dBc)	(dBc)	
NVNT	1-DH5	2402	Ant 1	No-Hopping	-47.36	-20	Pass
NVNT	1-DH5	2402	Ant 1	Hopping	-46.89	-20	Pass
NVNT	1-DH5	2480	Ant 1	No-Hopping	-47.6	-20	Pass
NVNT	1-DH5	2480	Ant 1	Hopping	-48.44	-20	Pass
NVNT	2-DH5	2402	Ant 1	No-Hopping	-45.35	-20	Pass
NVNT	2-DH5	2402	Ant 1	Hopping	-45.13	-20	Pass
NVNT	2-DH5	2480	Ant 1	No-Hopping	-46.98	-20	Pass
NVNT	2-DH5	2480	Ant 1	Hopping	-44.45	-20	Pass
NVNT	3-DH5	2402	Ant 1	No-Hopping	-46.62	-20	Pass
NVNT	3-DH5	2402	Ant 1	Hopping	-45.17	-20	Pass
NVNT NVNT	3-DH5	2480	Ant 1	No-Hopping	-46.48	-20	Pass
NVNT	3-DH5	2480	Ant 1	Hopping	-47.39	-20	Pass

Date: 24.0CT.2020 11:55:41

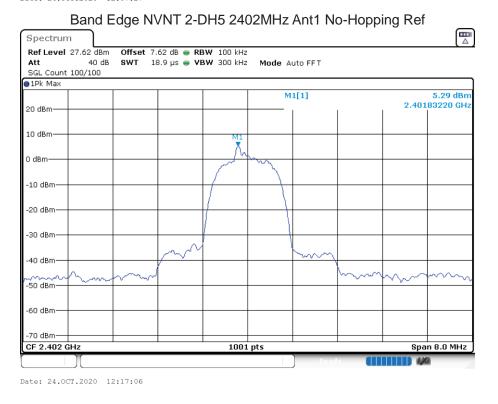


SGL Count 100/100		 RBW 100 kHz VBW 500 kHz Mode Au 	uto FFT	
1Pk Max		M1[[1]	5.84 dB
20 dBm				2.40185000 G
10 dBm		M2[-46.26 dB 2.4000000
0 dBm				
-10 dBm				
-20 dBm	72 dBm			
-30 dBm				
-40 dBm		M4		M3 M2
-50 dBm	new horse many way	and the second and the second of the	whenterryputers may	winter with
-60 dBm				
-70 dBm				
Start 2.306 GHz		1001 pts		Stop 2.406 GH
Marker Type Ref Trc	X-value	Y-value Functio	on Fun	ction Result
M1 1 M2 1	2.40185 GHz 2.4 GHz			
M3 1 M4 1	2.39 GHz 2.3493 GHz	-45.90 dBm -42.03 dBm		
	210170 012		Ready	
Band Ec Spectrum Ref Level 27.62 dB Att 40	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	NVNT 1-DH5 2402 • RBW 100 kHz • VBW 300 kHz Mode Aut		opping Ref
Spectrum Ref Level 27.62 dB	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz		
Band Ec Spectrum Ref Level 27.62 dB Att 40 of SGL Count 8000/80 1Pk Max	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 dB Att 40 0 SGL Count 8000/80	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz VBW 300 kHz Mode Aut	to FFT	[
Band Ec Spectrum Ref Level 27.62 dB Att 40 of SGL Count 8000/80 1Pk Max	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 dB Att 40 0 SGL Count 8000/80 1Pk Max 20 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 db Att 40 d SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 0 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 dE Att 40 d SGL Count 8000/80 1 JR Max 20 dBm 10 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 db Att 40 d SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm 0 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 de Att 40 d SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 db Att 40 (SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 db Att 40 (SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 db Att 40 (SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 dE Att 40 d SGL Count 8000/80 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 dB Att 40 d SGL Count 8000/800 © 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP
Band Ec Spectrum Ref Level 27.62 de Att 40 (SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	RBW 100 kHz Mode Aut VBW 300 kHz Mode Aut	to FFT	5.85 dP 2.40383020 G
Band Ec Spectrum Ref Level 27.62 dB Att 40 (SGL Count 8000/80 • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	Ige(Hopping) m Offset 7.62 dB B SWT 18.9 µs	■ RBW 100 kHz ■ VBW 300 kHz Mode Aut	to FFT	5.85 dP 2.40383020 G

Ref Level	27.62 dBr	m Offset 7.62 dB	🔵 RBW 100 kHz			
Att	40 d	В SWT 227.5 µs	👄 VBW 300 kHz	Mode Auto Fl	FΤ	
SGL Count	1000/100	0				
●1Pk Max						1
				M1[1]		5.36 dBm
20 dBm						2.40395000 GHz
				M2[1]		-43.97 dBm
10 dBm						2.4000000 dHz
						1006
0 dBm						1680
-10 dBm						L CYLLIN
	D1 -14.15	54 dBm				11000
-20 dBm						
-30 dBm						
		M4				
-40 dBm		phermohomenesty wer	and I have all monoton in an			M3 M2
	mentioner	Uner and the second second .	and the second	and rand and and	manushanny	many ton many the top the
-50 dBm						
-60 dBm						
-60 aBm						
-70 dBm						
Start 2.306	GHz		1001	pts		Stop 2.406 GHz
Marker						i
Type Ref	Trc	X-value	Y-value	Function	l Fun	ction Result
M1	1	2.40395 GHz	5.36 dBn			
M2	1	2.4 GHz	-43.97 dBn	1		
M3	1	2.39 GHz	-43.98 dBn	n		
M4	1	2.3407 GHz	-41.04 dBn	1		
	1				Peady .	
	Л					

Date: 24.0CT.2020 11:57:31

20 dbm 4.02 dbm 4.02 dbm 4.02 dbm 10.68m 2.48350000 GHz -6.44 dbm 0 dbm 2.48350000 GHz -6.44 dbm -00 dbm 01.15.544 dbm 2.48350000 GHz -00 dbm 01.15.544 dbm -0.01 dbm -00 dbm 01.15.544 dbm -0.01 dbm -00 dbm 01.15.544 dbm -0.01 dbm -00 dbm 0.01 dbm -0.01 dbm -00 dbm 0.01 dbm 0.01 pts Start 2.476 GHz 1001 pts Stop 2.576 GHz Warker 1 2.44935 GHz -4.02 dbm Function Warker 1 2.44935 GHz -4.02 dbm Function Result Warker 1 2.4493 GHz -4.02 dbm Function Result Com Warker 1 2.4491 GHz -4.02 dbm Function Result Com Com Spectrum Com 0 db Offset 7.60 db RBW 100 Hz Mt111 2.47611790 GHz Spectrum Com 0 db Offset 7.60 db RBW 100 Hz Mate Auto FT Sod dbm Offset 7.60 db SW	Att SGL Count	27.60 dBm 40 dB 100/100			(BW 100 kH /BW 300 kH		Auto FFT			
20 dBm	●1Pk Max					м	1[1]			4.02 dBm
10 dBm 01 -15.544 dBm 01 -15.546 dBm 01 -15.556 dBm	20 dBm									95000 GHz
	10 dem						2[1]			
20 01 -13.544 dBm -13	0 dBm									
200 glam	-10 dBm—									
44 10 <td< td=""><td>-20 cBm</td><td>-D1 -15.544</td><td>dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-20 cBm	-D1 -15.544	dBm							
So dam	-30 cBm									
So dem Image: So dem	-40 dBm		МЗ	and a set					dag kin s	
Journal Journal Stop 2.576 GHz Variant Interim term Stop 2.576 GHz Maria 1 2.4799 GHz Handling Mail 1 2.4935 GHz -4.02 dem Function Result Mail 1 2.4935 GHz -4.02 dem Interim term Atter 2.40914 GHz -4.672 dem Interim term Interim term Atter 2.40914 GHz 2.4916 GHz Interim term Interim term Interim term Spectrum Interim term Interim term Interim term Interim term Interim term Stop 27.60 GBm Offset 7.60 GB RBW 100 KHz Made Auto FT Stop 2.47614790 GHz Other Interim term Interim term Interim term Interim term Stop 2.47614790 GHz Other Interim term Interim term Interim term Interim term Interim term I	الرجاليها الرابعا	utonboald.	www.law	unit Hundeller	and humbridgesteld	prombersion	arwallwayway.	mound	Junior	Marthethal
Start 2.476 GHz 100 pts Stop 2.576 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.4793 GHz -4.02 dBm Function Function Result M2 1 2.4835 GHz -4.02 dBm Function Function Result M4 1 2.4935 GHz -4.02 dBm Function Function Result M4 1 2.4931 GHz -46.72 dBm Function Function Result M4 1 2.4914 GHz -43.15 dBm Function Function Result atts: 24.0CT.2020 12:04:17 Function Function Function Function Spectrum Function Offset 7.60 dB RBW 100 kHz Mate Auto FFT SGL Count 8000/8000 Dr. Result M1[1] 2.47614790 GHz S.70 dBm 2.47614790 GHz Function Function Function 20 dBm 0 M M1[1] S.70 dBm 2.47614790 GHz Function Function Function Function Function Function Function Function Function Func	-60 dBm									
Start 2.476 GHz 100 pts Stop 2.576 GHz Marker Type Ref Trc X-value Function Function Result M1 1 2.4793 GHz -4.02 dBm Function Function Result M2 1 2.4835 GHz -4.02 dBm Function Function Result M4 1 2.4935 GHz -4.02 dBm Function Function Result M4 1 2.4931 GHz -46.72 dBm Function Function Result M4 1 2.4914 GHz -43.15 dBm Function Function Result atts: 24.0CT.2020 12:04:17 Function Function Function Function Spectrum Function Offset 7.60 dB RBW 100 kHz Mate Auto FFT SGL Count 8000/8000 Dr. Result M1[1] 2.47614790 GHz S.70 dBm 2.47614790 GHz Function Function Function 20 dBm 0 M M1[1] S.70 dBm 2.47614790 GHz Function Function Function Function Function Function Function Function Function Func	-70 dBm									
Type Ref Trc X-value Y-value Function Function M1 1 2.47995 GHz 4.02 dbm	Start 2.47	6 GHz			1001	1 pts			Stop	2.576 GHz
Main 1 2.4935 GHz -46.44 dBm Main 1 2.4914 GHz -43.15 dBm Main 1 2.4914 GHz -43.15 dBm ate: 24.00T.2020 12:04:17 Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Image: Comparison of the set of t	Type Re						tion	Fund	tion Result	
M4 1 2.4914 GHz -43.15 dBm Production Production Main ate: 24.0CT.2020 12:04:17 Band Edge(Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Main Spectrum Main Main Main At do db SWT 18.9 µs VBW 300 kHz Mode Auto FFT SGL count 8000/8000 Main Main S.70 dBm PK Main Main Main S.70 dBm 0 dBm Main Main S.70 dBm 0 dBm Main Main S.70 dBm 0 dBm Main Main S.70 dBm -10 dBm Main Main Main Article Auto FFT -20 dBm Main Main Article Auto FFT Article Auto FFT -30 dBm Main Main Article Auto FFT Article Auto FFT -30 dBm Main Main Article Auto FFT Article Auto FFT -30 dBm Main Main Article Auto FFT Article Auto FFT -30 dBm Main Main Article Auto FFT Ar	M2	1	2.483	35 GHz	-46.44 dB	3m				
Band Edge (Hopping) NVNT 1-DH5 2480MHz Ant1 Hopping Ref Spectrum Ref 27.60 db REW 100 kH2 WT 18.9 gb WW 200 kH2 Made Auto FF1 Count 0000/000 PIK Mar MI(1) S.70 dBm 0 dBm 0 dBm 2.47614790 CH2 10 dBm 0 dBm 0 dBm 0 dBm 40 dBm 0 dBm 0 dBm 0 dBm										
20 dBm 2.47614790 GHz AB dBm 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ba Spectrur Ref Level Att	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2		Ant1 Hc	opping I	
0 dBm -10 dBm -10 dBm -20 dBm -20 dBm -10 dBm -30 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm -70 dBm -10 dBm	Ba Spectrur Ref Level Att	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc	opping I	
0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -40 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm	Ba Spectrur Ref Level Att SGL Count • 1Pk Max	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm -70	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -70	Ba Spectrun Ref Level Att SGL Count •1Pk Max 20 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-30 dBm -40 dBm -50 dBm -60 dBm -70	Ba Spectrun Ref Level Att SGL Count •1Pk Max 20 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz Pendy	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm 0 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-40 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz Pendy	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm • dBm • dBm • dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Hc		
-50 dBm -60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm • 1Pk Max 20 dBm • 1Pk dBm • 1Pk dBm • 1Pk dBm • 20 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz Peady	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm • 0 dBm -10 dBm -20 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
-60 dBm -70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz Peady	Ba Spectrur Ref Level Att SGL Count • 1Pk Max 20 dBm • 0 dBm - 10 dBm - 20 dBm - 30 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
-70 dBm CF 2.48 GHz 1001 pts Span 8.0 MHz Peady	Ba Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
CF 2.48 GHz 1001 pts Span 8.0 MHz	Ba Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
Beady Contraction and Contraction Contraction	Ba Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	nd Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz	2 2 Mode A	uto FFT	Ant1 Ho		
	Ba Spectrur Ref Level Att SGL Count •1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Ind Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Hc	2.476	5.70 dBm 14790 GHz
ate: 24.0CT.2020 12:07:05	Ba Spectrur Ref Level Att SGL Count •1Pk Max 20 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	Ind Edg	e(Hopp	60 dB 👄 RE	3W 100 kHz BW 300 kHz	Mode A	uto FFT	Ant1 Ho	2.476	5.70 dBm 14790 GHz


. .

	/el 27.6	50 dBm	Offset	7.60 dB 👄	RBW 100 kHz			(–
Att		40 dB		27.5 µs 👄	VBW 300 kHz	Mode Auto FF	Т	
	unt 100	0/1000						
∎1Pk Ma	ах							
						M1[1]		5.18 dBn
20 dBm-				<u> </u>				2.47705000 GHz
no do -						M2[1]		-45.38 dBn
10 dBm-								2.48350000 GH
/dem-								
(MM)								
-10 dBm	_							
TTUT-		-14.303	3 dBm					
20 dBm	_		l	<u> </u>				
1								
30 dBm	_		+					
		N						
40 dBm				. Muntes	web all a set a		4	ener many prevente
000	- And the second	~~~~	in white have been	- united	Manuer many mere	makan hanner w	and the second of the second	and
50 dBm	+							
60 dBm	_							
60 dBm 70 dBm	_	Iz			1001 pts	5		Stop 2.576 GHz
60 dBm 70 dBm Start 2		Iz			1001 pts	5		Stop 2.576 GHz
60 dBm 70 dBm Start 2 Iarker			X-value	3	1001 pts	; Function	Func	Stop 2.576 GHz
60 dBm 70 dBm Start 2 larker	.476 GF			e			Func	
60 dBm 70 dBm Start 2 Iarker Type	.476 GF	rc	2.477		Y-value		Func	
60 dBm 70 dBm Start 2 Iarker Type M1	.476 GF	rc 1	2.477 2.48	05 GHz	Y-value 5.18 dBm		Func	
larker Type M1 M2	.476 GF	rc 1	2.477 2.48 2	05 GHz 35 GHz	Y-value 5.18 dBm -45.38 dBm		Func	

.

.

Att SGL Count	27.62 dBm 40 dB 100/100			(BW 100 kH) (BW 300 kH)		uto FFT			
●1Pk Max		1			M1	[1]			4.55 dBm
20 dBm						[1]			85000 GHz 47.05 dBm
10 dBm							1		000001GHz
0 dBm									A
-10 dBm	D1 -14.707	dBm							
-20 dBm	01 -14.707								
-30 dBm			M4						
-40 dBm	and the term		•	moundurin	Le D		and the second	M3	mult you
ሎሳኤብጫ/ካኒም -50 dBm	warene	ptulligtypubugh	purep or		ar hall and a stranger	ulean manyaray	part way	Arout ban Mark And a	anner Mun
-60 dBm									
-70 dBm				1001	ntc			Stop	2.406 GHz
Marker				1001					
Type Ref	1		B5 GHz	Y-value 4.55 dB		ion	Fund	tion Result	
M2 M3	1		.4 GHz 39 GHz	-47.05 dB -47.03 dB					
M4	1	2.340	D5 GHz	-40.06 dB	m				
Ba	nd Edg	e(Hopp	62 dB 👄 RE	/NT 2-D			Ant1 Hc	opping l	Ref
Bai Spectrum Ref Level Att SGL Count	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT	Ant1 Hc	opping I	
Bal Spectrum Ref Level Att SGL Count	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au		Ant1 Hc		
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT	Ant1 Hc		(∭∆) 4.79 dBm
Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT	Ant1 Hc		(∭∆) 4.79 dBm
Ball Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ball Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ball Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Batter Ba	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ban Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ban Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Spectrum Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ban Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Ban Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	nd Edg	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT			(∭∆) 4.79 dBm
Bai Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	nd Edg 27.62 dBm 40 dB 8000/8000	e(Hopp	62 dB 👄 RE	3W 100 kHz 3W 300 kHz	Mode Au	to FFT		2.403	4.79 dBm 83820 GHz
Ban Spectrum Ref Level Att SGL Count PIPK Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	nd Edg 27.62 dBm 40 dB 8000/8000	e(Hopp	62 dB 👄 RE	3W 100 kHz	Mode Au	to FFT		2.403	(∭∆) 4.79 dBm

1.00

Span 8.0 MHz

42

20 dBm 2.40415(-44, 2.400000 10 dBm 2.400000 0 dBm 2.400000 -10 dBm -10 dBm -20 dBm -10 dBm -20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -10 dBm -60 dBm -10 lpts Stort 2.306 GHz 100 lpts Storp 2.44 -44.63 dBm M1 1 2.40415 GHz -44.63 dBm M2 1 2.40415 GHz M3 1 2.39 GHz M4 1 2.3484 GHz M4 1 2.3484 GHz -40.35 dBm -40.35 dBm	4.87 dBn 2.40415000 GH -44.63 dBn 2.4000000 GH .4000000 GH .40000 GH .400000 GH .4000000 GH .4000000 GH .40000000 GH .4000000 GH .40000000 GH .40000000 GH .40000000 GH .40000000 GH .40000000 GH .4000000 GH .4000000 GH .40000000 GH .4000000 GH .40000000 GH .40000000 GH .4000000 GH .40000000 GH .4000000 GH .4000000 GH .40000000 GH .4000000 GH .40000000 GH .4000000 GH .4000000 GH .40000000 GH .40000000 GH .40000000 GH .40000000 GH .40000000 GH .40000000 GH .400000000 GH .400000000 GH .4000000000000000000000000000000000000	-					t 1000/1000	
20 dBm	2.40415000 GH: -44.63 dBn 2.4000000 GH	-						
10 dBm M2[1] -44. 10 dBm 2.400000 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -30 dBm -10 dBm -10 dBm -40 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm -70 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -70 dBm -10 dBm </th <th>-44.63 dBn 2.4000000 GHE //////</th> <th>-</th> <th></th> <th>M2[1]</th> <th></th> <th></th> <th></th> <th>00 40</th>	-44.63 dBn 2.4000000 GHE //////	-		M2[1]				00 40
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -70 dBm -50 dBm -70 d		2.400						20 aBm
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -70				1				10 dBm
-20 dBm	M2							0 dBm
-20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70	Mar Mar							-10 dBm—
40 dBm M4 M3 -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70 dBm 1001 pts Stop 2.41 Marker 101 pts Stop 2.41 M1 1 2.40 dHz 4.87 dBm M2 1 2.40 dHz 4.87 dBm M3 1 2.39 GHz -44.63 dBm M3 1 2.39 GHz -44.53 dBm M4 1 2.3484 GHz -40.35 dBm M4 1 2.3484 GHz -40.35 dBm	When we will	-				dBm	D1 -15.206	-20 dBm—
-40 dBm M2 -50 dBm -50 dBm -60 dBm -60 dBm -70 dBm -60 dBm -70 dBm -70 dBm Start 2.306 GHz 1001 pts Marker	when with							-30 dBm—
-50 dBm -60 dBm -60 dBm -70 dBm -70 dBm 1001 pts Start 2.306 GHz 1001 pts Marker	althur with	Ma						
-60 dBm -70 dBm Start 2.306 GHz Type Ref Trc X-value Y-value Function Function Result Marker M1 1 2.40415 GHz 4.87 dBm M2 1 2.4 GHz -44.63 dBm M3 1 2.39 GHz -44.55 dBm M4 1 2.3484 GHz -40.35 dBm M4 1 2.3484 GHz -40.35 dBm M4 1 2.3484 GHz -40.35 dBm		minute	munantrumente	understand	mon Anderwerker with	rubing wowener which have	the water with	moundation
And Participant Stop 2.44 Start 2.306 GHz 1001 pts Stop 2.44 Marker Type Ref Trc X-value Y-value Function M1 1 2.40415 GHz 4.87 dBm 1001 pts 1001 pts M2 1 2.40415 GHz 4.87 dBm 1001 pts 1001 pts M3 1 2.39 GHz -44.63 dBm 1001 pts 1001 pts M4 1 2.3484 GHz -40.35 dBm 1001 pts 1001 pts Attack 1 2.3484 GHz -40.35 dBm 1001 pts 1001 pts								
Start 2.306 GHz 1001 pts Stop 2.44 Marker Y-value Function Function Result M1 1 2.40415 GHz 4.87 dBm M2 1 2.4 GHz -44.63 dBm M3 1 2.39 GHz -44.55 dBm M4 1 2.3484 GHz -40.35 dBm Pendy ate: 24.0CT.2020								-60 dBm—
Marker Type Ref Trc X-value Y-value Function Function Result M1 1 2.40415 GHz 4.87 dBm Function Result	ton 2 406 CHz	Ston			1001 pt			
M1 1 2.40415 GHz 4.87 dBm M2 1 2.4 GHz -44.63 dBm M3 1 2.39 GHz -44.55 dBm M4 1 2.3484 GHz -40.35 dBm Ready	(op 2.100 dri2	0.00			1001 pt			
M2 1 2.4 GHz -44.63 dBm M3 1 2.39 GHz -44.55 dBm M4 1 2.3484 GHz -40.35 dBm Mathematical action Readv Readv Mathematical action Readv Mathematical action M4 1 2.3484 GHz -40.35 dBm Mathematical action Readv Mathematical action Mathematical action Readv Mathematical action Mathematical action Readv Mathematical action Mathematical action Mathematical action Mathematical action	esult	ction Result	Fun	Function				
M3 1 2.39 GHz -44.55 dBm M4 1 2.3484 GHz -40.35 dBm Mathematical Pendy Mathematical Mathematical Mathematical Pendy								
M4 1 2.3484 GHz -40.35 dBm Pendy Pendy								
	120		teady 🚺				1	
Spectrum Ref Level 27.60 dB M Offset 7.60 dB RBW 100 kHz Att 40 dB SWT 18.9 μs VBW 300 kHz Mode Auto FFT SGL Count 100/100	Ref	bing Ref			RBW 100 kHz	dge NVNT 2	Band E	Spectrur Ref Level Att
1Pk Max	0.04 dp.							●1Pk Max
	3.34 dBn 48000800 GH:	2.480						20 dBm
10 dBm M1					M1			10 dBm
0 dBm-					$ \downarrow $			0 dBm
				\mathbf{Y}	V m			
m m								-10 dBm—
-10 dBm								
-10 dBm								-20 dBm—

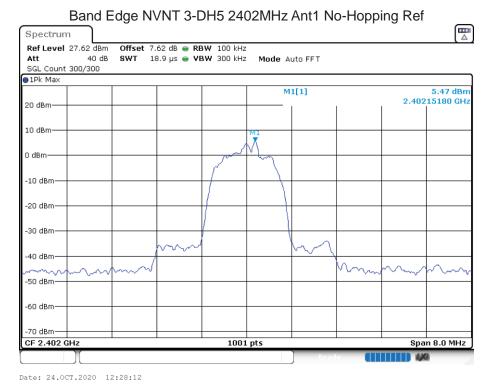
1001 pts

Version.1.3

-50 dBm -60 dBm--70 dBm-

CF 2.48 GHz

Date: 24.0CT.2020 12:08:18



Spectrun									
Ref Level Att	27.60 dBm 40 dB		_	RBW 100 kHz /BW 300 kHz		Auto FFT			
SGL Count	100/100								
●1Pk Max					м	1[1]			0.50 dBm
20 dBm									95000 GHz
10 dBm					M	2[1]			-45.97 dBm 150000 GHz
M1 0 dem									
Δ									
-10 cBm	D1 -16.661	dBm							
-20 cBm									
-30 dBm—									
-40 dBm		и4 • мз	n Boras Isia a Is					(LAALLA)	
ար√ ԿաՇրտ -50 dBm —	www.unu	Hubblin	haven worked	annahuman	nalmebulyMype	how when have	a have been a second	h-apple and a set	and a latter of the sector
-60 dBm									
-70 dBm	6 GHz			1001	pts	1		Stor	2.576 GHz
Marker									
Type Re M1	f Trc 1	2 479	95 GHz	<u>Y-value</u> 0.50 dBr	Func	tion	Fund	tion Result	:
M2	1	2.48	35 GHz	-45.97 dBr	n				
M3		2	.5 GHz	-45.49 dBr	m				
M4	1		68 GHz	-43.65 dBr	n				
M4	1 CT.2020 1: nd Edg	2.49 2:08:22	68 GHz	-43.65 dBr) Read	Ant1 Hc	opping I	
Date: 24.00 Ba Spectrum	1 CT.2020 1: nd Edg	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248		Ant1 Hc	opping I	Ref
M4 Date: 24.00 Ba Spectrun Ref Level Att SGL Count	1 CT.2020 1: nd Edg n 27.60 dBm	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248		Ant1 Hc	opping F	
M4 Date: 24.00 Ba Spectrum Ref Level Att	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc	opping I	
M4 Date: 24.00 Ba Spectrun Ref Level Att SGL Count	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A		Ant1 Hc		
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:08:22 e(Hopp Offset 7. swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count SGL Count 20 dBm 10 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2.49 2:08:22 e(Hopp Offset 7,	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count IPk Max 20 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count SGL Count 20 dBm 10 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -10 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count IDk Max 20 dBm 10 dBm 0.dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm -10 dBm -20 dBm -20 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	uto FFT	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	1[1]	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	1[1]	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	1[1]	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	1 CT.2020 1: nd Edg n 27.60 dBm 40 dB	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	H5 248 Mode A	1[1]	Ant1 Hc		2.56 dBm
M4 Date: 24.00 Ba Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	1 nd Edg 27.60 dBm 40 dB 8000/8000	2:49 2:08:22 e(Hopp offset 7, swT 18	68 GHz ing) N\ 60 dB • RI	/NT 2-D	Mode A	1[1]	Ant1 Hc	2.478	2.56 dBm

					M1[1]			5.09 dB
20 dBm					milit			2.47615000 GF
Lo ubiii					M2[1]			-44.00 dB
10 dBm					matri			2.48350000 Gi
<u>.</u>						1	1	
¢dBm——								
-10 dBm-								
-20 cBm-1	01 -17.4	38 dBm						
-30 dBm								
-00 00111								
IS MOMON		M3	Jar and					Antonio antonio
-40 dBrM2M4	varybelo-hyv	M3 www.withwat	mbrun	hulunanon	waldyward	n hann aller an an	yunnanan	tour warment
IS MOMON	voglekovy	NG3 WuyulihW≣(Juluwuyu-u	meterword	hullingeneration	ununun	ทใหละคงใปปร้างจากส	yuunuunuun	and a second and the second and the second sec
-40 dBm2M4	vroglatority/	M3 mulitut at a constant	miterwood	hull Marine Marthan	ununun	ที่ประการใช้ประวาณ	ydentednety	then and the production of the
-40 dBm12M4 -50 dBm	vranfultortad	M3 www.white Marine and	w	Und she was an and a fait	under	มาใ _{การคา} รณ์ มาร์การการ	yeleneedroopy	and the second sec
-40 dBm ^{12M4}		M3 www.uhhulk.ul.eu	www. ^{her} ward	1001 pt		มาในและเป็นไข้จำการเส	yeenewwww	Stop 2.576 GH
-40 dBm ^{12M4} -50 dBm -60 dBm <u>-70 dBm</u> Start 2.476 Marker	GHz	043 mm,with (men.ee, be	ww		ts	มาในและป _ี สุโรคังเงิ _{ยส}		Stop 2.576 GH
-40 dBm ^{12M4} -50 dBm -60 dBm <u>-70 dBm</u>	GHz	X-value		1001 p Y-value		14pmm12114pmanu 2114pmanu	หม่องมันข้องมันไป Function	Stop 2.576 GH
-40 dBm ^{2M4} -50 dBm -60 dBm <u>-70 dBm</u> Start 2.476 Marker	GHz	۲۰۰۰ و دارا میکار با ۲۰ و دارد. ا		1001 pr 7-value 5.09 dBm	ts	1000000 11864000000 		Stop 2.576 GH
-40 dBm/2 ^{M4} -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref M1 M2	GHz Trc 1 1	X-value 2.47615 2.4835	GHz GHz	1001 pr 	ts	Mprovent)		Stop 2.576 GH
-40 dBm -50 dBm -60 dBm -70 dBm Start 2.476 Marker Type Ref M1	GHz Trc	X-value 2.47615 2.4835	GHz GHz GHz	1001 pr 7-value 5.09 dBm	ts			Stop 2.576 GH

Date: 24.0CT.2020 12:10:01

					M1[1]		3.80 dBm
20 dBm	+				MOLT		2.40215000 GHz -47.42 dBm
10 dBm	+				M2[1]		-47.42 dBm 2.400000000/4€Hz
0 dBm—	_						
-10 dBn	n						
-20 dBm		1 -14.53	4 dBm				
-30 dBm							
-30 UBII	'			M4			d h
-40 dBm		- and -	un and the way have and	un moundation	un Kill an enabela	munumpullipulli	13 M2 MP
-50 dBn		rengin in Gaug	and the set of the set		foots of Anorth. In 1900	Gentred documents - Reached who - O	and and a second s
-60 dBrr	n- -						
-70 dBm	n						
Start 2	.306	GHz		1001 pt	s		Stop 2.406 GHz
Marker							
Туре	Ref	Trc	X-value	Y-value	Function	Function	Result
M1		1	2.40215 GHz	3.80 dBm -47.42 dBm			
M2 M3		1	2.4 GHz 2.39 GHz	-47.42 dBm -46.52 dBm			
M4		1	2.3528 GHz	-41.15 dBm			
							4.564

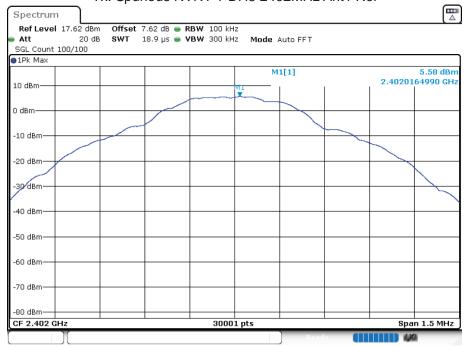
SGL Count 8000/8000 ● 1Pk Max 5.17 dBm 2.40199200 GHz M1[1] 20 dBm-10 dBm-Λ 0 dBm \sim -10 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm -70 dBm-1001 pts Span 8.0 MHz CF 2.402 GHz 42

Date: 24.0CT.2020 12:29:38

Spectrun Ref Level	27.62 dBm	Offset	7.62 dB 👄 F	RBW 100 kH	z				
Att SGL Count	40 dB 1000/1000	SWT 23	27.5 µs 😑 🕻	VBW 300 kH	z Mode /	Auto FFT			
 1Pk Max 	1000, 1000								
20 dBm					м	1[1]		2.404	3.81 dB 15000 GF
10 dBm					M	2[1]			-44.80 dB
								2.400	900000 GH
0 dBm——									M
-10 dBm	D1 -14.832	dBm							
-20 dBm									
-30 dBm									
-40 dBm			M4	an fuller warm				- M3	M
-50 dBm	Maryronaly-we	www.	-		runnah	Harris Maran	-managalanda	www.	and have
-60 dBm									
-70 dBm	6 GHz		I	1001	. pts	1	1	Stop	2.406 GH
Marker	6 .						-		
Type Re M1	f Trc 1	X-value 2.404	15 GHz	Y-value 3.81 dB	m Func	tion	Fund	tion Result	
M2 M3	1		2.4 GHz 39 GHz	-44.80 dB -44.94 dB					
M4	1		96 GHz	-40.00 dB					
Spectrun	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	80MHz		o-Hoppi	ng Ref	0
Ref Level Att SGL Count	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	80MHz		o-Hoppi	ng Ref	
Spectrun Ref Level Att	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHZ Mode A		o-Hoppi	ng Ref	
Spectrun Ref Level Att SGL Count	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHZ Mode A	uto FFT	o-Hoppi		
Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHZ Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count ● 1Pk Max	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count IPk Max 20 dBm-	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHZ Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrum Ref Level Att SGL Count 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrum Ref Level Att SGL Count I Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi		3.83 dB
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi	2.480	3.83 dB
Spectrun Ref Level Att SGL Count 9 1Pk Max 20 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT	o-Hoppi	2.480	3.83 dB
Spectrum Ref Level Att SGL Count © 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz Mode A	uto FFT		2.480	3.83 dB
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri		BOMHz	uto FFT		2.480	3.83 dB 114390 GF
Spectrum Ref Level Att SGL Count 9 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -60 dBm	Band E	2:30:00 Edge N Offset 7	VNT 3-[.60 db • Ri	DH5 248	BOMHz	uto FFT		2.480	3.83 dB 114390 GF
Spectrum Ref Level Att SGL Count • 1Pk Max 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70 dBm	Band E 27.60 dBm 40 dB 100/100	2:30:00 Edge N Offset 7 swT 10	VNT 3-[.60 db • Ri		BOMHz	uto FFT		2.480	3.83 dB 114390 GF

Att SGL Count	27.60 dBm 40 dB 100/100	Offset 7.60 dB 👄 SWT 227.5 µs 👄	VBW 300 kHz				
● 1Pk Max				M1[1]		2 4001	3.70 dBm
20 dBm				M2[1]		-4	15000 GHz 46.17 dBm 50000 GHz
0 dBm						2.4030	0000 GH2
-10 cBm—							
-20 cBm—	D1 -16.172	dBm					
-30 dBm—							
-40 dBm/2	M4	W3 hours Mary Mary Mary Mary	Mar down along	manutation allaharing	wand	when	Manutali
-50 dBm—	Level (1) (and a			d oot to pool total and	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	** v	. 64-14
-60 dBm							
-70 dBm Start 2.47	6 GHz		1001	pts		Stop 2	.576 GHz
	f Trc	X-value	Y-value	Function	Func	tion Result	
M1 M2	1	2.48015 GHz 2.4835 GHz	3.70 dBn -46.17 dBn -45.53 dBn	n			
M3	1	2.5 GHz					
Ba Spectrur Ref Level Att	nd Edg	e(Hopping) N		Re	atr 🔲	opping R	Ref
Date: 24.0 Ba Spectrur Ref Level Att	CT.2020 1: nd Edg n 27.60 dBm	e(Hopping) N offset 7.60 dB	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc	opping R	
Date: 24.00 Ba Spectrur Ref Level Att SGL Count	n 27.60 dBm 40 dB	e(Hopping) N offset 7.60 dB	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		
Bate: 24.0 Ba Spectrur Ref Level Att SGL Count @1Pk Max	n 27.60 dBm 40 dB	e(Hopping) N offset 7.60 dB	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Ho		4.88 dBm
Date: 24.00 Ba Spectrur Ref Level Att SGL Count SGL Count IPk Max 20 dBm-	n 27.60 dBm 40 dB	e(Hopping) N offset 7.60 dB	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Bate: 24.00 Bate: 24.00 Spectrur Ref Level Att SGL Count SGL Count 9 1Pk Max 20 dBm 10 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Bate: 24.00 Spectrur Ref Level Att SGL Count 9 1Pk Max 20 dBm 11 dBm 0 4Bm -10 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Ba Spectrur Ref Level Att SGL Count IPk Max 20 dBm -10 dBm -20 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Bate: 24.00 Spectrur Ref Level Att SGL Count IPk Max 20 dBm -10 dBm -20 dBm -30 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Ba Spectrur Ref Level Att SGL Count IPk Max 20 dBm -10 dBm -20 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Bate: 24.00 Spectrur Ref Level Att SGL Count IPk Max 20 dBm -10 dBm -20 dBm -30 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Bate: 24.00 Spectrur Ref Level Att SGL Count IPk Max 20 dBm -10 dBm -20 dBm -30 dBm -40 dBm	n 27.60 dBm 40 dB	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc		4.88 dBm
Date: 24.00 Ba Spectrur Ref Level Att SGL Count 1Pk Max 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	CT.2020 1: nd Edg n 27.60 dBm 40 dB 8000/8000	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •		H5 2480MHz	z Ant1 Hc	2.4761	4.88 dBm 4790 GHz
Date: 24.00 Bate: 24.00 Ref Level Att SGL Count SGL Count IPk Max 20 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	CT.2020 1: nd Edg n 27.60 dBm 40 dB 8000/8000	2:11:25 e(Hopping) N Offset 7.60 dB • swr 18.9 μs •	IVNT 3-DI RBW 100 kHz	H5 2480MHz	z Ant1 Hc	2.4761	4.88 dBm 4790 GHz

pecti	um	1					
		7.60 dE	3m Offset 7.60 dB	RBW 100 kHz			
tt		40		VBW 300 kHz	Mode Auto FF	т	
GL Co	unt 1	000/10	00				
.Pk Ma	эх						
					M1[1]		-1.28 dBm
I dBm-							2.47605000 GHz
dBm-					M2[1]		-43.28 dBm 2.48350000 GHz
abiii					1	1	2.46330000 GHz
dBm—	+						
ሥኒ 0 dBm							
D CBM		1 -15 1	.20 dBm				
0 dBm		1 -15.1					
- L							
0 dBm	+						
o dem	12		M4				
u upin	Kprew	mandady	munity interested	when how we want the man	where manual	yarren and harrow	will among here house to
0 dBm	<u> </u>	· ·	· ·				
0 dBm	+						
0 dBm	\rightarrow						
art 2		GHz		1001 pt	s		Stop 2.576 GHz
irker							
ype	Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1		1	2.47605 GHz	-1.28 dBm			
M2		1	2.4835 GHz	-43.28 dBm			
M3		1	2.5 GHz	-45.02 dBm			

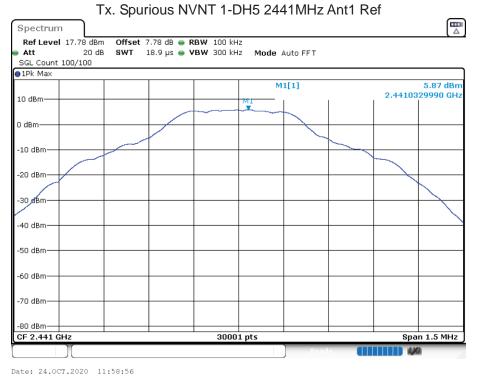


8.7 CONDUCTED RF SPURIOUS EMISSION

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant 1	-60.6	-20	Pass
NVNT	1-DH5	2441	Ant 1	-61	-20	Pass
NVNT	1-DH5	2480	Ant 1	-59.38	-20	Pass
NVNT	2-DH5	2402	Ant 1	-60.96	-20	Pass
NVNT	2-DH5	2441	Ant 1	-57.38	-20	Pass
NVNT	2-DH5	2480	Ant 1	-59.2	-20	Pass
NVNT	3-DH5	2402	Ant 1	-59.81	-20	Pass
NVNT	3-DH5	2441	Ant 1	-57.66	-20	Pass
NVNT	3-DH5	2480	Ant 1	-59.61	-20	Pass

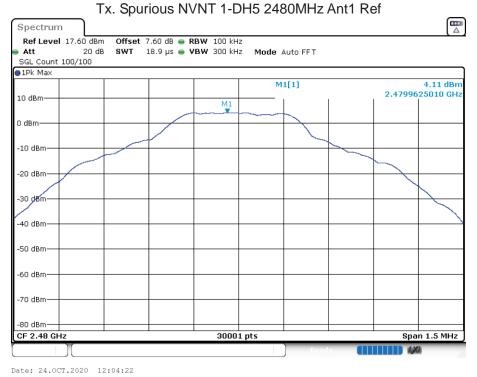
ACCREDITED

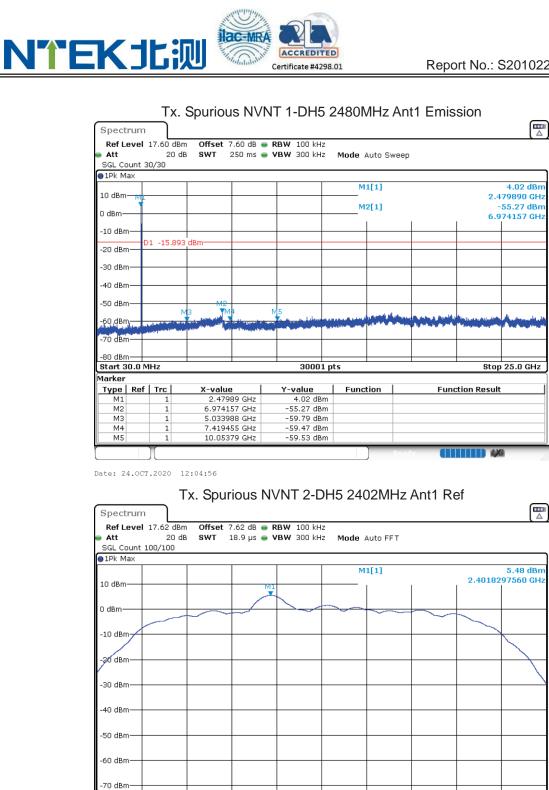
Certificate #4298.01


Tx. Spurious NVNT 1-DH5 2402MHz Ant1 Ref


Date: 24.0CT.2020 11:55:48

Att SGL C		17.62 dBr 20 di 0/30			RBW 100 kHz VBW 300 kHz	Mode A	uto Sweep			
)1Pk M	ax					M1	[1]			5.25 dBm
LO dBm	<u>_M</u>		+				1		2.4	01650 GHz
) dBm-	T.					M2	[1]			55.03 dBm
J asm-								1	16.7	54906 GHz
10 dBn			+							
		1 -14.425	i dBm							
20 dBn										
30 dBr	n		+							
40 dBn	n			-						
50 dBr	n						M2			
		м	M4	, i	M5		and a state of the	aliana a la subs	يفترج الدائلة	
60 dBr	Margallovi	Part International		المراجع المحمد المحمد			And the Design		- Jassie Strating	A CONTRACTOR
70 dBr	n	-								
					30001 p	+			01	
80 dBr									stop	25.0 GHz
Start 3		Hz			00001 p					
Start 3 Iarker	10.0 M		Y-ualua		•		ion I	Eus	tion Bocult	1
Start 3 Iarker Type		Trc	X-value 2.4016		Y-value	Funct	ion	Fund	tion Result	
Start 3 Iarker	10.0 M		2.4016	5 GHz	•		ion	Fund	tion Result	
Start 3 Iarker Type M1	10.0 M	Trc 1		6 GHz	Y-value 5.25 dBm		ion	Fund	tion Result	_
Start 3 Iarker Type M1 M2	10.0 M	Trc 1	2.4016 16.75490	6 GHz 6 GHz 4 GHz	Y-value 5.25 dBm -55.03 dBm		ion	Fund	tion Result	





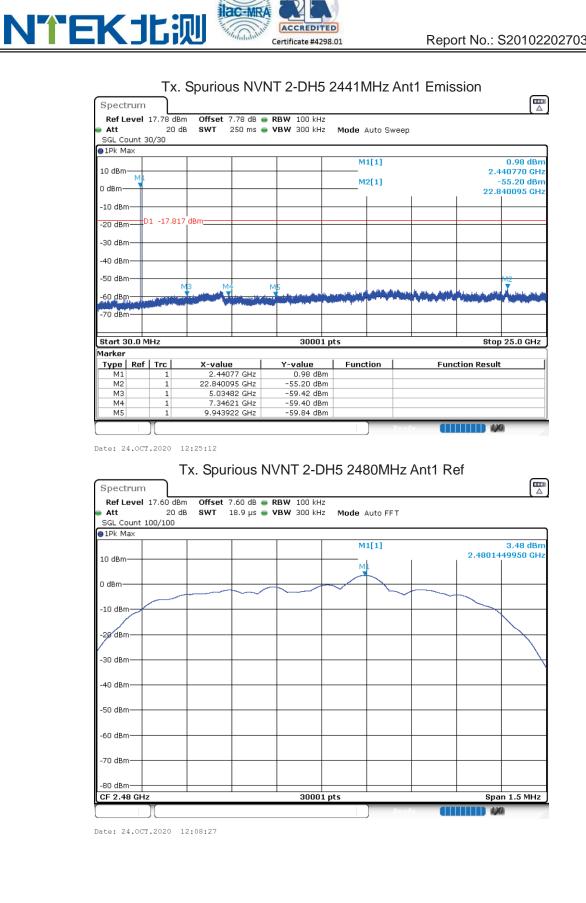
Att SGL Co	unt 30	7.78 dB 20 c //30				3W 100 kHz 3W 300 kHz	Mode /	luto Sv	veep			
1Pk M	ax						M	1[1]				5.39 dBm
.0 dBm	M											40770 GHz
) dBm—							M	2[1]				55.14 dBm
ubiii-											16.7	44086 GHz
10 dBm					_							
		-14.13	3 dBm		-							
20 dBri	- - -				-							
30 dBrr												
50 4011	'											
40 dBrr	ا لـــ				\rightarrow							
50 dBrr			M3 M4		MS				M2 ▼			
60 dBr	<u> </u>	the state of the s	Y	- Pull-	Ţ	والأساقيب والبيانية	أتناط ويعارك والمعاد		e lalla	والقبط بالمحدد وال	a distante de la completion	الاستصباع المناقي
1		and the second	and the second se	and the second s		and providents of the states	an an an tao bha ann an Air Air				Sector of the se	
70 dBri	i				\rightarrow							
tart 3	0.0 MI	Ηz				30001 (ots				Stop	25.0 GHz
arker												
Type	Ref	Trc	X-value	.		Y-value	Funct	ion		Fund	tion Result	: 1
M1		1	2.440	77 GHz		5.39 dBm						
M2		1	16.7440	36 GHz		-55.14 dBm						
MЗ		1	5.0264			-58.13 dBm						
M4		1	7.3628			-59.51 dBm						
M5		1	9.7974	32 GHz		-59.99 dBm						

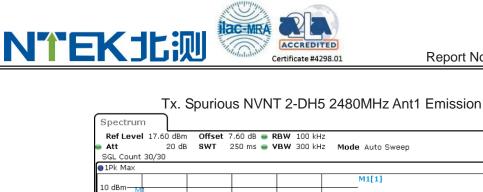
Date: 24.0CT.2020 11:59:30

30001 pts

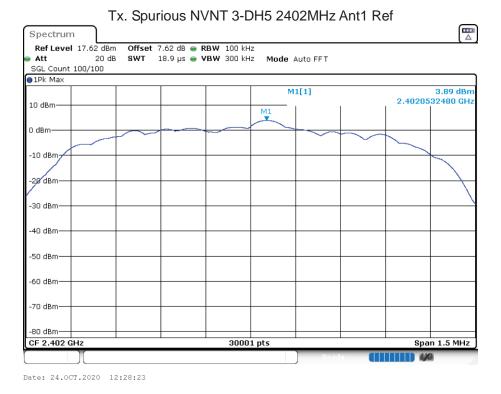
-80 dBm-CF 2.402 GHz

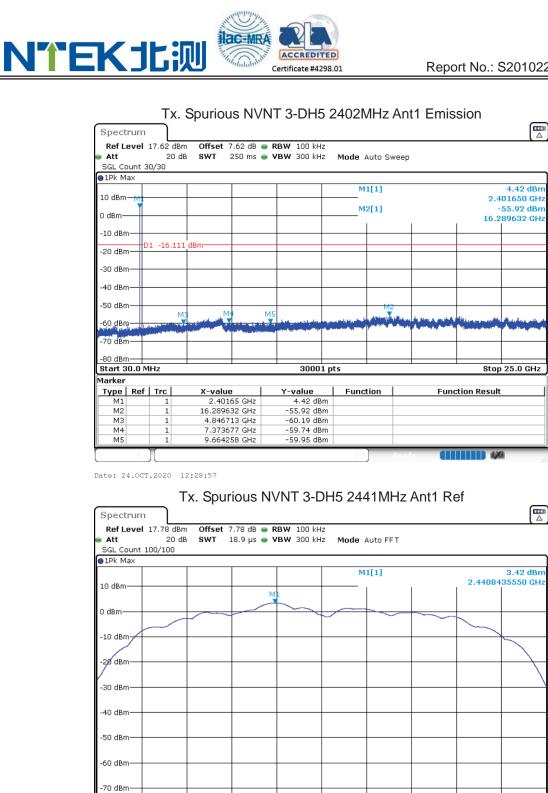
Date: 24.0CT.2020 12:17:16


Span 1.5 MHz



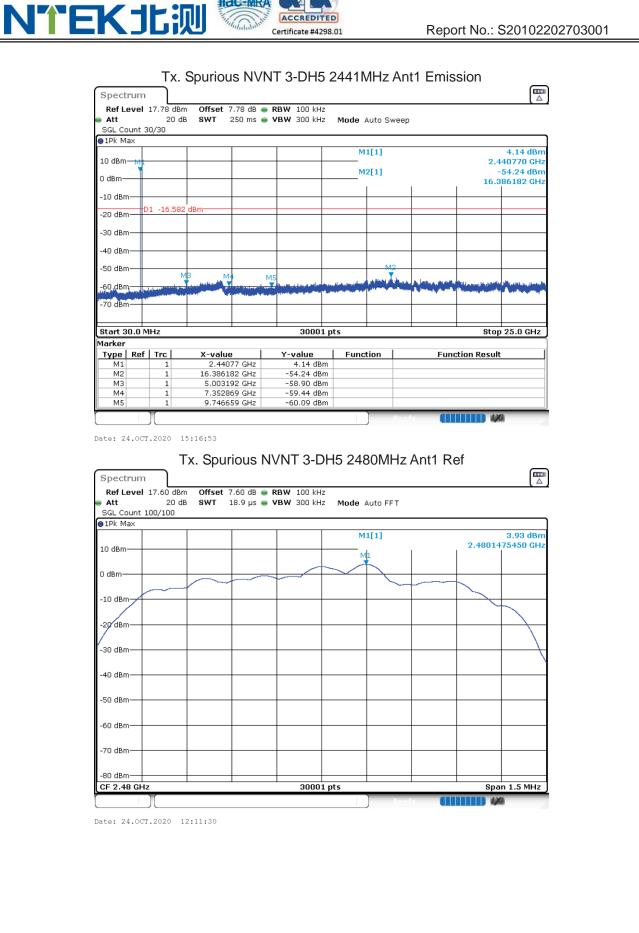
 Att 2 SGL Count 30/30 1Pk Max 		7.62 dB 👄 RBV 250 ms 👄 VBV		de Auto Sweep			
10 dBm				M1[1] M2[1]		-	0.87 dBm 02490 GHz 55.49 dBm
-10 dBm	4.519 dBm					10.3	36242 GHz
-30 dBm							
-50 dBm	M3 M4	M5		M2	de mener di mila	a standard and the	Australia di cata
-70 dBm							the day on the
Start 30.0 MHz Marker Type Ref Trc	X-value		30001 pts	unction	Func	Stop tion Result	25.0 GHz
M1 1 M2 1 M3 1 M4 1	2.4024 16.33624 4.6386	49 GHz 42 GHz - 53 GHz -	0.87 dBm -55.49 dBm -59.95 dBm -58.89 dBm				
M5 1			-60.57 dBm	Read			
Spectrum	Tx. Spur		IT 2-DH5 2	2441MHz	Ant1 Re	f	
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max	Tx. Spur	7.78 dB 👄 RBV			Ant1 Re		2.18 dBm
Ref Level 17.78 Att 2 SGL Count 100/10	Tx. Spur	7.78 dB 👄 RBV	♥ 100 kHz	de Auto FFT	Ant1 Re		
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re		2.18 dBm
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 ● 1Pk Max 10 dBm 0 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re		2.18 dBm
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re		2.18 dBm
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re		2.18 dBm
Spectrum Ref Level 17.78 Att 2 SGL Count 100/10 • IPk Max 10 dBm • 0 dBm -10 dBm -20 dBm -30 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re		2.18 dBm
Spectrum Ref Level 17.78 Att SGL Count 100/10 IPk Max 10 dBm 0 dBm -10 dBm -30 dBm -40 dBm -50 dBm	Tx. Spur	7.78 dB 👄 RBV	V 100 kHz V 300 kHz Mo	de Auto FFT	Ant1 Re	2.44106	2.18 dBm





					M1[1]			3.46 dBr		
10 dBm·	MI						2.4	179890 GH		
o -10	1				M2[1]			-55.73 dBr		
0 dBm—							14.9	997850 GH		
-10 dBm	- -									
	D	1 -16.520) dBm							
-20 dBm										
-30 dBm										
-40 dBm										
-50 dBm										
-50 aBm			мз . м4	MS	MZ					
-60 dBm		auren ander ander	Territoria de la competencia d	ميع الدوار وجور جارية المجروب وروا		legenti, su più bell.	Henryten	المتينية المراجل		
	a sub sure		a second s				Contraction of the later			
-70 dBm						 				
-80 dBm										
Start 3		Hz		30001 p	ts		Sto	25.0 GHz		
Marker										
Туре	Ref	Trc	X-value	Y-value	Function	Function Result				
M1		1	2.47989 GHz	3.46 dBm						
M2		1	14.99785 GHz	-55.73 dBm						
M3 M4		1	5.078102 GHz	-59.67 dBm						
		1	7.459407 GHz	-60.07 dBm						

Date: 24.0CT.2020 12:09:01


30001 pts

-80 dBm-CF 2.441 GHz

Date: 24.0CT.2020 15:16:19

Span 1.5 MHz

ilac-MR

ACCREDITED

Ref Lo Att	evel :														
						RBW 10									
		-	0 dB	SWT	250 ms (VBW 30	10 kHz	Mode A	uto Sw	/еер					
SGL Co 1Pk M		U/3U													
IPK M	ax							5.4.4							1.95 dBm
10 dBm								IVI.	[1]					24	79890 GHz
	M							MS	2[1]						55.69 dBm
) dBm—	_														44918 GHz
10.40-															
10 dBri															
20 dBri	D:	1 -16.	071 dB	n											
30 dBrr															
40 dBm															
+U UBII															
50 dBrr						_				12					
			M3	"М	4	M <u>5</u>				I.	N. A. A. J.	41 - 10			يد اد هد
50 dBri	La market	d a transfer		-			and in the distance			diampin.				a se	
70 dBm	in a start														
o ubii	'														
80 dBrr) <u> </u>														
start 3	0.0 M	Hz				3	10001 pt	s						Stop	25.0 GHz
1arker															
Type	Ref	Trc		X-value		Y-val	ue	Funct	ion			Func	tion R	esult	
M1		1			39 GHz		95 dBm								
M2		1		16.7449			i9 dBm								
M3		1		4.8575			00 dBm								
M4		1		7.4186			L7 dBm 56 dBm								

Date: 24.0CT.2020 12:12:04

END OF REPORT