FCC ID: 2ANM8IDAP1A ATTACHMENT

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

- Port 1

EIRP = P + G	Where,
EIRP = 19.82 dBm + 3.21 dBi	P = Power input to the antenna (mW)
EIRP = 23.03 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
D = 1 0/(TIC /C)	S = Maximum power density (mW/cm2)
$S = (95.94 * 2.09) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0400 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(95.94 * 2.09 / 4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 4.00 cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{\text{-}1} \; (dB \; antenna \; gain \; / \; 10)$$

$$G = Log^{-1} (3.21 / 10)$$

$$G = 2.09$$

FCC ID: 2ANM8IDAP1A ATTACHMENT

** MPE Calculations **

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

- Port 2

EIRP = P + G	Where,
EIRP = 19.10 dBm + 3.21 dBi	P = Power input to the antenna (mW)
EIRP = 22.31 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$S = PG/(4R^2\pi)$	Where,
5 - 1 0/(iii /k)	S = Maximum power density (mW/cm2)
$S = (81.28 * 2.09) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0339 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20 cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm².

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(81.28 * 2.09 / 4\pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 3.68 cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

$$G = Log^{\text{-}1} \; (dB \; antenna \; gain \; / \; 10)$$

$$G = Log^{-1} (3.21 / 10)$$

$$G = 2.09$$