Amber Helm Development L.C.

92723 Michigan Hwy-152 Sister Lakes, Michigan 49047 USA Tel: 888-847-8027

VASTRM-2024TX Issued: December 22, 2020

EMC Test Report

regarding

USA:	CFR Title 47, Part 15.247	(Emissions)
Canada:	ISED RSS- $247v2/GENv5$	(Emissions)

for

73006

Category: BLE Remote Control

Judgments: 15.247/RSS-247v2 Compliant Device Testing Completed: December 15, 2020

Prepared for:

Air Lift Company

2727 Snow Road, Lansing Michigan 48917 USA Phone: (517) 322-2144, Fax: (517) 322-9479 Contact: Julian Quick, jquick@airliftcompany.com

Data Recorded by: Brunett, EMC-002790-NE Dr Prepared by: Dr. ph Brunett, EMC-002790-NE

Reviewed by:

Gordon Helm, EMC-002401-NE

Date of Issue: December 22, 2020

Revision History

R	ev. No	р.	Date	Details	Revised	By
r0 r1			December 22, 2020 January 18, 2021	Initial Release. Missing photo, minor typos.	J. Brunett J. Brunett	
Co	onten	\mathbf{ts}				
Re	vision	History				2
Tal	ble of	Content	s			2
	1.1 L 1.2 F 1.3 S 1.4 T 1.5 L 1.6 C 1.7 E 1.8 T	Aboratory Report Ret Subcontrac Cest Data Limitation Copyright Endorseme Cest Locat	tention	· · · · · · · · · · · · · · · · · · ·	 5 5 5 5 5 5 5 5 6
			tions and Procedures ication and General Proced	ures		7 7
	3.1 I 3 3 3 3 3 3 3 3 3 3	Description .1.1 EU' .1.2 Mod .1.3 Var .1.4 Tes .1.5 Fun .1.6 Mod .1.7 Pro	and Declarations	e Equipment Under Test		
	$ \begin{array}{c} 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4.3\\ 0 \end{array} $	sions General Te .1.1 Rac .1.2 Cor .1.3 Pow ntentional .2.1 Dut .2.2 Fun .2.3 Effe .2.4 Pow Jnintentio	est Procedures	edures		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	4	.3.2 Rela	ative Transmit Chain Spuri	ious Emissions		23

5 Measurement Uncertainty and Accreditation Documents

List of Tables

1	Test Site List.	6
2	Equipment List.	6
3	EUT Declarations.	8
4	Pulsed Emission Characteristics (Duty Cycle).	5
5	Intentional Emission Bandwidth.	6
6	Radiated Power Results	8
7	Power Spectral Density Results	0
8	Transmit Chain Spurious Emissions	
9	AC Mains Power Conducted Emissions Results	4
10	Measurement Uncertainty.	5

List of Figures

1	Photos of EUT.	8
2	EUT Test Configuration Diagram.	9
3	Radiated Emissions Diagram of the EUT	11
4	Radiated Emissions Test Setup Photograph(s).	12
5	Conducted RF Test Setup Photograph(s).	13
6	Conducted Emissions Setup Diagram of the EUT.	13
7	Conducted Emissions Test Setup Photograph(s).	14
8	Pulsed Emission Characteristics (Duty Cycle).	15
9	Intentional Emission Bandwidth.	17
10	Conducted RF Power Plots	19
11	Power Spectral Density Plots.	21
12	Conducted Transmitter Emissions Measured.	23
13	Accreditation Documents	25

1 Test Report Scope and Limitations

1.1 Laboratory Authorization

Test Facility description and attenuation characteristics are on file with the FCC Laboratory, Columbia, Maryland (FCC Reg. No: US5348 and US5356) and with ISED Canada, Ottawa, ON (File Ref. No: 3161A and 24249). Amber Helm Development L.C. holds accreditation under NVLAP Lab Code 200129-0.

1.2 Report Retention

For equipment verified to comply with the regulations herein, the manufacturer is obliged to retain this report with the product records for the life of the product, and no less than ten years. A copy of this Report will remain on file with this laboratory until January 2031.

1.3 Subcontracted Testing

This report does not contain data produced under subcontract.

1.4 Test Data

This test report contains data included within the laboratories scope of accreditation.

1.5 Limitation of Results

The test results contained in this report relate only to the item(s) tested. Any electrical or mechanical modification made to the test item subsequent to the test date shall invalidate the data presented in this report. Any electrical or mechanical modification made to the test item subsequent to this test date shall require reevaluation.

1.6 Copyright

This report shall not be reproduced, except in full, without the written approval of Amber Helm Development L.C.

1.7 Endorsements

This report shall not be used to claim product endorsement by any accrediting, regulatory, or governmental agency.

1.8 Test Location

The EUT was fully tested by **Amber Helm Development L.C.**, headquartered at 92723 Michigan Hwy-152, Sister Lakes, Michigan 49047 USA. Table 1 lists all sites employed herein. Specific test sites utilized are also listed in the test results sections of this report where needed.

Table 1: Test Site List.						
Description	Location	Quality Num.				
OATS (3 meter)	3615 E Grand River Rd., Williamston, Michigan 48895	OATSC				

1.9 Traceability and Equipment Used

Pertinent test equipment used for measurements at this facility is listed in Table 2. The quality system employed at Amber Helm Development L.C. has been established to ensure all equipment has a clearly identifiable classification, calibration expiry date, and that all calibrations are traceable to the SI through NIST, other recognized national laboratories, accepted fundamental or natural physical constants, ratio type of calibration, or by comparison to consensus standards.

Table 2: Equipment List.

Description	Manufacturer/Model	Manufacturer/Model SN		Cal/Ver By / Date Due	
Spectrum Analyzer	R & S / FSV30	101660	RSFSV30001	RS / Apr-2021	
Spectrum Analyzer	R & S / FPC1500	101692	RSFPC15001	RS / Mar-2021	
Biconical	EMCO / 93110B	9802-3039	BICEMCO01	Keysight / Aug-2021	
Log Periodic Antenna	EMCO / 3146	9305-3614	LOGEMCO01	Keysight / Aug-2021	
BNC-BNC Coax	WRTL / RG58/U	001	CAB001-BLACK	AHD / Apr-2021	
3.5-3.5MM Coax	PhaseFlex / PhaseFlex	001	CAB015-PURP	AHD / Jan-2021	
Quad Ridge Horn	Singer / A6100	C35200	HQR1TO18S01	Keysight / Aug-2021	
K-Band Horn	JEF / NRL Std.	001	HRNK01	AHD / Jul-2021	
LISN	Solar / 8012-50-R-24-BNC	970917	LISNB	AHD / March-2021	

2 Test Specifications and Procedures

2.1 Test Specification and General Procedures

The goal of Air Lift Company is to demonstrate that the Equipment Under Test (EUT) complies with the Rules and/or Directives below. Detailed in this report are the results of testing the Air Lift Company 73006 for compliance to:

Country/Region	Rules or Directive	Referenced Section(s)
United States	Code of Federal Regulations	CFR Title 47, Part 15.247
Canada	ISED Canada	ISED RSS-247v2/GENv5

It has been determined that the equipment under test is subject to the rules and directives above at the date of this testing. In conjunction with these rules and directives, the following specifications and procedures are followed herein to demonstrate compliance (in whole or in part) with these regulations.

ANSI C63.4:2014	"Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz"
ANSI C63.10:2013	"American National Standard of Procedures for Compliance Testing of Unli- censed Wireless Devices"
KDB 558074 D01 v05r02	"GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPEC- TRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES "
TP0102RA	"AHD Internal Document TP0102 - Radiated Emissions Test Procedure"
ISED Canada	"The Measurement of Occupied Bandwidth"
ICES-003; Issue 7 (2020)	"Information Technology Equipment (ITE) - Limits and methods of measurement"

3 Configuration and Identification of the Equipment Under Test

3.1 Description and Declarations

The EUT is a remote control for an electronic suspension module. The EUT is approximately 14 x 7 x 2 cm in dimension, and is depicted in Figure 1. It is powered by 5 VDC via a power adapter or 3 VDC alkaline battery. The EUT is used to control vehicle suspension. Table 3 outlines provider declared EUT specifications.

Figure 1: Photos of EUT.

Table 3:	EUT	Declarations.
----------	-----	---------------

~	
General Declarations	
Equipment Type:	BLE Remote Control
Country of Origin:	USA
Nominal Supply:	5 VDC via a power adapter or 3 VDC
Oper. Temp Range:	Not Declared
Frequency Range:	2402 - 2480 MHz
Antenna Dimension:	Not Declared
Antenna Type:	SMT Coil
Antenna Gain:	Not Declared
Number of Channels:	40
Channel Spacing:	Not Declared
Alignment Range:	Not Declared
Type of Modulation:	GFSK
United States	
FCC ID Number:	2ANLC-EBK83016
Classification:	DTS
Canada	
IC Number:	23130-EBK83016
Classification:	Spread Spectrum Device, Remote Control Device

3.1.1 EUT Configuration

The EUT is configured for testing as depicted in Figure 2.

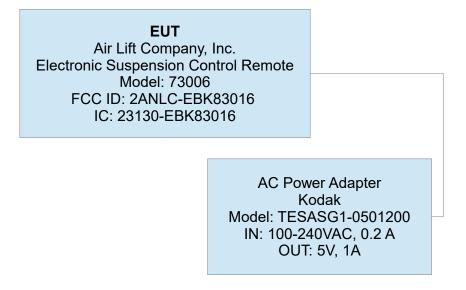


Figure 2: EUT Test Configuration Diagram.

3.1.2 Modes of Operation

The EUT is capable of 1MBps GFSK modulation as tested herein.

3.1.3 Variants

There is only a single variant of the EUT, as tested.

3.1.4 Test Samples

Three samples in total were provided. Two samples were programmed with custom test software enabling CW and modulated transmissions on Low, Middle, and High channels, while the third sample was normal operating and used for photographs and digital spurious emissions validation. A representative DC power cable and AC power adapter were also supplied for testing.

3.1.5 Functional Exerciser

Normal operating EUT functionality was verified by observation of transmitted signal.

3.1.6 Modifications Made

There were no modifications made to the EUT by this laboratory, however the manufacturer did reduce eut power after pretesting to bring the EUT into compliance with the regulatory limits. Manufacturer retains details of the power setting.

3.1.7 Production Intent

The EUT appears to be a production ready sample.

3.1.8 Declared Exemptions and Additional Product Notes

The EUT may be powered via a 5 VDC usb style power cable. Manufacturer declares the EUT does not exchange data over this cable (i.e. the EUT is not a PC peripheral.) Worst case emissions are measured both with and without the dc power cable attached to the EUT, as it was determined that inclusion of this cable had minor influence on the worst case emissions observed.

4 Emissions

4.1 General Test Procedures

4.1.1 Radiated Test Setup and Procedures

Radiated electromagnetic emissions from the EUT are first pre-scanned in our screen room. Spectrum and modulation characteristics of all emissions are recorded. Instrumentation, including spectrum analyzers and other test equipment as detailed in Section 1.8 are employed. After pre-scan, emission measurements are made on the test site of record. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in relevant test standards are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 3. All intentionally radiating elements that are not fixed-mounted in use are placed on the test table lying flat, on their side, and on their end (3-axes) and the resulting worst case emissions are recorded. If the EUT is fixed-mounted in use, measurements are made with the device oriented in the manner consistent with installation and then emissions are recorded. If the EUT exhibits spurious emissions due to internal receiver circuitry, such emissions are measured with an appropriate carrier signal applied.

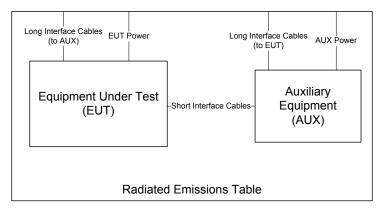


Figure 3: Radiated Emissions Diagram of the EUT.

For devices with intentional emissions below 30 MHz, a shielded loop antenna and/or E-field and H-Field broadband probes are used depending on the regulations. Shielded loops are placed at a 1 meter receive height at the desired measurement distance. For exposure in this band, the broadband probes employed are 10cm diameter single-axis shielded transducers and measurements are repeated and summed over three axes.

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. For both horizontal and vertical polarizations, the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected. The EUT is then rotated through 360° in azimuth until the highest emission is detected. The test antenna is then raised and lowered one last time from 1 to 4 m and the worst case value is recorded. Emissions above 1 GHz are characterized using standard gain or broadband ridge-horn antennas on our OATS with a 4×5 m rectangle of ECCOSORB absorber covering the OATS ground screen and a 1.5m table height. Care is taken to ensure that test receiver resolution and video bandwidths meet the regulatory requirements, and that the emission bandwidth of the EUT is not reduced. Photographs of the test setup employed are depicted in Figure 4.

Where regulations allow for direct measurement of field strength, power values (dBm) measured on the test receiver / analyzer are converted to $dB\mu V/m$ at the regulatory distance, using

$$E_{dist} = 107 + P_R + K_A - K_G + K_E - C_F$$

where P_R is the power recorded on spectrum analyzer, in dBm, K_A is the test antenna factor in dB/m, K_G is the combined pre-amplifier gain and cable loss in dB, K_E is duty correction factor (when applicable) in dB, and C_F is a distance conversion (employed only if limits are specified at alternate distance) in dB. This field strength value is then compared with the regulatory limit. If effective isotropic radiated power (EIRP) is computed, it is computed as

$$EIRP(dBm) = E_{3m}(dB\mu V/m) - 95.2.$$

When presenting data at each frequency, the highest measured emission under all possible EUT orientations (3-axes) is reported.

Figure 4: Radiated Emissions Test Setup Photograph(s).

4.1.2 Conducted Emissions Test Setup and Procedures

Transmit Antenna Port Conducted Emissions At least one sample EUT supplied for testing was provided with a 50Ω antenna port. Conducted transmit chain emissions measurements (where applicable) are made by connecting the EUT antenna port directly to the test receiver port. Photographs of the test setup employed are depicted in Figure 5.

Figure 5: Conducted RF Test Setup Photograph(s).

AC Port Conducted Spurious For this device, AC power line conducted emissions are measured in our screen room. If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.4 / CISPR 22 are employed. Alternatively, an on-table layout more representative of actual use may be employed if the resulting emissions appear to be worst-case in such a configuration. See Figure 6.

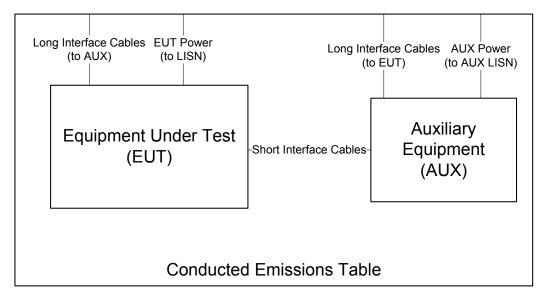


Figure 6: Conducted Emissions Setup Diagram of the EUT.

Conducted emissions are measured and recorded for each AC mains power source over the spectrum 0.15 MHz to 30 MHz for both the ungrounded (HI/PHASE) and grounded (LO/GND) conductors with the EUT placed in its highest current draw operating mode(s). The test receiver is set to peak-hold mode in order to record the peak emissions throughout the course of functional operation. Only if an emission exceeds or is near the limit are quasi-peak and average detection applied. Photographs of the test setup employed are depicted in Figure 7.

Figure 7: Conducted Emissions Test Setup Photograph(s).

4.1.3 Power Supply Variation

Tests at extreme supply voltages are made if required by the procedures specified in the test standard, and results of this testing are detailed in this report.

In the case of this EUT, measurements of the worst-case radiated emissions are performed with the supply voltage varied by no less than 85% and 115% of the nominal rated value for devices connecting to AC power mains.

4.2 Intentional Emissions

4.2.1 Duty and Transmission Cycle, Pulsed Operation

The details and results of testing the EUT for pulsed operation are summarized in Table 4. Plots showing the measurements made to obtain these values are provided in Figure 8.

Table 4: Pulsed Emission Characteristics (Duty Cycle).

Frequency Range f > 1 000 MHz			Det Pk	IFBW 3 MHz	VBW 10 MHz		Test Date: st Engineer: EUT as. Distance:	Joseph Brunett Air Lift 73006
			Pulsed	Operation /	Duty Cycle			
Transmit Mode	Symbol Rate	Data Rate	Voltage	Oper. Freq	Tx Cycle Time*	On-Time*	Duty Cycle	Power Duty Correction
I ransmit Mode	(Msym/s)	(Mbps)	(V)	(MHz)	(ms)	(ms)	(%)	(dB)
GFSK	1.000	GFSK (1 Mbps)	13.4	2440.0	0.625	0.385	61.6	2.1

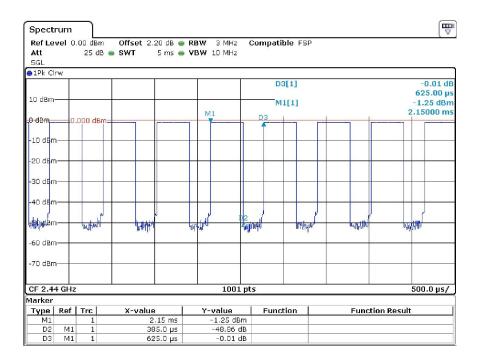


Figure 8: Pulsed Emission Characteristics (Duty Cycle).

4.2.2 Fundamental Emission Bandwidth

Emission bandwidth (EBW) of the EUT is measured with the device placed in the test mode(s) with the shortest available packet length and minimum packet spacing. Radiated emissions are recorded following the test procedures listed in Section 2.1. The 6 dB bandwidth is measured for the lowest, middle, and highest channels available. The 99% emission bandwidth per IC test procedures is also reported. The results of this testing are summarized in Table 5. Plots showing measurements employed obtain the emission bandwidths reported are provided in Figure 9.

Table 5: Intentional Emission Bandwidth.

Type DTS OBW 99% OBW			Det Pk Pk	IFBW 100 kHz 50 kHz	VBW > 3 x IFBW > 3 x IFBW		Test Date: Fest Engineer: EUT leas. Distance:	Joseph Brunett Air Lift 73006
				Occupied	Bandwidth			
Transmit Mode	Symbol Rate	Data Rate*	Voltage	Oper. Freq	6 dB BW	6 dB BW Limit	99% OBW	Pass/Fail
I ransmit Mode	(Msym/s)	(Mbps)	(V)	(MHz)	(MHz)	(MHz)	(MHz)	
				2402.0	0.743	-	1.064	Pass
GFSK	-	1.0	13.4	2440.0	0.734	-	1.064	Pass
				2480.0	0.743	-	1.064	Pass

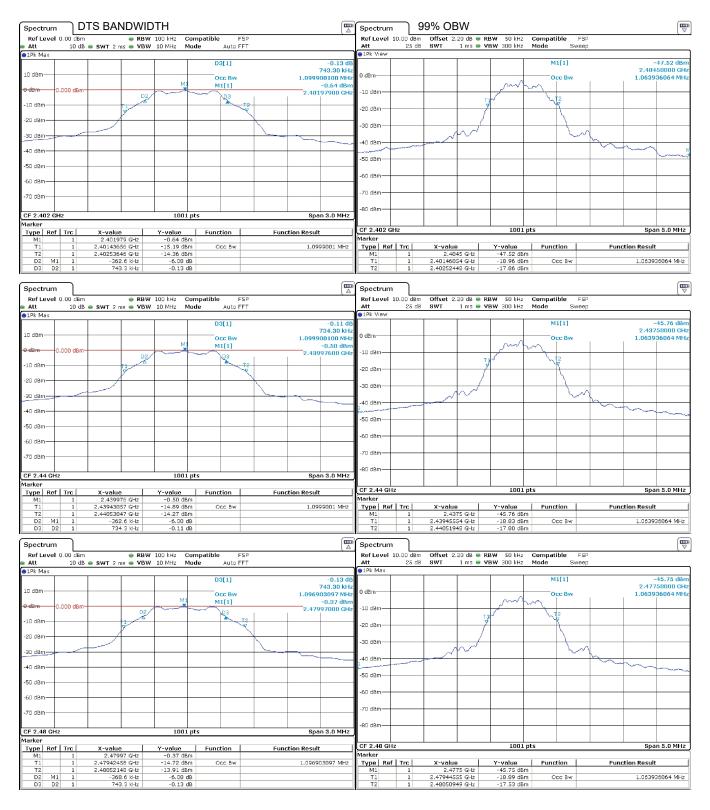


Figure 9: Intentional Emission Bandwidth.

4.2.3 Effective Isotropic Radiated Power

The EUT's radiated power is computed from antenna port conducted power measurements and the gain of the EUT antenna(s). Where the EUT is not sold with an antenna connector, a modified product has been provided including such. Peak conducted output power was measured directly from the EUT at the port where the antenna attaches. The test receiver bandwidth was set to be greater than the measured emission bandwidth of the EUT to capture the true peak. Antenna gain is either provided directly by the antenna manufacturer or measured by comparison between calculated EIRP and conducted output power. Table 6 details the results of these measurements. Plots showing conducted measurements made are depicted in Figure 10.

Table 6: Radiated Power Results.

Frequency Range 25 MHz ≤ f ≤ 1 000 MHz f > 1 000 MHz			Det Pk/QPk Pk/Avg	1	Bandwidth 20 kHz 3 MHz	Video Bandwidth 300 kHz 3 MHz						Test Date: Test Engineer: EUT: Meas. Distance:	13-Dec-20 J. Brunett Air Lift 73006 3m		
			Ener	Ant.	A	Table Azim.		Ka	Kg	Efield @ 3m	EIDD (DL)	Pout* (Pk)	Ant Gain	Po Cond (Avg) Limit	FCC/IC Pass
#	Mode	Channel	Freq. MHz	Used	Ant. Pol.	deg	Ant Height m	Ka (dB/m)	кд (dB)	(dBuV/m)	dBm	dBm	dBi	dBm	dB
1			2402.0	HQR1TO18S01	H/V	300.0	1.5	30.5	-0.3	95.3	.1	-1.4	1.5	30.0	31.4
2	GFSK (Battery)	М	2440.0	HQR1TO18S01	H/V	300.0	1.5	30.7	-0.3	92.8	-2.4	-1.2	-1.2	30.0	31.2
3	(Dattery)	Н	2480.0	HQR1TO18S01	H/V	300.0	1.5	30.8	-0.3	90.3	-4.9	-1.2	-3.7	30.0	31.2
4	OFOU (DO	L	2402.0	HQR1TO18S01	H/V	180.0	1.5	30.5	-0.3	92.8	-2.4	-1.4	-1.0	30.0	31.4
5	GFSK (DC Cable Pwr)	М	2440.0	HQR1TO18S01	H/V	180.0	1.5	30.7	-0.3	92.2	-3.0	-1.2	-1.8	30.0	31.2
6		Н	2480.0	HQR1TO18S01	H/V	180.0	1.5	30.8	-0.3	90.4	-4.8	-1.2	-3.6	30.0	31.2
7															
			Freq.	Supply	Ant.	Table Azim.	Ant Height	Ka	Kg	E3(Pk)					
#	Mode	Channel	MHz	Voltage	Pol.	deg	m	dB/m	dB	dBµV/m					
8			2440.0	3.3	H/V	300.0	1.5	30.7	-0.3	92.8					
9	GFSK	L	2440.0	3.0	H/V	300.0	1.5	30.7	-0.3	92.8					
10			2440.0	2.6	H/V	300.0	1.5	30.7	-0.3	92.8					

* Measured conducted out of modified sample.

** Measured radiated at 3 meter distance. Peak power measured with IFBW > OBW

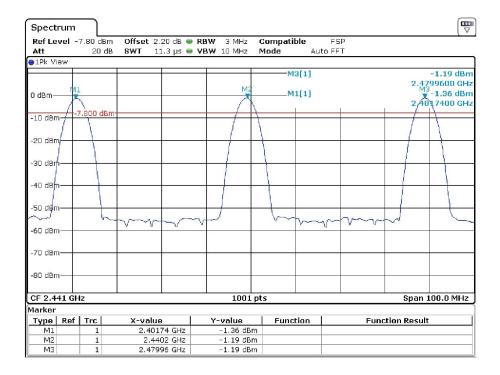
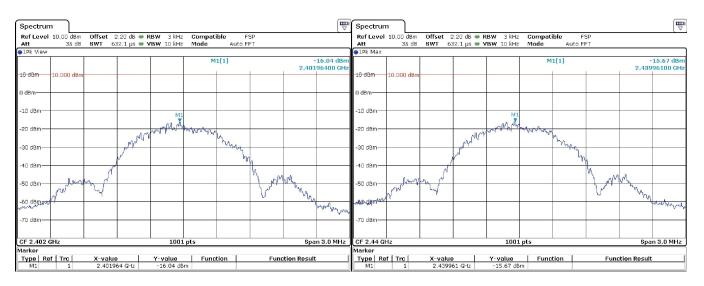


Figure 10: Conducted RF Power Plots


4.2.4 Power Spectral Density

For this test, the EUT was attached directly to the test receiver. Following FCC DTS measurement procedures, the emission spectrum is first scanned for maximum spectral peaks, the span and receiver bandwidth are then reduced until the power spectral density is measured in the prescribed receiver bandwidth. The results of this testing are summarized in Table 7. Plots showing how these measurements were made are depicted in Figure 11.

Table 7: Power Spectral Density Results.

Frequency Range 2400-2483.5	Detector Pk	IF Bandwidth 3 kHz		Video Bandwidth 10 kHz	Test Date: Test Engineer: EUT: Meas. Distance:	13-Dec-20 Joseph Brunett Air Lift 73006 Conducted
						FCC/IC
		Frequency	Ant.	PSDcond (meas)*	PSD Limit	Pass By
Mode	Channel	(MHz)	Used	(dBm/3kHz)	(dBm/3kHz)	(dB)
	L	2402.0	Cond.	-16.0	8.00	24.0
CM	М	M 2440.0		-15.7	8.00	23.7
	Н	2480.0	Cond.	-15.7	8.00	23.7

* PSD measured conducted out the EUT antenna port following FCC DTS PKPSD procedure.

Ref Level 10.00 dBm Att 35 dB	Offset 2.20 dB = SWT 632.1 µs =		ompatible I Iode Auto I	FSP FFT	
∋1Pk Max					-15.65 dBr
			M1[1]		-15.65 dBr 2.47995200 GH
10 dBm 10.000 dBm					
0 d8m					
-10 dBm		M1			
-20 d8m		www.uuuuu	-		
-30 dBm	and the second sec		homen		
-40 d8m	,/``		ել	л	
-50 d8m///~/	on S			M month	
NW	hay			1 m	Why
-6.01089711010					harporte
-70 dBm					
CF 2.48 GHz Marker		1001 pts	•		Span 3.0 MHz

Figure 11: Power Spectral Density Plots.

4.3 Unintentional Emissions

4.3.1 Transmit Chain Radiated Spurious Emissions

The results for the measurement of transmit chain spurious emissions at the nominal voltage and temperature are provided in Table 8. Measurements are performed to 10 times the highest fundamental operating frequency.

Table 8: Transmit Chain Spurious Emissions.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
μ Freq. Start Freq. Start Freq. Start Freq. Start Freq. Start Start Mode Mode Mode Mode Mode Mode Mode Mage	
Mex. Distance: Mex. Distance: <th< td=""><td></td></th<>	
Freq. Start Mat. Ant. Table Azim. deg Ant. Height m Ka Kg E3(Avg)* E3 Avg Lim< BµV/m Pass # MHz MHz Used Pol. deg m dB/m dB dBµV/m dBµV	
# MHz MHz Used Pol. deg m dB/m dB dBµV/m dBµV/m <td></td>	
# MHz MHz Used Pol. deg m dB/m dB dBµV/m dBµV/m <td>FCC/IC</td>	FCC/IC
1 Fundamental Restricted Band Edge (Low Side) 2 2390.0 2390.0 HQR1T018S01 H/V 270 1.5 30.5 -0.3 58.4 40.2 54.0 13.8 all channels, Battery Pwr 3 2390.0 2390.0 HQR1T018S01 H/V 270 1.5 30.5 -0.3 56.1 37.9 54.0 16.1 all channels, Battery Pwr 4 Fundamental Restricted Band Edge (High Side) 5 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 64.4 45.0 54.0 9.0 all channels, Battery Pwr 6 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.0 all channels, Battery Pwr 6 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.0 all channels, Battery Pwr 7 Harmonic / Spurious Emissions	
2 2390.0 2390.0 HQRITO18801 H/V 270 1.5 30.5 -0.3 58.4 40.2 54.0 13.8 all channels, Battery Pwr 3 2390.0 2390.0 HQRITO18801 H/V 270 1.5 30.5 -0.3 56.1 37.9 54.0 16.1 all channels, Battery Pwr 4 Fundamental Restricted Band Edge (High Side) 54.0 16.1 all channels, Battery Pwr 6 2483.5 L4R1T018801 H/V 270 1.5 30.8 -0.3 64.4 45.0 54.0 9.0 all channels, Battery Pwr 6 2483.5 L4R1T018801 H/V 270 1.5 30.8 -0.3 64.4 45.0 9.0 all channels, Battery Pwr 7 Harmonic / Spurious Emissions H/V 270 1.5 32.3 -0.5 52.2 51.0 54.0 1.0 hommels, DC Pwr 7 Harmonic / Spurious Emissions H/V 90 1.5 </td <td></td>	
a 2390.0 2390.0 HQRITO18S01 H/V 270 1.5 30.5 -0.3 56.1 37.9 54.0 161 all channels, DC Pwr 4 Fundamental Restricted Band Edge (High Side) - 5 2483.5 HQRIT018S01 H/V 270 1.5 30.8 -0.3 66.1 37.9 54.0 16.1 all channels, DC Pwr 5 2483.5 HQRIT018S01 H/V 270 1.5 30.8 -0.3 66.1 44.1 54.0 9.0 all channels, DC Pwr 6 2483.5 2483.5 HQRIT018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, Battery Pwr 6 2483.5 2483.5 HQRIT018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, DC Pwr 7 Harmonic / Spurious Emissions - - 52.2 51.0 54.0 3.0 - - -	
4 Fundamental Restricted Band Edge (High Side) 5 2483.5 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 64.4 45.0 54.0 9.0 all channels, Battery Pwr 6 2483.5 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, Battery Pwr 6 2483.5 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, Battery Pwr 7 Harmonic / Spurious Emissions Emissions Emissions 52.2 51.0 54.0 3.0 10 4804.0 4804.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 52.3 52.1 54.0 1.9 1.0 9 4882.0 4806.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.2 1.1 4000.0	
5 2483.5 2483.5 HQR1T018801 H/V 270 1.5 30.8 -0.3 64.4 45.0 54.0 9.0 all channels, Battery Pwr 6 2483.5 2483.5 HQR1T018801 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, Battery Pwr 7 Harmonic / Spurious Emissions	
6 2483.5 2483.5 HQR1T018S01 H/V 270 1.5 30.8 -0.3 62.1 44.1 54.0 9.9 all channels, DC Pwr 7 Harmonic / Spurious Emissions E 5 5 5 5 5 5 3.0 44.1 54.0 9.9 all channels, DC Pwr 8 4804.0 4804.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 52.2 51.0 54.0 3.0 9 4882.0 4805.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 52.3 52.1 54.0 1.9 10 4960.0 4806.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.2 11 4000.0 600.0 HQR1T018S01 H/V all all 32.6 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0	
7 Harmonic / Spurious Emissions 8 4804.0 4804.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 52.2 51.0 54.0 3.0 9 4882.0 4805.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 52.3 52.1 54.0 1.9 10 4960.0 4806.0 HQR1T018S01 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.2 11 4000.0 6000.0 HQR1T018S01 H/V all all 32.6 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0 HQR1T018S01 H/V 90 1.5 33.2 -0.7 40.1 54.0 13.9	
8 4804.0 4804.0 HQRIT018S01 H/V 90 1.5 32.3 -0.5 52.2 51.0 54.0 3.0 9 4882.0 4805.0 HQRIT018S01 H/V 90 1.5 32.3 -0.5 52.3 52.1 54.0 1.9 10 4960.0 4806.0 HQRIT018S01 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.9 11 4000.0 6000.0 HQRIT018S01 H/V 90 1.5 32.3 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0 HQRIT018S01 H/V 90 1.5 33.2 -0.7 40.1 54.0 1.2 all channels; max all	
9 4882.0 4805.0 HQR1T018801 H/V 90 1.5 32.3 -0.5 52.3 52.1 54.0 1.9 10 4960.0 4806.0 HQR1T018801 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.9 10 4960.0 4806.0 HQR1T018801 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.2 11 4000.0 6000.0 HQR1T018801 H/V all all 32.6 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0 HQR1T018801 H/V 90 1.5 33.2 -0.7 40.1 54.0 13.9	
10 4960.0 4806.0 HQR1T018801 H/V 90 1.5 32.3 -0.5 55.3 52.8 54.0 1.2 11 4000.0 6000.0 HQR1T018801 H/V all all 32.6 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0 HQR1T018801 H/V 90 1.5 33.2 -0.7 40.1 54.0 1.3	-
11 4000.0 6000.0 HQR1TO18S01 H/V all all 32.6 -0.6 55.3 52.8 54.0 1.2 all channels; max all 12 7206.0 7206.0 HQR1TO18S01 H/V 90 1.5 33.2 -0.7 40.1 54.0 13.9	-
12 7206.0 7206.0 HQR1T018S01 H/V 90 1.5 33.2 -0.7 40.1 54.0 13.9	
13 7323.0 7323.0 HORITO18S01 H/V 90 1.5 33.3 -0.7 39.8 54.0 14.2	
	-
14 7440.0 7440.0 HQR1T018S01 H/V 90 1.5 33.4 -0.7 40.2 54.0 13.8	
15 600.0 8400.0 HQR1T018S01 H/V all all 34.3 -0.8 40.2 54.0 13.8	
16 8400.0 12500.0 HQR1T018S01 H/V all all 35.6 -1.1 42.9 54.0 11.1 all channels; max all; noise	
17 12500.0 18000.0 HQR1T018S01 H/V all all 34.2 -1.6 40.1 54.0 13.9 all channels; max all; noise	
18 1800.0 2600.0 HRNK01 H/V all all 32.0 0.0 42.3 54.0 11.7 all channels; max all; noise	
19	
20 NOTE: No other Radio Chain emissions were observed within 20 dB of the spurious emissions limit over the range of 30MHz - 26 GHz	
21	

*Restricted Band measurements made employing RMS detector with Duty Cycle added back following ANSI C63.10 11.12.2.5.2

*Band Edge Avg measurements made following ANSI C63.10 11.13.3.5

4.3.2 Relative Transmit Chain Spurious Emissions

The results for the measurement of transmit chain spurious emissions relative to the fundamental in a 100 kHz receiver bandwidth (at the nominal voltage and temperature) are provided in Figure 12 below.

Spectrum					
Ref Level 10.00 dB	m Compa	tible FSP Mode	Auto Sweep		(🗠
1 Max	on oompe	TIBIC 131 MOUC	Auto Sweep		
Limit Check		PASS			
0 dB kine _\$PURIOU	S_LINE_ABS_	PASS		_	
-10 dBm					
an dam					
SPURIOUS_LINE_ABS	i				
-su ubili		A A	A		
-40 dBm	+ +				
-50 d8m					
	and the second se		Contraction of the local sectors in the local secto		
60.d8m		In Party Independent	the state of the s		
-70 dBm					
-80 dBm					
Start 2.3 GHz		250	03 pts		Stop 2.6 GHz
purious Emissions					
Range Low	Range Up	RBW	Frequency	Power Abs	∆Limit ▲
2.300 GHz	2.400 GHz	100.000 kHz	2.39987 GHz	-37.28 dBm	-16.78 dB
2.300 GHz 2.300 GHz	2.400 GHz 2.400 GHz	100.000 kHz 100.000 kHz	2.40000 GHz 2.39915 GHz	-38.41 dBm -40.24 dBm	-17.91 dB -19.74 dB
2.300 GHz	2.400 GHz	100.000 kHz	2.39910 GHz	-42.89 dBm	-22.39 dB
2.300 GHz	2.400 GHz	100.000 kHz	2.39753 GHz	-44.42 dBm	-23.92 dB
2.400 GHz	2.484 GHz	100.000 kHz	2.47997 GHz	-0.25 dBm	-8.25 dB
2.400 GHz 2.400 GHz	2.484 GHz 2.484 GHz	100.000 kHz 100.000 kHz	2.40198 GHz 2.44021 GHz	-0.54 dBm -0.56 dBm	-8.54 dB -8.56 dB
2.400 GHz	2.484 GHz	100.000 kHz	2.40113 GHz	-27.43 dBm	-35,43 dB
2.400 GHz	2.484 GHz	100.000 kHz	2.43858 GHz	-32.78 dBm	-40.78 dB 💌
Ref Level 10.00 dB 1 Max	im Comp a	ntible FSP Mode	Auto Sweep		
Limit Check		PASS			
Une SPURIOU	S_LINE_ABS_	PASS			
o dom					
-10 dBm-	_				
SPURIOUS_LINE_ABS	8				
	-				
-30 dBm					
-40 d8m—					
-50 dBm					
L. Lidentered		all a feature for the state	والتنوية والبرها والمتعالة ومعاده الماس		
-69 dBm int		and an and a second second			
-70 dBm					
-yu ubili					
-80 dBm					
Start 30.0 MHz		450	05 pts		Stop 25.0 GHz
		450	υσμις		atop zato GHZ
Spurious Emissions Range Low	Range Up	RBW	Frequency	Power Abs	۵Limit
30.000 MHz	2.400 GHz	100.000 kHz	2.39680 GHz	-45.77 dBm	
2.400 GHz	2.484 GHz	100.000 kHz	2.47973 GHz	-0.49 dBm	-8.49 dB
2.484 GHz	10.000 GHz	100.000 kHz	4.95956 GHz	-37.23 dBm	
10.000 GHz	17.500 GHz 25.000 GHz	100.000 kHz 100.000 kHz	16.81644 GHz 19.24995 GHz	-51.53 dBm -52.58 dBm	
17.500 GHz					

Figure 12: Conducted Transmitter Emissions Measured.

4.3.3 Conducted Emissions Test Results - AC Power Port(s)

The results of emissions from the EUT's AC mains power port(s) are reported in Table 9.

Table 9: AC Mains Power Conducted Emissions Results.

 AC COND EXISSIONS - L1
 I 1/12/2020
 12.4 It
 Take
 Receiver Mode - Frequency Scan
 1 1/12/2020
 12.4 It
 Items

 MET
 0.4 M. S. ON
 ON
 OVER HW. 9 HHz
 OVER HW. 9 HZ
 OVER HW

AC COND EMISSIONS - L2

🚸 Rece	eiver Mode - Fred	uency Sci	in		-	13/12/2020 12	::58		Sweep	🚸 Recei	iver Mode - Freque	ency Scan		- 14 -	13/12/2020 12:49		Lines
	87 dBμV 0 dB		5 ms ON								87 dBμV 0 dB	MST: 5 m PA: O					
						Limit • EN 55022 Limit • EN 55022	Voltage Mains	s Class B	✓ PASS✓ PASS	Trace ' Peak	1 - Quasi Peak Frequency	Level	Delta Limit	Trace 2 Peak	- Average Frequency	Level	Delta Limit
				1 MHz			1	IO MHz			236.535 kHz	31.36 dBµV			231.897 kHz	23.30 dBµV	
											231.897 kHz	30.52 dBµV			236.535 kHz	22.90 dBµV	
67.0											227.35 kHz	29.66 dBµV			156.06 kHz	22.69 dBµV	
											256.033 kHz	29.58 dBµV			153 kHz	22.43 dBµV	
57.0											261.154 kHz	29.38 dBµV			150 kHz	22.13 dBµV	
47.0											222.892 kHz	29.06 dBµV			165.612 kHz	21.32 dBµV	
											214.237 kHz	28.79 dBµV			182.849 kHz	21.24 dBµV	
											241.266 kHz	28.51 dBµV			162.365 kHz	20.94 dBµV	
a7.0 _0	m										210.036 kHz	28.51 dBµV			159.181 kHz	20.84 dBµV	
~~~											251.013 kHz	28.24 dBµV			168.924 kHz	20.73 dBµV	
17.0	Munin -	- Y	M								246.091 kHz	27.50 dBµV			172.303 kHz	20.19 dBµV	
				mmm							150 kHz	27.40 dBµV			186.506 kHz	19.99 dBµV	
7.0				mm	LAM.	wh					153 kHz	27.36 dBµV			251.013 kHz	19.87 dBµV	
						mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm					156.06 kHz	27.15 dBµV			218.522 kHz	19.68 dBµV	
				4							218.522 kHz	27.03 dBµV			246.091 kHz	19.60 dBµV	
Start 1	50 kHz Step 2 9	6							Stop 30 MHz	Start 15	0 kHz Step 2 %						Stop 30 MHz

#### 5 Measurement Uncertainty and Accreditation Documents

The maximum values of measurement uncertainty for the laboratory test equipment and facilities associated with each test are given in the table below. This uncertainty is computed for a 95.45% confidence level based on a coverage factor of k = 2.

Table 10: Measurement Uncertainty.

Measured Parameter	${\bf Measurement} ~ {\bf Uncertainty}^{\dagger}$
Radio Frequency	$\pm (f_{Mkr}/10^7 + RBW/10 + (SPN/(PTS - 1))/2 + 1 \text{ Hz})$
Conducted Emm. Amplitude	$\pm 1.9\mathrm{dB}$
Radiated Emm. Amplitude $(f < 30 \text{ MHz})$	$\pm 3.1\mathrm{dB}$
Radiated Emm. Amplitude $(30 - 200 \text{ MHz})$	$\pm 4.0\mathrm{dB}$
Radiated Emm. Amplitude $(200 - 1000 \text{ MHz})$	$\pm 5.2\mathrm{dB}$
Radiated Emm. Amplitude $(f > 1000 \mathrm{MHz})$	$\pm 3.7\mathrm{dB}$

[†]Ref: CISPR 16-4-2:2011+A1:2014

United States Department of Commerce National Institute of Standards and Technology	Gordon Helm EMC-002401-NE RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATIONAL RATI
NVLAP LAB CODE: 200129-0	
AHD (Amber Helm Development, L.C.) Sister Lakes, MI	and the second second
is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Joseph Brunett EMC-002790-NE
Electromagnetic Compatibility & Telecommunications	AZENTE
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025-2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).	
2020-06-23 through 2021-06-30 Effective Dates For the National Volunting, Laboratory, Accreditation Program	HA TETED ENGINEER

Figure 13: Accreditation Documents