

Compliance Engineering Ireland Ltd Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000 , 8256722

Confidential Report

Project No.	22E9851-1a		
Quotation	Q22-1501-1		
Prepared For	Sensoteq Ltd		
Company Address	Unit 23, Ormeau Business Park,		
	Cromac Ave, BT7 2JA Belfast		
Contact	Martin McNeill		
Contact Email	amccall@sensoteq.co.uk		
Contact Phone	+44 2896 208 453		
Prepared By	Compliance Engineering Ireland		
Test Lab Address	Clonross Lane, Derrockstown,		
	Dunshaughlin, Co. Meath, Ireland		
Tested By	Joy Dalayap		
Test Report By	Michael Kirby		
FCC Designation Number	409640		
ISED CAB identifier:	IE0001		
Date	24 th Nov 2022		
EUT Description	Wireless Sensor		
FCC ID	2ANL3SPR433CA		
IC ID	23633-SPR433CA		
Authorised by	Paul Reilly		
Authorised Signature:	Pal Rug		

Page 2 of 23

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC Part Section(s)	Industry Canada	TEST PARAMETERS	Test Result
15.231(e)	RSS-210 A1.4	Duty Cycle	PASS
15.35	RSS-Gen 6.10		
15.231(e)	RSS-210 A1.4	Radiated Emissions	PASS
15.209	RSS-210 8.9		
15.231(c)	RSS-210 A1.3	20dB Bandwidth 99% Bandwidth	PASS

RSS 210 Issue 10 Dec 2019 (Amd Apr 2020)

RSS-Gen Issue 5 Apr 2018 (Amd 1 Mar 2019) (Amd 2 Feb 2021)

This report should not be reproduced, except in full, without the written approval of Compliance Engineering Ireland Ltd.

Report Ref: 22E9851-1a Page 3 of 23

Contents

1.	EUT D	ESCRIPTION	4
	1.2. I 1.3. I 1.4 I	EUT Operation	5 5 5
2.	EMISS	IONS MEASUREMENTS	6
		Conducted Emissions MeasurementsRadiated Emissions Measurements	6
	2.2.1		
		Antenna Requirements	
		Occupied Bandwidth	
3.	MAXII	MUM MODULATION PERCENTAGE (M%)/DUTY CYCLE	10
4.	FIELD :	STRENGTH OF RADIATED EMISSIONS 433.4MHZ TRANSMITTER	12
	4.1.1		
	4.1.2	Harmonics Spurious Emissions Measurements (30MHz to 1GHz)	14
5.	LIST O	F TEST EQUIPMENT	16
ΑPI	PENDIX A	: SCANS FOR RADIATED SPURIOUS EMISSIONS	17
ΑPI	PENDIX B	: TEST CONFIGURATIONS:	22
ΛDI	DENIDIX C	· BLOCK DIAGRAMS OF TEST SETLID	22

Page 4 of 23

1. EUT Description

Type of radio:	Standalone	
Transmitter Type:	FSK	
Operating Frequency Range(s):	433.4 MHz	
Number of Channels:	1	
Antenna:	Internal chip antenna, -1.72dBi max 50 ohms	
Transmitter power configuration:	3V6	
HVIN1:	KPX1001	
HVIN2:	KPX1001V4	
PMN:	KappaX	
Classification:	DSC	
Test Methodology:	Measurements performed according to the	
	procedures in ANSI C63.10-2013	

The EUT is product which contains a custom transmitter in the 433MHz band and a precertified BLE module.

There are two models based on single artwork and bill of materials. and the only difference is the inclusion of epoxy covering a resistor in the power supply section for ATEX applications (model KPX1001).

The EUT was powered from its internal non-rechargeable 3.6V battery.

Page 5 of 23

1.1. EUT Operation

Operating Conditions during Test:

The equipment under test was operated during the measurement under the following conditions:

The BLE radio was switched off during the test.

A sample of EUT which was programmed to operate in test mode (CW mode) was used for all tests except duty cycle and bandwidth.

The duty cycle test was performed on a sample of EUT programmed to operate at the highest duty cycle possible.

A new battery was used for tests.

Note a pre scan was performed on the 2 models and final measurements (which represent the worst case results) were performed on EUT labelled "Sample#1" (KPX1001)

Environmental conditions:

During the measurement the environmental conditions were within the listed ranges:

Temperature: +20 to +24 ° C Humidity: +38 to +43 %

1.2. Modifications

No modifications were required in order to pass the test specifications.

1.3. Date of Test

The tests were carried out on one sample of the EUT on 17th, 18th, 21st, 22nd Nov 2022.

1.4 Measurement Uncertainty

The measurement uncertainty (with a 95% confidence level) for the conducted emissions test was ±3.5 dB.

The measurement uncertainty (with a 95% confidence level) for the radiated emissions test was ±5.3 dB (from 30 to 100 MHz), ±4.7 dB (from 100 to 300 MHz), ±3.9 dB (from 300 to 1000 MHz) and ±3.8 dB (from 1 GHz to 40 GHz).

1.5 Special Test Software

Tests were performed manually, and no special test software was used.

Page 6 of 23

2. Emissions Measurements

2.1. Conducted Emissions Measurements

Test not performed as EUT is powered from a non-rechargeable 3.6V battery.

2.2. Radiated Emissions Measurements

Radiated Power measurements were made at the Compliance Engineering Ireland Ltd anechoic chamber located in Dunshaughlin, Co. Meath, Ireland to determine the radio noise radiated from the EUT. A "Description of Measurement Facilities" has been submitted to the FCC and approved pursuant to Section 2.948 of CFR 47 of the FCC rules.

2.2.1. General

Emissions below 1GHz were measured using resolution bandwidth 100kHz at a measurement distance of 3 metres with EUT on a motorised turntable which allowed 360 degrees rotation.

Emissions above 1GHz were measured with resolution bandwidth of 1MHz at a measurement distance of 3 metres with EUT on a motorised turntable which allowed 360 degrees rotation.

2.2.2. Measurements in Transmit mode

A Radiated Emission pre-scan was performed which covered the x, y, and z orientations in horizontal and vertical polarizations. In each case the emission was maximised. The result of this pre-scan showed that the highest emission for vertical polarization was with the EUT vertical (orientation O1).

The EUT in a horizontal (orientation 2O2) gave the highest emissions for horizontal polarization.

A full scan for radiated emission was performed in orientation O1 for vertical polarization and in orientation O2 for horizontal polarization.

The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres.

Significant peaks from the EUT were then recorded to determine margin to the limits.

Tests were carried out as per Ansi C63.10 -2013

Page 7 of 23

2.3 Antenna Requirements

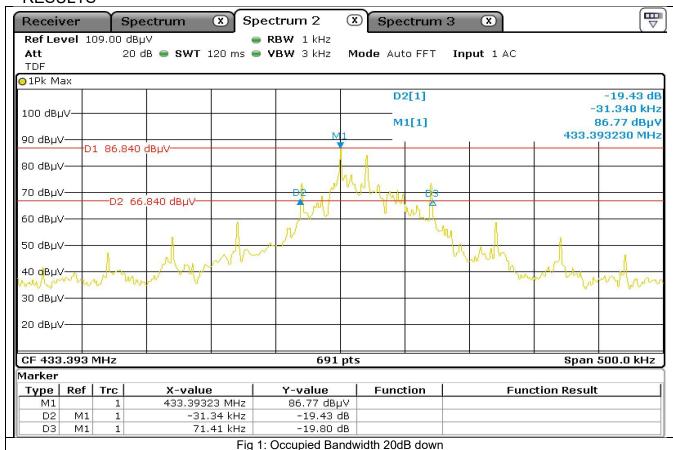
According to FCC 47 CFR 15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

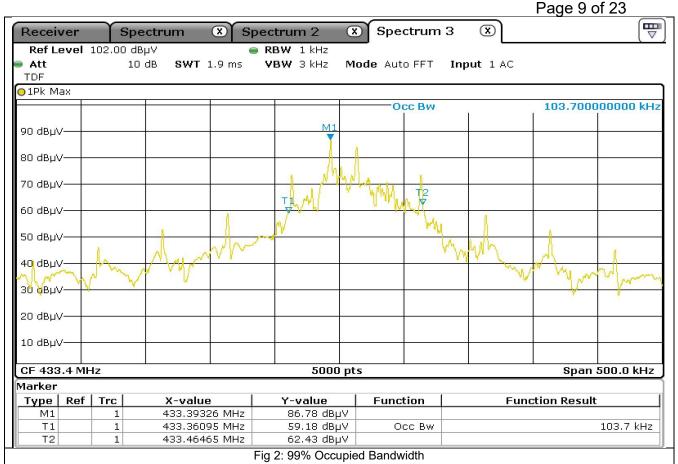
^{*}The antenna of this EUT is permanently attached.

^{*}The EUT Complies with the requirement of 15.203.

Page 8 of 23


2.4 Occupied Bandwidth

Requirement - 15.231 (c) & IC RSS-210 A1.3


The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz. the emission shall be no wider than 0.5% of the centre frequency. Bandwidth is determined at the points 20dB down from the modulated carrier.

TEST PROCEDURE

RESULTS

Operating Frequency	20dB Bandwidth	Limit	Margin	Result
MHz	KHz	KHz	KHz	
433.4	102.75	1083.5	980.75	Pass

Operating Frequency	99% Bandwidth
MHz	KHz
433.4	103.7

Test Result: Pass

Page 10 of 23

3. MAXIMUM MODULATION PERCENTAGE (M%)/Duty cycle

LIMIT

Requirement 15.35 (c), 15.231(e), IC RSS210 A1.4 & IC RSS-Gen 6.10

The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

TEST PROCEDURE

The transmitter output was connected to a spectrum analyzer or radiated field strength. The RBW was set to 100 kHz and the VBW is set to 300KHz. The sweep time was coupled, and the span was set to 0 Hz. The number of pulses was measured and calculated in a 100ms scan.

RESULTS

MAXIMUM MODULATION PERCENTAGE/Duty Cycle

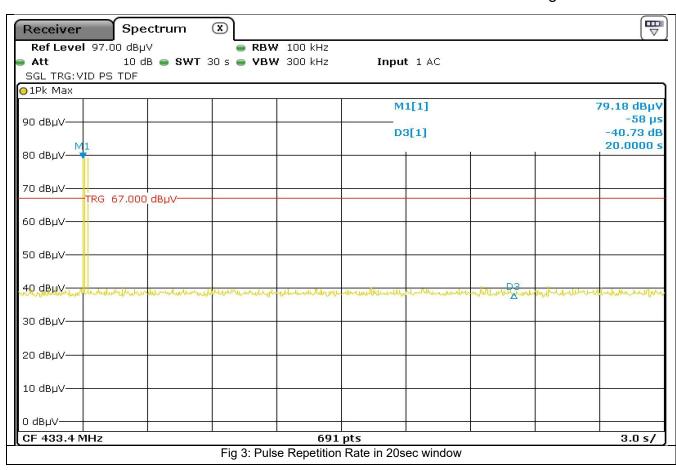
Worst case Duty cycle

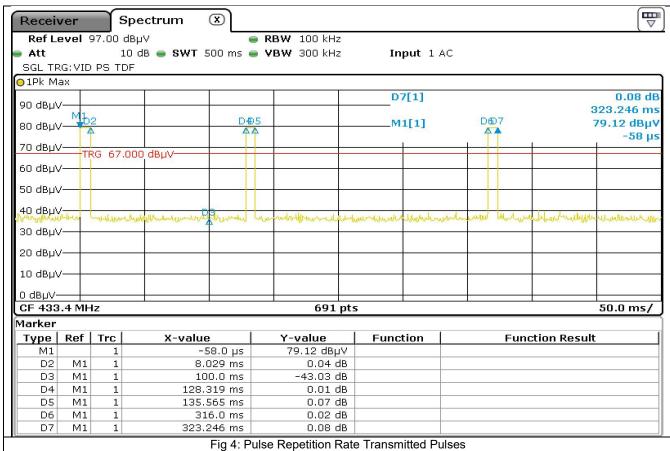
One Period(mS)	Pulse Width (mS)	No of Pulses	Duty Cycle	20 log duty cycle (dB)	Duty Cycle %	Test Result
100	8.029	1	0.0803	-21.91	8.0	Pass

CALCULATION

Average Reading = Peak Reading dB(μ V/m) +20log (Duty Cycle), where Duty Cycle is (No of pulses*pulse width)/100 or T Note correction for pulse mode operation is:

20 log duty		
cycle (dB)		
-21.91		


15.231e duty cycle limits


The duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds

Result

Duration of each transmission = 17.53	35mS	Limit 1sec	Comply
Silent period between transmissions	>20Secs	Limit 10secs	Comply

Report Ref: 22E9851-1a Page 11 of 23

Report Ref: 22E9851-1a Page 12 of 23

4. Field Strength of Radiated Emissions 433.4MHz transmitter

Test Specification: FCC 15.231(e) and RSS-210 A1.4

Fundamental frequency (MHz) Field strength of fundamental (microvolts/meter) Field strength of spurious emission (microvolts/meter) 40.66-40.70 1,000 100 70-130 500 500 130-174 500 to $1,500^1$ 50 to 150^1 174-260 1,500 150 260-470 1,500 to $5,000^1$ 150 to 500^1 Above 470 5,000 500

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emission (microvolts/meter)
40.66-40.70	1,000	100
70-130	500	50
130-174	500 to 1,500 ¹	50 to 150 ¹
174-260	1,500	150
260-470	1,500 to 5,000 ¹	150 to 500 ¹
Above 470	5,000	500

** Linear interpolations

Interpolation Formula = 16.67 x Freq MHz - 2833.33

For operating frequency of 433.4 MHz the following limits apply (using interpolation formula above)

Fundamental Frequency	Field Strength of fundamental	Field Strength of fundamental	Field Strength of Spurious Emissions	Field Strength of Spurious Emissions
MHz	μV/m	dBµV/m	μV/m	dBµV/m
433.400	4391.778	72.853	439.178	52.853

Test Specification: FCC PART 15, SECTION 47 CFR 15.209, RSS Gen 8.9

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., Sections 15.231 and 15.241

Duty cycle correction = 20Log (duty cycle) dB

Duty Cycle correction for Average measurement of pulsed signal = Peak -21.91dB as per ANSI C63.10-2013 Section 7.5

Page 13 of 23

Results for Radiated Emissions

Test Specification: FCC 15.231(e) and RSS-210 A1.4

Appendix A shows the results of the scans in the anechoic chamber.

4.1.1. Fundamental Measurements

Frequency	Reading Peak	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak v Average Limit +20dB	Result
MHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
433.400	69.5	01	Vertical	16.1	0	1.2	86.8	72.9	6.1	Pass
433.400	70.6	02	Horizontal	16.1	0	1.2	87.9	72.9	5.0	Pass

Frequency	Final Field Strength Peak	EUT Orientation	Antenna Polarity	Average Level (Peak plus - 21.91dB Duty Cycle factor)	Average Limit	Margin	Result
MHz	dBuV/m		V/H	dBuV/m	dBuV/m	dB	P/F
433.400	86.8	01	Vertical	64.9	72.9	8	Pass
433.400	87.9	02	Horizontal	66.0	72.9	6.9	Pass

Results of the fundamental

Page 14 of 23

4.1.2. Harmonics Spurious Emissions Measurements (30MHz to 1GHz)

Test Specification: FCC 15.231(e) and RSS-210 A1.1.5

Frequency	Reading Peak	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak V Average Limit +20dB	Result
MHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
866.800	29.3	01	Vertical	22.2	0	1.4	52.9	52.9	20.0	Pass
866.800	29.1	02	Horizontal	22.2	0	1.4	52.7	52.9	20.2	Pass

Frequency	Final Field Strength Peak	EUT Orientation	Antenna Polarity	Average Level (Peak plus - 21.91dB Duty Cycle factor)	Average Limit	Margin	Result
MHz	dBuV/m		V/H	dBuV/m	dBuV/m	dB	P/F
866.800	52.9	01	Vertical	31.0	52.9	21.9	Pass
866.800	52.7	O2	Horizontal	30.8	52.9	22.1	Pass

Results of the harmonics below 1GHz

Result: Pass

Report Ref: 22E9851-1a Page 15 of 23

Harmonics Spurious Emissions (1GHz - 6 GHz) **Test Specification: FCC 15.231(e) and RSS-210 A1.4**

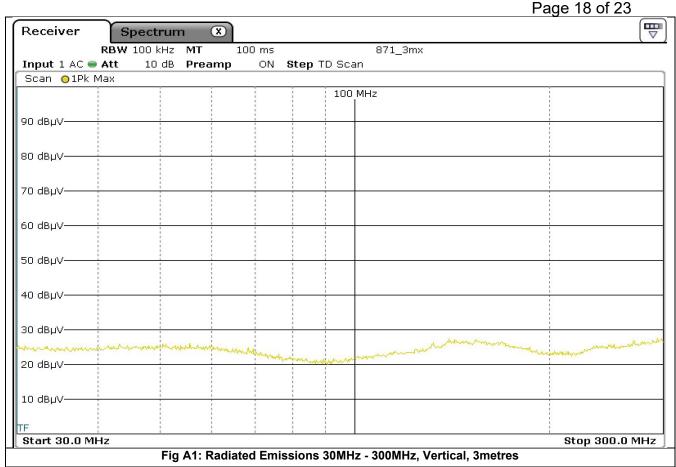
Frequency	Reading Peak	EUT Orientation	Antenna Polarity	Antenna Factor	Preamp Gain	Cable loss	Final Field Strength Peak	Average Limit	Margin for Peak v Average Limit +20dB	Result
GHz	dBuV/m		V/H	dB	dB	dB	dBuV/m	dBuV/m	dB	P/F
1.301	66.3	01	Vertical	23.6	39.8	3.8	53.9	52.9	19.0	Pass
1.734	71.9	01	Vertical	24.8	39.3	2.8	60.2	52.9	12.7	Pass
2.167	72.1	01	Vertical	28	39	3.2	64.3	52.9	8.6	Pass
2.600	69.7	01	Vertical	29.4	38.9	3.6	63.8	52.9	9.1	Pass
3.034	61.1	01	Vertical	30.6	38.9	3.8	56.6	52.9	16.3	Pass
3.467	64.5	01	Vertical	30.6	38.4	4.5	61.2	52.9	11.7	Pass
3.901	58.6	01	Vertical	30.6	37.7	4.8	56.3	52.9	16.6	Pass
4.334	52.3	01	Vertical	32	37.3	5	52.0	52.9	20.9	Pass
1.300	65.7	O2	Horizontal	23.6	39.8	3.8	53.3	52.9	19.6	Pass
1.734	62.8	O2	Horizontal	24.8	39.3	2.8	51.1	52.9	21.8	Pass
2.167	75.6	O2	Horizontal	28	39	3.2	67.8	52.9	5.1	Pass
2.600	61.4	O2	Horizontal	29.4	38.9	3.6	55.5	52.9	17.4	Pass
3.034	62.0	O2	Horizontal	30.6	38.9	3.8	57.5	52.9	15.4	Pass
3.467	62.2	O2	Horizontal	30.6	38.4	4.5	58.9	52.9	14.0	Pass
3.901	53.1	O2	Horizontal	30.6	37.7	4.8	50.8	52.9	22.1	Pass
4.334	54.4	O2	Horizontal	32	37.3	5	54.1	52.9	18.8	Pass

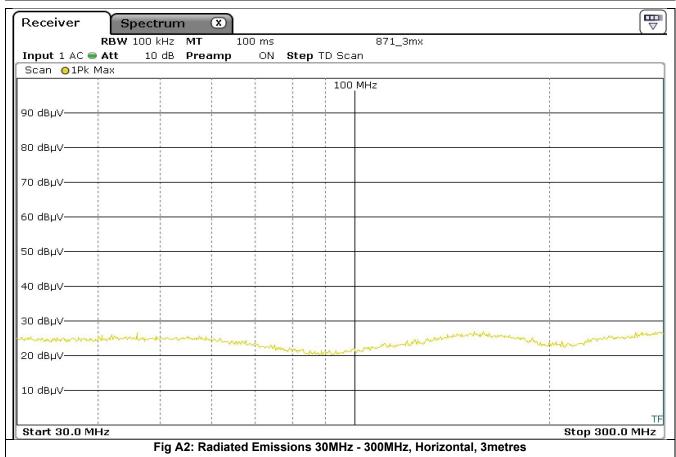
Frequency	Final Field Strength Peak	EUT Orientation	Antenna Polarity	Average Level (Peak plus - 21.91dB Duty Cycle factor)	Average Limit	Margin	Result
GHz	dBuV/m		V/H	dBuV/m	dBuV/m	dB	P/F
1.301	53.9	01	Vertical	32.0	52.9	20.9	Pass
1.734	60.2	01	Vertical	38.3	52.9	14.6	Pass
2.167	64.3	01	Vertical	42.4	52.9	10.5	Pass
2.600	63.8	01	Vertical	41.9	52.9	11	Pass
3.034	56.6	01	Vertical	34.7	52.9	18.2	Pass
3.467	61.2	01	Vertical	39.3	52.9	13.6	Pass
3.901	56.3	01	Vertical	34.4	52.9	18.5	Pass
4.334	52.0	01	Vertical	30.1	52.9	22.8	Pass
1.300	53.3	02	Horizontal	31.4	52.9	21.5	Pass
1.734	51.1	O2	Horizontal	29.2	52.9	23.7	Pass
2.167	67.8	O2	Horizontal	45.9	52.9	7	Pass
2.600	55.5	02	Horizontal	33.6	52.9	19.3	Pass
3.034	57.5	02	Horizontal	35.6	52.9	17.3	Pass
3.467	58.9	02	Horizontal	37.0	52.9	15.9	Pass
3.901	50.8	02	Horizontal	28.9	52.9	24	Pass
4.334	54.1	O2	Horizontal	32.2	52.9	20.7	Pass

Results of the harmonics above 1GHz

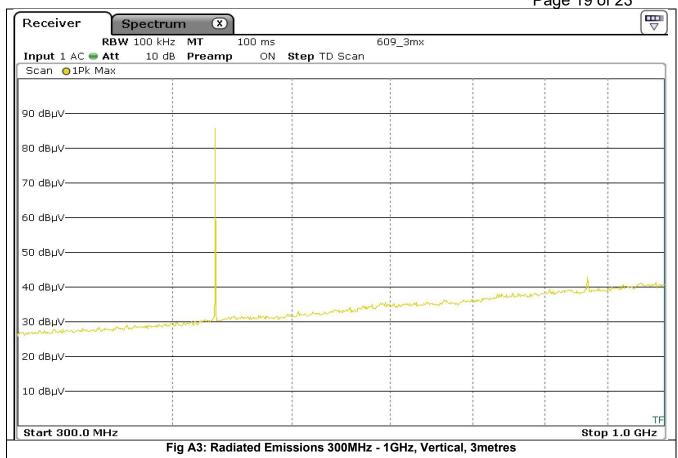
Duty Cycle correction for Average measurement of pulsed signal = Peak -21.91dB as per ANSI C63.10-2013 Section 7.5

Result: Pass

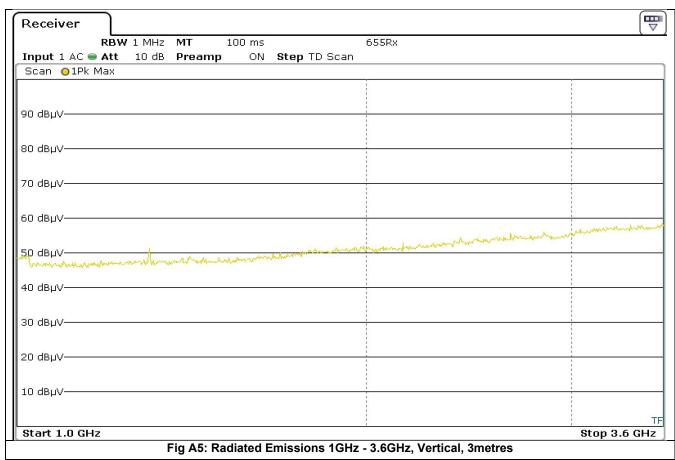

Report Ref: 22E9851-1a Page 16 of 23

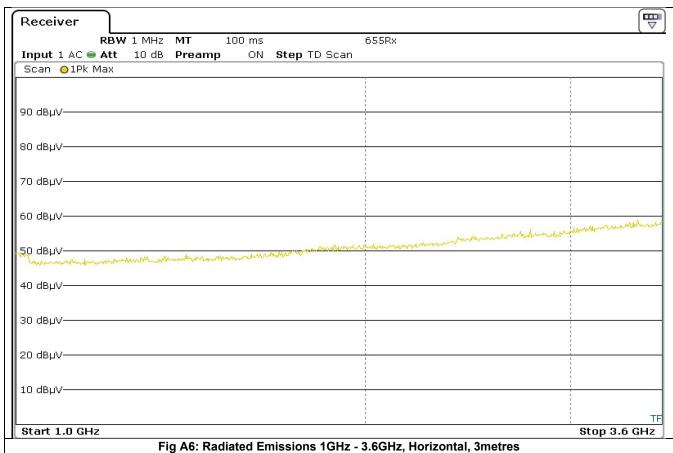

5. List of Test Equipment

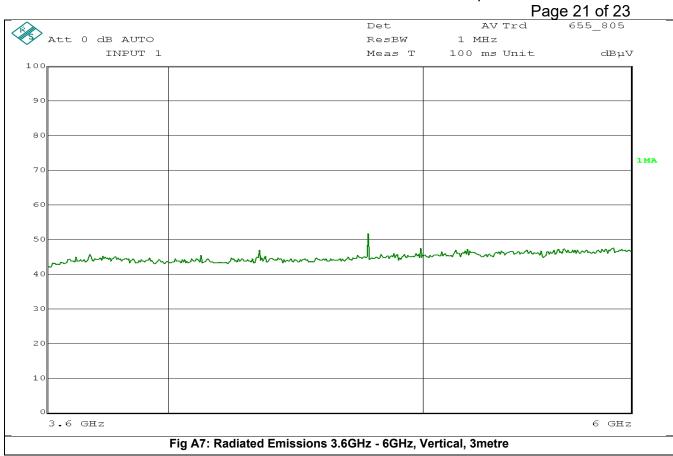
Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	30-Sep-23	12
Spectrum Analyser 30Hz-40GHz	Rohde& Schwarz	FSP40	100053	850	10-Dec-24	36
Test Receiver 3.6GHz	Rohde& Schwarz	ESR	1316.3003k03- 101625-s	869	28-May-23	36
LISN	Rohde & Schwarz	ESH3-Z5	825460/003	604	16-Feb-23	36
Antenna Horn	EMCO	3115	9905-5809	655	21-Jan-24	24
Fully Anechoic Chamber	CEI	FAR 3M	906	906	23-Jul-25	36
Anechoic Chamber	CEI	SAR 10M	845	845	17-May-25	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	06-Oct-24	36
Antenna Log Periodic	Chase	UPA6108	1072	609	09-Sep-24	36
Cable Ntype 10m				963	29-Jul-23	12
Cable Ntype 2m				828	29-Jul-23	12
Cable purple Ktype 1.8m				917	29-Jul-23	12
Cable Ntype 10m	-			914	29-Jul-23	12
Cable HF Ktype 1.5m				705	29-Jul-23	12

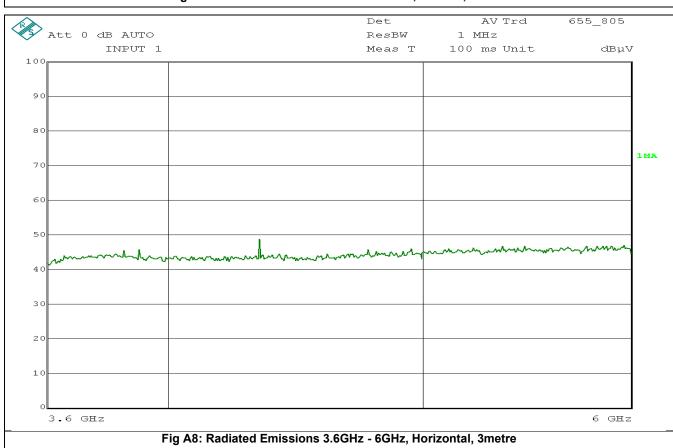

Page 17 of 23

Appendix A: Scans for Radiated Spurious Emissions

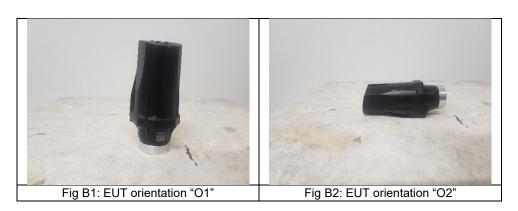



Report Ref: 22E9851-1a Page 19 of 23

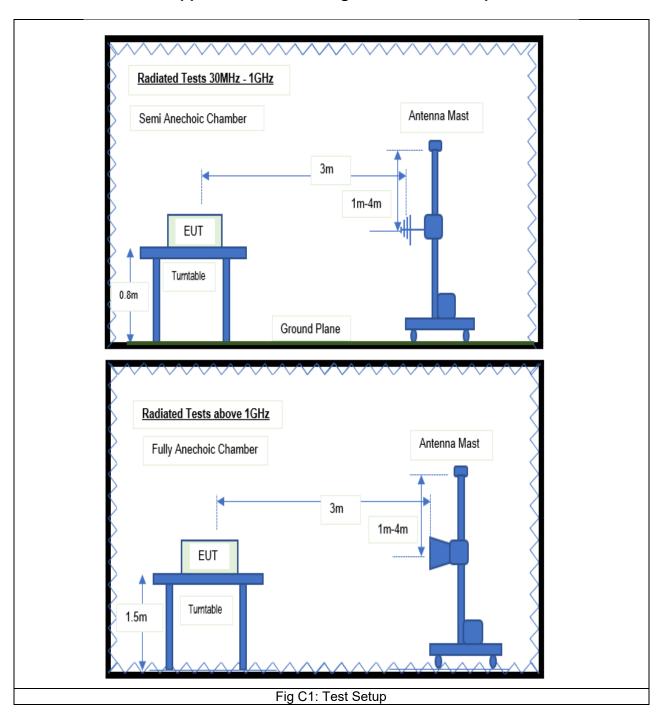




Report Ref: 22E9851-1a Page 20 of 23



Report Ref: 22E9851-1a Page 22 of 23


Appendix B: Test Configurations:

Orientations for Radiated Emissions

Report Ref: 22E9851-1a Page 23 of 23

Appendix C: Block Diagrams of Test Setup

End of Report