

FCC PART 15C

TEST REPORT

For

Shenzhen lemega Technology Co., Ltd

Guan Li Da Building 301-31, Qianjin Road 1, Xin'an Ban, Bao An, Shenzhen , China

FCC ID: 2ANKV-FK-CRX

Report Type:		Product Name:
Original Report		Bluetooth Speaker
Report Number:	RDG2010	012152-00C
Report Date:	2020-11-	05
Ivan Cao Assistant M Reviewed By:		Manager hon Cas
Test Laboratory:	Bay Area Compliance Laboratories Corp. (Dongguan No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn	

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	3
OBJECTIVE	3
RELATED SUBMITTAL(S)/GRANT(S)	3
Test Methodology	
Measurement Uncertainty	
TEST FACILITY	
DECLARATIONS	4
SYSTEM TEST CONFIGURATION	5
JUSTIFICATION	5
EUT Exercise Software	
BLOCK DIAGRAM OF TEST SETUP	6
SUMMARY OF TEST RESULTS	7
FCC §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	8
APPLICABLE STANDARD	
APPLICABLE STANDARD BLOCK DIAGRAM OF TEST SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST EQUIPMENT LIST AND DETAILS TEST DATA	
FCC§15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTED CONSTRUCTION	11
FCC §15.207 – AC LINE CONDUCTED EMISSION	12
EUT SETUP	12
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST RESULTS SUMMARY	
TEST DATA	
FCC §15.205 & §15.209 - RADIATED EMISSIONS TEST	17
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST RESULTS SUMMARY	
TEST DATA	19

GENERAL INFORMATION

	Manufacturer:	HUIZHOU LEMEDIA TECHNOLOGY CO.,LTD
	Address:	No.120 Shuidian Road, Yuanzhou Town, Boluo County, Huizhou City, Guangdong Province, China, 516123
	EUT Name:	Bluetooth Speaker
	EUT Model:	CR6
	Multiple Model:	CR5
Ope	ration Frequency:	110-215kHz
	Charger Output:	10W
Ra	ted Input Voltage:	DC 9V from Adapter
	Model:	GQ24-090300-AU
Adapter Information:	Input:	AC 100-240V, 50/60Hz, 1.0A Max
mior mation.	Output:	DC 9.0V, 3.0A
	Serial Number:	RDG200727001-RF-S1
EU	UT Received Date:	2020.10.15
EUT	F Received Status:	Good

Product Description for Equipment Under Test (EUT)

Note: The series product, models CR6, CR5 *are electrically identical, the model* CR6 *was fully tested. The difference between them please refer to the declaration letter for details.*

Objective

This Type approval report is prepared on behalf of *Shenzhen lemega Technology Co., Ltd* in accordance with Part 2, Subpart J, and Part 15, Subparts A and C of the Federal Communications Commission's rules.

The objective is to determine the compliance of the EUT with FCC rules, 15.203, 15.205, 15.207, 15.209.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2ANKV-FK-CRX FCC Part 15C DSS submissions with FCC ID: 2ANKV-FK-CRX

Test Methodology

All measurements detailed in this Test Report were performed in accordance with ANSI C63.10-2013 "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices".

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	±5 %
	9kHz~30MHz: 4.12dB
radiated Emissions	30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical
	200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218, the FCC Designation No. : CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier : CN0022.

Declarations

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol " Δ ". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \bigstar ".

SYSTEM TEST CONFIGURATION

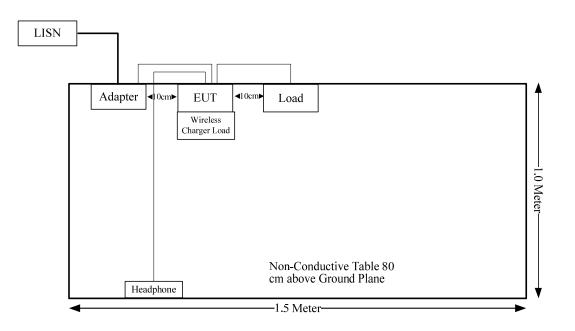
Justification

The system was configured for testing in a test mode

The device is a wireless charger operation on frequency 110 kHz - 215 kHz.

EUT Exercise Software

No software used in test.


Support Equipment List and Details

Manufacturer	Manufacturer Description Model		Serial Number
Keenion	Earphone	KDM-911	6951812200215
Unknown	Load	50hm	50hm-1
HUIER	Wireless Charging Load	WXC15WL	HEWX15W001

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From	То
Earphone Cable	Yes	No	1.5	EUT	Earphone
Adapter Cable	Yes	Yes	2	Adapter	EUT
USB Cable	Yes	No	0.8	EUT	Load

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §1.1310, §2.1091	Maximum Permissible Exposure (MPE) Compl	
FCC§15.203	Antenna Requirement	Compliance
FCC§15.207	AC Line Conducted Emission	Compliance
§15.209 §15.205	Radiated Emission Test	Compliance

FCC §1.1310, §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

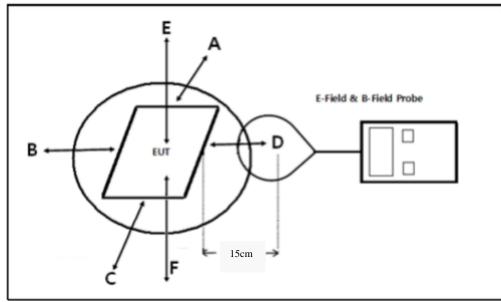
Applicable Standard

According to subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

	(B) Limits for General Population/Uncontrolled Exposure								
Frequency Range (MHz)	Electric Field Strength (V/m)	Power Density (mW/cm ²)	Averaging Time (minutes)						
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f ²)	30					
30–300	27.5	0.073	0.2	30					
300-1500	/	/	f/1500	30					
1500-100,000	/	/	1.0	30					

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; * = Plane-wave equivalent power density;


According with KDB 680106 D01 RF Exposure Wireless Charging Apps v03 clause 3 c)

c) For devices designed for typical desktop applications, such a wireless charging pads, RF exposure evaluation should be conducted assuming a user separation distance of 15 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m. A KDB inquiry is required to determine the applicable exposure limits below 100 kHz.

According to 680106 D01 RF Exposure Wireless Charging App v03 clause 5 b)

- b) Inductive wireless power transfer applications with supporting field strength results and meeting all of the following requirements are not required to submit a KDB inquiry for devices approved using SDoC or a PAG for equipment approved using certification to address RF exposure compliance. However, the responsible party is required to keep a copy of the test report in accordance with KDB 865664 D02. A copy of the test report is to be submitted with the application if the device is approved using certification.
 - (1) Power transfer frequency is less than 1 MHz.
 - (2) Output power from each primary coil is less than or equal to 15 watts.
 - (3) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.
 - (4) Client device is placed directly in contact with the transmitter.
 - (5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).
 - (6) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

Block Diagram of Test Setup

Note: 20 cm for Top test.

Test Equipment List and Details

Manufacturer	Ianufacturer Description		Serial Number	Calibration Date	Calibration Due Date
Narda	Exposure Level Tester	ELT-400	N-0229	2019-11-15	2022-11-15
Narda	B Field Probe	ELT Probe 100cm2	M-0666	2019-11-15	2022-11-15
Amplifier Research	Isotropic Field Probe	FP5000	301825	2018-11-22	2021-11-22

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.3°C
Relative Humidity:	41 %
ATM Pressure:	101.9 kPa
Test Engineer:	Jalon Liu
Test Date	2020-10-30

Report No.: RDG201012152-00C

H-field Strength:

Frequency	Position	Position	Position	Position	Position	50%	Limit
Range	A	B	C	D	E	Limit	Test
(kHz)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)	(A/m)
110-215	0.055	0.084	0.051	0.098	0.156	0.815	1.63

Note: Test with 15cm distance from the center of the probe(s) to the edge of the device, 20 cm for top(Position E) test.

E-field Strength:

Frequency	Position	Position	Position	Position	Position	50%	Limit
Range	A	B	C	D	E	Limit	Test
(kHz)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)	(V/m)
110-215	1.372	1.636	0.88	0.831	2.613	307	

Note: Test with 15cm distance from the center of the probe(s) to the edge of the device, 20 cm for top(Position E) test.

Result: Compliance

Considerations of compliance 680106 D01 RF Exposure Wireless Charging App v03 clause 5 b:

(1) Power transfer frequency is less than 1 MHz.

Yes, the operation frequency is 110-215 kHz.

(2) Output power from each primary coil is less than or equal to 15 watts.

Yes, the maximum output power of primary coil is 10 Watts, less than 15 watts.

(3) The transfer system includes only single primary and secondary coils. This includes charging systems that may have multiple primary coils and clients that are able to detect and allow coupling only between individual pairs of coils.

The transfer system includes only single primary coil, and system detect and allow coupling only between individual pairs of coils.

(4) Client device is placed directly in contact with the transmitter.

Yes, client device is placed directly in contact with the transmitter

(5) Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).

Yes, mobile exposure conditions only

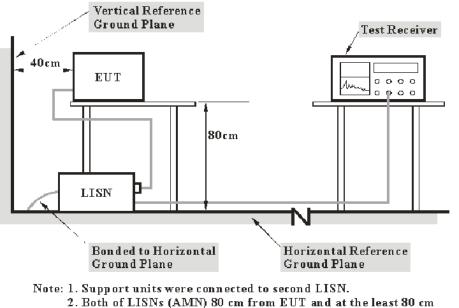
(6) The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

Yes, the test result for H and E-field strength less than 50% of the MPE limit.

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.


Antenna Connected Construction

The EUT has one integral antenna arrangement, which was permanently attached and fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

FCC §15.207 – AC LINE CONDUCTED EMISSION

EUT Setup

from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main LISN with an AC 120V/60Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W		
150 kHz – 30 MHz	9 kHz		

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	LISN	ENV 216	101614	2020-09-12	2021-09-12
R&S	EMI Test Receiver	ESCI	101121	2020-07-07	2021-07-07
MICRO-COAX	Coaxial Cable	C-NJNJ-50	C-0200-01	2020-09-05	2021-09-05
R&S	Test Software	EMC32	Version 9.10.00	N/A	N/A

Test Equipment List and Details

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

The frequency and amplitude of the six highest ac power-line conducted emissions relative to the limit, measured over all the current-carrying conductors of the EUT power cords, and the operating frequency or frequency to which the EUT is tuned (if appropriate), should be reported, unless such emissions are more than 20 dB below the limit. AC power-line conducted emissions measurements are to be separately carried out only on each of the phase ("hot") line(s) and (if used) on the neutral line(s), but not on the ground [protective earth] line(s). If less than six emission frequencies are within 20 dB of the limit, then the noise level of the measuring instrument at representative frequencies should be reported. The specific conductor of the power-line cord for each of the reported emissions should be identified. Measure the six highest emissions with respect to the limit on each current-carrying conductor of each power cord associated with the EUT (but not the power cords of associated or peripheral equipment that are part of the test configuration). Then, report the six highest emissions with respect to the limit from among all the measurements identifying the frequency and specific current-carrying conductor, or the six highest emissions may be reported over all the current-carrying conductors.

According FCC publication number 174176, for a device with a permanent antenna operating at or below 30 MHz, the measurements done with a suitable dummy load, in lieu of the permanent antenna under the following conditions: (1) perform the AC line conducted tests with the permanent antenna to determine compliance with the Section 15.207 limits outside the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the transmitter's fundamental emission band; (2) retest with a dummy load in lieu of the permanent antenna to determine compliance with the Section 15.207 limits within the transmitter's fundamental emission band.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_{\rm C} = V_{\rm R} + A_{\rm C} + VDF$$

Herein, V_C : corrected voltage amplitude V_R : reading voltage amplitude

A_c: attenuation caused by cable loss

VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	22.2°C
Relative Humidity:	52 %
ATM Pressure:	101.1 kPa
Test Engineer:	Barry Yang
Test Date	2020-10-26

Test Result: Compliance, please refer to the below plots and table.

Test Mode: Charging

300 400 500

30M

20M

Render State of Mains OP Class B Voltage on Mains OP Class B Voltage OP Class B Voltage on Mains OP Class B Voltage on Mains OP

AC 120V, 60 Hz, Line:

Final_Result

0-

150k

							-		
	Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Filter	Corr.
	(MHz)	(dB µ V)	(dB µ V)	(dB	(dB)	(kHz)			(dB)
	0.150000	58.70		66.00	7.30	9.000	L1	ON	9.6
	0.153788		43.17	55.79	12.62	9.000	L1	ON	9.6
	0.177720	48.37		64.59	16.22	9.000	L1	ON	9.6
	0.195386	49.95		63.80	13.85	9.000	L1	ON	9.6
	0.207437	46.25		63.31	17.06	9.000	L1	ON	9.6
	0.237339	42.49		62.19	19.70	9.000	L1	ON	9.6
	0.292647	41.27		60.45	19.18	9.000	L1	ON	9.6
	0.294110		34.10	50.41	16.31	9.000	L1	ON	9.6
	0.338189		33.46	49.25	15.79	9.000	L1	ON	9.6
Ī	0.388874		32.09	48.09	16.00	9.000	L1	ON	9.6
	0.477109		30.13	46.39	16.26	9.000	L1	ON	9.6
Ī	0.484301		33.02	46.26	13.24	9.000	L1	ON	9.6

800 1M

2M

Frequency in Hz

3M 4M 5M 6

8 10M

80 70 B Voltage on Mains QP С 60 Mains Tevel in dBh 40 30 20 10 0-150k 300 400 500 800 1M 2M 3M 4M 5M 6 8 10M 20M 30M Frequency in Hz

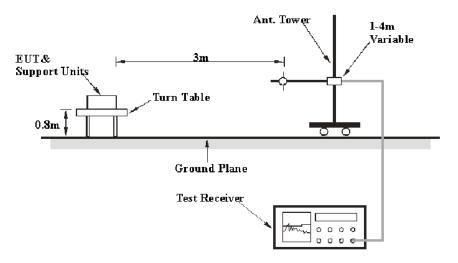
AC120 V, 60 Hz, Neutral:

Final_Result

Frequency	QuasiPeak	Average	Limit	Margin	Bandwidth	Line	Filter	Corr.
(MHz)	(dB µ V)	(dB µ V)	(dB	(dB)	(kHz)			(dB)
0.151504		42.48	55.92	13.44	9.000	Ν	ON	9.6
0.151504	58.02		65.92	7.90	9.000	Ν	ON	9.6
0.175081	46.12		64.72	18.60	9.000	Ν	ON	9.6
0.182208		34.81	54.38	19.57	9.000	Ν	ON	9.6
0.188682		37.85	54.09	16.24	9.000	Ν	ON	9.6
0.192484	50.17		63.93	13.76	9.000	Ν	ON	9.6
0.215881	42.66		62.98	20.32	9.000	Ν	ON	9.6
0.240917		30.95	52.06	21.11	9.000	Ν	ON	9.6
0.248235	41.84		61.82	19.98	9.000	Ν	ON	9.6
0.288300	37.76		60.57	22.81	9.000	Ν	ON	9.6
0.444931		25.35	46.97	21.62	9.000	Ν	ON	9.6
16.463472		27.87	50.00	22.13	9.000	Ν	ON	9.9

FCC §15.205 & §15.209 - RADIATED EMISSIONS TEST

Applicable Standard


As per FCC Part 15.209

(a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

**Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

EUT Setup

The radiated emission tests were performed in the 3-meter chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part Subpart C limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The system was investigated from 9 kHz to 1 GHz.

During the radiated emission test, the EMI test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	Measurement
9 kHz – 150 kHz	200 Hz	1 kHz	QP/Average
150 kHz – 30 MHz	9 kHz	30 kHz	QP/Average
30 MHz – 1000 MHz	120 kHz	300 kHz	QP

The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform an QP/Average measurement

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corr. Ampl.

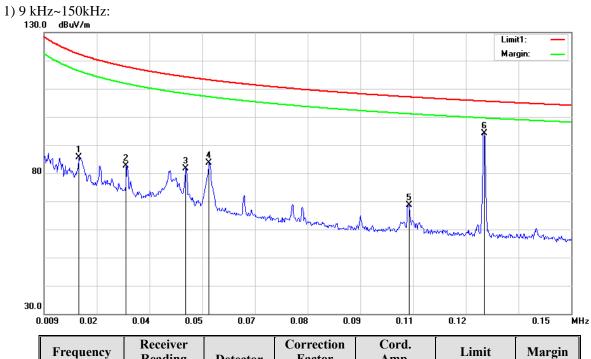
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
EMCO	Passive Loop	6512	9706-1206	2020-03-05	2023-03-05
Sunol Sciences	Antenna	JB3	A060611-1	2017-11-10	2020-11-10
R&S	EMI Test Receiver	ESR3	102453	2020-09-12	2021-09-12
Unknown	Coaxial Cable	C-NJNJ-50	C-0075-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-0400-01	2020-09-05	2021-09-05
Unknown	Coaxial Cable	C-NJNJ-50	C-1400-01	2020-05-06	2021-05-06
HP	Amplifier	8447D	2727A05902	2020-09-05	2021-09-05
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

Test Equipment List and Details

* Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the data in the following table, the EUT complied with the FCC Part 15.209&15.205.


Test Data

Environmental Conditions

Temperature:	25.3°C
Relative Humidity:	41 %
ATM Pressure:	101.9 kPa
Test Engineer:	Jalon Liu
Test date:	2020-10-30

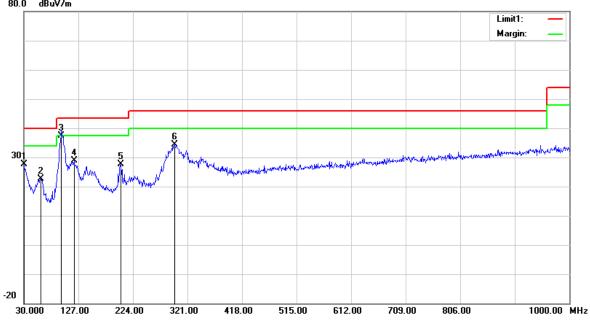
Report No.: RDG201012152-00C

Test mode: Charging

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
0.0183	3.97	peak	81.72	85.69	122.36	36.67
0.0310	5.84	peak	76.72	82.56	117.78	35.22
0.0468	7.46	peak	74.13	81.59	114.20	32.61
0.0531	10.56	peak	73.03	83.59	113.10	29.51
0.1066	2.41	peak	66.34	68.75	107.05	38.30
0.1267*	28.92	peak	65.20	94.12	105.55	11.43

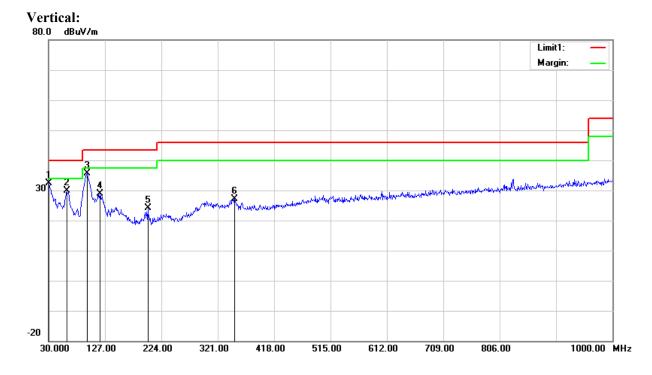
*Fundamental.

Report No.: RDG201012152-00C



Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
0.1500	16.25	peak	38.53	54.78	104.08	49.30
0.4187	24.31	peak	28.80	53.11	95.17	42.06
0.6873	20.93	peak	24.79	45.72	70.86	25.14
9.9405	22.75	peak	9.47	32.22	69.54	37.32
11.8810	21.36	peak	9.36	30.72	69.54	38.82
19.7013	20.36	peak	9.00	29.36	69.54	40.18

Report No.: RDG201012152-00C


3) 30 MHz-1GHz

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.0000	26.06	peak	1.46	27.52	40.00	12.48
60.0700	35.02	peak	-12.34	22.68	40.00	17.32
96.9300	47.41	QP	-9.95	37.46	43.50	6.04
119.2400	33.89	peak	-5.05	28.84	43.50	14.66
202.6600	33.66	peak	-5.98	27.68	43.50	15.82
297.7200	38.05	peak	-3.79	34.26	46.00	11.74

Frequency (MHz)	Receiver Reading (dBµV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBµV/m)	Limit (dBµV/m)	Margin (dB)
30.9700	31.73	peak	0.74	32.47	40.00	7.53
61.0400	42.17	peak	-12.28	29.89	40.00	10.11
95.9600	45.73	peak	-10.19	35.54	43.50	7.96
118.2700	33.85	peak	-5.01	28.84	43.50	14.66
200.7200	29.88	peak	-5.80	24.08	43.50	19.42
350.1000	30.09	peak	-3.03	27.06	46.00	18.94

***** END OF REPORT *****