

Report No.: 1809WU004-U1Report Version:V01Issue Date:09-12-2018

MEASUREMENT REPORT

FCC PART 15.249

FCC ID: 2ANKDJCHR35H3

APPLICANT: ZHEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD

- Application Type: Certification
- Product: RF Remote control

Model No.: JCHR35H3-1, JCHR35H3-2

- FCC Classification: Low Power Communication Device Transmitter (DXX)
- FCC Rule Part(s): Part 15.249
- Test Procedure(s): ANSI C63.10 2013

Test Date: September 6 ~ 11, 2018

Reviewed By Kevin Guo)

Approved By

(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: 2ANKDJCHR35H3

Revision History

Report No.	Version	Description	Issue Date	Note
1809WSU004-U1	Rev. 01	Initial report	09-12-2018	Valid

CONTENTS

Des	scriptio	n Pa	age
1.	INTRO	DDUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	UCT INFORMATION	7
	2.1.	Equipment Description	7
	2.2.	Operation Frequency and Channel List	7
	2.3.	Test Configuration	7
	2.4.	Test Software	7
	2.5.	EMI Suppression Device(s)/Modifications	7
	2.6.	Labeling Requirements	7
3.	DESC	RIPTION OF TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	ANTE	NNA REQUIREMENTS	. 10
5.	TEST	EQUIPMENT CALIBRATION DATE	11
6.	MEAS		. 12
7.	TEST	RESULT	. 13
	7.1.	Summary	. 13
	7.2.	Conducted Emission	
	7.2.1.	Test Limit	
	7.2.2.	Test Setup	. 14
	7.2.3.	Test Result	. 14
	7.3.	Radiated Emission	. 15
	7.3.1.	Test Limit	. 15
	7.3.2.	Test Setup	. 16
	7.3.3.	Test Result	. 17
	7.4.	Radiated Restricted Band Edge Measurement	. 22
	7.4.1.	Test Limit	. 22
	7.4.2.	Test Setup	
	7.4.3.	Test Result	
	7.5.	20dB Spectrum Bandwidth Measurement	
	7.5.1.	Test Limit	. 28

	7.5.2.	Test Procedure used	. 28
	7.5.3.	Test Setting	. 28
	7.5.4.	Test Setup	. 28
	7.5.5.	Test Result	. 29
	7.6.	99% Bandwidth Measurement	. 30
	7.6.1.	Test Limit	. 30
	7.6.2.	Test Procedure used	. 30
	7.6.3.	Test Setting	. 30
	7.6.4.	Test Setup	. 30
	7.6.5.	Test Result	. 31
8.	CONC	LUSION	. 32
Арр	endix A	A – Test Setup Photograph	. 33
Арр	endix E	3 – EUT Photograph	. 34

§2.1033 General Information

Applicant:	ZHEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD			
Applicant Address:	No.19 XinTao Road, Provincial High Tech Park			
	XinChangcounty,ZheJiang Province			
Manufacturer:	HEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD			
Manufacturer Address:	No.19 XinTao Road, Provincial High Tech Park			
	XinChangcounty,ZheJiang Province			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong			
	Economic Development Zone, Suzhou, China			
FCC Registration No.:	893164			
Test Device Serial No.:	N/A Production Pre-Production Engineering			

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name	RF Remote control			
Model No.	HR35H3-1, JCHR35H3-2			
Frequency Range	/ Range 2404 ~ 2479 MHz			
Channel Number	iber 5			
Type of Modulation	GFSK			

Note: Product supports transmitter only.

2.2.	Operation	Frequency	and Channel Lis	st
------	-----------	-----------	-----------------	----

Channel	Frequency	Channel	Frequency
01	2404 MHz	02	2419 MHz
03	2454 MHz	04	2469 MHz
05	2479 MHz		

2.3. Test Configuration

The EUT was tested as described in this report is in compliance with the requirements limits of FCC Rules Part 15.207, 15.209, 15.215 and 15.249. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.4. Test Software

N/A

2.5. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.6. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION OF TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013), and the requirements provided in FCC 15.207, 15.209, 15.215 and 15.249 were performed in the report of the EUT.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-25GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the EUT is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

This unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2019/04/20
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2019/06/15
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2019/06/15
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2019/08/15
Shielding Anechoic Chamber	Mikebang	Chamber-SR2	MRTSUE06214	N/A	N/A

Radiated Emission - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cal. Due Date
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2019/09/06
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2019/08/14
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2018/11/20
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2019/04/20
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2018/11/17
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2019/04/12
Broad Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2018/10/21
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2018/12/14
Amplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2019/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2019/08/15
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2019/05/08

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2019/04/20
Thermohygrometer	Testo	608-H1	MRTSUE06401	1 year	2019/08/15

Software	Version	Function
e3	V8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

AC Conducted Emission Measurement - SR2
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
150kHz~30MHz: 3.46dB
Radiated Emission Measurement - AC1
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
9kHz ~ 1GHz: 4.18dB
1GHz ~ 25GHz: 4.76dB
20dB Spectrum Bandwidth - TR3
Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):
0.28%

7. TEST RESULT

7.1. Summary

Company Name: ZHEJIANG JIECANG LINEAR MOTION TECHNOLOGY CO., LTD Product: RF Remote control

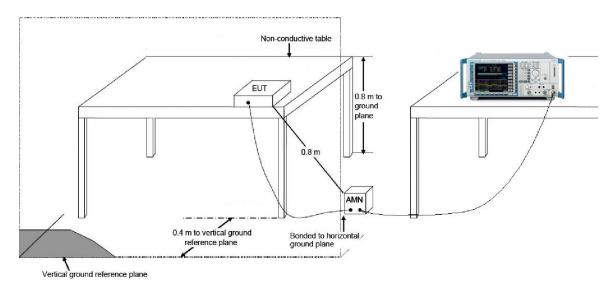
FCC Part	Test Description	Test Limit	Test	Test	Reference
Section(s)			Condition	Result	
15.207	AC Conducted Emissions	< FCC 15.207 limits	Line	N/A	Section
15.207	150kHz - 30MHz	< FCC 15.207 IIITIIIS	Conducted	N/A	7.2
	General Field Strength	Emissions in restricted			
15.209	Limits (Restricted Bands	bands must meet the	Radiated	Pass	Section
15.249	and Radiated Emission	radiated limits detailed in	Raulaleu		7.3 & 7.4
	Limits)	15.209 & clause 8.10			
	20dD Spectrum	20 dB bandwidth of the			Section
15.215(c)	20dB Spectrum	emission in the specific	Conducted	Pass	
	Bandwidth	band			7.5
15.015(0)	00% Occupied Bandwidth	N/A	Conducted	Deee	Section
15.215(c)	99% Occupied Bandwidth	N/A	Conducted	Pass	7.6

Notes:

1. All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

2. The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.

7.2. Conducted Emission


7.2.1.Test Limit

FCC 15.207 Limits							
Frequency (MHz)	QP (dBuV)	AV (dBuV)					
0.15 ~ 0.50	66 ~ 56	56 ~ 46					
0.50 ~ 5.0	56	46					
5.0 ~ 30	60	50					
Note 1: The lower limit shall appl	Note 1: The lower limit shall apply at the transition frequencies.						

The lower limit shall apply at the transition frequencies. INO

Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.2.2.Test Setup

7.2.3.Test Result

The EUT is powered by battery, so this requirement does not apply.

7.3. Radiated Emission

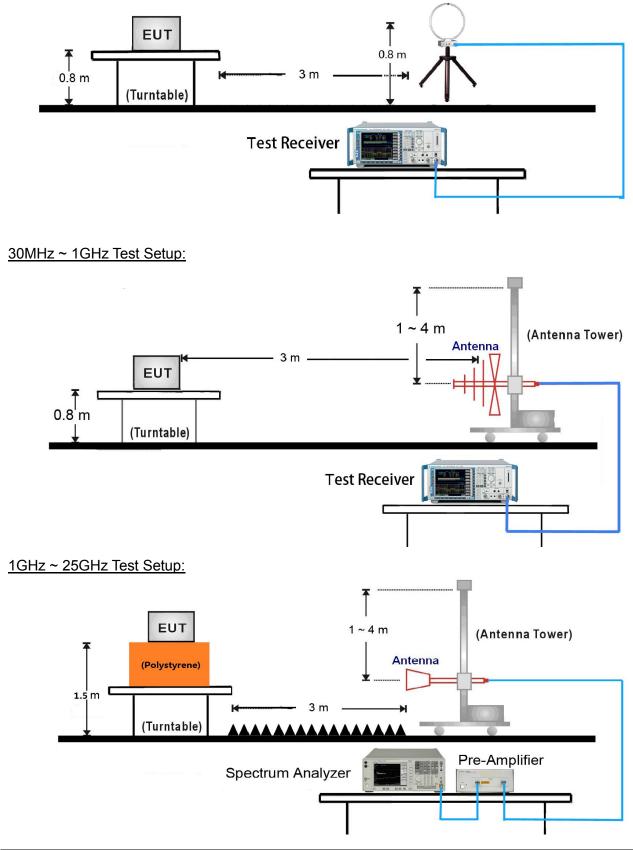
7.3.1.Test Limit

FCC Part 15 Subpart C Paragraph 15.249 & RSS-210						
Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics				
(MHz)	(mV/m)	(uV/m)				
902 ~ 908	50	500				
2400 ~ 2483.5	50	500				
5725 ~ 5875	50	500				
24000 ~ 24250	250	2500				

FCC Part 15.249 (d), Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209 & RSS-Gen							
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)					
0.009 ~ 0.490	2400/F(kHz)	300					
0.490 ~ 1.705	24000/F(kHz)	30					
1.705 ~ 30.0	30	30					
30 ~ 80	100**	3					
80 ~ 216	150**	3					
216 ~ 960	200**	3					
Above 960	500	3					
Note 1: The lower limit shall appl	Note 1: The lower limit shall apply at the transition frequency.						

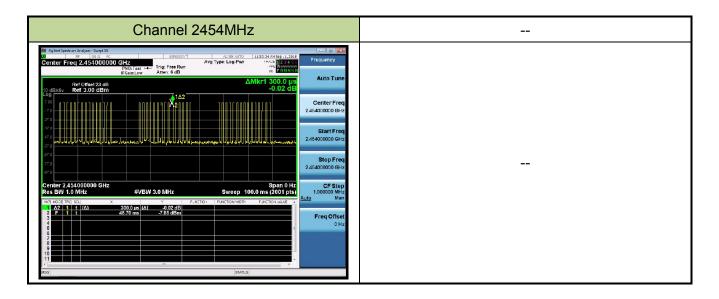
Note 1: The lower limit shall apply at the transition frequency.


Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength (dBuV/m) = 20 log E field strength (uV/m).

7.3.2.Test Setup

9kHz ~ 30MHz Test Setup:


7.3.3.Test Result

Product	RF Remote control	Temperature	24°C	
Test Engineer Ternence Wang		Relative Humidity	59%	
Test Site	AC1	Test Date	2018/09/11	

Time On	One Period	Duty Cycle	Duty Cycle Factor
(ms)	(ms)	(%)	(dB)
13.5	100	13.50	-17.39

Note 1: Duty Cycle Factor = 20*Log (Duty Cycle)

Note 2: Time On(ms)=0.3*45=13.5 ms

Product	RF Remote control	Temperature	25°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	AC1	Test Date	2018/09/07
Remark:	Fundamental Radiated Emission		

Frequency	Reading	Factor	Duty Cycle	Measure	Limit	Margin	Detector	Polarization
(MHz)	Level	(dB)	Factor	Level	(dBµV/m)	(dB)		
	(dBµV)		(dB)	(dBµV/m)				
_	63.1	32.3	N/A	95.4	114	-18.6	PK	Horizontal
2404	63.1	32.3	-17.4	78.0	94	-16.0	AV	Horizontal
2404	56.2	32.3	N/A	88.5	114	-25.5	PK	Vertical
	56.2	32.3	-17.4	71.1	94	-22.9	AV	Vertical
	62.2	32.3	N/A	94.4	114	-19.6	PK	Horizontal
2454	62.2	32.3	-17.4	77.0	94	-17.0	AV	Horizontal
2404	51.2	32.3	N/A	83.5	114	-30.5	PK	Vertical
	51.2	32.3	-17.4	66.1	94	-27.9	AV	Vertical
	62.2	32.3	N/A	94.6	114	-19.4	PK	Horizontal
2479	62.2	32.3	-17.4	77.2	94	-16.8	AV	Horizontal
2479	56.0	32.3	N/A	88.3	114	-25.7	PK	Vertical
	56.0	32.3	-17.4	70.9	94	-23.1	AV	Vertical

Note 1: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: All readings below 1GHz are peak, above 1GHz are performed with peak and/or average measurements as necessary.

Product	RF Remote control	Temperature	25°C			
Test Engineer	Ternence Wang	Relative Humidity	52%			
Test Site	AC1 Test Date 2018/09/07					
Remark:	Harmonics Radiated Emission - 2404MHz					

Frequency (MHz)	Reading Level	Factor (dB)	Duty Cycle Factor	Measure Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
	(dBµV)		(dB)	(dBµV/m)				
42.5	0.5	14.5	N/A	15.0	40.0	-25.0	QP	Horizontal
118.3	2.9	13.0	N/A	15.9	43.5	-27.6	QP	Horizontal
123.6	3.0	13.5	N/A	16.5	43.5	-27.0	QP	Vertical
594.1	3.9	20.5	N/A	24.4	46.0	-21.6	QP	Vertical
4808.0	45.7	5.9	N/A	51.6	74.0	-22.4	PK	Horizontal
7212.0	34.6	12.6	N/A	47.2	74.0	-26.8	PK	Horizontal
9616.0	33.8	15.4	N/A	49.2	74.0	-24.8	PK	Horizontal
12012.0	34.2	17.4	N/A	51.6	74.0	-22.4	PK	Horizontal
4808.0	39.5	5.9	N/A	45.4	74.0	-28.6	PK	Vertical
7212.0	34.3	12.6	N/A	46.9	74.0	-27.1	PK	Vertical
9616.0	34.0	15.4	N/A	49.4	74.0	-24.6	PK	Vertical
12012.0	32.9	17.4	N/A	50.3	74.0	-23.7	PK	Vertical

Note 1: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre Amplifier Gain (dB)

Note 2: Average measurement was not performed when the peak level lower than average limit.

Note 3: The test trace is same as the ambient noise (the test frequency range: 9 kHz ~ 30 MHz and 18

GHz ~ 25 GHz), therefore no data appear in the report.

Product	RF Remote control	Temperature	25°C			
Test Engineer	Ternence Wang	Relative Humidity	52%			
Test Site	AC1 Test Date 2018/09/07					
Remark:	Harmonics Radiated Emission - 2454MHz					

Frequency (MHz)	Reading Level (dBµV)	Factor (dB)	Duty Cycle Factor (dB)	Measure Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
117.5	3.0	13.0	N/A	16.0	43.5	-27.5	QP	Horizontal
176.5	2.0	13.4	N/A	15.4	43.5	-28.1	QP	Horizontal
123.1	5.0	13.4	N/A	18.4	43.5	-25.1	QP	Vertical
153.7	0.7	15.3	N/A	15.9	43.5	-27.6	QP	Vertical
4908.0	44.1	6.1	N/A	50.2	74.0	-23.8	PK	Horizontal
7362.0	34.6	12.7	N/A	47.3	74.0	-26.8	PK	Horizontal
9816.0	33.4	16.4	N/A	49.8	74.0	-24.2	PK	Horizontal
12270.0	33.5	17.4	N/A	50.8	74.0	-23.2	PK	Horizontal
4908.0	39.4	6.1	N/A	45.4	74.0	-28.6	PK	Vertical
7362.0	34.1	12.7	N/A	46.7	74.0	-27.3	PK	Vertical
9816.0	33.8	16.4	N/A	50.2	74.0	-23.8	PK	Vertical
12270.0	32.5	17.4	N/A	49.8	74.0	-24.2	PK	Vertical

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre Amplifier Gain (dB)

Note 2: Average measurement was not performed when the peak level lower than average limit.

Note 3: The test trace is same as the ambient noise (the test frequency range: 9 kHz ~ 30 MHz and 18

GHz ~ 25 GHz), therefore no data appear in the report.

Product	RF Remote control	Temperature	25°C
Test Engineer	Ternence Wang	Relative Humidity	52%
Test Site	AC1	Test Date	2018/09/07
Remark:	Harmonics Radiated Emission - 2479	MHz	

Frequency (MHz)	Reading Level	Factor (dB)	Duty Cycle Factor	Level	Limit (dBµV/m)	Margin (dB)	Detector	Polarization
	(dBµV)		(dB)	(dBµV/m)				
59.5	0.0	13.5	N/A	13.5	40.0	-26.5	QP	Horizontal
148.7	0.5	15.2	N/A	15.7	43.5	-27.8	QP	Horizontal
123.1	5.9	13.4	N/A	19.3	43.5	-24.2	QP	Vertical
157.0	0.2	15.3	N/A	15.5	43.5	-28.0	QP	Vertical
4958.0	45.0	6.1	N/A	51.1	74.0	-22.9	PK	Horizontal
7437.0	34.4	12.9	N/A	47.3	74.0	-26.7	PK	Horizontal
9916.0	34.0	16.6	N/A	50.6	74.0	-23.4	PK	Horizontal
12395.0	33.8	17.2	N/A	51.1	74.0	-22.9	PK	Horizontal
4958.0	40.0	6.1	N/A	46.1	74.0	-27.9	PK	Vertical
7437.0	34.9	12.9	N/A	47.8	74.0	-26.2	PK	Vertical
9916.0	33.2	16.6	N/A	49.9	74.0	-24.1	PK	Vertical
12395.0	33.4	17.2	N/A	50.6	74.0	-23.4	PK	Vertical

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre Amplifier Gain (dB)

Note 2: Average measurement was not performed when the peak level lower than average limit.

Note 3: The test trace is same as the ambient noise (the test frequency range: 9 kHz ~ 30 MHz and 18

GHz ~ 25 GHz), therefore no data appear in the report.

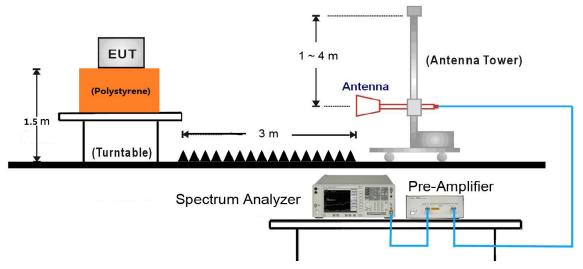
7.4. Radiated Restricted Band Edge Measurement

7.4.1.Test Limit

For 15.205 requirement:

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a) of FCC part 15, must also comply with the radiated emission limits specified in Section 15.209(a).

		•	
Frequency	Frequency	Frequency	Frequency
(MHz)	(MHz)	(MHz)	(GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 – 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(²)
13.36 - 13.41			


All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47

CFR must not exceed the limits shown in Table per Section 15.209.

FCC	FCC Part 15 Subpart C Paragraph 15.209						
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]					
0.009 ~ 0.490	2400/F (kHz)	300					
0.490 ~ 1.705	24000/F (kHz)	30					
1.705 ~ 30	30	30					
30 ~ 88	100	3					
88 ~ 216	150	3					
216 ~ 960	200	3					
Above 960	500	3					

7.4.2.Test Setup

1GHz ~ 18GHz Test Setup:

7.4.3.Test Result

Site: AC1							Time: 2018/09/07 - 08:08				
Limi	t: FCC	_Part15	.209_RE(3m)		Engine	eer: Bruce W	/ang			
Prob	Probe: BBHA9120D_1-18GHz					Polarit	Polarity: Horizontal				
EUT: RF Remote control					Power	Power: By Battery					
Test	Test Mode: Transmit at low channel 2404MHz										
Level(dBuV/m)	80 70 60 50	torn of mark water	nget nu karned der grad unger niger har	des terrent te with when they	Round-AntonionProductor	Norma Nationality	Lideay, and Bay again Lideay, and a	ne, mark yor drugs restricted for poly	12 12	4	
	40 30 20 2310	2315 23	20 2325 2330	2335 2340 2	345 2350 23 Fre		365 2370 2375	2380 2385	2390 2395 240	0 2408	
No	40 30 20 2310				Fre	equency(MHz)					
No	40 30 20	2315 23 Mark	Frequency	Reading	Free Factor	equency(MHz) Duty	Measure	Limit	Over Limit	0 2408 Type	
No	40 30 20 2310			Reading Level	Fre	equency(MHz)	Measure Level				
No	40 30 20 2310		Frequency	Reading	Free Factor	Duty Cycle	Measure	Limit	Over Limit		
No	40 30 20 2310		Frequency	Reading Level	Free Factor	Duty Cycle Factor	Measure Level	Limit	Over Limit		
	40 30 20 2310		Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Duty Cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Туре	
	40 30 20 2310		Frequency (MHz) 2389.037	Reading Level (dBuV) 30.539	Factor (dB) 32.328	Duty Cycle Factor (dB) N/A	Measure Level (dBuV/m) 62.867	Limit (dBuV/m) 74.000	Over Limit (dB) -11.133	Type PK	
1	40 30 20 2310		Frequency (MHz) 2389.037 2389.037	Reading Level (dBuV) 30.539 30.539	Factor (dB) 32.328 32.328	Equency(MHz) Duty Cycle Factor (dB) N/A -17.39	Measure Level (dBuV/m) 62.867 45.477	Limit (dBuV/m) 74.000 54.000	Over Limit (dB) -11.133 -8.523	Type PK AV	
1	40 30 20 2310		Frequency (MHz) 2389.037 2389.037 2390.000	Reading Level (dBuV) 30.539 30.539 29.032	Factor (dB) 32.328 32.328 32.327	Equency(MHz) Duty Cycle Factor (dB) N/A -17.39 N/A	Measure Level (dBuV/m) 62.867 45.477 61.359	Limit (dBuV/m) 74.000 54.000 74.000	Over Limit (dB) -11.133 -8.523 -12.641	Type PK AV PK	
1	40 30 20 2310		Frequency (MHz) 2389.037 2389.037 2390.000 2390.000	Reading Level (dBuV) 30.539 30.539 29.032 29.032	Factor (dB) 32.328 32.328 32.327 32.327	Equency(MHz) Duty Cycle Factor (dB) N/A -17.39 N/A -17.39	Measure Level (dBuV/m) 62.867 45.477 61.359 43.969	Limit (dBuV/m) 74.000 54.000 74.000 54.000	Over Limit (dB) -11.133 -8.523 -12.641 -10.031	Type PK AV PK AV	

Note: Peak Measure Level $(dB\mu V/m)$ = Reading Level $(dB\mu V)$ + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Site: AC1						Time: 2018/09/07 - 08:11				
Limi	t: FCC	_Part15	.209_RE(3m)		Engine	eer: Bruce W	ang		
Probe: BBHA9120D_1-18GHz					Polarit	Polarity: Vertical				
EUT: RF Remote control					Power	Power: By Battery				
Test Mode: Transmit at low channel 2404MHz										
Level(dBuV/m)	80 70 60	11/100-11/10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-11-10-1	~\$	- eni/whelenes(menium)	the contract of the second second	anatha ta	1 n. Fushing a hur strange	Washington	2 2 	4
	50 40 30 20 2310	2315 23	20 2325 2330	2335 2340 2		55 2360 2 equency(MHz	365 2370 2375	2380 2385	2390 2395 240	0 240
No	40 30 20	2315 23 Mark	20 2325 2330 Frequency (MHz)	2335 2340 2 Reading Level (dBuV)		Duty Cycle Factor		2380 2385 Limit (dBuV/m)	2390 2395 240 Over Limit (dB)	0 240
No 1	40 30 20 2310		Frequency	Reading Level	Factor	Duty Cycle	Measure Level	Limit	Over Limit	
	40 30 20 2310		Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	Duty Cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Туре
1	40 30 20 2310		Frequency (MHz) 2366.399	Reading Level (dBuV) 26.889	Factor (dB) 32.365	Duty Cycle Factor (dB) N/A	Measure Level (dBuV/m) 59.254	Limit (dBuV/m) 74.000	Over Limit (dB) -14.746	Туре
1	40 30 20 2310		Frequency (MHz) 2366.399 2366.399	Reading Level (dBuV) 26.889 26.889	Factor (dB) 32.365 32.365	Equency(MHz Duty Cycle Factor (dB) N/A -17.39	Measure Level (dBuV/m) 59.254 41.864	Limit (dBuV/m) 74.000 54.000	Over Limit (dB) -14.746 -12.136	Type PK AV
1	40 30 20 2310		Frequency (MHz) 2366.399 2366.399 2390.000	Reading Level (dBuV) 26.889 26.889 24.951	Factor (dB) 32.365 32.327	Equency(MHz Duty Cycle Factor (dB) N/A -17.39 N/A	Measure Level (dBuV/m) 59.254 41.864 57.278	Limit (dBuV/m) 74.000 54.000 74.000	Over Limit (dB) -14.746 -12.136 -16.722	Type PK AV PK
	40 30 20 2310		Frequency (MHz) 2366.399 2366.399 2390.000 2390.000	Reading Level (dBuV) 26.889 26.889 24.951 24.951	Factor (dB) 32.365 32.365 32.327 32.327	Equency(MHz Duty Cycle Factor (dB) N/A -17.39 N/A -17.39	Measure Level (dBuV/m) 59.254 41.864 57.278 39.888	Limit (dBuV/m) 74.000 54.000 74.000	Over Limit (dB) -14.746 -12.136 -16.722 -14.112	Type PK AV PK AV

Note: Peak Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Sile	: AC1					Time:	2018/09/07 -	08:37		
Limi	t: FCC	_Part15	.209_RE(3m))		Engine	eer: Bruce W	'ang		
Prob	Probe: BBHA9120D_1-18GHz					Polarit	ty: Horizontal			
EUT: RF Remote control					Power	Power: By Battery				
Test	Mode	Transm	nit at high cha	annel 2479M	1Hz					
Level(dBuV/m)	120 80 70 60		1	2	and and a state of the state of	******	entral and a state of the state	Mind al with the state for way to be state	utidia	-118-1414-14-14-14-14
	50 40 30 20 2476	2478	2480	2482 2484	2486	2488	2490 2492	2 2494	2496 249	
	40 30 20 2476				Fr	equency(MHz))		2496 249	8 2500
No	40 30 20	2478 Mark	2480 Frequency (MHz)	2482 2484 Reading Level (dBuV)				2 2494 Limit (dBuV/m)		
No	40 30 20 2476		Frequency	Reading Level	Free Free Free Free Free Free Free Free	equency(MHz) Duty Cycle Factor	Measure Level	Limit	2496 249 Over Limit	8 2500
	40 30 20 2476	Mark	Frequency (MHz)	Reading Level (dBuV)	Factor (dB)	equency(MHz) Duty Cycle Factor (dB)	Measure Level (dBuV/m)	Limit (dBuV/m)	2496 2490 Over Limit (dB)	8 2500 Type
1	40 30 20 2476	Mark	Frequency (MHz) 2479.300	Reading Level (dBuV) 62.233	Factor (dB) 32.323	equency(MHz) Duty Cycle Factor (dB) N/A	Measure Level (dBuV/m) 94.556	Limit (dBuV/m) 114.000	2496 249 Over Limit (dB) -19.444	8 2500 Type PK
1	40 30 20 2476	Mark	Frequency (MHz) 2479.300 2483.500	Reading Level (dBuV) 62.233 37.119	Factor (dB) 32.323 32.340	equency(MHz Duty Cycle Factor (dB) N/A N/A	Measure Level (dBuV/m) 94.556 69.459	Limit (dBuV/m) 114.000 74.000	2496 2490 Over Limit (dB) -19.444 -4.541	8 2500 Type PK PK

Note: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

Sile	: AC1					Time:	2018/09/07 -	08:39			
Lim	it: FCC	_Part15	.209_RE(3m))		Engine	eer: Bruce W	'ang			
Pro	Probe: BBHA9120D_1-18GHz EUT: RF Remote control					Polarit	Polarity: Vertical Power: By Battery				
EUT						Power					
Test	Mode	Transn	nit at high cha	annel 2479N	1Hz						
Level(dBuV/m)	80 70 60		1	2	19-11-11-11-11-11-11-11-11-11-11-11-11-1	Fritt Jangta grup with point of		14-11-26-160/1-16-16-16-16-16-16-16-16-16-16-16-16-16		-Alemana and a second	
	50 40 30 20 2476	2478	2480	2482 2484	2486	2488 equency(MHz)	2490 2492	2 2494	2496 2496	3 2500	
No	40 30 20 2476	2478 Mark		2482 2484	2486	2488 equency(MHz)	2490 2492	2 2494 Limit	2496 2498 Over Limit		
No	40 30 20		2480 Frequency (MHz)		2486 Fra	2488	2490 2492			3 2500 Type	
No	40 30 20 2476		Frequency	2482 2484 Reading Level	2486 Fre Factor	2488 equency(MHz) Duty Cycle Factor	2490 2492 Measure Level	Limit	Over Limit		
_	40 30 20 2476	Mark	Frequency (MHz)	2482 2484 Reading Level (dBuV)	2486 Fre Factor (dB)	2488 equency(MHz) Duty Cycle Factor (dB)	2490 2492 Measure Level (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Туре	
1	40 30 20 2476	Mark	Frequency (MHz) 2475.780	2482 2484 Reading Level (dBuV) 54.639	2486 Fractor (dB) 32.314	2488 equency(MHz) Duty Cycle Factor (dB) N/A	2490 2492 Measure Level (dBuV/m) 86.953	Limit (dBuV/m) 114.000	Over Limit (dB) -27.047	Туре	
1	40 30 20 2476	Mark	Frequency (MHz) 2475.780 2483.500	2482 2484 Reading Level (dBuV) 54.639 31.415	2486 Fractor (dB) 32.314 32.340	2488 equency(MHz) Duty Cycle Factor (dB) N/A N/A	2490 2492 Measure Level (dBuV/m) 86.953 63.755	Limit (dBuV/m) 114.000 74.000	Over Limit (dB) -27.047 -10.245	Type PK PK	

Note: Peak Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Average Measure Level = Peak Measure Level + Duty Cycle Factor

7.5. 20dB Spectrum Bandwidth Measurement

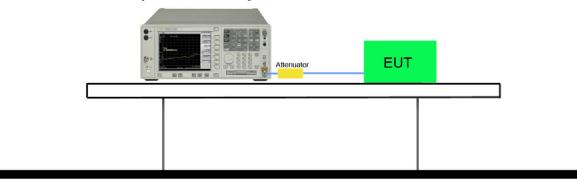
7.5.1.Test Limit

Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emission in the

specific band (2400 ~ 2483.5MHz).

7.5.2.Test Procedure used

ANSI C63.10 Clause 6.9.2

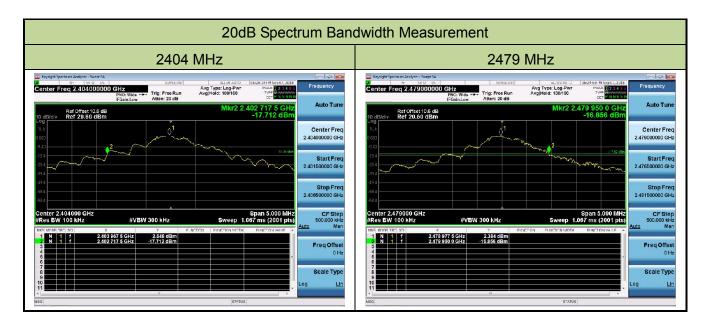

7.5.3.Test Setting

- 1. Set the spectrum span range to overlap the nominal center frequency
- 2. Set RBW = 100 kHz
- 3. VBW ≥ 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize and marker the highest level.
- 8. Determine the display level (the highest level 20dB) and place two markers, one at the lowest

frequency and the other at the highest frequency.

7.5.4.Test Setup

Spectrum Analyzer



7.5.5.Test Result

Product	RF Remote control	Temperature	24°C
Test Engineer	Ternence Wang	Relative Humidity	59%
Test Site	AC1	Test Date	2018/09/07

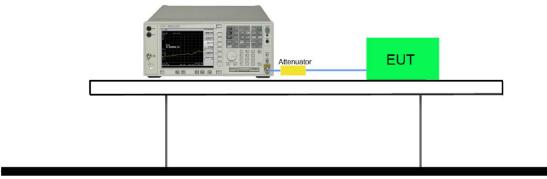
Frequency	Frequency Range	Frequency Range	Result
(MHz)	(MHz)	(MHz)	
2404	2402.72		Pass
2479		2479.95	Pass

7.6. 99% Bandwidth Measurement

7.6.1.Test Limit

N/A

7.6.2.Test Procedure used


ANSI C63.10 Section 6.9

7.6.3.Test Setting

- The analyzers' automatic bandwidth measurement capability was used to perform the 99% bandwidth measurement. The bandwidth measurement was not influenced by any intermediated power nulls in the fundamental emission.
- 2. RBW = approximately 1% to 5% of the OBW.
- 3. VBW \geq 3 × RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.

7.6.4.Test Setup

Spectrum Analyzer

7.6.5.Test Result

Product	RF Remote control	Temperature	24°C
Test Engineer	Ternence Wang	Relative Humidity	59%
Test Site	TR3	Test Date	2018/09/07

Frequency (MHz)	99% Bandwidth (MHz)
2404	1.93
2454	1.59
2479	1.50

8. CONCLUSION

The data collected relate only the item(s) tested and show that the device is in compliance with Part

15C of the FCC Rules.

Appendix A – Test Setup Photograph

Refer to "1809WSU004-UT" file.

Appendix B – EUT Photograph

Refer to "1809WSU004-UE" file.