

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC180679 Page: 1 of 46

FCC Radio Test Report FCC ID: 2ANK8-TH06

Original Grant

Report No.		TB-FCC180679
Applicant		Shenzhen Forever Young Technology Co., Ltd
Equipment Under 1	Fest	(EUT)
EUT Name	1	Wi-Fi Temperature & Humidity Sensor
Model No.	:	TH06
Series Model No.	-	N/A
Brand Name		Zitech
Sample ID		TBBJ-20210525-02-1#& TBBJ-20210525-02-2#
Receipt Date	110	2021-05-29
Test Date	-	2021-05-29 to 2021-06-17
Issue Date	8:	2021-06-17
Standards	:	FCC Part 15, Subpart C 15.247
Test Method	:	ANSI C63.10: 2013
Conclusions	:	PASS
		In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer :

Engineer Supervisor

: WAN SU : Lay Lai. Rav

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	12
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	20
	7.5 EUT Operating Condition	20
	7.6 Test Data	
8.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	21
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Condition	21

	9.6 Test Data	21
9.	POWER SPECTRAL DENSITY TEST	
	10.1 Test Standard and Limit	
	10.2 Test Setup	
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	
	10.5 EUT Operating Condition	22
	10.6 Test Data	22
10.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	23
	11.4 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDGE 1	
ATT	ACHMENT D CHANNEL SEPARATION AND BANDWIDTH TEST DATA	
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	43
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Revision History

Version	Description	Issued Date
Rev.01	Initial issue of report	2021-06-17
a E	A LINE AND A	TOBL
20	THE TO	By and
	THE ROLL	The second
In	MOBIL MOD	
	THE FORMER	TT DE
	THE TOWN	CULL C
100	ET TOB	
30	TOBY TODY	A LUL
mB		The second second
B	TODI TO TODI	a come
TOBL	TUDD TRY	TEL S
	TOD THE THE	6031

TOBY

1. General Information about EUT

1.1 Client Information

Applicant		Shenzhen Forever Young Technology Co., Ltd	
Address	<u> </u>	2/F, No B2 Bldg, Fu Yuan Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China	
Manufacturer	:	Shenzhen Forever Young Technology Co., td	
Address		2/F, No B2 Bldg, Fu Yuan Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Wi-Fi Temperature & Humidity Sensor		
Model(s) No.	34	TH06		
Model Different				
any -	5	Operation Frequency:	Bluetooth 4.2(BLE): 2402MHz~2480MHz	
		Number of Channel:	Bluetooth 4.2(BLE): 40 channels see note(3)	
Product	-	RF Output Power:	5.319dBm (Max)	
Description	:	Antenna Gain:	1.5 dBi PCB Antenna	
RODD		Modulation Type:	GFSK	
CDU _ I	J	Bit Rate of Transmitter:	1Mbps	
Power Rating		Input: DC 5V/1A		
Software Version		TH06-WB3S-V1.0	TH06-WB3S-V1.0	
Hardware Version	•	TH06-WB3S-V1.2		
Connecting I/O Port(S)		Please refer to the User's Manual		

Note:

This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.

TOBY

(3) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

	Adapter	EUT			
	Con the second			MOUL	
liated Test	TOP TOP	B TOP TOP	MOBY	Top	TOBY
diated Test	TOP TOP	B TOP	MOBY	TOPS	TOBY

1.4 Description of Support Units

	Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"			
Adapter			HUAWEI				
	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
	Contraction of the second	- C					

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode	Description		
Mode 1	Charging + TX Mode Channel 00		
	For Radiated Test		
Final Test Mode Description			
Mode 2	TX Mode		
Mode 3	TX 1Mbps Mode (Channel 00/20/39)		
Mode 4 TX 2Mbps Mode (Channel 00/20/39)			
Note : The adapter and anten	a gain provided by the applicant, the verified for the RF		

Note : The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	WifiTestTool(v1.5.2)		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

2. Test Summary

FCC Part 15 Subpart C(15.247)				
Standard Section FCC	Test Item	Test Sample(s)	Judgment	Remark
15.203	Antenna Requirement	TBBJ-20210525-02-2#	PASS	N/A
15.207(a)	Conducted Emission	TBBJ-20210525-02-1#	PASS	N/A
15.205&15.247(d)	Band-Edge & Unwanted Emissions into Restricted Frequency	TBBJ-20210525-02-2#	PASS	N/A
15.247(a)(2)	6dB Bandwidth	TBBJ-20210525-02-2#	PASS	N/A
15.247(b)(3)	Conducted Max Output Power	TBBJ-20210525-02-2#	PASS	N/A
15.247(e)	Power Spectral Density	TBBJ-20210525-02-2#	PASS	N/A
15.205, 15.209&15.247(d)	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	TBBJ-20210525-02-2#	PASS	N/A

3. Test Software

	Test Item	Test Software	Manufacturer	Version No.
5	Conducted Emission	EZ-EMC	EZ	CDI-03A2
	Radiation Emission	EZ-EMC	EZ	FA-03A2RE
	RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

4. Test Equipment

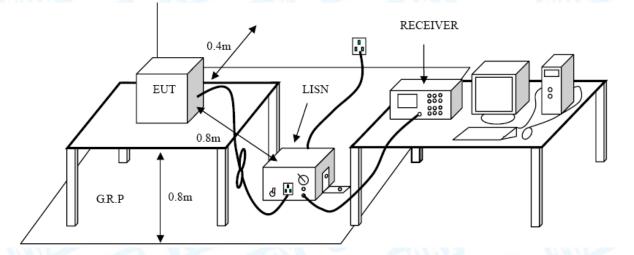
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Feb. 25, 2021	Feb. 24, 2022
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducted	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Dat
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
200	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO29	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep. 11, 2020	Sep. 10, 2021

5. Conducted Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1Test Standard FCC Part 15.207
 - 5.1.2 Test Limit

Conducted Emission Test Limit

Fraguanay	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

6. Radiated Emission Test

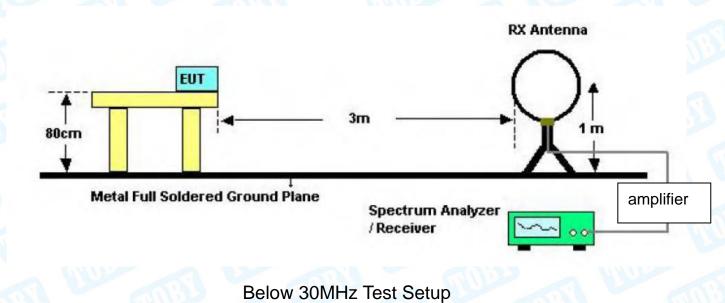
- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247(d)
 - 6.1.2 Test Limit

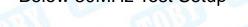
Radiated Emission Limits (9kHz~1000MHz)

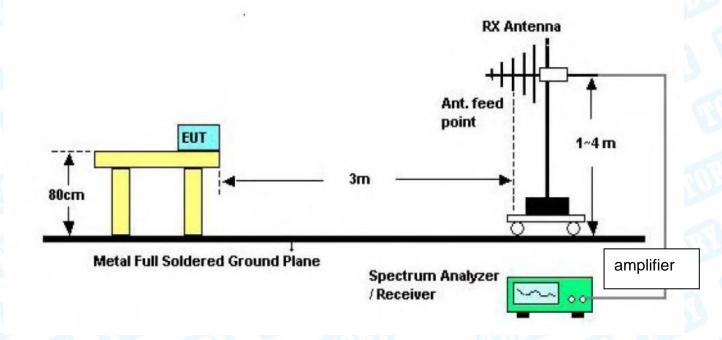
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3 3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

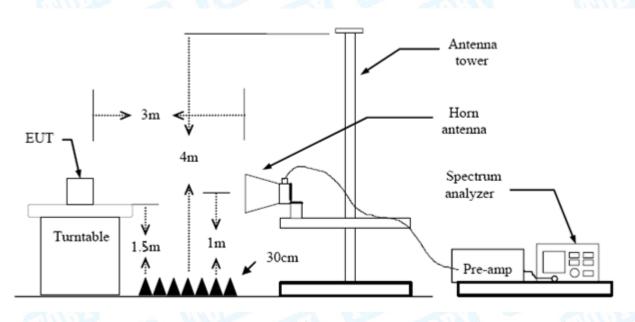
Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54


Note:


(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

6.2 Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

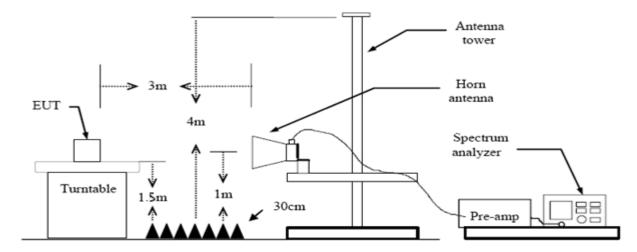
The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment B.

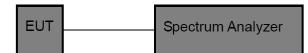
TOBY

7. Restricted Bands Requirement


- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205
 - 7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
Co	onducted measurement		
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e	
2310 ~2390	-41.20	-21.20	
2483.5 ~2500	-41.20	-21.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.


7.2 Test Setup

Radiated measurement

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

---Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalen t electric field strength using the following

relationship:

 $E = \text{EIRP-20} \log d + 104.8$

where

E is the electric field strength in dBuV/m EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

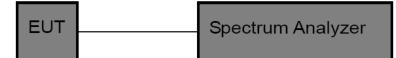
No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. Please refer to the Attachment C.



8. Peak Output Power Test

- 9.1 Test Standard and Limit
 - 9.1.1 Test Standard
 - FCC Part 15.247 (b)(3)
 - 9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247			
Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	1 Watt or 30 dBm	2400~2483.5	

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 5558074 D01 15.247 Meas Guidance v05r02

Set the RBW≥DTS Bandwidth

- (1) Set VBW≥2*RBW
- (2) Set Span≥3*RBW
- (3) Sweep time=auto
- (4) Detector= peak
- (5) Trace mode= maxhold.
- (6) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

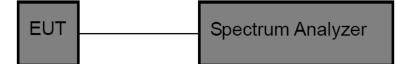
No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.



9. Power Spectral Density Test

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard FCC Part 15.247 (e)
 - 10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MH				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 15.247 Meas Guidance v05r02

(1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.

- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

10. Antenna Requirement

- 11.1 Standard Requirement
 - 10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.5 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

Antenna Type		
S.	Permanent attached antenna	
	Unique connector antenna	N.
3	Professional installation antenna	-

Attachment A--- Conducted Emission Test Data

Temperature:	24.8℃	Relative Humidity:	47%
Test Voltage:	AC 120V/60 Hz	an annu	
Terminal:	Line		
Test Mode:	Mode 1		
Remark:	Only worse case is rep	ported	011
80.0 dBuV			
			QP: AVG:
30 minun	m. A	×	
30	Mar Calendraha martinanana	man your beaution and a market when	maderation
mount	mon marken and have marken and the second	with manufacture and a second and a second	P
			A
-20			

No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	25.30	9.70	35.00	65.99	-30.99	QP
2	0.1500	10.64	9.70	20.34	55.99	-35.65	AVG
3	0.2420	18.62	9.70	28.32	62.02	-33.70	QP
4	0.2420	8.48	9.70	18.18	52.02	-33.84	AVG
5	0.4860	18.98	9.70	28.68	56.24	-27.56	QP
6 *	0.4860	10.75	9.70	20.45	46.24	-25.79	AVG
7	2.7300	9.73	9.85	19.58	56.00	-36.42	QP
8	2.7300	5.18	9.85	15.03	46.00	-30.97	AVG
9	7.9900	9.80	9.80	19.60	60.00	-40.40	QP
10	7.9900	5.21	9.80	15.01	50.00	-34.99	AVG
11	14.8740	8.54	9.99	18.53	60.00	-41.47	QP
12	14.8740	3.93	9.99	13.92	50.00	-36.08	AVG

Remark:

TOBY

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.8 ℃	Relat	ive Humidity:	47%			
Test Voltage:	AC 120V/60 Hz	1111 6					
Terminal:	Neutral		CUP				
Test Mode:	Mode 1						
Remark: Only worse case is reported							
80.0 dBuV	Martin Martin Martin Martin La June	x		QP: AVG:			
20 0.150	0.5	(MHz)	5	30.000			

				- ·				
No	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
140.	WIX.	ricq.	Level	Tactor	ment	2	0.0.	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	23.70	9.80	33.50	65.99	-32.49	QP
2		0.1500	10.44	9.80	20.24	55.99	-35.75	AVG
3		0.2860	18.80	9.80	28.60	60.64	-32.04	QP
4		0.2860	10.50	9.80	20.30	50.64	-30.34	AVG
5		0.4780	19.94	9.80	29.74	56.37	-26.63	QP
6	*	0.4780	11.03	9.80	20.83	46.37	-25.54	AVG
7		3.1660	9.63	9.80	19.43	56.00	-36.57	QP
8		3.1660	5.14	9.80	14.94	46.00	-31.06	AVG
9		6.3700	11.23	9.87	21.10	60.00	-38.90	QP
10		6.3700	5.71	9.87	15.58	50.00	-34.42	AVG
11		21.8260	8.86	10.04	18.90	60.00	-41.10	QP
12		21.8260	4.40	10.04	14.44	50.00	-35.56	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

TOBY

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

ΠZ~	IGHZ				210			1								671	110
Tem	peratu	ire:	2	23.6	°C		67			Relat	tive	Humidi	ty:	45	%	U	
Test	Volta	ge:	F	۲C ک	120	V60	OHZ			26	10		117	NO			2
Ant.	Pol.		H	lori	zon	tal	1	2	111		X				d		
Test	Mode	:	Ν	∕lod	e 1	24	02M	1Hz		1	U		~	3		32	
Rem	nark:		C	Only	/ WC	orse	cas	se i	s reported			M		S			
80.	0 dBuV/n	m															٦
												(RF)F(CC 15C			- I e	-
							+							ма	rgin -6		1
						┛	-										
30											5						
							3				Ň	yman		www.	MM	shahn	1
	×	2					X			4 . NN	W	phinon	m				1
	× nhum	Manila	1	N	mpm	wł	h	a.A.I	WWWWWWW	American	-						1
		· ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wy.	-		'	ry w	MMMMMM		_				_		-
-20																	
3	0 000	40 1	50 0	60 3	70 8	50			(MH2)		300	400	500	003	700	1000	
					F	lea	ding	g	Correct	Meas	ure-			_			
Ν	lo. M	k.	Free	1-		Le	vel		Factor	mer	nt	Limi	t	Ov	er		
			MHz			dB	Bu∨		dB/m	dBu∖	//m	dBuV	/m	d	В	Dete	ctor
1		31	.289	93		30	.08		-13.91	16.1	17	40.0	00	-23	.83	pe	eak
2		47	.325	55		33	.54		-22.18	11.3	36	40.0	00	-28	.64	pe	ak
3		94	.097	79		39	.15		-21.89	17.2	26	43.5	50	-26	.24	pe	ak
4		203	3.52	28		31	.53		-19.76	11.7	77	43.5	50	-31	.73	pe	ak
5	*	28	6.98	23		41	.43		-16.54	24.8	89	46.0	00	-21	.11	pe	ak
6		65	1.94	17		31	.23		-7.94	23.2	29	46.0	00	-22	.71	pe	ak

*:Maximum data x:Over limit !:over margin

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.6 ℃	Relative Humidity:	45%					
Fest Voltage:	AC 120V60HZ							
Ant. Pol.	Vertical	GILLE						
Fest Mode:	Mode 1 2402MHz							
Remark:	Only worse case is reported							
80.0 dBuV/m								
30 1 20 	Mark Mark	(RF)FCC 15C	Margin -6 dB					

Ν	lo.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	31.9546	41.30	-14.41	26.89	40.00	-13.11	peak
2			49.3594	46.80	-22.83	23.97	40.00	-16.03	peak
3			94.0979	43.70	-21.89	21.81	43.50	-21.69	peak
4			196.5098	49.15	-19.90	29.25	43.50	-14.25	peak
5			282.9852	45.24	-16.60	28.64	46.00	-17.36	peak
6			566.6223	35.22	-8.73	26.49	46.00	-19.51	peak

^{*:}Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Above 1GHz(Only worse case is reported)

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	GUD	
Test Mode:	HS6620D-BLE(1Mbps) Mod	e 2402MHz	

Ν	lo.	Mk.	Freq.	-	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4803.770	34.09	13.01	47.10	54.00	-6.90	AVG
2			4803.918	47.70	13.01	60.71	74.00	-13.29	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3 ℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Vertical		
Test Mode:	HS6620D-BLE(1Mbps) M	ode 2402MHz	

N	lo. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4803.868	35.64	13.01	48.65	54.00	-5.35	AVG
2		4804.318	48.24	13.02	61.26	74.00	-12.74	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%
Test Voltage:	DC 3.7V		
Ant. Pol.	Horizontal	GUD	
Test Mode:	HS6620D-BLE(1Mbps) Moc	e 2442MHz	

No	. Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.810	49.15	13.59	62.74	74.00	-11.26	peak
2	*	4884.138	34.66	13.60	48.26	54.00	-5.74	AVG

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

23.3 ℃	Relative Humidity:	43%			
DC 3.7V					
Vertical					
HS6620D-BLE(1Mbps) Mode 2442MHz					
	DC 3.7V Vertical	DC 3.7V			

	No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4883.740	34.79	13.59	48.38	54.00	-5.62	AVG
2	2		4884.000	48.56	13.60	62.16	74.00	-11.84	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3 ℃	Relative Humidity:	43%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Horizontal	GUUD				
Test Mode:	HS6620D-BLE(1Mbps) Mode 2480MHz					

No	o. Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4959.698	34.44	14.15	48.59	54.00	-5.41	AVG
2		4959.736	48.50	14.15	62.65	74.00	-11.35	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.3℃	Relative Humidity:	43%			
Test Voltage:	DC 3.7V					
Ant. Pol.	Vertical	- BL	611022			
Test Mode:	HS6620D-BLE(1Mbps) Mode 2480MHz					

Ν	۱o.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4959.546	34.55	14.15	48.70	54.00	-5.30	AVG
2			4960.364	48.62	14.16	62.78	74.00	-11.22	peak

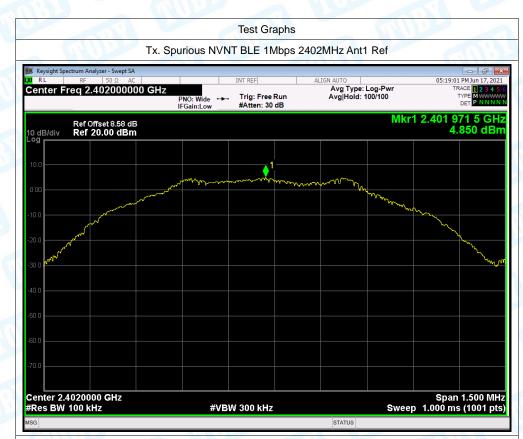
Remark:

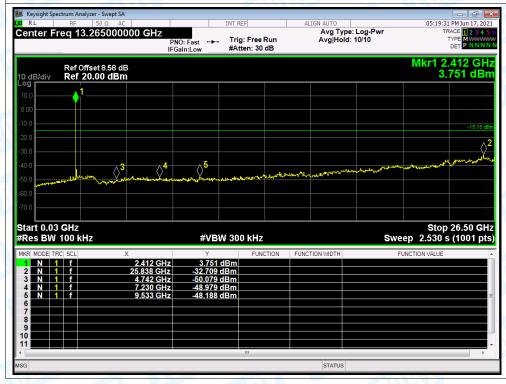
1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)

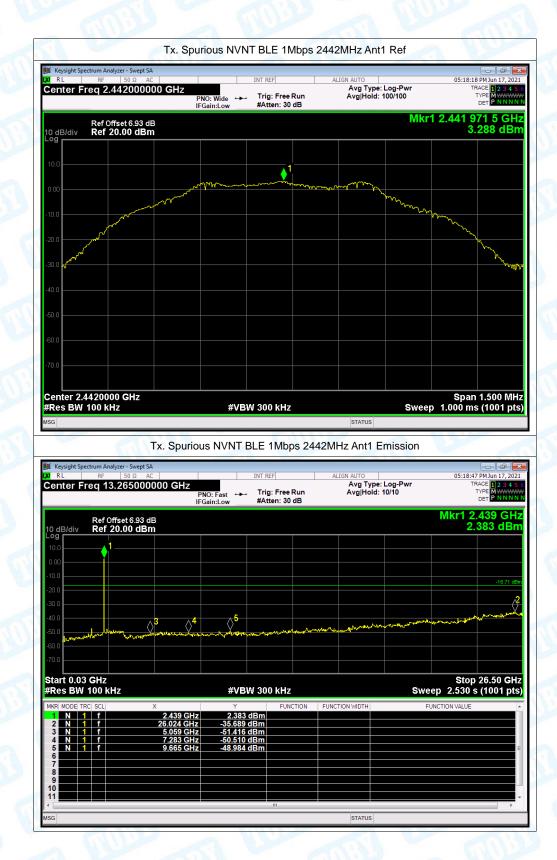
3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.


5. No report for the emission which more than 20dB below the prescribed limit.


----Conducted Unwanted Emissions

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1Mbps	2402	-37.55	-20	Pass
NVNT	BLE 1Mbps	2442	-38.97	-20	Pass
NVNT	BLE 1Mbps	2480	-39.04	-20	Pass

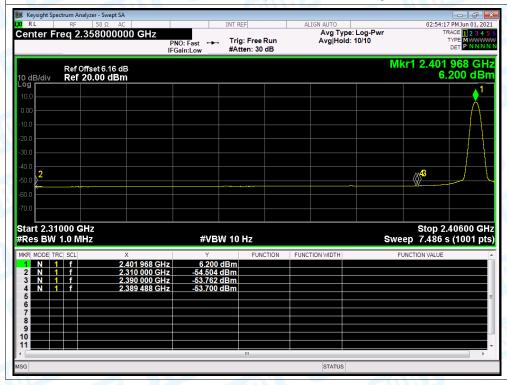


Tx. Spurious NVNT BLE 1Mbps 2402MHz Ant1 Emission

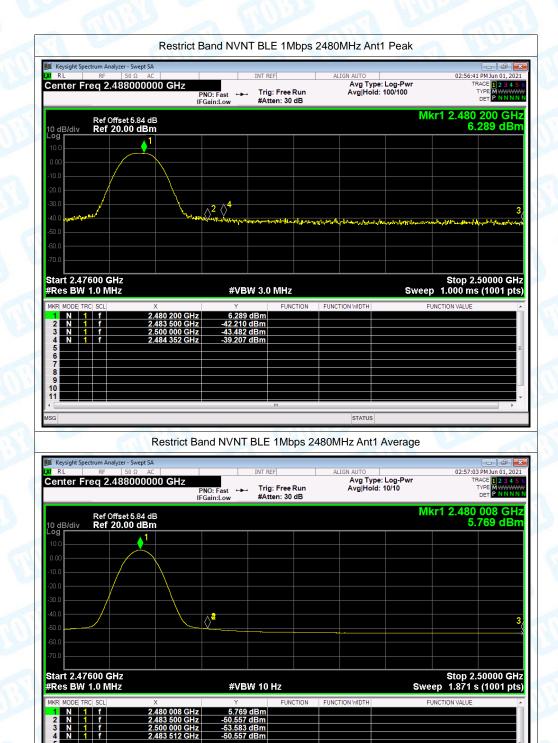
TOBY

Attachment C-- Restricted Bands Requirement and Band

Edge Test Data


(1) Radiation Test

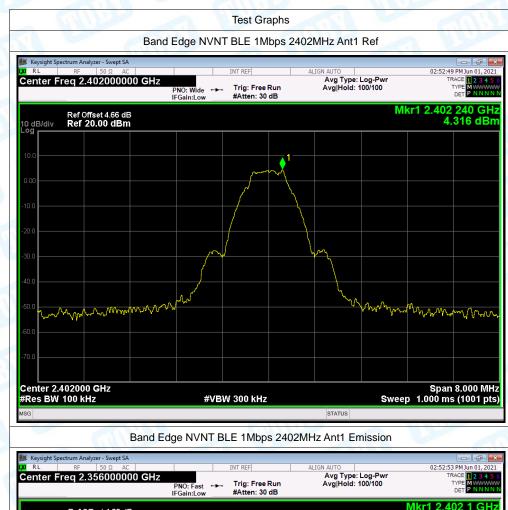
Condition	Mode	Frequency (MHz)	Spur Freq (MHz)	Power (dBm)	Gain (dBi)	E (dBuV/m)	Detector	Limit (dBuV/m)	Verdict
NVNT	BLE 1Mbps	2402	2310	-44.06	2	53.2	Peak	74	Pass
NVNT	BLE 1Mbps	2402	2310	-54.51	2	42.75	Average	54	Pass
NVNT	BLE 1Mbps	2402	2313.456	-40.17	2	57.09	Peak	74	Pass
NVNT	BLE 1Mbps	2402	2389.488	-53.69	2	43.57	Average	54	Pass
NVNT	BLE 1Mbps	2402	2390	-43.58	2	53.68	Peak	74	Pass
NVNT	BLE 1Mbps	2402	2390	-53.74	2	43.52	Average	54	Pass
NVNT	BLE 1Mbps	2480	2483.5	-42.21	2	55.05	Peak	74	Pass
NVNT	BLE 1Mbps	2480	2483.5	-50.55	2	46.71	Average	54	Pass
NVNT	BLE 1Mbps	2480	2484.352	-39.2	2	58.06	Peak	74	Pass
NVNT	BLE 1Mbps	2480	2483.512	-50.55	2	46.71	Average	54	Pass
NVNT	BLE 1Mbps	2480	2500	-43.48	2	53.78	Peak	74	Pass
NVNT	BLE 1Mbps	2480	2500	-53.58	2	43.68	Average	54	Pass



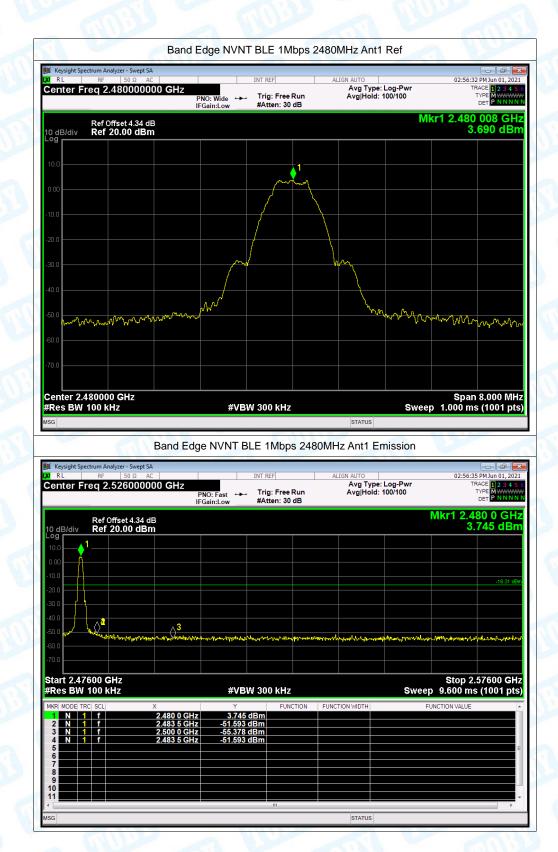
Restrict Band NVNT BLE 1Mbps 2402MHz Ant1 Average

STATUS

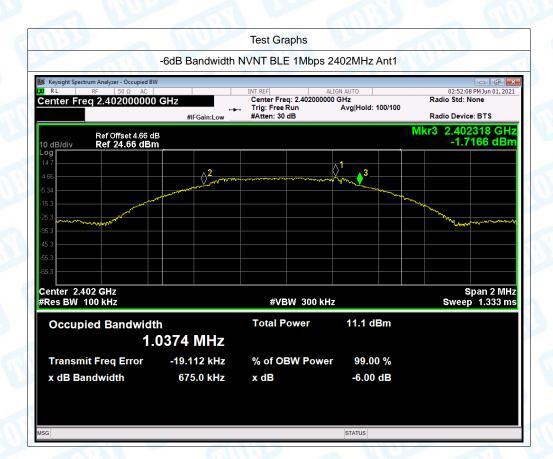
2.500 000 GHz 2.483 512 GHz

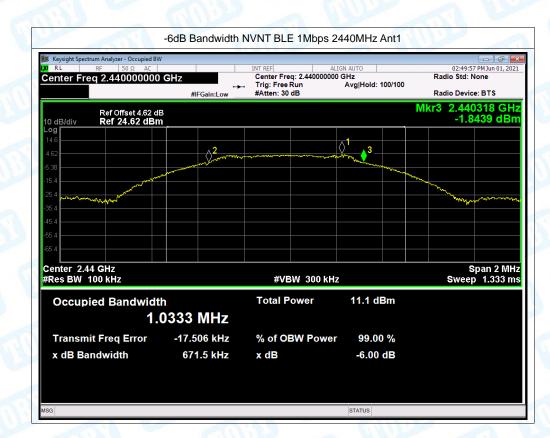

10 11

(2) Conducted Test


Condition Mode		Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	BLE 1Mbps	2402	-56.71	-20	Pass	
NVNT	BLE 1Mbps	2480	-55.28	-20	Pass	

I0 dB/div	Ref Offset 4 Ref 20.00						Mkr1 2.402 4.20	1 GF 58 dB
10.0								1
0.00								<u>i</u>
10.0								
20.0								-15.68 d
30.0								ļļ
40.0								
								$\sqrt{2}$
50.0 مىلىمەرمەر	Marin manage	Margaryman	www.www.www.w	handungene	mertille	-	nuperuntermenter	- N
0.0								
60.0 70.0								
70.0							Eton 2.40	600 01
70.0	0600 GHz 100 kHz		#VBW	300 kHz		Swe	Stop 2.40	
70.0 Start 2.30 Res BW	100 kHz			300 kHz		Swe	ep 9.600 ms (*	
70.0 Start 2.30 Res BW	100 kHz	X 2 402 1 GHz	Y	FUNCTION	FUNCTION WIDTH	Swe		
70.0 Start 2.30 Res BW	100 kHz	2.402 1 GHz 2.400 0 GHz	¥ 4.268 dB -50.028 dB	FUNCTION m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
70.0 Start 2.30 Res BW	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
70.0 Start 2.30 Res BW	100 kHz	2.402 1 GHz 2.400 0 GHz	¥ 4.268 dB -50.028 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
70.0	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
Start 2.30 Res BW IN 1 2 N 1 3 N 1 4 N 1 5 6 7	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
30.0 30.0 Res BW MKR MKR MODE 1 N 2 N 3 N 4 N 5 6 7 8	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
Start 2.30 Res BW IN 1 2 N 1 3 N 1 4 N 1 5 6 7	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	
300 300 Res BW 300 1 N 2 N 3 N 4 N 5 6 6 7 8 9	100 kHz	2.402 1 GHz 2.400 0 GHz 2.390 0 GHz	¥ 4.268 dB -50.028 dB -55.044 dB	FUNCTION m m	FUNCTION WIDTH	Swe	ep 9.600 ms (*	



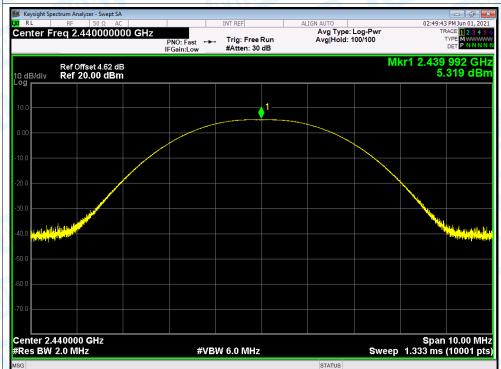


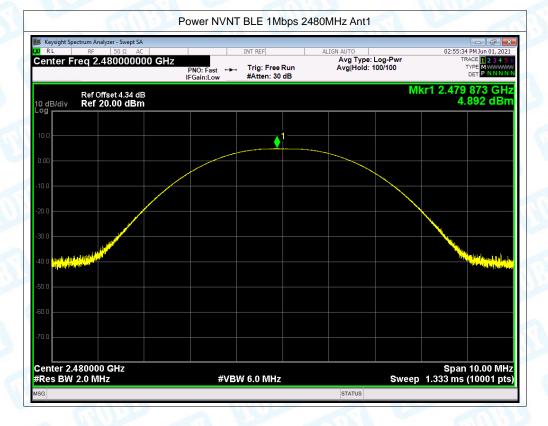
Attachment D-- Channel Separation and Bandwidth Test


Data

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1Mbps	2402	0.675	0.5	Pass
NVNT	BLE 1Mbps	2440	0.672	0.5	Pass
NVNT	BLE 1Mbps	2480	0.664	0.5	Pass

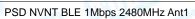
Condition	Mode	Frequency (MHz)	Power Power (dBm)	Duty Factor (dB)	Limit (dBm)	Verdict	
NVNT	BLE 1Mbps	2402	5.302	0	30	Pass	
NVNT	BLE 1Mbps	2440	5.319	0	30	Pass	
NVNT	BLE 1Mbps	2480	4.892	0	30	Pass	

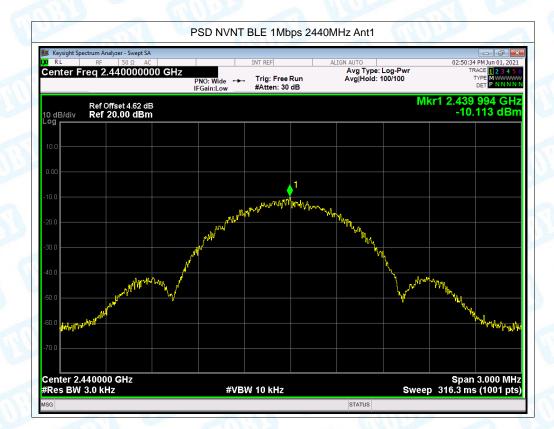



Report No.: TB-FCC180679

44 of 46

Page:


Attachment F-- Power Spectral Density Test Data


Condition	Mode	Frequency (MHz)	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1Mbps	2402	-10.179	8	Pass
NVNT	BLE 1Mbps	2440	-10.113	8	Pass
NVNT	BLE 1Mbps	2480	-10.582	8	Pass

-----END OF REPORT-----

