

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC162760

1 of 46 Page:

FCC Radio Test Report FCC ID: 2ANK8-S06

Original Grant

Report No. TB-FCC162760

Shenzhen Forever Young Technology Co., Ltd **Applicant**

Equipment Under Test (EUT)

EUT Name WiFi Infrared Remote Control

Model No. **S06**

N/A Series Model No.

Brand Name Zitech

2018-08-02 **Receipt Date**

2018-08-03 to 2018-11-15 **Test Date**

Issue Date 2018-11-19

FCC Part 15: 2017, Subpart C(15.247) **Standards**

Test Method ANSI C63.10: 2013

Conclusions **PASS**

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Report No.: TB-FCC162760
Page: 2 of 46

Contents

CON	TENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	16
	5.4 EUT Operating Condition	16
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	18
	6.4 EUT Operating Condition	19
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	20
	7.4 EUT Operating Condition	20
	7.5 Test Data	20
8.	PEAK OUTPUT POWER TEST	21
	8.1 Test Standard and Limit	21

Page: 3 of 46

	8.2 Test Setup	21
	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	
	9.2 Test Setup	22
	9.3 Test Procedure	22
	9.4 EUT Operating Condition	22
	9.5 Test Data	
10.	ANTENNA REQUIREMENT	
	10.1 Standard Requirement	23
	10.2 Antenna Connected Construction	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	
	ACHMENT D BANDWIDTH TEST DATA	
	ACHMENT E PEAK OUTPUT POWER TEST DATA	
AII	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	41

Page: 4 of 46

Revision History

Report No.	Version	Description	Issued Date
TB-FCC162760	Rev.01	Initial issue of report	2018-11-19
COD!	10		
	TOP S		(10 M
a Company	CI WILL	(III)	(10)
THE REAL PROPERTY.	33	CONTRACTOR OF THE PARTY OF THE	The state of the s
W. Comment	3	OH THE	The same of
	MOR	The same of the sa	
TO THE REAL PROPERTY.		The same of the sa	1 103
000			TI DIS
a min		CORP. CORP.	TO TO THE REAL PROPERTY.
		CODE OF	
Con Carlo	33 7	TODAY TODAY	

Page: 5 of 46

1. General Information about EUT

1.1 Client Information

Applicant : Shenzhen Forever Young Technology Co.,Ltd		Shenzhen Forever Young Technology Co.,Ltd	
Address		4/F, No.5 Bldg, Fu Hong Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China	
Manufacturer		Shenzhen Forever Young Technology Co.,Ltd	
Address		4/F, No.5 Bldg, Fu Hong Industrial Park, Fu Yong Town, Bao'an District, Shenzhen, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name	·	WiFi Infrared Remote (Control	
Models No.	•	S06		
Model Difference		N/A		
		Operation Frequency:	802.11b/g/n(HT20): 2412MHz~2462MHz	
		Number of Channel:	802.11b/g/n(HT20):11 channels see note(3)	
	:	RF Output Power:	802.11b: 15.78 dBm 802.11g: 14.72 dBm 802.11n (HT20): 14.45 dBm	
Product		Antenna Gain:	2.5dBi PCB Antenna	
Description		Modulation Type:	802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM, 64QAM)	
		Bit Rate of Transmitter:	802.11b:11/5.5/2/1 Mbps 802.11g:54/48/36/24/18/12/9/6 Mbps 802.11n:up to 150Mbps	
Power Supply	÷	DC 5V for USB Port.		
Software Version		N/A		
Hardware Version	-11	N/A		
Connecting I/O Port(S)		Please refer to the User's Manual		

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 v05.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Channel List:

Page: 6 of 46

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	05	2432	09	2452
02	2417	06	2437	10	2457
03	2422	07	2442	11	2462
04	2427	08	2447		

Note:CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 09 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

EUT

1.4 Description of Support Units

The EUT has been test as an independent unit.

Page: 7 of 46

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1	TX B Mode				
For Radiated Test					
Final Test Mode Description					
Mode 2	TX Mode B Mode Channel 01/06/11				
Mode 3	TX Mode G Mode Channel 01/06/11				
Mode 4	TX Mode N(HT20) Mode Channel 01/06/11				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 46

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Test Software Version	COL	N/A	
Channel	CH 01	CH 06	CH 11
IEEE 802.11b DSSS	DEF	DEF	DEF
IEEE 802.11g OFDM	DEF	DEF	DEF
IEEE 802.11n (HT20)	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 46

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC Accredited Test Site Number: 854351.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 46

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standa	rd Section	Test Item	ludament	D	
FCC	IC	rest item	Judgment	Remark	
15.203	1	Antenna Requirement	PASS	N/A	
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A	
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A	
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A	
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A	
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A	

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 11 of 46

3. Test Equipment

					Cal. Due
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul.18, 2018	Jul. 17, 2019
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul.18, 2018	Jul. 17, 2019
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul.18, 2018	Jul. 17, 2019
LISN	Rohde & Schwarz	ENV216	101131	Jul.18, 2018	Jul. 17, 2019
Radiation Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul.18, 2018	Jul. 17, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.16, 2018	Mar. 15, 2019
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.16, 2018	Mar. 15, 2019
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.16, 2018	Mar. 15, 2019
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 15, 2018	Jul. 14, 2019
Pre-amplifier	Sonoma	310N	185903	Mar.16, 2018	Mar. 15, 2019
Pre-amplifier	HP	8449B	3008A00849	Mar.16, 2018	Mar. 15, 2019
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.16, 2018	Mar. 15, 2019
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conduct	ed Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul.18, 2018	Jul. 17, 2019
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul.18, 2018	Jul. 17, 2019
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019
DE Dower Consor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019

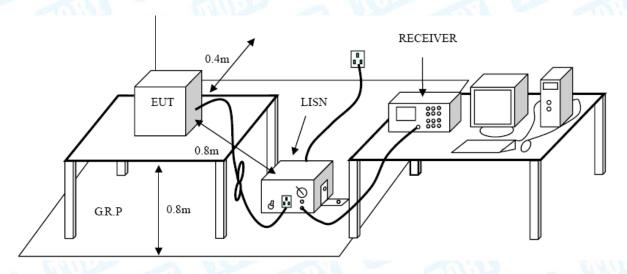
Page: 12 of 46

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

-0130	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 13 of 46

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 46

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

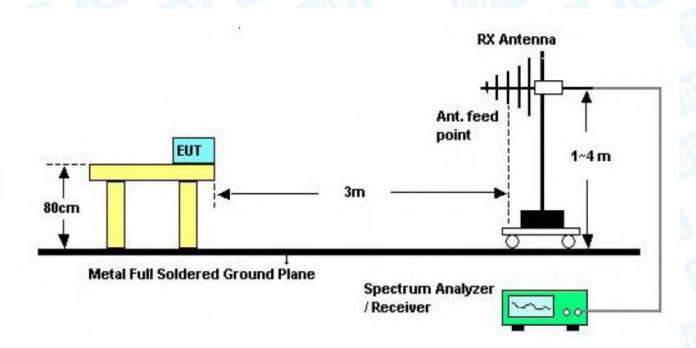
Radiated Emission Limits (9 kHz~1000 MHz)

1.705~30.0 30~88 88~216	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

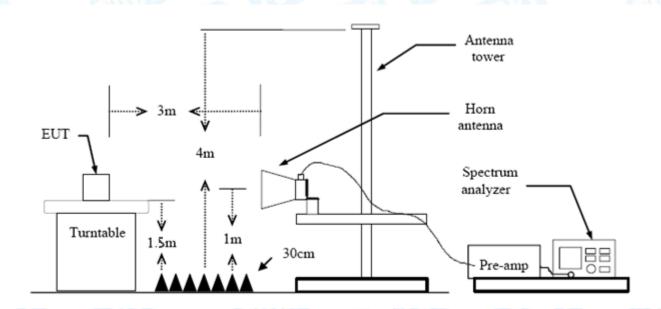
Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 15 of 46

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 46

Above 1GHz Test Setup

5.3 Test Procedure

- (1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

Page: 17 of 46

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

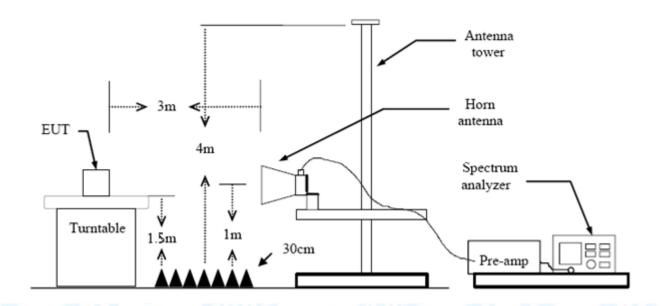
Page: 18 of 46

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.247(d)


FCC Part 15.209

FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)					
Band (MHz)	Peak	Average				
2310 ~2390	74	54				
2483.5 ~2500	74	54				

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Page: 19 of 46

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

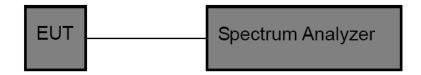
The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 46

7. Bandwidth Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210								
Test Item	Limit	Frequency Range(MHz)						
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5						

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

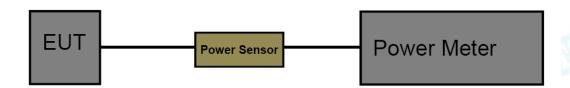
The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 46

8. Peak Output Power Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210								
Test Item	Limit	Frequency Range(MHz)						
Peak Output Power	1 Watt or 30 dBm	2400~2483.5						

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v04. The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

8.4 EUT Operating Condition

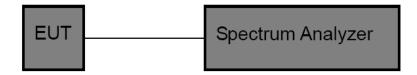
The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 46

9. Power Spectral Density Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)								
Test Item	Limit	Frequency Range(MHz)						
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5						

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v04.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Digital photo framesdle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 46

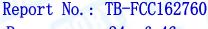
10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

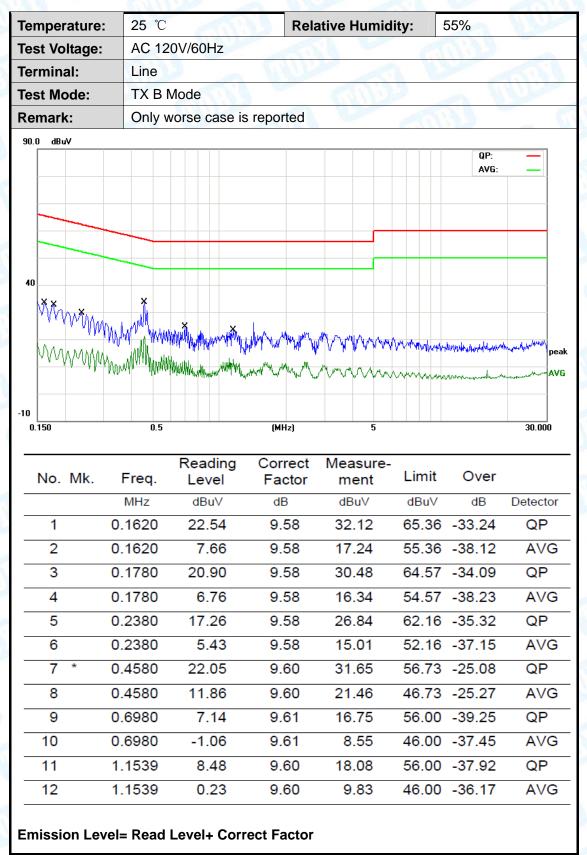
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.5dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.


	Antenna Type	
J.R	⊠Permanent attached antenna	
	☐Unique connector antenna	7
13	Professional installation antenna	

Page: 24 of 46

Attachment A-- Conducted Emission Test Data

Report No.: TB-FCC162760
Page: 25 of 46

Tempe	rature:	25 ℃	0.0	Re	elative Hum	idity:	55%						
Test Vo	oltage:	AC 12	0V/60Hz				-	A Brown					
Termin	al:	Neutra											
Test Me	ode:	TXBI	X B Mode										
Remark	k:	Only v	vorse case i	s reported			1 N	NO.					
90.0 dB	uV						QP:						
							AVG:	_					
_													
_													
40													
XX	MXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	X.											
	, . h.h.n.h/h	UNANANA	MARAPHARAHARAKAR			Manda.	hillerelyelyelyelyelyelyelyelyelyel	and the state of the state of					
M	WWW.	MMM \	194444444466411966. ALVORANA	THE THE THE	Mary		CIPTON AND AND AND AND AND AND AND AND AND AN	peak					
	7, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	i . Anhi-	Lahldon (IRM) (MY), Tabel Tablesona	Halima harana harana haran	S A A A AAAA	^^~~	the the second	AVG					
-10													
0.150		0.5		(MHz)	5			30.000					
		_	Reading	Correct	Measure-	Linait	0						
No.		req.	Level	Factor	ment	Limit	Over						
		MHz	dBuV	dB	dBuV	dBu∀	dB	Detector					
1		1620	22.45	9.64	32.09		-33.27	QP					
2		1620	6.32	9.64	15.96		-39.40	AVG					
3		1780	21.06	9.65	30.71		-33.86	QP					
4	0.	1780	5.37	9.65	15.02	54.57	-39.55	AVG					
5	0.	1940	18.92	9.65	28.57	63.86	-35.29	QP					
6	0.	1940	3.95	9.65	13.60	53.86	-40.26	AVG					
7	0.	2220	18.69	9.63	28.32	62.74	-34.42	QP					
8	0.	2220	4.50	9.63	14.13	52.74	-38.61	AVG					
9	0.	2380	17.71	9.62	27.33	62.16	-34.83	QP					
10	0.	2380	3.73	9.62	13.35	52.16	-38.81	AVG					
11	0.	4580	16.62	9.58	26.20	56.73	-30.53	QP					
12	* 0.	4580	14.57	9.58	24.15	46.73	-22.58	AVG					
Emissi	on Level	= Read	Level+ Cor	rect Factor									

Page: 26 of 46

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

emp	erature	: 25 ℃			Relative Hu	midity:	55%	a			
est V	/oltage:	: AC 12	:0V/60HZ	M. S.	100	1					
nt. P	ol.	Horizontal									
est N	/lode:	TXBI	Mode 2412N	ЛHz	- 6	11100		J. M.			
Rema	rk:	Only v	vorse case i	s reported			300)			
80.0 d	lBuV/m										
						(RF)FCC 15	C 3M Radiation				
							Margin -6	iB			
-											
30						5 X					
				2 3		4	¥	www			
1				*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		malmala	william mars -				
₩	Mara A	Mana man	harant	w.W	MMMMMM	·					
	W. M	White many war.	~								
:0											
30.000	40	50 60 70	80	(MHz)	300	400 50	D 600 700	1000.00			
			Reading	Correct	Measure-						
No	. Mk.	Freq.	Level	Factor	ment	Limit	Over				
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto			
1	,	31.9546	25.40	-14.47	10.93	40.00	-29.07	peal			
2	1	29.0146	39.74	-22.43	17.31	43.50	-26.19	peal			
3	1	91.0738	38.29	-19.82	18.47	43.50	-25.03	peal			
4	4	01.8385	32.22	-12.26	19.96	46.00	-26.04	peal			
	als d	00.0450	40.06	-11.10	28.96	46.00	-17.04	peal			
5	* 4	82.2156	₩0.00					1			

Emission Level= Read Level+ Correct Factor

Page: 27 of 46

emperature:		25 °C Relative Humidity: 55%								
est Voltage:	AC 1	AC 120V/60HZ								
Ant. Pol.	Vertic	Vertical								
est Mode:	TX B	Mode 241	2MHz		1 62		M.			
Remark:	Only	worse case	e is reported	Will be		3 W	1 less			
80.0 dBuV/m										
					(RF)FCC 150	3M Radiation				
						Margin -6	IB H			
30			3 4	_						
	1		* *	5 X		6 X				
1 N	WINNING IN		3 4 X X X	My months	molination	.				
W AND WA	MAN	an Alexandre	W.	MANY.						
	ya ya	1 1 1 1								
30.000 40	50 60 70	80	(MHz)	300	400 500	600 700	1000.00			
30.000 40	30 00 10		(14112)	300	400 300	000 100	1000.00			
Na Mic	Г и	Reading	Correct	Measure-	Limit	Over				
No. Mk.	Freq.	Level	Factor	ment						
	MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detect			
1 4	19.3594	43.68	-23.02	20.66	40.00	-19.34	pea			
2 1	45.3506	44.51	-21.92	22.59	43.50	-20.91	pea			
3 1	76.8878	44.97	-20.27	24.70	43.50	-18.80	pea			
4 * 1	91.0738	45.37	-19.82	25.55	43.50	-17.95	peal			
5 3	21.0608	37.55	-15.52	22.03	46.00	-23.97	pea			
6 6	42.8613	30.47	-8.18	22.29	46.00	-23.71	peal			
6 6	42.0013	30.47	-0.10	22.29	46.00	-23.71	pea			

Emission Level= Read Level+ Correct Factor

Page: 28 of 46

Above 1GHz

Test Mode: IEEE 802.11b

Low channe	Low channel: 2412 MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	50.59	37.23	11.37	61.96	48.6	74	54	-12.04	-5.4
4824	Н	43.88	31.28	14.55	58.43	45.83	74	54	-15.57	-8.17
77,245	Н			N						(
		10	CU	1:30	~ 1	MARKET		A STATE		8.0
2390	V	51.30	33.93	11.37	62.67	45.3	74	54	-11.33	-8.7
4824	V	45.55	34.02	14.55	60.1	48.57	74	54	-13.9	-5.43
	V	-	-		(1)	10.2				

Middle char	nel: 2	437 MHz					1111			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Dook	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margir (dB)
4874	Н	43.23	29.44	14.85	58.08	44.29	74	54	-15.92	-9.71
THE STATE OF THE S	Н		127	(1117		111111111111111111111111111111111111111		2/6	
	Н						9	100		
	W		a W			1			777	
4874	V	43.49	29.36	14.85	58.34	44.21	74	54	-15.66	-9.79
5 2.	V	177								<i></i>
	V		(-11)	13	M	VI.				33

High channe	el: 246	62 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	Н	51.28	36.62	13.67	64.95	50.29	74	54	-9.05	-3.71
4924	Н	43.53	29.82	15.19	58.72	45.01	74	54	-15.28	-8.99
	Н	NB	6	11/20		AMIL		1 150		27
	MA				100		MILE		1 11/1	O Table
2483.5	٧	51.24	34.70	13.67	64.91	48.37	74	54	-9.09	-5.63
4924	V	43.20	29.84	15.19	58.39	45.03	74	54	-15.61	-8.97
	V	P	14/1/2		< \		V Hin		1122	22.

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page: 29 of 46

Test Mode: IEEE 802.11g

Low channe	el: 241	2 MHz					3			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Н	50.15	36.56	11.37	61.52	47.93	74	54	-12.48	-6.07
4824	H	43.72	31.27	14.55	58.27	45.82	74	54	-15.73	-8.18
	Н		28,#	6	11,77		07/15		3 6	
11:30		L CALL	D. Rose	-01			1			~ /
2390	V	46.41	33.68	11.37	57.78	45.05	74	54	-16.22	-8.95
4824	V	44.95	33.82	14.55	59.5	48.37	74	54	-14.5	-5.63
	V	(1 PF)	ر الإ	2 -4111						

Middle char	nnel: 2	437 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	43.00	29.38	14.85	57.85	44.23	74	54	-16.15	-9.77
	Н	1					(1)	33		1177
	Н		1977	\	11177		1		X V	
111				100 M	1			TANK T		
4874	V	43.48	29.45	14.85	58.33	44.3	74	54	-15.67	-9.7
- N	V	-	V		13-4		477		77.3	
	V	(-4) IV		<u>a W</u>)	

Hi	gh channe	el: 246	62 MHz								
	equency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Peak (dBµV/m)	/ \ V	Peak limit	AV limit	Peak	AV
	(MHz)	H/V		(dBuV)		(ασμν/ιιι)	(ασμν/ιιι)	(dBµV/m)	(dBµV/m)	Margin	Margin
			(dBµV)		(dB/m)					(dB)	(dB)
	2483.5	Н	46.72	36.43	13.67	60.39	50.1	74	54	-13.61	-3.9
	4924	Н	43.27	29.80	15.19	58.46	44.99	74	54	-15.54	-9.01
1		Н		112					10:37	19.10	
					17/A9		11/11/2				5
	2483.5	V	47.22	35.46	13.67	60.89	49.13	74	54	-13.11	-4.87
d	4924	V	42.53	29.78	15.19	57.72	44.97	74	54	-16.28	-9.03
	012	V	# WILL		E				(4) T		N

- 5. Emission Level= Read Level+ Correct Factor
- 6. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 7. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 8. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

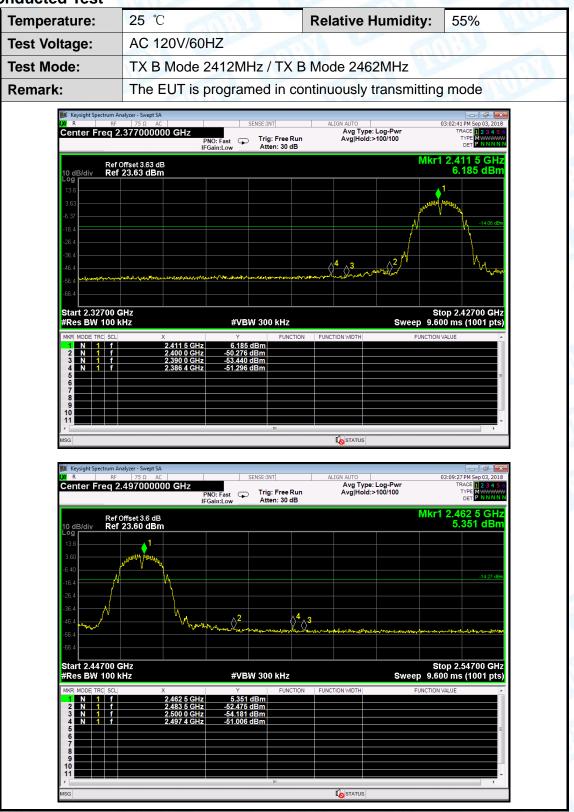
Page: 30 of 46

Test Mode: IEEE 802.11n TH20

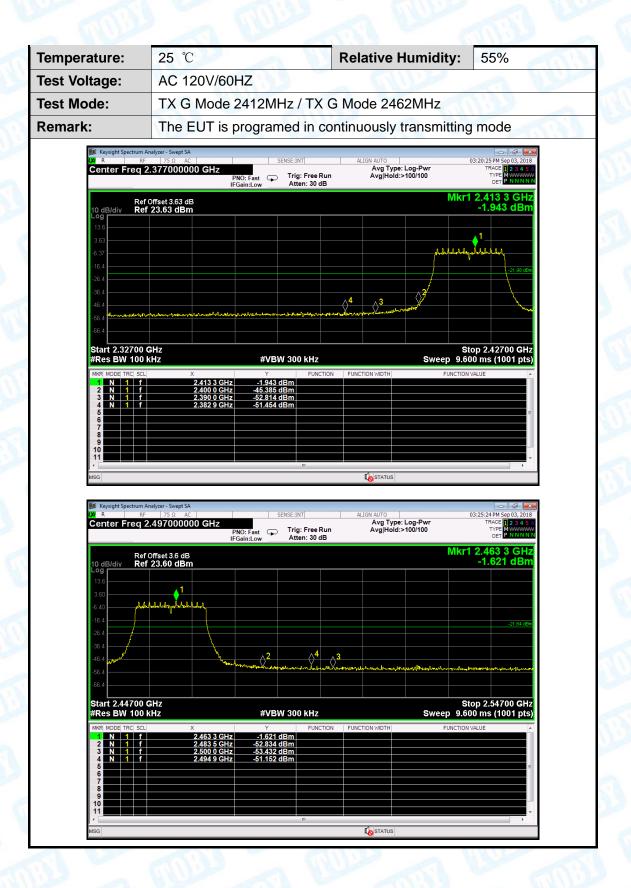
Low channe	el: 241	2 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2390	Η	51.46	36.78	11.37	62.83	48.15	74	54	-11.17	-5.85
4824	H	43.92	31.27	14.55	58.47	45.82	74	54	-15.53	-8.18
	Н		No.		77-20		(24 J.)		3 //	-
11:00		0.47	The second							~ 1
2390	V	47.84	35.51	11.37	59.21	46.88	74	54	-14.79	-7.12
4824	V	45.18	33.89	14.55	59.73	48.44	74	54	-14.27	-5.56
WJ	V	(1 PF)	ـــ الا	2 7/1/						

Middle char	nnel: 2	437 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Paak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBμV/m)	Peak Margin (dB)	AV Margin (dB)
4874	Н	43.74	29.45	14.85	58.59	44.3	74	54	-15.41	-9.7
	Н	70					(D=5)	33	[1]	1175
	Н		1127	\	111				2/	
ALL STATES		AV			1		0	MILL		
4874	V	42.74	29.45	14.85	57.59	44.3	74	54	-16.41	-9.7
\	V		89		(b) <u>a</u>		17/17/			
19.57	V	117818		(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				W/17/02	·	

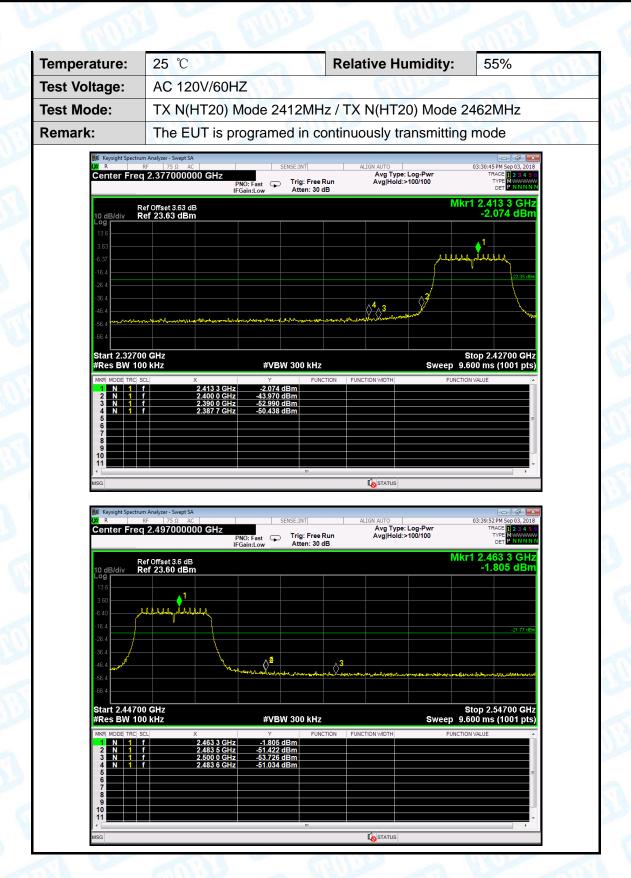
High channe	el: 246	62 MHz								
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Peak Margin (dB)	AV Margin (dB)
2483.5	H	51.14	36.44	13.67	64.81	50.11	74	54	-9.19	-3.89
4924	Н	42.30	29.74	15.19	57.49	44.93	74	54	-16.51	-9.07
	Η	W	111				3	mm.	37 -	
	1	7.7	6	11100		ARTIC		1		13/1
2483.5	٧	46.28	35.35	13.67	59.95	49.02	74	54	-14.05	-4.98
4924	V	43.34	29.80	15.19	58.53	44.99	74	54	-15.47	-9.01
V	V			183-	67			A Prince		31 I


- 9. Emission Level= Read Level+ Correct Factor
- 10. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 11. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 12. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

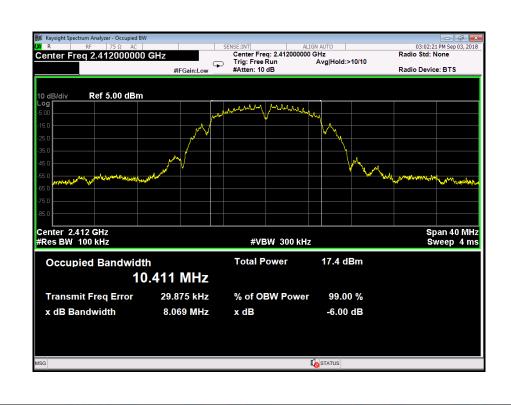
Page: 31 of 46


(1) Conducted Test

Page: 32 of 46



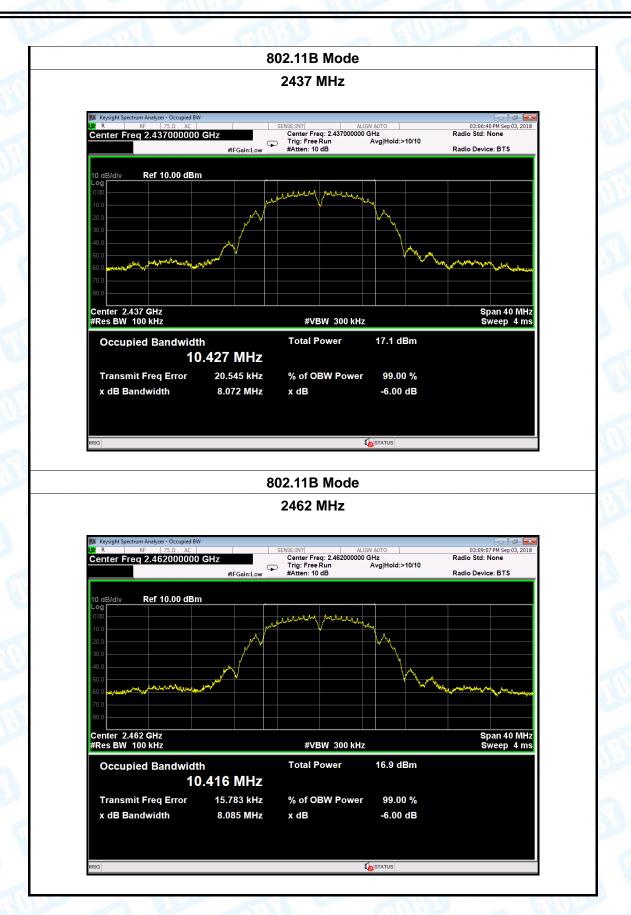
Page: 33 of 46



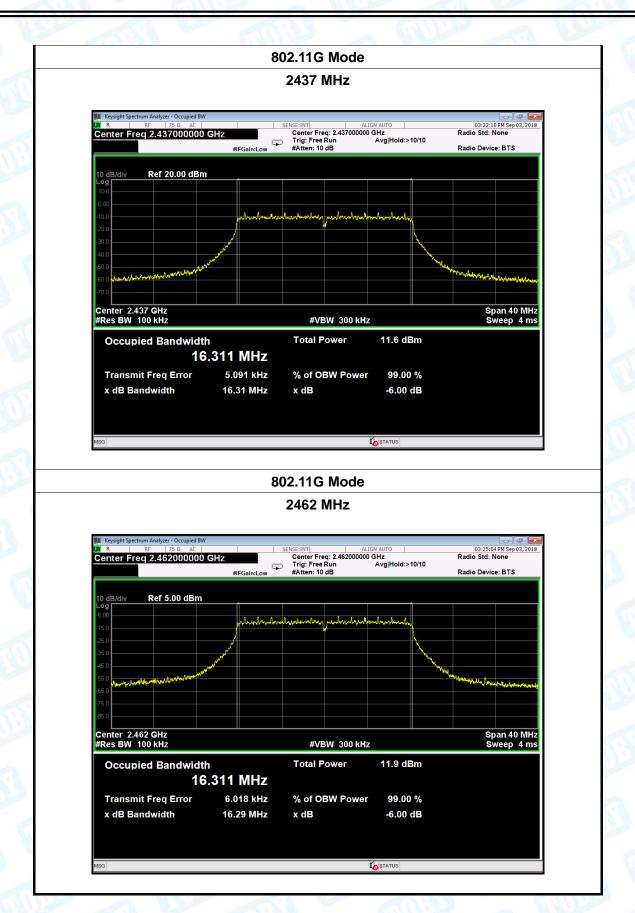
Page: 34 of 46

Attachment D-- Bandwidth Test Data

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Test Mode:	TX 802.11B Mode		
Channel frequen	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	8.069	10.411	
2437	8.072	10.427	>=0.5
2462	8.085	10.416	

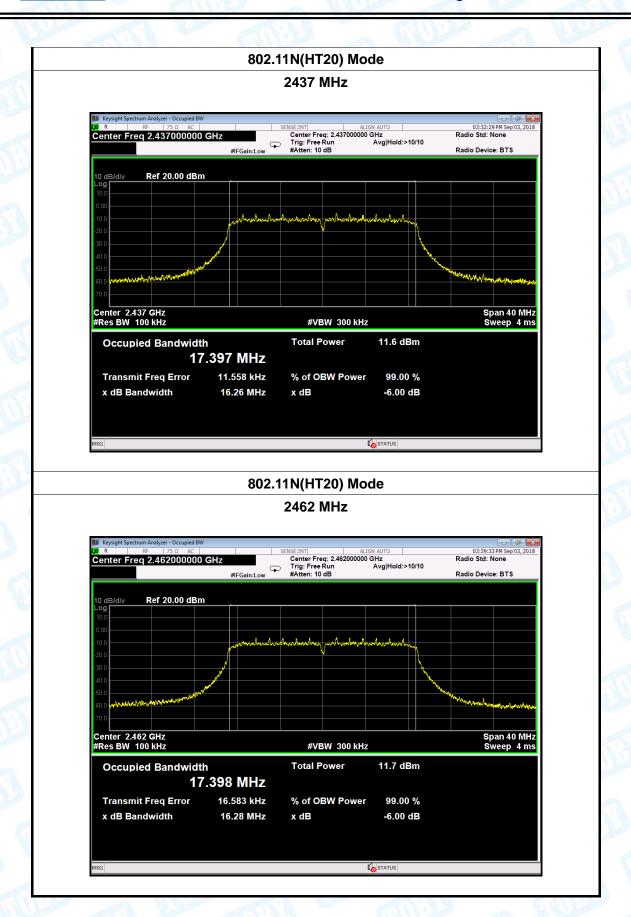

802.11B Mode

Page: 35 of 46


Page: 36 of 46

t Voltage:	25 ℃		Relative Humidity	: 55%
	AC 120	OV/60HZ	- CILIDS	- N
t Mode:	TX 802	2.11G Mode		THE STATE OF
annel frequen	псу	6dB Bandwidth	99% Bandwidth	Limi
(MHz)		(MHz)	(MHz)	(MHz
2412		16.31	16.312	
2437		16.31	16.311	>=0.5
2462		16.29	16.311	
	"	802.110	G Mode	
		2412	MHz	
Log	Ref 20.00 dBm	#IFGain:Low #Atten:	seRun Avg Hold:>10/10 10 dB R	adio Std: None adio Device: BTS
10.0 0.00 -10.0 -20.0	Ref 20.00 dBm	#FGain:Low #Atten:		
10.0 0.00 -10.0 -20.0 -30.0	Ref 20.00 dBm	#FGain:Low #Atten:	10 dB R	
Log 10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -70.0 Center 2.412	GHz	#FGain:Low #Atten:	10 dB R	Span 40 MHz
Log 10.00 -10.00 -20.0 -30.0 -40.0 -70.0 Center 2.412 #Res BW 100	GHz O kHz	#FGain:Low #Atten:	/BW 300 kHz	adio Device: BTS
Log 10.00 -10.00 -20.0 -30.0 -40.0 -70.0 Center 2.412 #Res BW 100	GHz O kHz	#FGain:Low #Atten:	10 dB R	Span 40 MHz
Log 100 200 300 400 -700 Center 2.412 #Res BW 100	GHZ D kHZ	#Atten: ##Atten: ###Atten: ##Atten: ##Atten: ##Atten: ##Atten: ##Atten: ##Att	/BW 300 kHz	Span 40 MHz

Page: 37 of 46


Page: 38 of 46

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60HZ		
Test Mode:	TX 802.11N(HT20) Mode		1:39
Channel frequen	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(MHz)	(MHz)	(MHz)
2412	16.29	17.409	
2437	16.26	17.397	>=0.5
2462	16.28	17.398	
	802.11N(HT	20) Mode	
	2412 [MHz	
Kewight Spectrum	Analyzer - Occupied BW		
	75 Ω AC SENSE:INT		03:30:12 PM Sep 03, 2018
LXI R RF			Std: None

TOBY

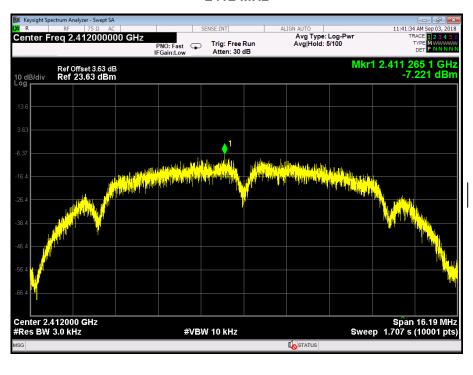
Page: 39 of 46

Page: 40 of 46

Attachment E-- Peak Output Power Test Data

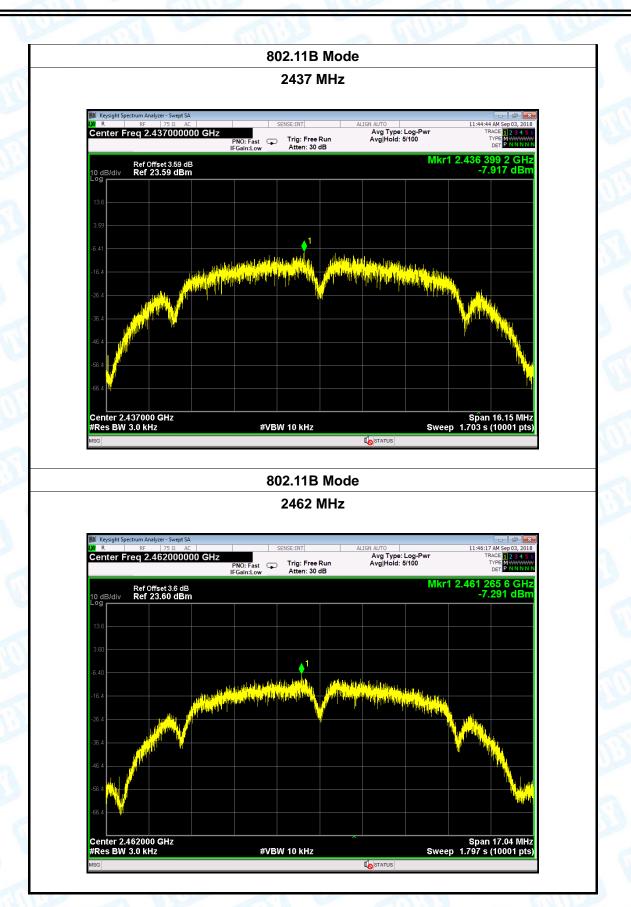
Test Condition	ns:	Continuous transm	itting I	Mode	
Temperature:		25 ℃	1	Relative Humidity:	55%
Test Voltage:		AC 120V/60HZ	HIL	A C	
Mode	С	hannel frequency (MHz)	Tes	st Result (dBm)	Limit (dBm)
		2412		15.78	
802.11b		2437		15.48	
		2462		15.24	
		2412		14.41	
802.11g		2437		14.36	30
		2462		14.72	
000 44		2412		14.28	
802.11n		2437		14.23	
(HT20)		2462		14.45	
		Resu	ılt: F	PASS	

	Duty Cycle	
Mode	Channel frequency (MHz)	Test Result
	2412	
802.11b	2437	
	2462	
	2412	
802.11g	2437	>98%
	2462	
000 44	2412	
802.11n (HT20)	2437	
(П120)	2462	

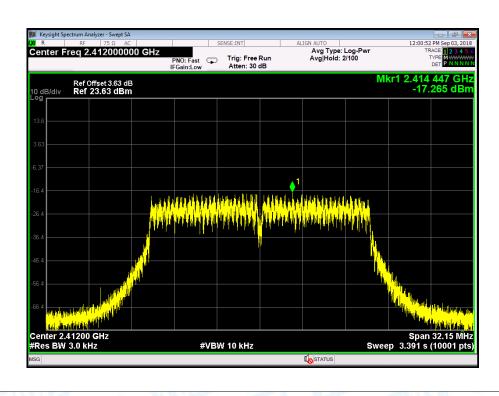

Page: 41 of 46

Attachment F-- Power Spectral Density Test Data

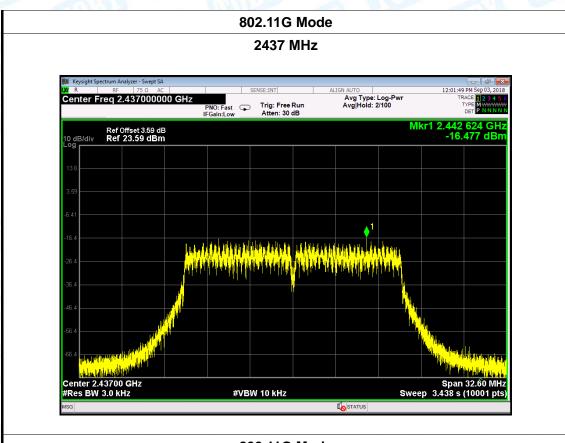
		-				
Temperature:	25 ℃		Relative Humic	dity:	55%	
Test Voltage:	AC 120V/60HZ					
Test Mode:	TX 802.11B Mode					
Channel Frequency		Power Density			Limit	
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)		
2412		-7.22	21			
2437		-7.917			8	
2462		-7.29	91			
la contraction of the contractio		000 44 D	B			

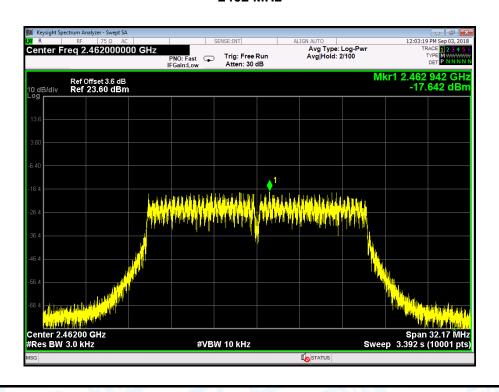

802.11B Mode

Page: 42 of 46

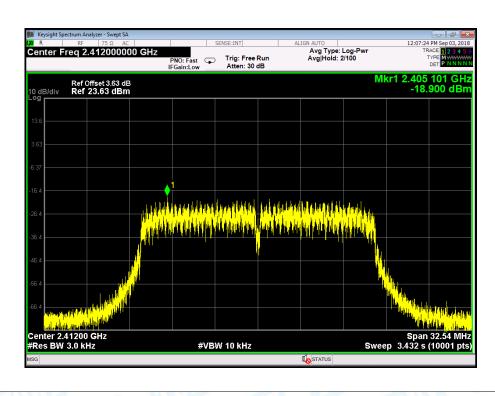


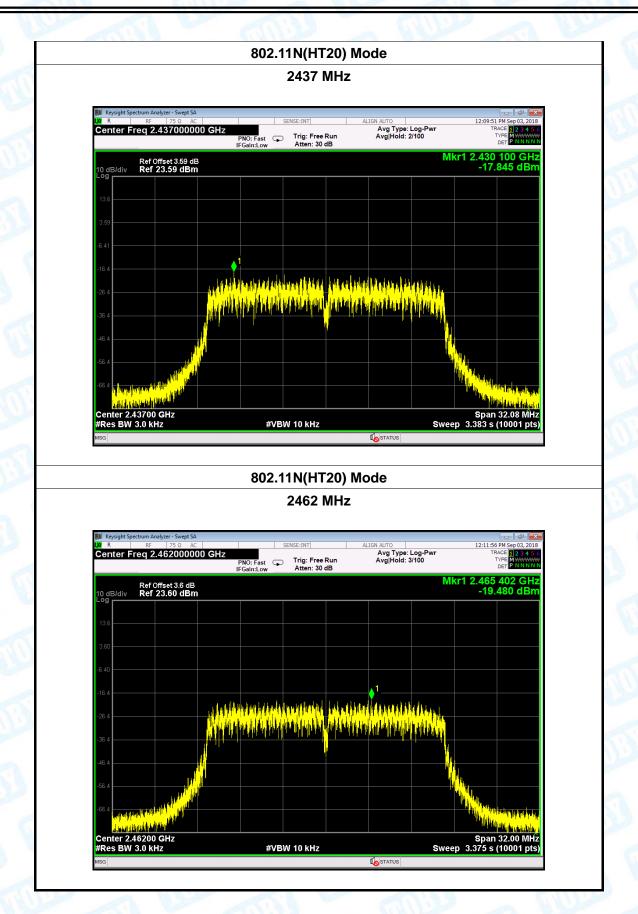
Page: 43 of 46


Temperature:	25 ℃		Temperature:	25 ℃		
Test Voltage:	AC 120V/60HZ					
Test Mode:	TX 802.11G Mode					
Channel Frequency		Power Density		Limit		
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)		
2412		-17.265				
2437 2462		-16.477 -17.642		8		
						802.11G Mode



Report No.: TB-FCC162760 Page: 44 of 46


802.11G Mode


Page: 45 of 46

Temperature:	25 ℃		Temperature:	25 ℃			
Test Voltage:	AC 120V/60HZ						
Test Mode:	TX 802.11N(HT20) Mode						
Channel Frequency		Power Density		Limit			
(MHz)		(dBm/3 kHz)		(dBm/3 kHz)			
2412		-18.	900				
2437 2462		-17.	-17.845 8				
		-19.480					
		802.11N(H	T20) Mode				

46 of 46 Page:

-END OF REPORT---