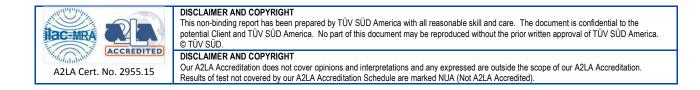
FCC and ISED Canada Testing of the

Unikey Technologies, Inc. SR3-UK

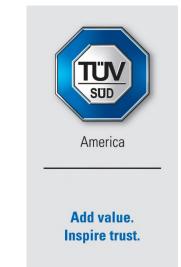
In accordance with FCC 47 CFR part 15.209 and ISED Canada's Radio Standards Specifications RSS-210

Prepared for:

Unikey Technologies, Inc. 111 W Jefferson St. STE 100 Orlando, FL 32801


FCC ID: 2ANJI-SR3 IC: 10727A-SR3

COMMERCIAL-IN-CONFIDENCE


Document Number: TP72151666.200 | Version Number: 01

RESPONSIBLE FOR	NAME	DATE	SIGNATURE		
Authorized Signatory	Peter Walsh	2019 -September-18	Bete Malah		
Testing	Thierry Jean-Charles	2019-September-18	Jean Charles for This		
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.					
FCC Accreditation Designation Number US1063 Tampa, FL Test Laboratory Site Number 2087A-2 Tampa, FL Test Laboratory					
EXECUTIVE SUMMARY					

Samples of this product were tested and found to be in compliance with 15.209. and ISED Canada's RSS-210.

TÜV SÜD America 5610 West Sligh Ave., Suite 100 Tampa, FL 33634 Phone: 813-284-2715 www.tuv-sud-america.com

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	Deviations from the Standard	
1.6	EUT Modification Record	8
1.7	Test Location	8
2	Test Details	9
2.1	Antenna Requirements	9
2.2	20 dB Bandwidth	
2.3	99% Bandwidth	
2.4	Radiated Field Strength and Spurious Emissions	
2.5	Power Line Conducted Emissions	
3	Test Equipment Information	
3.1	General Test Equipment Used	
4	Diagram of Test Set-ups	
5	Measurement Uncertainty	
6	Accreditation, Disclaimers and Copyright	30

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2019-September-18

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.209 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-210 for the tests documented herein.

Applicant	Unikey Technologies, Inc.	
Manufacturer	Unikey Technologies, Inc.	
Applicant's Email Address	allen@unikey.com	
Model Number(s)	SR3-UK	
Serial Number(s)	4	
FCC ID	2ANJI-SR3	
ISED Certification Number	10727A-SR3	
Hardware Version(s)	SR3-UK-BOM-0001r4	
Software Version(s)	1.8.31	
Number of Samples Tested	1	
Test Specification/Issue/Date	US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2018	
	Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-210 — Licence-Exempt Radio Apparatus: Category I Equipment, Issue 9, August 2016	
Test Plan/Issue/Date	2019-April-23	
Order Number	72151666	
Date	2019-July-23	
Date of Receipt of EUT	2019-July-29	
Start of Test	2019-July-29	
Finish of Test	2019-August-24	
Name of Engineer(s)	Thierry Jean-Charles	
Related Document(s)	 ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2018. Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-GEN - General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1, March 2019. 	

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.209 and ISED Canada's RSS-210 is shown below.

Test Parameter	Test Plan (Yes/No)	Test Result	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No
Antenna Requirement	Yes	Pass	15.203, 15.204		9
20 dB Bandwidth	Yes	Pass	15.215(c)		10
99% Bandwidth	Yes	Pass		RSS-GEN 6.6	12
Radiated Field Strength of Fundamental and Spurious Emissions	Yes	Pass	15.209	RSS-210 2.5	14
Power Line Conducted Emissions	Yes	Pass	15.207	RSS-GEN 8.8	20

Table 1.3-1: Test Result Summary

1.4 **Product Information**

1.4.1 Technical Description

The EUT is a Mobile enabled PACS Access control reader. The device includes a 2.4 GHz Bluetooth Low Energy (BLE) transceiver as well as 125 kHz RFID. The test report covers the compliance of the 125 kHz RFID radio.

Technical Details	
Mode of Operation:	125 kHz RFID
Frequency Range:	125 kHz
Number of Channels:	1
Channel Separation:	N/A
Data Rate:	N/A
Modulations:	Not Modulated
Antenna Type/Gain:	Coil Antenna
Input Power:	12 VDC

A full description and detailed product specification details are available from the manufacturer.

Table 1.4.1-1 – Cable Descriptions

Cable/Port	Description	
Data Cable	6 leads, 10 m, Not Shielded, EUT to Access Controller	
Power Leads	0.7 m, Not Shielded, Power Supply to Access Controller	

Table 1.4.1-2 – Support Equipment Descriptions

Make/Model	Description
Linear/Emerge e3 Series	Remote Access Controller, SN: 620-100954B2184900031
Linear/PIP12VDC60W	12 VDC Power Supply

Declaration of Build Status

EQUIPMENT DESCRIPTION							
Model Name/Num	Name/Number SR3-UK						
Part Number	Imber SR3-UK-0001-R1						
Hardware Version	I	SR3-UK-B	OM-0001r4				
Software Version		1.8.31	1.8.31				
FCC ID (if applical	ble)		2ANJI-SR3				
ISED ID (if applica	able)		10727A- SF	२३			
	iption (Please provide intended use of the equ					irol reader.	
		UN	I-INTENTION	AL RA	DIATOR		
Highest frequency the device operate	y generated or used in es or tunes	the device c	or on which	2.48	0 GHz		
Lowest frequency the device operat	generated or used in t es or tunes	he device o	r on which	2.40	2GHz (low ch BL	E). 125kHz prox card	
-	evice (Use in commerci evice (Use in residentia			enviro	nment) 🗌		
			Power	Sourc	9		
	Single Phas	se	Т	hree F	hase	Nominal Voltage	
AC						N/A	
F P 0	Non	ninal Voltage	e			Maximum Current	
External DC		12v				300mA	
D	Non	ninal Voltage	е		Batte	ery Operating End Point Voltage	
Battery N/A				N/A			
EXTREME CONDITIONS							
Maximum tempera	ature +50	°C		Minin	num temperature	-40 °C	
Ancillaries							

Please list all ancillaries which will be used with the device.

PACS access controller

I hereby declare that the information supplied is correct and complete.

Name: Anders Johansson

Position held: Hardware Lead Date: Aug 19, 2019

1.4.2 Modes of Operation

Both the BLE and 125 kHz transmitters were active during the evaluation.

1.4.3 Monitoring of Performance

The radiated emissions evaluation was performed on the EUT connected to an access controller which was set outside of the testing environment. The EUT was tested in the orientation of typical installation.

The power line conducted emissions measurements were performed on the power supply of the remote access controller through which the EUT was powered.

1.4.4 Performance Criteria

The report documents the compliance of the 125 kHz RFID radio to the FCC Section 15.207 and 15.209 as well as ISED Canada's RSS-210. The BLE transmitter was active during the evaluation. No intermodulation product from the co-located radios transmitting at the same time could be observed during the evaluation. A summary of the parameters that were evaluated is provided below.

Table 1.4.4 -1: Performance Criteria

Parameter	Requirement
Antenna Requirement	FCC: Section 15.203. 15.204
20 dB Bandwidth	FCC: Section 15.215(c)
99% Bandwidth	ISED Canada: RSS-GEN 6.7
Radiated Field Strength of Fundamental and Spurious Emissions	FCC: Section 15.209; ISED Canada: RSS-210 2.5
Power Line Conducted Emissions	FCC: Section 15.207; ISED Canada: RSS-GEN 8.8

1.5 Deviations from the Standard

The EUT was evaluated without any deviation from the test standard.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
LC filter values	C19, C21 = 3.9 nH C46, C97 = 1.5 PF	Unikey	8/8/2019
DC Blocking	C19 = 47 pF	Unikey	8/8/2019

The equipment was tested with the modifications listed above to meet the test requirements.

The DC blocking was implemented to resolve an anomaly at the RF switch when the EUT RF port was connected to a spectrum analyzer for the RF conducted measurements on the BLE radio.

1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Tampa FL Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation			
AC Powered Operating					
Antenna Requirement		A2LA			
20 dB Bandwidth	Thierry Jean-Charles	A2LA			
99% Bandwidth	Thierry Jean-Charles	A2LA			
Radiated Field Strength of Fundamental and Spurious Emissions	Thierry Jean-Charles	A2LA			
Power Line Conducted Emissions	Thierry Jean-Charles	A2LA			

Office Address:

TÜV SÜD America, Inc. 5610 W. Sligh Ave, Suite 100 Tampa, FL 33634 USA

2 Test Details

- 2.1 Antenna Requirements
- 2.1.1 Specification Reference

FCC: Section 15.203, 15.204

2.1.2 Equipment Under Test and Modification State

SN: 4

2.1.3 Date of Test

N/A

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

Ambient Temperature	N/A
Relative Humidity	N/A
Atmospheric Pressure	N/A

2.1.6 Test Results

Limit Clause FCC Sections: 15.203, 15,204

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT uses a coil antenna that is directly soldered to the PCB. The antenna is not removeable and therefore meets the requirements of FCC Section 15.203.

2.1.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

As this is a visual inspection, no test equipment was used.

2.2 20 dB Bandwidth

2.2.1 Specification Reference

FCC: Section 15.215

2.2.2 Equipment Under Test and Modification State

SN: 4

2.2.3 Date of Test

7/29/2019

2.2.4 Test Method

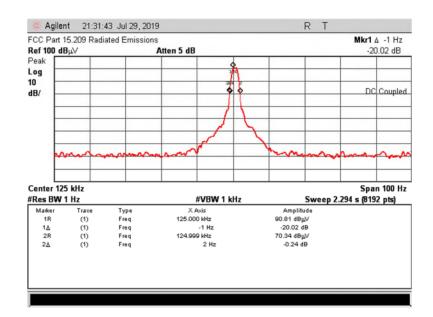
The 20 dB bandwidth was measured in accordance with ANSI C63.10 Subclause 6.9.2. The RBW of the spectrum analyzer was set to 1% to 5% of the occupied bandwidth. Span was set large enough to capture the emissions and >> RBW. A peak detector was used for the measurements.

2.2.5 Environmental Conditions

Ambient Temperature	23.8°C
Relative Humidity	46.4 %
Atmospheric Pressure	1017 mbar

2.2.6 Test Results

AC Powered Operating


Limit Clause FCC Part 15.215

The intentional radiator must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated.

Table 2.2.6-1: 20 dB Bandwidth Test Results	3
---	---

Frequency	20 dB Bandwidth
(kHz)	(Hz)
125.0	2.0

2.2.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-20
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	07-Nov-19
EMC Chamber	Panashield	N/A	TEMC00031	N/A	24	28-Jan-20
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	08-May-20

TU - Traceability Unscheduled

O/P MON - Traceability Unscheduled

N/A - Not Applicable

2.3 99% Bandwidth

2.3.1 Specification Reference

ISED Canada: RSS-GEN 6.7

2.3.2 Equipment Under Test and Modification State

SN: 4

2.3.3 Date of Test

7/29/2019

2.3.4 Test Method

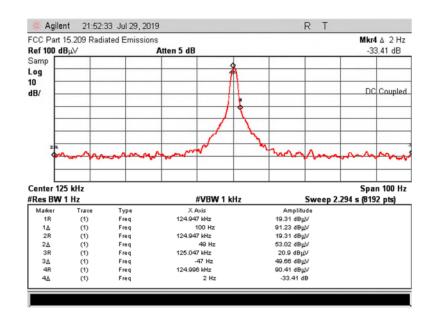
The 99% occupied bandwidth was measured with the spectrum analyzer span set to fully display the emission. The RBW was set to 1% to 5% of the approximated bandwidth. The occupied 99% bandwidth was measured by using the delta marker function of the spectrum analyzer across the 99% of the total transmitted power of the fundamental transmitted emission.

2.3.5 Environmental Conditions

Ambient Temperature	24°C
Relative Humidity	45.8 %
Atmospheric Pressure	1017.1 mbar

2.3.6 Test Results

AC Powered Operating


Limit Clause ISED RSS-GEN 6.7

The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs

Frequency	99% Bandwidth
(kHz)	(Hz)
125.0	2.0

Table 2.3.6-1: Occupied Bandwidth Test Results

Figure 2.3.6-1: Occupied Bandwidth Test Results

Note: The transmitted signal is not modulated. The minimum spectrum analyzer RBW was used for the measurements.

2.3.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-20
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	07-Nov-19
EMC Chamber	Panashield	N/A	TEMC00031	N/A	24	28-Jan-20
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	08-May-20

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable

2.4 Radiated Field Strength and Spurious Emissions

2.4.1 Specification Reference

FCC Sections: 15.209; ISED Canada: RSS-210 2.5

2.4.2 Equipment Under Test and Modification State

SN: 4

2.4.3 Date of Test

7/29/2019

2.4.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 1 GHz, 10 times the highest fundamental frequency. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

For measurements below 30 MHz, the receive antenna height was set to 1 m and the EUT was rotated through 360 degrees. The resolution bandwidth was set to 200 Hz below 150 kHz and to 9 kHz above 150 kHz.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasipeak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak measurements are made with RBW of 1 MHz and VBW of 3 MHz. Average measurements are performed in the linear scale using VBW of 30 Hz.

2.4.5 Distance Correction for Measurements below 30 MHz – FCC: Section 15.31

Radiated measurements were performed at a distance closer than 300 meters and 30m as required, according to Part 15.209. Therefore, a correction factor was applied to account for propagation loss at the specified distance. The propagation loss was determined by using the square of an inverse linear distance extrapolation factor (40dB/decade) according to 15.31. A sample calculation of the distance correction factor is shown below for limits expressed at a 300m measurement distance and a 30m measurement distance.

Distance correction factor (300m Specified Test Distance) = 40*Log (Test Distance/300) = 40*Log (3/300) = - 80 dB Distance correction factor (30m Specified Test Distance) = 40*Log (Test Distance/30) = 40*Log (3/30)

= - 40 dB

2.4.6 Duty Cycle Correction

The EUT was configured to transmit at 100% duty cycle during the evaluation. No duty cycle correction factor was used for the average measurements.

2.4.7 Environmental Conditions

Ambient Temperature24.6 °CRelative Humidity41.9 %Atmospheric Pressure1014.6 mbar

2.4.8 Test Results

AC Powered Operating

Limit Clause FCC Sections 15.209, ISED Canada: RSS-210 2.5

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.4090-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

Frequency (MHz)	Level	(dBuV)	Antenna Polarity	Correction Factors		ed Level IV/m)		mit uV/m)		rgin IB)
()	Pk	Qpk/Avg	(H/V)	(dB)	Pk	Qpk/Avg	Pk	Qpk/Avg	Pk	Qpk/Avg
			F	^F undamental F	Frequency					
0.125	76.63	76.42	V	14.64	91.27	91.06	125.7	105.7	34.4	14.6
				Spurious Em	issions					
0.375	43.71	39.19	V	14.62	58.33	53.81	116.1	96.1	57.8	42.3
0.625		33.22	V	14.84		48.06		71.7		23.6
0.875		28.52	V	14.95		43.47		68.8		25.3
1.125		24.95	V	15.24		40.19		66.6		26.4
1.375		22.37	V	15.27		37.64		64.8		27.2
15.4555		15.67	V	14.82		30.49		69.5		39.0
			Emis	sions from 30) MHz - 1 G	θHz				
39.12		11.96	V	20.20		32.16		40		7.8
43.4		6.29	V	17.80		24.09		40		15.9
44.6		4.49	V	17.20		21.69		40		18.3
69.6		12.86	V	13.40		26.26		40		13.7
70.84		9.38	V	13.40		22.78		40		17.2
107.28		1.41	V	19.10		20.51		43.5		23.0
121.72		3.00	Н	19.80		22.80		43.5		20.7
494		-1.28	V	26.50		25.22		46		20.8
612.08		-0.53	Н	28.30		27.77		46		18.2
686		-0.68	Н	28.80		28.12		46		17.9
941.92		0.17	Н	31.50		31.67		46		14.3

Table 2.4.8-1: TX Radiated Spurious Emissions

Notes:

- The emissions at 125 kHz and 375 kHz were measured with a peak and average detector. All the remaining measurements were performed using a quasi-peak detector.
- The emissions were performed at a test distance of 3 m.

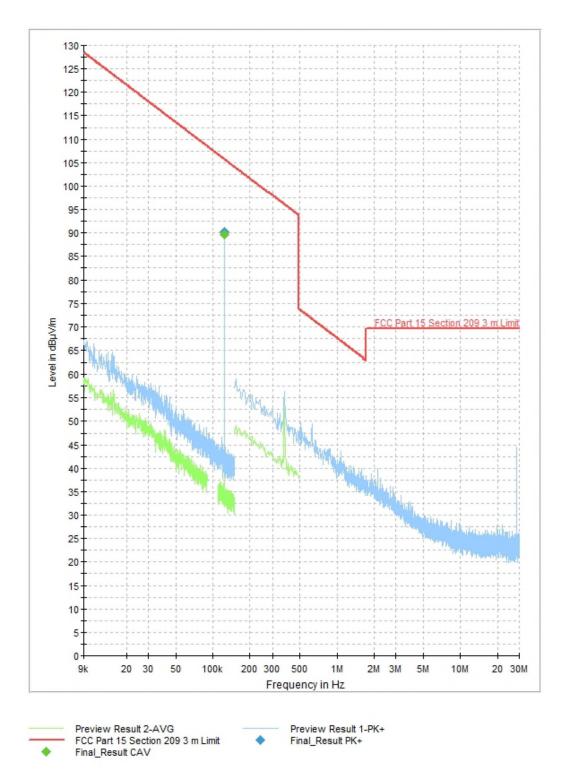



Figure 2.4.8-1 – Radiated Emissions Plot 9 kHz – 30 MHz

COMMERCIAL-IN-CONFIDENCE

Preview Result 1H-PK+ Preview Result 1V-PK+

 FCC Part 15 & ICES-003 Class B Radiated 3 m Limit Final_Result QPK

2.4.9 Sample Calculations

 $R_c = R_U + CF_T$

Where:

- CF_T = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)
- R_U = Uncorrected Reading
- Rc = Corrected Level
- AF = Antenna Factor
- CA = Cable Attenuation
- AG = Amplifier Gain
- DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: 43.71 + 14.62 = 58.33 dBµV/m Margin: 116.1 dBµV/m - 58.33 dBµV/m = 57.77 dB

Example Calculation: Average

Corrected Level: $39.19 + 14.62 - 0 = 53.81 \text{ dB}\mu\text{V/m}$ Margin: $96.1 \text{ dB}\mu\text{V/m} - 53.81 \text{ dB}\mu\text{V/m} = 42.29 \text{ dB}$

2.4.10 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-20
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
BI LOG PERIODIC, ANTENNA	Schaffner	CBL6112B	TEMC00005	N/A	24	19-Dec-19
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	07-Nov-19
EMC Chamber	Panashield	N/A	TEMC00031	N/A	24	28-Jan-20
EMI Test Receiver	Rohde & Schwarz	ESIB 40	TEMC00128	N/A	24	16-Nov-19
Radiated Cable Set 30 MHz - 1 GHz	TUV SUD Tampa	Cable 2	TEMC00179	N/A	12	07-May-20
Test Software	Rohde & Schwarz	EMC32	TEMC00184	N/A	N/A	NCR
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	08-May-20

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable

2.5 Power Line Conducted Emissions

2.5.1 Specification Reference

FCC: Section 15.207 ISED Canada; RSS-GEN 8.8

2.5.2 Equipment Under Test and Modification State

SN: 4

2.5.3 Date of Test

8/14/2019

2.5.4 Test Method

ANSI C63.10 section 6.2 was the guiding document for this evaluation. Conducted emissions were performed from 150 kHz to 30 MHz with the spectrum analyzer's resolution bandwidth set to 9 kHz and the video bandwidth set to 30 kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

2.5.5 Environmental Conditions

Ambient Temperature	24.3 °C
Relative Humidity	44.3 %
Atmospheric Pressure	1013.3 mbar

2.5.6 Test Results

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-Peak Average		
0.15-0.5	66 to 56* 56 to 46		
0.5-5	56	46	
5-30	60	50	

*Decreases with the logarithm of the frequency.

Frequency (MHz)	Quasi-peak (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.159000	51.61	L1	10.0	13.91	65.52
0.213000	43.22	L1	10.0	19.87	63.09
0.528000	42.32	L1	10.0	13.68	56.00
0.892500	32.78	Ν	10.1	23.22	56.00
1.279500	31.66	Ν	10.2	24.34	56.00
4.893000	29.10	Ν	10.5	26.90	56.00
10.374000	37.65	L1	11.0	22.35	60.00
10.626000	46.85	L1	11.0	13.15	60.00
10.873500	38.14	L1	11.0	21.86	60.00
29.373000	38.36	L1	12.3	21.64	60.00

Table 2.5.6-1: Power Line Conducted Emissions – Quasi-Peak Detector Results

Frequency (MHz)	Average (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.159000	46.04	L1	10.0	9.48	55.52
0.249000	32.88	L1	10.0	18.91	51.79
0.541500	38.14	L1	10.0	7.86	46.00
0.609000	34.31	L1	10.0	11.69	46.00
0.892500	29.47	N	10.1	16.53	46.00
1.279500	28.15	N	10.2	17.85	46.00
5.577000	24.75	N	10.6	25.25	50.00
10.374000	33.91	L1	11.0	16.09	50.00
10.626000	46.69	N	11.0	3.31	50.00
29.625000	37.93	L1	12.3	12.07	50.00

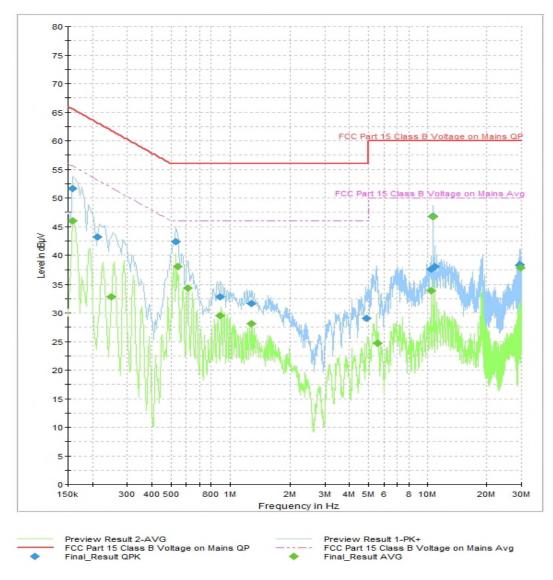


Figure 2.5.6-1: Graphical Results – AC Mains Composite Line and Neutral Plot

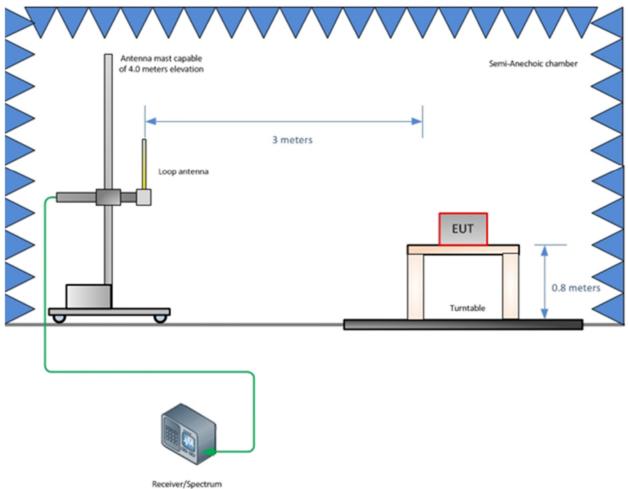
2.5.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
LISN	Rohde & Schwarz	ESH3-Z5	TEMC00002	N/A	12	27-Sep-19
EMI Test Receiver	Rohde & Schwarz	ESCS30	TEMC00011	N/A	24	17-Nov-19
RFI/EMI Shielded Enclosure	UNIVERSAL SHIELDING CORP.	N/A	TEMC00100	N/A	N/A	NCR
Test Software	Rohde & Schwarz	EMC32	TEMC00184	N/A	N/A	NCR

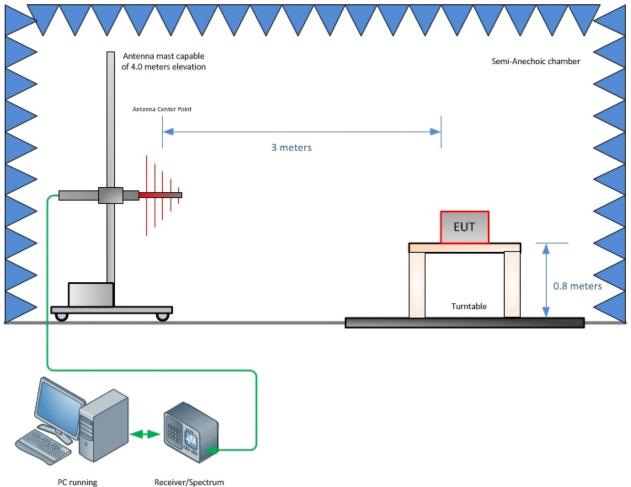
TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable

3 Test Equipment Information


3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-20
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
LISN	Rohde & Schwarz	ESH3-Z5	TEMC00002	N/A	12	27-Sep-19
BI LOG PERIODIC, ANTENNA	Schaffner	CBL6112B	TEMC00005	N/A	24	19-Dec-19
EMI Test Receiver	Rohde & Schwarz	ESCS30	TEMC00011	N/A	24	17-Nov-19
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	7-Nov-19
EMC Chamber	Panasheild	N/A	TEMC00031	N/A	24	28-Jan-20
RFI/EMI Shielded Enclosure	UNIVERSAL SHIELDING CORP.	N/A	TEMC00100	N/A	N/A	NCR
EMI Test Receiver	Rohde & Schwarz	ESIB 40	TEMC00128	N/A	24	16-Nov-19
Radiated Cable Set 30 MHz - 1 GHz	TUV SUD Tampa	Cable 2	TEMC00179	N/A	12	7-May-20
Test Software	Rohde & Schwarz	EMC32	TEMC00184	N/A	N/A	NCR
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	8-May-20

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable


4 Diagram of Test Set-ups

Analyzer

Figure 4-1 - Radiated Emission Test Setup Below 30 MHz

Receiver/Spectrum Analyzer

Figure 4-2 - Radiated Emissions Test Setup up to 1 GHz

automated software

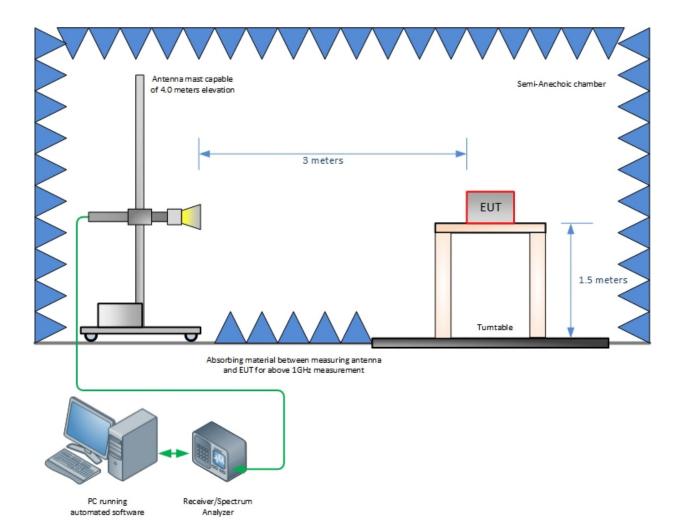
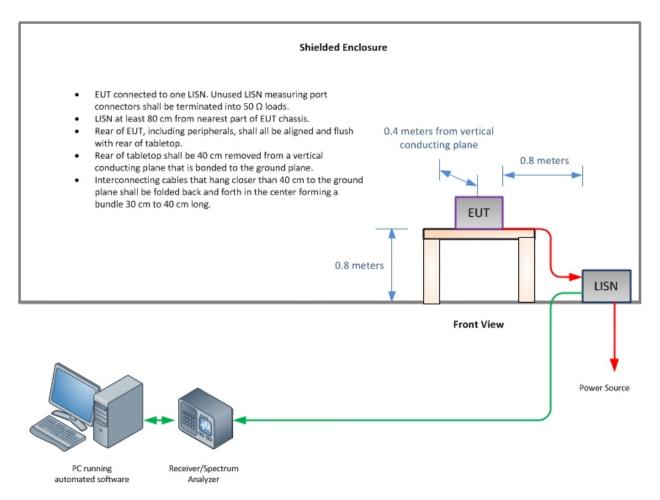



Figure 4-3 - Radiated Emissions Test Setup above 1 GHz

Figure 4-4 – Conducted Emissions Test Setup

COMMERCIAL-IN-CONFIDENCE

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Table 5-1 -	Values of	U_{cispr} and U_{Lab}
-------------	-----------	---

Measurement	U _{cispr}	U _{Lab}
Conducted disturbance (mains port) (9 kHz – 150 kHz) (150 kHz – 30 MHz)	3.8 dB 3.4 dB	3.71 dB 3.31 dB
Conducted disturbance (telecom port) (150 kHz – 30 MHz 55 dB LCL) (150 kHz – 30 MHz 65 dB LCL) (150 kHz – 30 MHz 75 dB LCL)	5.0 dB 5.0 dB 5.0 dB	4.11 dB 4.50 dB 4.94 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1 000 MHz) (1 – 6 GHz) (6-18 GHz)	6.3 dB 5.2 dB 5.5 dB	5.85 dB 4.48 dB 4.48 dB

Notes:

 U_{cispr} resembles a value of measurement uncertainty for a specific test, which was determined by considering uncertainties associated with the quantities listed in CISPR 16-4-2:2011.

Compliance or non-compliance with a disturbance limit shall be determined in the following manner.

If U_{Lab} is less than or equal to U_{cispr} in Table 5.0-1, then:

compliance is deemed to occur if no measured disturbance exceeds the disturbance limit;
 non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit.

If U_{Lab} is greater than U_{cispr}, then:

- compliance is deemed to occur if no measured disturbance, increased by (U_{Lab} U_{cispr}), exceeds the disturbance limit;
- \circ non-compliance is deemed to occur if any measured disturbance, increased by (U_{Lab}-U_{cispr}), exceeds the disturbance limit.

The TÜV SÜD AMERICA, Inc. calculated MU is less than the internationally accepted MU, therefore an adjustment to the measured result as mentioned above is not necessary.

6 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.

TÜV SÜD America, Inc. and or its professional staff hold government and professional organization certifications for A2LA, ANSI, IEEE, NIST, iNARTE and VCCI.