

RADIO TEST REPORT

S T S

Report No: STS1805047W01

Issued for

Quanxin Lighting & Electrical (USA) Inc

899 Henrietta Creek Road, Roanoke, Texas 76262, U.S.A

Product Name:	SOLAR PATHWAY LIGHT
Brand Name:	N/A
Model Name:	SR15AB01H-78
Series Model:	N/A
FCC ID:	2ANJFSR15AB01H-78
Test Standard:	FCC Part 15.247

Any reproduction of this document must be done in full. No single part of this document may be reproduced we permission from STS, All Test Data Presented in this report is only applicable to presented Test sample VAL

Shenzhen STS Test Services Co., Ltd. 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

TEST RESULT CERTIFICATION

Applicant's name	Quanxin Lighting & Electrical (USA) Inc
Address	899 Henrietta Creek Road, Roanoke, Texas 76262, U.S.A
	Zhongshan Quanxin Lighting Electrical Co., Ltd.
Address	Hong Ji Street, Shalang, Long Ping Cun, West District, Zhongshan, Guangdong 528411,China
Product description	
Product Name:	SOLAR PATHWAY LIGHT
Brand Name:	N/A
Model Name:	SR15AB01H-78
Series Model	N/A
Test Standards	FCC Part15.247
Test procedure	. ANSI C63.10-2013

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of STS, this document may be altered or revised by STS, personal only, and shall be noted in the revision of the document.

Date of Test

Date (s) of performance of tests05 May. 2018 ~ 25 May. 2018Date of Issue28 May. 2018

Test Result..... Pass

Testing Engineer :	Chinis cher
	(Chris chen)
Technical Manager :	Sean She APPROVAL
	(Sean she)
Authorized Signatory :	meati
	(Vita Li)

Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805047W01

Table of Contents

Page 3 of 41

1. SUMMARY OF TEST RESULTS	6
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	8
2.1 GENERAL DESCRIPTION OF EUT	8
2.2 DESCRIPTION OF TEST MODES	10
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	11
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	12
3. EMC EMISSION TEST	14
3.1 CONDUCTED EMISSION MEASUREMENT	14
3.2 TEST PROCEDURE	15
3.3 TEST SETUP	15
3.4 EUT OPERATING CONDITIONS	15
4. RADIATED EMISSION MEASUREMENT	17
4.1 RADIATED EMISSION LIMITS	17
4.2 TEST PROCEDURE	18
4.3 TEST SETUP	19
4.4 EUT OPERATING CONDITIONS	19
4.5 FIELD STRENGTH CALCULATION	20
4.6 TEST RESULTS	21
5. CONDUCTED SPURIOUS & BAND EDGE EMISSION	28
5.1 REQUIREMENT	28
5.2 TEST PROCEDURE	28
5.3 TEST SETUP	28
5.4 EUT OPERATION CONDITIONS	28
5.5 TEST RESULTS	29
6. POWER SPECTRAL DENSITY TEST	32
6.1 APPLIED PROCEDURES / LIMIT	32
6.2 TEST PROCEDURE	32
6.3 TEST SETUP	32
6.4 EUT OPERATION CONDITIONS	32
6.5 TEST RESULTS	33

=#

Page 4 of 41

Report No.: STS1805047W01

Table of Contents

7. BANDWIDTH TEST	35
7.1 APPLIED PROCEDURES / LIMIT	35
7.2 TEST PROCEDURE	35
7.3 TEST SETUP	35
7.4 EUT OPERATION CONDITIONS	35
7.5 TEST RESULTS	36
8. PEAK OUTPUT POWER TEST	38
8.1 APPLIED PROCEDURES / LIMIT	38
8.2 TEST PROCEDURE	38
8.3 TEST SETUP	38
8.4 EUT OPERATION CONDITIONS	38
8.5 TEST RESULTS	39
9. ANTENNA REQUIREMENT	40
9.1 STANDARD REQUIREMENT	40
9.2 EUT ANTENNA	40
10. EUT TEST PHOTO	41

Page 5 of 41

Report No.: STS1805047W01

Revision History

Rev.	Issue Date	Report NO.	Effect Page	Contents
00	28 May. 2018	STS1805047W01	ALL	Initial Issue

Shenzhen STS Test Services Co., Ltd.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 DTS Meas Guidance v04

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	N/A			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.247 (c)	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.205	Restricted Band Edge Emission	PASS			
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

Shenzhen STS Test Services Co., Ltd.

1.1 TEST FACTORY

Shenzhen STS Test Services Co., Ltd. Add. : 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China CNAS Registration No.: L7649; FCC Registration No.: 625569 IC Registration No.: 12108A; A2LA Certificate No.: 4338.01;

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

Page 7 of 41

No.	Item	Uncertainty
1	Conducted Emission (9KHz-150KHz)	±2.88dB
2	Conducted Emission (150KHz-30MHz)	±2.67dB
3	RF power,conducted	±0.71dB
4	Spurious emissions, conducted	±0.63dB
5	All emissions, radiated (9KHz-30MHz)	±3.02dB
6	All emissions, radiated (30MHz-200MHz)	±3.80dB
7	All emissions, radiated (200MHz-1000MHz)	±3.97dB
8	All emissions,radiated(>1G)	±3.03dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name	SOLAR PATHWAY L	light	
Trade Name	N/A		
Model Name	SR15AB01H-78		
Series Model	N/A		
Model Difference	N/A		
		R PATHWAY LIGHT	
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	GFSK	
Product Description	Radio Technology	BLE	
	Number Of Channel 40		
	Antenna Designation: Please see Note 3.		
	Antenna Gain (dBi) 1.5 dBi		
Channel List	Please refer to the N	lote 2.	
Battery	Battery(rating): Rated Voltage: 3.7V Capacity :2000mAh		
Hardware version number	N/A		
Software version number	V1.27		
Connecting I/O Port(s)	Please refer to the L	Jser's Manual	

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
37	2402	09	2422	18	2442	28	2462
00	2404	10	2424	19	2444	29	2464
01	2406	38	2426	20	2446	30	2466
02	2408	11	2428	21	2448	31	2468
03	2410	12	2430	22	2450	32	2470
04	2412	13	2432	23	2452	33	2472
05	2414	14	2434	24	2454	34	2474
06	2416	15	2436	25	2456	35	2476
07	2418	16	2438	26	2458	36	2478
08	2420	17	2440	27	2460	39	2480

3.

Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
1	N/A	ВТА	PCB Antenna	N/A	1.5	BLE ANT

Shenzhen STS Test Services Co., Ltd.

Page 10 of 41

2.2 DESCRIPTION OF TEST MODES

For conducted test items and radiated spurious emissions

Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

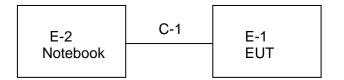
Worst Mode	Description	Data/Modulation
Mode 1	TX CH37(2402MHz)	1 MHz/GFSK
Mode 2	TX CH17(2440MHz)	1 MHz/GFSK
Mode 3	TX CH39(2480MHz)	1 MHz/GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported

(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report

(3) Controlled using a bespoke application on the laptop PC supplied by the customer. The application was used to enable a continuous transmission mode and to select the test channels, data rates and modulation schemes as required.



Page 11 of 41

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
E-2	Notebook	DELL	VOSTRO.3800	N/A	N/A

Item	Shielded Type	Ferrite Core	Length	Note
C-1	USB Cable	NO	100cm	N/A

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\[\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Page 12 of 41

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

adiation rest equipme					
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESW	101535	2017.06.01	2018.05.31
Bilog Antenna	TESEQ	CBL6111D	34678	2017.11.02	2018.11.01
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1343	2017.10.27	2018.10.26
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Temperature & Humitidy	HH660	Mieo	N/A	2017.10.15	2018.10.14
Pre-mplifier (0.1M-3GHz)	EM	EM330	60538	2018.03.11	2019.03.10
PreAmplifier (1G-26.5GHz)	Agilent	8449B	60538	2017.10.15	2018.10.14
Passive Loop (9K30MHz)	ZHNAN	ZN3090C	16035	2018.03.11	2019.03.10
Low frequency cable	EM	R01	N/A	2018.03.11	2019.03.10
Low frequency cable	EM	R06	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R04	N/A	2018.03.11	2019.03.10
High frequency cable	SCHWARZBECK	R02	N/A	2018.03.11	2019.03.10
Semi-anechoic chamber	Changling	966	N/A	2017.10.15	2018.10.14
trun table	EM	SC100_1	60531	N/A	N/A
Antnna mast	EM	SC100	N/A	N/A	N/A
Max-full Antenna Corp	MF	MFA-440H	N/A	N/A	N/A

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2017.10.15	2018.10.14
LISN	R&S	ENV216	101242	2017.10.15	2018.10.14
conduction Cable	EM	C01	N/A	2018.03.11	2019.03.10
Temperature & Humitidy	Mieo	HH660	N/A	2017.10.15	2018.10.14

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
USB RF power sensor	DARE	RPR3006W	15100041SNO03	2017.10.15	2018.10.14
Power Meter	R&S	NRP	100510	2017.10.15	2018.10.14
Spectrum Analyzer	Agilent	N9020A	MY51110105	2018.03.08	2019.03.07
Signal Analyzer	Agilent	N9020A	MY49100060	2017.10.15	2018.10.14

Shenzhen STS Test Services Co., Ltd.

Page 14 of 41

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emission limit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

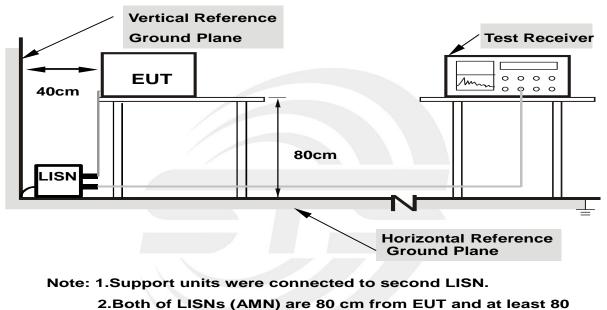
Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


Shenzhen STS Test Services Co., Ltd.

3.2 TEST PROCEDURE

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.3 TEST SETUP

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

from other units and other metal planes

3.5 TEST RESULTS

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	AC 120V/60Hz	Phase:	L/N
Test Mode:	N/A		

Note: The BT function will be disabled (not transmitting) when the EUT is charging, the test is not available.

Shenzhen STS Test Services Co., Ltd.

Page 17 of 41

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted	4 MUL / 2 MUL	
band)	1 MHz / 3 MHz	

For Band edge

Spectrum Parameter	Setting		
Detector	Peak/AV		
	Lower Band Edge: 2300 to 2403 MHz		
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz		
RB / VB (emission in restricted band)	1 MHz / 3 MHz		

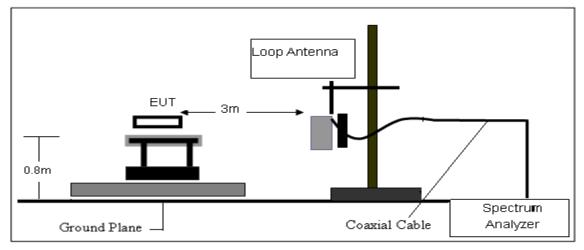
Shenzhen STS Test Services Co., Ltd.

Page 18 of 41

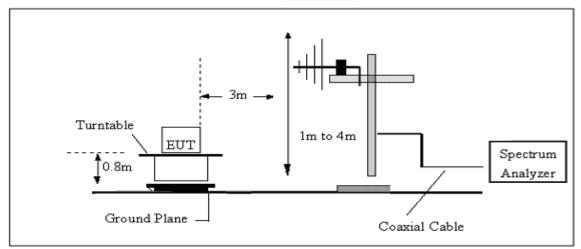
Report No.: STS1805047W01

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

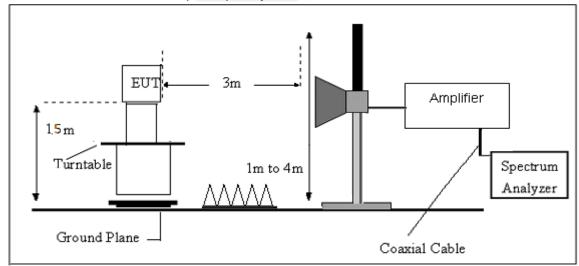
4.2 TEST PROCEDURE


- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters(above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarizations of the antenna are set to make the measurement
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

4.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Shenzhen STS Test Services Co., Ltd.

Page 20 of 41

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude AG = Amplifier Gain AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

Shenzhen STS Test Services Co., Ltd.

4.6 TEST RESULTS

(Between 9KHz - 30 MHz)

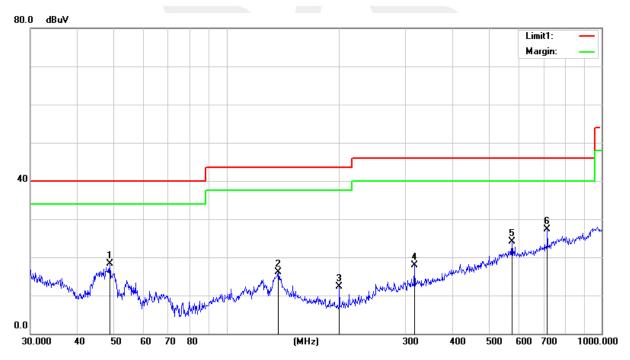
Temperature:	20 ℃	Relative Humidtity:	48%
Test Voltage:	3.7V from Battery	Polarization:	
Test Mode:	N/A		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.


(30MHz -1000MHz)

Temperature:	24.2 °C	Relative Humidity:	61%						
Test Voltage:	3.7V from Battery	Phase:	Horizontal						
Test Mode:	Mode1/2/3(Mode 3-1M worst	Mode1/2/3(Mode 3-1M worst mode)							

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
48.8430	39.21	-20.89	18.32	40.00	-21.68	QP
137.4201	33.55	-17.52	16.03	43.50	-27.47	QP
199.9856	32.47	-20.17	12.30	43.50	-31.20	QP
316.5890	32.15	-14.28	17.87	46.00	-28.13	QP
576.6443	30.88	-6.69	24.19	46.00	-21.81	QP
716.6820	32.14	-4.76	27.38	46.00	-18.62	QP
L					1	

Remark:

1. Margin = Result (Result = Reading + Factor)–Limit

Page 23 of 41

Report No.: STS1805047W01

Temperature:	24.2 °C	Relative Humidity:	61%				
Test Voltage:	3.7V from Battery	Phase:	Vertical				
Test Mode:	Mode1/2/3(Mode 3-1M worst mode)						

Frequency	Reading	Correct	Result	Limit	Margin	Remark
(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
49.1865	37.41	-21.06	16.35	40.00	-23.65	QP
67.6751	35.47	-24.16	11.31	40.00	-28.69	QP
124.5690	33.37	-17.63	15.74	43.50	-27.76	QP
257.4221	29.22	-15.38	13.84	46.00	-32.16	QP
375.9384	31.18	-12.73	18.45	46.00	-27.55	QP
566.6221	29.31	-6.61	22.70	46.00	-23.30	QP

Remark:

1. Margin = Result (Result = Reading + Factor)-Limit

Shenzhen STS Test Services Co., Ltd.

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6287
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

Page 24 of 41

Report No.: STS1805047W01

(1GHz-25GHz)Restricted band and Spurious emission Requirements

Low Channel

				Antenna	Corrected	Emission						
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector			
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment		
	Low Channel (2402 MHz)											
3264.86	48.65	44.70	6.70	28.20	-9.80	38.85	74.00	-35.15	PK	Vertical		
3264.86	38.17	44.70	6.70	28.20	-9.80	28.37	54.00	-25.63	AV	Vertical		
3264.61	48.81	44.70	6.70	28.20	-9.80	39.01	74.00	-34.99	PK	Horizontal		
3264.61	38.71	44.70	6.70	28.20	-9.80	28.91	54.00	-25.09	AV	Horizontal		
4804.54	59.33	44.20	9.04	31.60	-3.56	55.77	74.00	-18.23	PK	Vertical		
4804.54	38.88	44.20	9.04	31.60	-3.56	35.32	54.00	-18.68	AV	Vertical		
4804.52	58.74	44.20	9.04	31.60	-3.56	55.18	74.00	-18.82	PK	Horizontal		
4804.52	39.10	44.20	9.04	31.60	-3.56	35.54	54.00	-18.46	AV	Horizontal		
5359.86	45.59	44.20	9.86	32.00	-2.34	43.25	74.00	-30.75	PK	Vertical		
5359.86	37.95	44.20	9.86	32.00	-2.34	35.61	54.00	-18.39	AV	Vertical		
5359.78	45.18	44.20	9.86	32.00	-2.34	42.84	74.00	-31.16	PK	Horizontal		
5359.78	38.11	44.20	9.86	32.00	-2.34	35.77	54.00	-18.23	AV	Horizontal		
7205.69	51.07	43.50	11.40	35.50	3.40	54.47	74.00	-19.53	PK	Vertical		
7205.69	33.67	43.50	11.40	35.50	3.40	37.07	54.00	-16.93	AV	Vertical		
7205.90	51.05	43.50	11.40	35.50	3.40	54.45	74.00	-19.55	PK	Horizontal		
7205.90	33.37	43.50	11.40	35.50	3.40	36.77	54.00	-17.23	AV	Horizontal		

Page 25 of 41

Report No.: STS1805047W01

Mid Channel

				Antenna	Corrected	Emission					
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment	
Mid Channel (2440 MHz)											
3264.89	48.61	44.70	6.70	28.20	-9.80	38.81	74.00	-35.19	PK	Vertical	
3264.89	38.21	44.70	6.70	28.20	-9.80	28.41	54.00	-25.59	AV	Vertical	
3264.79	49.20	44.70	6.70	28.20	-9.80	39.40	74.00	-34.60	PK	Horizontal	
3264.79	38.75	44.70	6.70	28.20	-9.80	28.95	54.00	-25.05	AV	Horizontal	
4880.28	58.70	44.20	9.04	31.60	-3.56	55.14	74.00	-18.86	PK	Vertical	
4880.28	39.52	44.20	9.04	31.60	-3.56	35.96	54.00	-18.04	AV	Vertical	
4880.44	58.82	44.20	9.04	31.60	-3.56	55.26	74.00	-18.74	PK	Horizontal	
4880.44	38.77	44.20	9.04	31.60	-3.56	35.21	54.00	-18.79	AV	Horizontal	
5359.62	46.44	44.20	9.86	32.00	-2.34	44.10	74.00	-29.90	PK	Vertical	
5359.62	37.81	44.20	9.86	32.00	-2.34	35.47	54.00	-18.53	AV	Vertical	
5359.74	46.19	44.20	9.86	32.00	-2.34	43.85	74.00	-30.15	PK	Horizontal	
5359.74	37.56	44.20	9.86	32.00	-2.34	35.22	54.00	-18.78	AV	Horizontal	
7310.89	51.39	43.50	11.40	35.50	3.40	54.79	74.00	-19.21	PK	Vertical	
7310.89	33.25	43.50	11.40	35.50	3.40	36.65	54.00	-17.35	AV	Vertical	
7310.94	51.70	43.50	11.40	35.50	3.40	55.10	74.00	-18.90	PK	Horizontal	
7310.94	33.13	43.50	11.40	35.50	3.40	36.53	54.00	-17.47	AV	Horizontal	

Shenzhen STS Test Services Co., Ltd.

Page 26 of 41

Report No.: STS1805047W01

High Channel

	i iigii e iiaiiitei										
				Antenna	Corrected	Emission					
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector		
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment	
High Channel (2480 MHz)											
3264.61	48.19	44.70	6.70	28.20	-9.80	38.39	74.00	-35.61	PK	Vertical	
3264.61	39.72	44.70	6.70	28.20	-9.80	29.92	54.00	-24.08	AV	Vertical	
3264.66	48.00	44.70	6.70	28.20	-9.80	38.20	74.00	-35.80	PK	Horizontal	
3264.66	38.27	44.70	6.70	28.20	-9.80	28.47	54.00	-25.53	AV	Horizontal	
4960.47	58.30	44.20	9.04	31.60	-3.56	54.74	74.00	-19.26	PK	Vertical	
4960.47	39.01	44.20	9.04	31.60	-3.56	35.45	54.00	-18.55	AV	Vertical	
4960.50	59.51	44.20	9.04	31.60	-3.56	55.95	74.00	-18.05	PK	Horizontal	
4960.50	38.60	44.20	9.04	31.60	-3.56	35.04	54.00	-18.96	AV	Horizontal	
5359.59	45.44	44.20	9.86	32.00	-2.34	43.10	74.00	-30.90	PK	Vertical	
5359.59	37.89	44.20	9.86	32.00	-2.34	35.55	54.00	-18.45	AV	Vertical	
5359.68	46.03	44.20	9.86	32.00	-2.34	43.69	74.00	-30.31	PK	Horizontal	
5359.68	37.26	44.20	9.86	32.00	-2.34	34.92	54.00	-19.08	AV	Horizontal	
7439.84	51.19	43.50	11.40	35.50	3.40	54.59	74.00	-19.41	PK	Vertical	
7439.84	33.92	43.50	11.40	35.50	3.40	37.32	54.00	-16.68	AV	Vertical	
7439.77	50.65	43.50	11.40	35.50	3.40	54.05	74.00	-19.95	PK	Horizontal	
7439.77	32.67	43.50	11.40	35.50	3.40	36.07	54.00	-17.93	AV	Horizontal	
Noto											

Note:

1) Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Emission Level = Reading + Factor

2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

Shenzhen STS Test Services Co., Ltd.

4.6 TEST RESULTS (Restricted Bands Requirements)

				Antenna	Corrected	Emission				
Frequency	Reading	Amplifier	Loss	Factor	Factor	Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Comment
					GFSK					
2390.00	67.66	43.80	4.91	25.90	-12.99	54.67	74.00	-19.33	PK	Vertical
2390.00	53.30	43.80	4.91	25.90	-12.99	40.31	54.00	-13.69	AV	Vertical
2390.00	68.66	43.80	4.91	25.90	-12.99	55.67	74.00	-18.33	PK	Horizontal
2390.00	53.20	43.80	4.91	25.90	-12.99	40.21	54.00	-13.79	AV	Horizontal
2483.50	69.68	43.80	5.12	25.90	-12.78	56.90	74.00	-17.10	PK	Vertical
2483.50	53.16	43.80	5.12	25.90	-12.78	40.38	54.00	-13.62	AV	Vertical
2483.50	69.59	43.80	5.12	25.90	-12.78	56.81	74.00	-17.19	PK	Horizontal
2483.50	52.52	43.80	5.12	25.90	-12.78	39.74	54.00	-14.26	AV	Horizontal

Low measurement frequencies is range from 2300 to 2403 MHz, high measurement frequencies is range from 2479 to 2500 MHz.

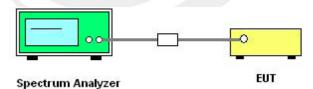
Only show the worst point data of the emissions in the frequency 2300-2403 MHz and 2479-2500 MHz.

Shenzhen STS Test Services Co., Ltd.

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 REQUIREMENT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.


5.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Stop Fraguener	Lower Band Edge: 2300 – 2403 MHz		
Start/Stop Frequency	Upper Band Edge: 2479 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

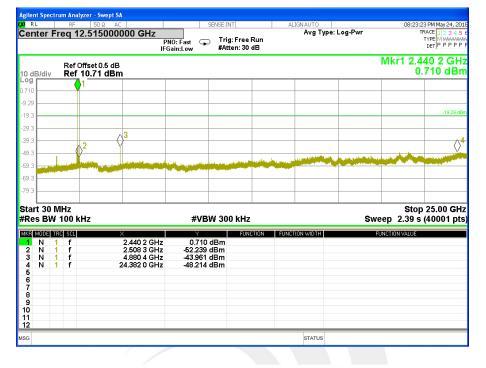
The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS

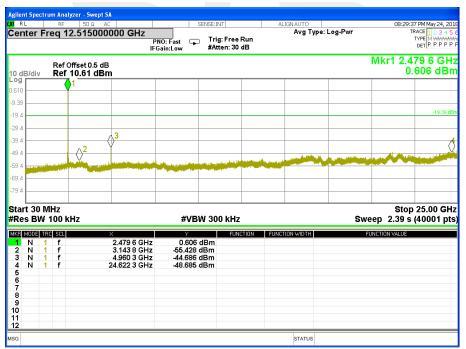
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	50%
Test Voltage:	DC 3.7V		TX Mode /CH37, CH17, CH39


37 CH

RL	F	RF 50 Ω	AC	SE	NSE:INT	AL	.IGN AUTO		08:20:	07 PM May 24, 21
enter			00000 GHz	PNO: Fast 😱 Gain:Low	Trig: Free Ru #Atten: 30 dB		Avg Type:	: Log-Pwr		TYPE MWWWW DET P P P P
0 dB/di		ef Offset 0.5 ef 9.26 dE							Mkr1 2.4 -0	102 2 GH .739 dB
0.74		? '								
0.7		_								-20.74 (
0.7										
0.7		A2								
0.7		²						and the part of the state of the state		
0.7		and the second second						a haadha anna an		
0.7										
0.7										
	0 MHz 3W 10			#VBW	/ 300 kHz			Sv	Stoj veep 2.39 s	o 25.00 GH 6 (40001 p
		2		Y	FUNCTIO	IN FUNCI	TION WIDTH		FUNCTION VALUE	
			2 402 2 GHz	_0 739 di	3m					
1 N 2 N 3 N	1 f 1 f		2.402 2 GHz 2.507 6 GHz 4.803 6 GHz	-0.739 dl -53.239 dl -45.666 dl	Bm Bm					
1 N 2 N 3 N 4 N 5	1 f 1 f		2.402 2 GHz 2.507 6 GHz	-53.239 di	Bm Bm					
1 N 2 N 3 N 4 N 5 6 7	1 f 1 f		2.402 2 GHz 2.507 6 GHz 4.803 6 GHz	-53.239 di -45.666 di	Bm Bm					
1 N 2 N 3 N 4 N 5 6 7 8 9	1 f 1 f		2.402 2 GHz 2.507 6 GHz 4.803 6 GHz	-53.239 di -45.666 di	Bm Bm					
1 N 2 N 3 N 4 N 5 6	1 f 1 f		2.402 2 GHz 2.507 6 GHz 4.803 6 GHz	-53.239 di -45.666 di	Bm Bm					

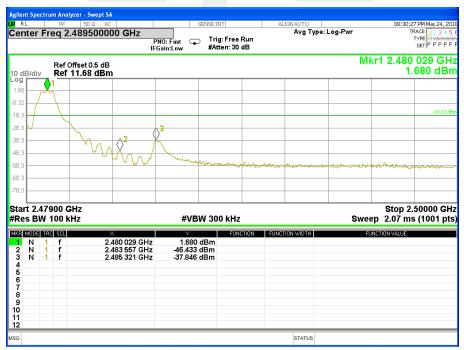

Shenzhen STS Test Services Co., Ltd.

17 CH

39 CH

Shenzhen STS Test Services Co., Ltd.

Page 31 of 41



For Band edge

Cente	r Freq 2	50 Ω A 2.3515000	000 GHz	NO: Fast Gain:Low	SENSE:INT Trig: Fr #Atten:	ee Run 30 dB	ALIGN AUTO Avg Typ	e: Log-Pwr	TF	7 PM May 24, 2016 RACE 1 2 3 4 5 6 TYPE M WAWWAA DET P P P P P F
10 dB/e		Offset 0.5 df 11.12 dB						MI		073 GHz 120 dBm
1.12										?
-8.88 —						_				
-18.9						_				-18.88 dBm
-28.9										
-38.9						,		0		2 ⟨) ³
-48.9 —						1			-	markent
	and the second	- hartrak yr det Tag	kan Marin Marin	and all all all and a second	logal Protocological and	wat water	appending and fight for the	monoreditor	whole a real real	
-68.9										
-78.9										
	2.30000 (BW 100			#VB	W 300 ki	Hz		Swe		40300 GHz s (1001 pts)
MKR MO	DE TRC SCL		×	Y	F	UNCTION	FUNCTION WIDTH	FL	UNCTION VALUE	<u> </u>
1 N 2 N 3 N 5 6	1 f	1	2.402 073 GHz 2.396 511 GHz 2.399 807 GHz	1.120 -52.541 -47.384	dBm					
6 7 9 10 11 12										
MSG			1				STATUS			

37 CH

39 CH

 1/F., Building B, Zhuoke Science Park, No.190, Chongqing Road, Fuyong Street, Bao'an District, Shenzhen, Guangdong, China

 Tel: + 86-755
 3688
 6288
 Fax:+ 86-755
 3688
 6277
 Http://www.stsapp.com
 E-mail: sts@stsapp.com

6. POWER SPECTRAL DENSITY TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1805047W01

6.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH37, CH17, CH39

Frequency	Power Density (dBm/3kHz)	Limit (dBm/3KHz)	Result
2402 MHz	-11.727	≤8	PASS
2440 MHz	-11.322	≤8	PASS
2480 MHz	-11.354	≤8	PASS

TX CH37

Center F	RF 50 Ω AC req 2.402000000 (Trig: Free Run	ALIGN AUTO Avg Type: Lo Avg Hold: 91/1	g-Pwr 00	08:21:37 PM May 24, 20 TRACE 1 2 3 4 5 TYPE M WWWW
10 dB/div	Ref Offset 0.5 dB Ref -1.73 dBm	IFGain:Low	#Atten: 30 dB		Mkr1 2.4	оет Р Р Р Р Р 102 032 4 GH -11.727 dBr
Log			↓ ¹			
-11.7		and a superson and a superson of	munn	topenal water when when we		
-21.7	and the former and the second				- Hurt	www.alowww.y
-31.7 -41.7	u 					
-51.7						
-61.7						
-71.7						
-81.7						
-91.7						
Center 2.4 #Res BW	4020000 GHz 3.0 kHz	#VB	W 10 kHz	I	Sweep 1	Span 1.200 MH 27 ms (1001 pt
/ISG				STATUS		

Shenzhen STS Test Services Co., Ltd.

TX CH17

TX CH39

7. BANDWIDTH TEST

7.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \ge 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \ge 6 dB.

7.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: STS1805047W01

7.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH37, CH17, CH39

Frequency	6dB Bandwidth (MHz)	Channel Separation	Result
2402 MHz	0.703	>=500KHz	PASS
2440 MHz	0.697	>=500KHz	PASS
2480 MHz	0.703	>=500KHz	PASS

TX CH 37

ilent Spectrum Analyzer - Occupie RL RF 50Ω A		SENSE:INT	ALIGN AUTO	08:19:31 PM May 24, 2
enter Freg 2.4020000		Center Freq: 2.4020000	00 GHz	Radio Std: None
	#IFGain:Low	➡ Trig: Free Run #Atten: 30 dB	Avg Hold:>10/10	Radio Device: BTS
Ref Offset 0.5 dB/div Ref 20.00 d				
g				
.0				
10				
0			and the second s	
0				
0				
0				
0				
enter 2.402 GHz tes BW 100 kHz		#VBW 300 ki	lz	Span 2 Mł Sweep 1 n
Occupied Bandwi	dth			
	1.0944 MHz			
Transmit Freq Error	25.632 kHz	OBW Power	99.00 %	
x dB Bandwidth	702.9 kHz	x dB	-6.00 dB	
			STATUS	


Shenzhen STS Test Services Co., Ltd.

TX CH 17

RL	RF 50Ω AC		SENSE:INT	ALIGN AUTO	08:22:48 PM May 24, 20:
enter Fr	eq 2.44000000	GHz	Center Freq: 2.4400000		Radio Std: None
]	(🖵 Trig: Free Run	Avg Hold:>10/10	
		#IFGain:Low	#Atten: 30 dB		Radio Device: BTS
	Ref Offset 0.5 dB				
0 dB/div	Ref 20.00 dBm				
og					
0.0					
		- And		The second se	
0.0		m			~
20.0		-			
80.0	and and a second s				
0.0					
50.0					
io.o					
0.0					
enter 2.4	4 CH2				Span 2 MH
Res BW			#VBW 300 kl	47	Sweep 1 m
			**••••		•
Occup	ied Bandwidt	h			
		1216 MHz			
	1.				
Transm	it Freq Error	46.509 kHz	OBW Power	99.00 %	
v dB Ba	ndwidth	696.9 kHz	x dB	-6.00 dB	
	uramuur	000.0 KHZ		-0.00 00	

TX CH 39

8. PEAK OUTPUT POWER TEST

8.1 APPLIED PROCEDURES / LIMIT

FCC Part 15.247,Subpart C				
Section Test Item Limit Frequency Range (MHz)		Result		
15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

a. The EUT was directly connected to the Power Meter

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

8.5 TEST RESULTS

Temperature:	25 ℃	Relative Humidity:	60%
Test Voltage:	DC 3.7V		TX Mode /CH37, CH17, CH39

TX Mode					
Frequency		Conducted Output Power		LIMIT	
Test Channel	(MHz)	Peak (dBm)	AVG (dBm)	dBm	
CH37	2402	1.25	-0.76	30	
CH17	2440	1.27	-0.64	30	
CH39	2480	1.74	-0.27	30	

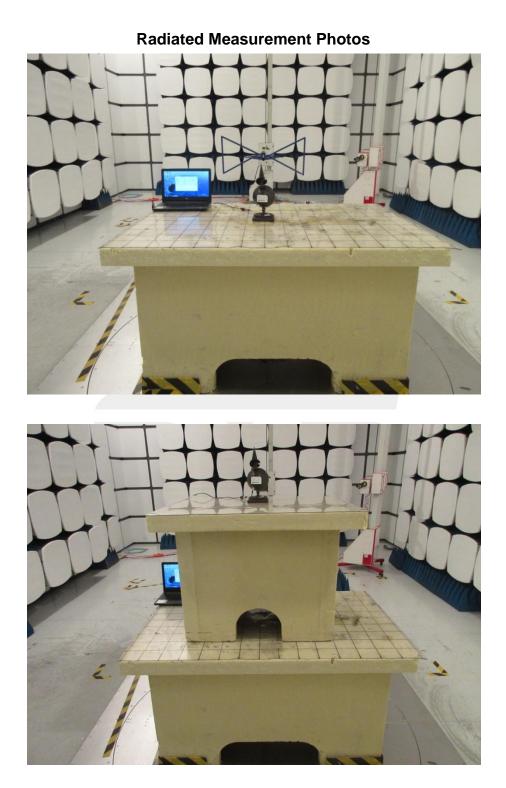
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

9.2 EUT ANTENNA

The EUT antenna is PCB Antenna. It comply with the standard requirement.


Shenzhen STS Test Services Co., Ltd.

Report No.: STS1805047W01

10. EUT TEST PHOTO

* * * * * END OF THE REPORT * * * * *

Shenzhen STS Test Services Co., Ltd.