

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202203074F01

TEST Report

Applicant: Dongguan MaiJia Intelligent Technology Co., Ltd.

Address of Applicant: Room 202,2F,Building A,No.2 Of ManYuan,

Hengtang, Tangxia, Dongguan, China

Manufacturer: Dongguan MaiJia Intelligent Technology Co., Ltd.

Address of Room 202,2F,Building A,No.2 Of ManYuan,

Manufacturer: Hengtang, Tangxia, Dongguan, China

Equipment Under Test (EUT)

Product Name: Smart Circuit Breaker

Model No.: ZKG30A

Series model: ZKG30A-B, ZKG60A, ZKG60A-B

Trade Mark: N/A

FCC ID: 2ANJ7-ZKG30A

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Mar.04,2022

Date of Test: Mar.04,2022~Mar.10,2022

Date of report issued: Mar.10,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Mar.10,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Mar.10,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Mar.10,2022
	Reviewer		
Approved By :	Kevin Yang	Date:	Mar.10,2022
	Authorized Signature		

2. Contents

		Page
1. V	/ERSION	2
2. C	CONTENTS	3
	TEST SUMMARY	
4. G	GENERAL INFORMATION	5
4.1.	. GENERAL DESCRIPTION OF EUT	5
4.2.		
4.3.		
4.4.		
4.5.		
4.6.		
4.7. 4.8.		
_		
5. T	TEST INSTRUMENTS LIST	8
6. T	TEST RESULTS AND MEASUREMENT DATA	9
6.1.	CONDUCTED EMISSIONS	9
6.2.	CONDUCTED PEAK OUTPUT POWER	
6.3.		
6.4.		_
6.5.		
_	5.5.1. Conducted Emission Method	
	6.5.2. Radiated Emission Method	
6.6.		
	6.6.1. Conducted Emission Method	
7. T	TEST SETUP PHOTO	37
8. E	EUT CONSTRUCTIONAL DETAILS	37

3. Test Summary

	<u> </u>	
Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.45 dB	(1)
Radiated Emission	1~6GHz	3.54 dB	(1)
Radiated Emission	6~40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)
Note (1): The measurement uncer	rtainty is for coverage factor of k	=2 and a level of confidence of	95%.

4. General Information

4.1. General Description of EUT

Product Name:	Smart Circuit Breaker
Model No.:	ZKG30A
Series model:	ZKG30A-B, ZKG60A, ZKG60A-B
Test sample(s) ID:	HTT202203074-1(Engineer sample) HTT202203074-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power supply:	AC 100-240V,50/60Hz

Operation Frequency each of channel									
Channel Frequency Channel Frequency Channel Frequency Channel Frequency									
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz		
2	2417MHz	5	2432MHz 8 2447MHz		11	2462MHz			
3	2422MHz	6	2437MHz	9	2452MHz				

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

T	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

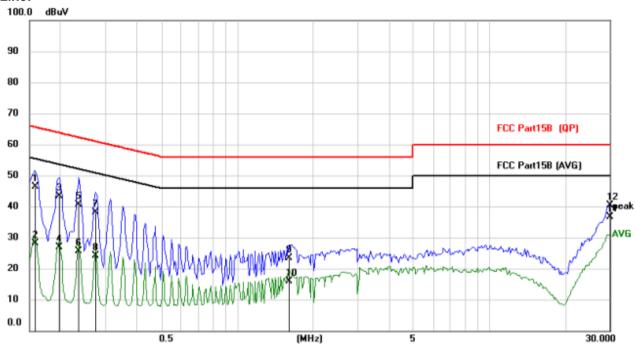
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

J.	rest instrume					
Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
				No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 21 2021	May 20 2022
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 21 2021	May 20 2022
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 21 2021	May 20 2022
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 21 2021	May 20 2022
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 21 2021	May 20 2022
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 21 2021	May 20 2022
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 21 2021	May 20 2022
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 21 2021	May 20 2022
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 21 2021	May 20 2022
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 21 2021	May 20 2022
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 21 2021	May 20 2022
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 21 2021	May 20 2022
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M		May 21 2021	May 20 2022
20	Attenuator	Robinson	6810.17A	HTT-E007	May 21 2021	May 20 2022
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 21 2021	May 20 2022
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 21 2021	May 20 2022
23	DC power supply	Agilent	E3632A	HTT-E023	May 21 2021	May 20 2022
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 21 2021	May 20 2022
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 21 2021	May 20 2022
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 21 2021	May 20 2022
27	Power sensor	Keysight	U2021XA	HTT-E027	May 21 2021	May 20 2022
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 21 2021	May 20 2022
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

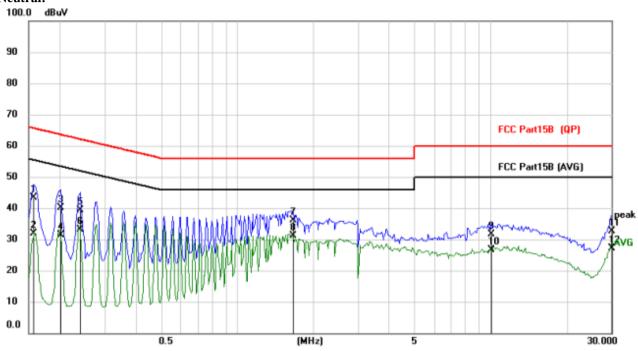
6. Test results and Measurement Data

6.1. Conducted Emissions

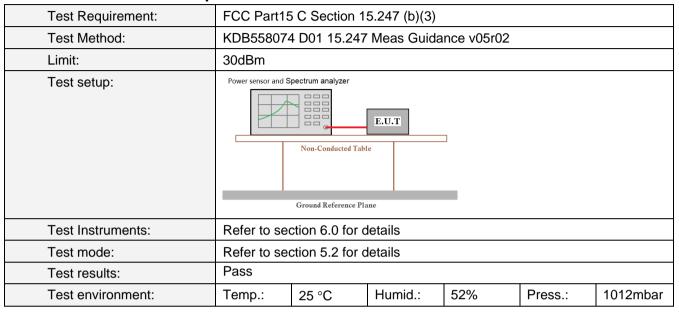

	Jonaucica Emissions						
Т	Test Requirement:	FCC Part15 C Section 15.207					
Т	Test Method:	ANSI C63.10:2013					
Т	Test Frequency Range:	150KHz to 30MHz					
C	Class / Severity:	Class B					
F	Receiver setup:	RBW=9KH	z, VBW=30KHz	z, Sweep tir	ne=auto		
L	imit:	Eroguon	ov rongo (MU z	·\	Limit	(dBuV)	
		Frequency range (MHz) Quasi-peak Average					
			0.15-0.5	- 6	66 to 56*	56 to	
			0.5-5		56	40	
		* Docrosco	5-30 s with the logar	rithm of the	frequency	50	0
т	Test setup:	Decrease	Reference P		irequericy.		
T	Fest procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm					s a ent. er through a 50ohm
		termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.					
Т	Test Instruments:	Refer to see	ction 6.0 for de	tails			
Т	Test mode:	Refer to see	ction 5.2 for de	tails			
Т	Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Т	est voltage:	AC 120V, 60Hz					
Т	est results:	Pass					

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:


Line:

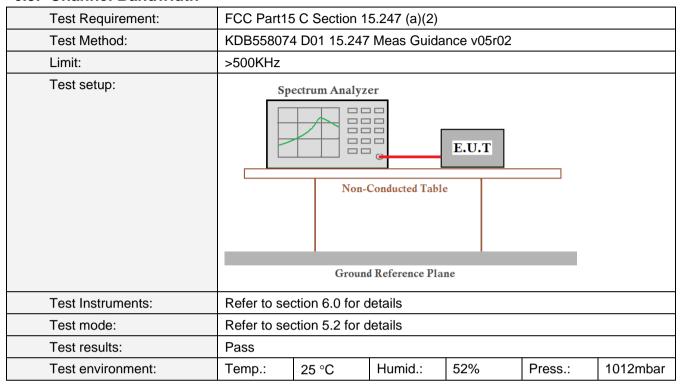
	_	Reading	Correct	Measure-		0	
No. Mk.	Freq.	Level	Factor	ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1582	35.96	10.38	46.34	65.56	-19.22	QP
2	0.1582	17.66	10.38	28.04	55.56	-27.52	AVG
3	0.1968	33.05	10.39	43.44	63.74	-20.30	QP
4	0.1968	16.54	10.39	26.93	53.74	-26.81	AVG
5	0.2358	30.35	10.40	40.75	62.24	-21.49	QP
6	0.2358	15.14	10.40	25.54	52.24	-26.70	AVG
7	0.2748	27.68	10.40	38.08	60.97	-22.89	QP
8	0.2748	13.67	10.40	24.07	50.97	-26.90	AVG
9	1.6086	12.60	10.85	23.45	56.00	-32.55	QP
10	1.6086	5.04	10.85	15.89	46.00	-30.11	AVG
11	30.0000	23.95	12.80	36.75	60.00	-23.25	QP
12 *	30.0000	27.62	12.80	40.42	50.00	-9.58	AVG


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1578	33.14	10.26	43.40	65.58	-22.18	QP
2	0.1578	21.73	10.26	31.99	55.58	-23.59	AVG
3	0.2007	29.89	10.20	40.09	63.58	-23.49	QP
4	0.2007	21.09	10.20	31.29	53.58	-22.29	AVG
5	0.2397	29.26	10.22	39.48	62.11	-22.63	QP
6	0.2397	22.81	10.22	33.03	52.11	-19.08	AVG
7	1.6632	25.34	10.81	36.15	56.00	-19.85	QP
8 *	1.6632	20.34	10.81	31.15	46.00	-14.85	AVG
9	10.1214	20.08	11.51	31.59	60.00	-28.41	QP
10	10.1214	15.01	11.51	26.52	50.00	-23.48	AVG
11	29.9802	19.99	12.70	32.69	60.00	-27.31	QP
12	29.9802	14.47	12.70	27.17	50.00	-22.83	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Los

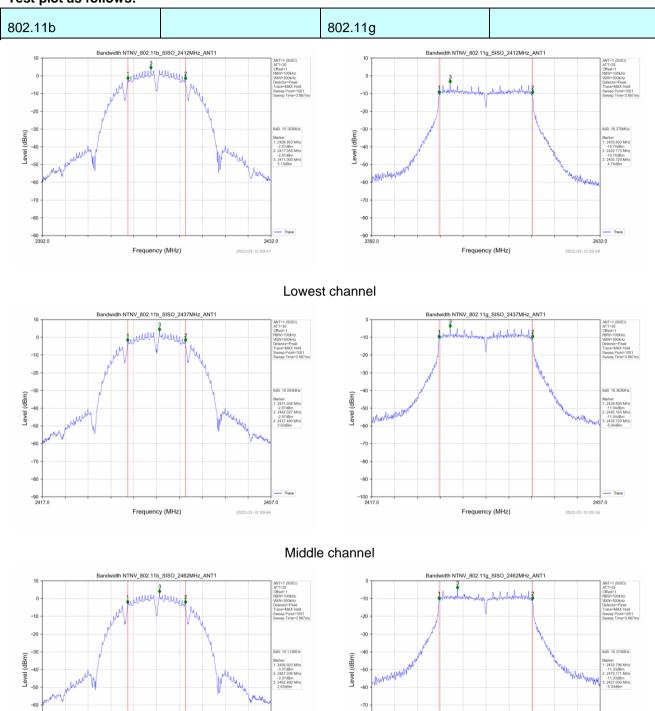
6.2. Conducted Peak Output Power



Measurement Data

		Peak Outp	ut Power (dBm)							
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBm)	Result				
Lowest	15.02	13.80	13.68	13.75						
Middle	14.74	13.65	13.62	13.67	30.00	Pass				
Highest	14.48	13.37	13.20	13.57						

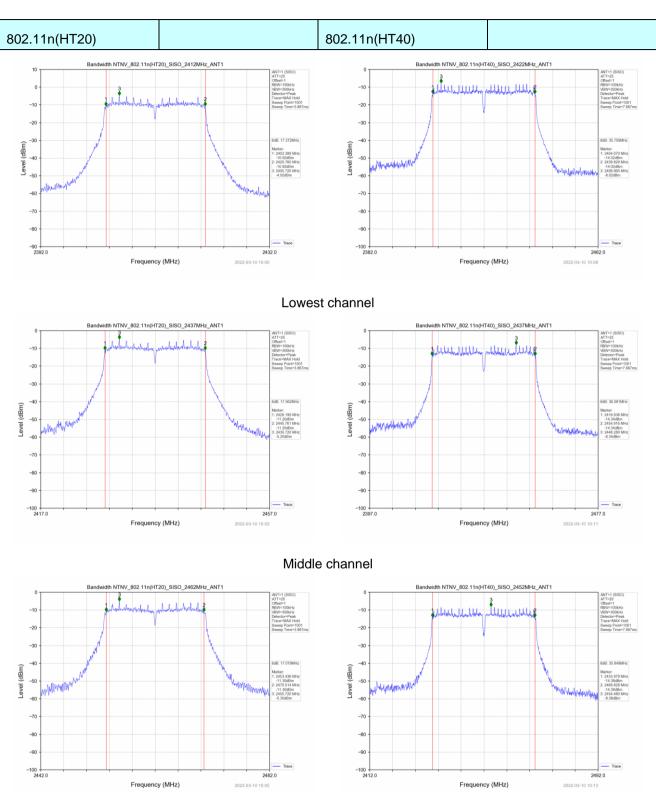
6.3. Channel Bandwidth



Measurement Data

		Channel E	Bandwidth (MHz)			_
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(KHz)	Result
Lowest	10.102	16.370	17.372	35.759		
Middle	10.093	16.363	17.562	36.081	>500	Pass
Highest	10.113	16.374	17.079	35.849		

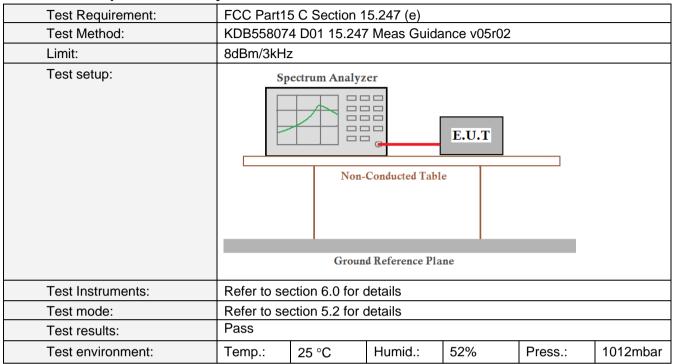
Test plot as follows:


Highest channel

-100 +---2442.0

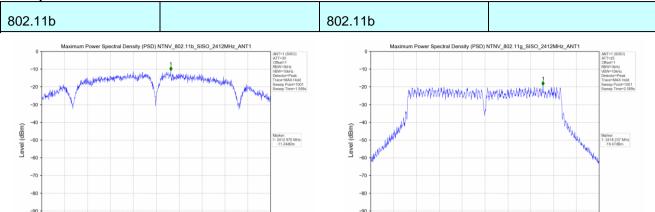
Frequency (MHz)

Frequency (MHz)

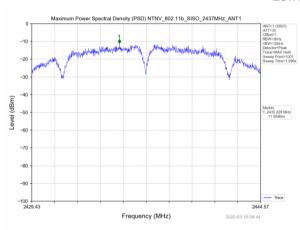


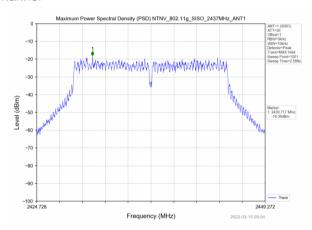
Highest channel

6.4. Power Spectral Density

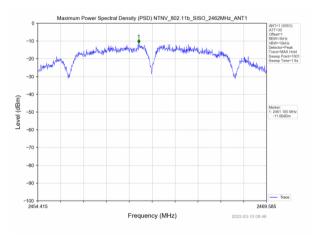

Measurement Data

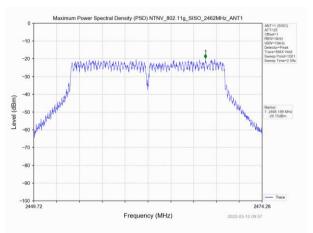
	Measurement Data									
	-		Power Spectra	al Density (dBm/3kl	Hz)	Limit				
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Result				
	Lowest	-11.24	-19.47	-19.65	-21.52					
	Middle	-11.50	-18.36	-19.35	-23.10	8.00	Pass			
	Highest	-11.66	-20.15	-18.40	-23.23					


Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

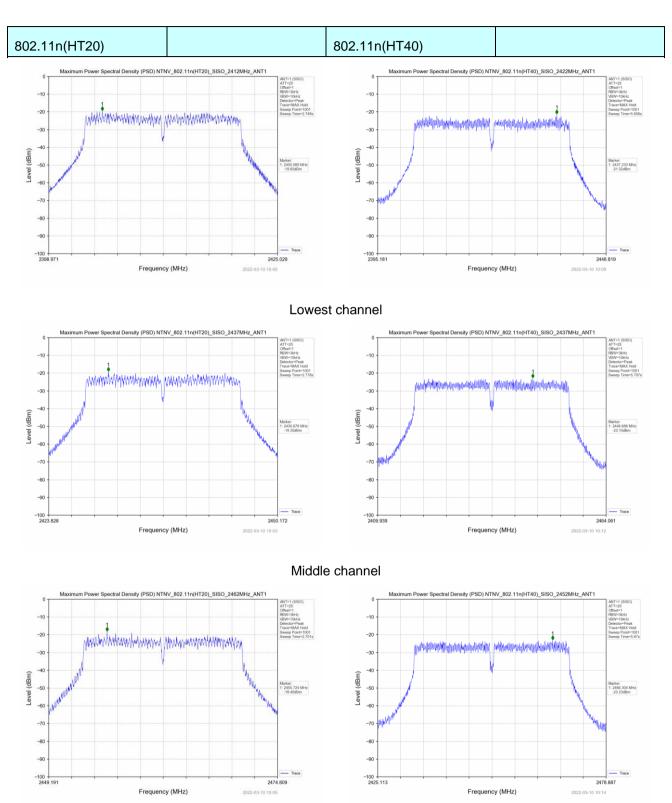

Test plot as follows:

Lowest channel



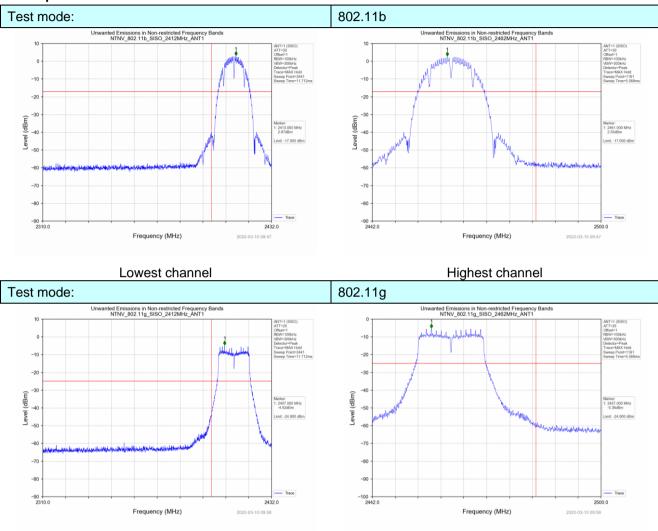

Frequency (MHz)

Frequency (MHz)


Middle channel

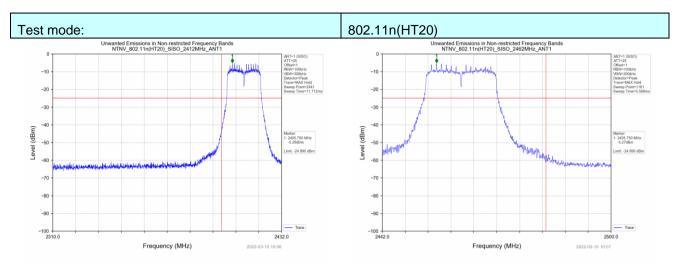
Highest channel

Highest channel

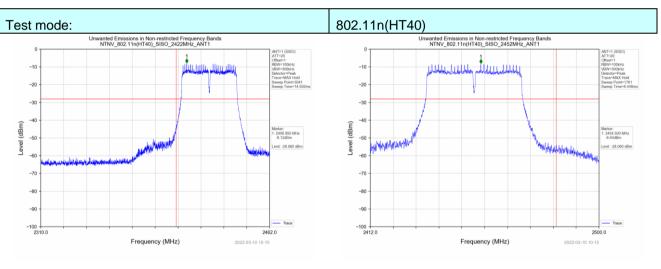

6.5. Band Edge

6.5.1. Conducted Emission Method

Test Requirement:	FCC Part1	5 C Section 1	5.247 (d)				
Test Method:	KDB55807	4 D01 15.247	Meas Guida	nce v05r02			
Limit:	spectrum in is produced the 100 kH	kHz bandwid ntentional rad d by the intent z bandwidth d power, bas ent.	iator is opera tional radiato within the ba	ating, the rac r shall be at l and that cont	lio frequency least 20 dB b ains the high	power that elow that in est level of	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to se	ction 5.2 for c	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	


Test plot as follows:

Lowest channel


Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

6.5.2. Radiated Emission Method

6.5.2. Radiated Emission Wethod								
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.205				
Test Method:	ANSI C63.10							
Test Frequency Range:	All of the res 2500MHz) da			ested, only	the wo	rst band's (2	2310MHz to	
Test site:	Measuremer	nt Distance:	3m					
Receiver setup:	Frequency	/ Detec	ctor	RBW	VBW	' Re	emark	
·	Above 1GH	Iz Pea		1MHz 1MHz	3MHz 10Hz		k Value ge Value	
Limit:	Fred	quency	L	imit (dBuV	/m @3m	ı) Re	emark	
	Abov	ve 1GHz		54.0 74.0			ge Value k Value	
Test setup:		Test Antenna (150 cm > 4 Preamplifier) Receiver Preamplifier Preampli						
Test Procedure:	1. The FLIT was placed on the top of a rotating table 1.5 meters above the							
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to sect	tion 6.0 for c	letails					
Test mode:	Refer to sect	tion 5.2 for c	letails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humi	d.: 52%	6	Press.:	1012mbar	

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

Test mode: 802.11b Test channel: Lowest	Test mode:	802.11b	Test channel:	Lowest
---	------------	---------	---------------	--------

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)		(dBµV/m)	(dB)	Туре	
2390	61.21	26.20	5.72	33.30	59.83	74.00	-14.17	peak
2390	45.02	26.20	5.72	33.30	43.64	54.00	-10.36	AVG

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	58.88	26.20	5.72	33.30	57.50	74.00	-16.50	peak
2390	44.26	26.20	5.72	33.30	42.88	54.00	-11.12	AVG

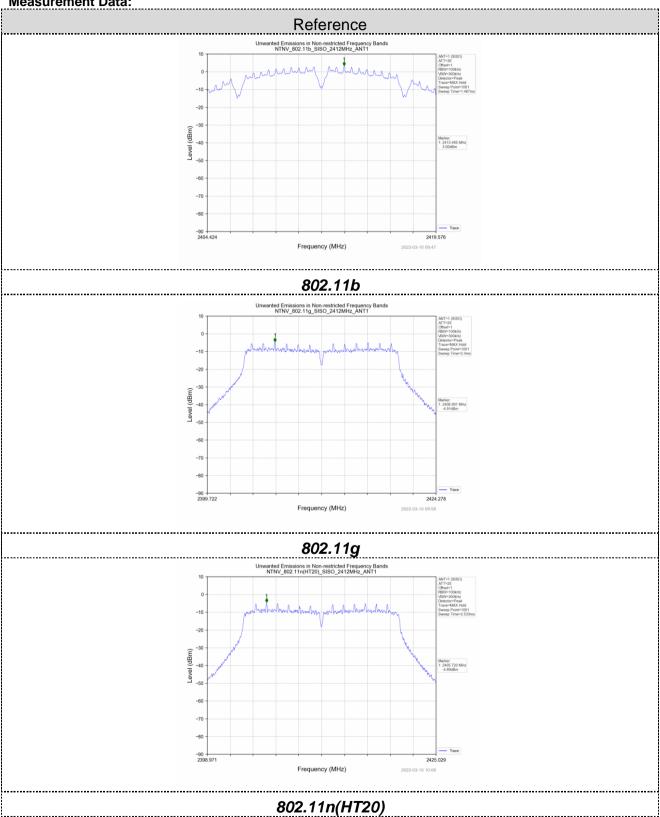
Test mode: 802.11b	Test channel:	Highest
--------------------	---------------	---------

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.80	28.60	6.97	32.70	60.67	74.00	-13.33	peak
2483.5	42.26	28.60	6.97	32.70	45.13	54.00	-8.87	AVG

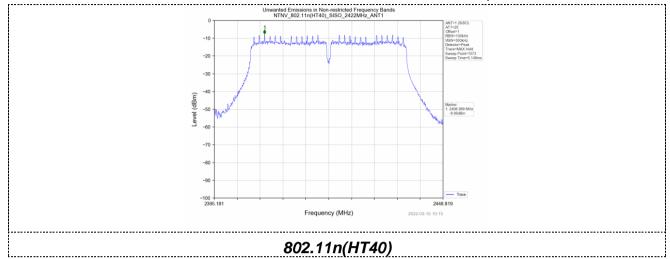
Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBuV/m)	(dB)	
(1711 12)	(авру)	(dD/III)	(GD)	(GD)	(аБД 7/111)	(αΒμν/ιιι)	(45)	
2483.5	55.50	28.60	6.97	32.70	58.37	74.00	-15.63	peak
2483.5	42.11	28.60	6.97	32.70	44.98	54.00	-9.02	AVG

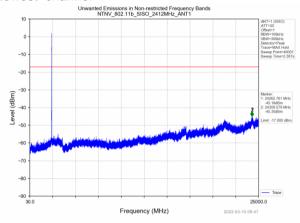

6.6. Spurious Emission

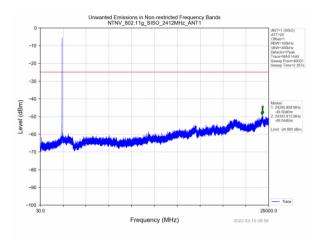
6.6.1. Conducted Emission Method

Test Requirement:	FCC Part15	C Section 15	5.247 (d)			
Test Method:	KDB558074	D01 15.247	Meas Guida	nce v05r02		
Limit:	spectrum into is produced the 100 kHz	entional radi by the intent bandwidth power, bas	iator is opera ional radiato within the ba	ating, the rac r shall be at l and that cont	pand in which dio frequency least 20 dB b ains the high onducted or	power that elow that in lest level of
Test setup:	Spec					
Test Instruments:	Refer to sect	tion 6.0 for d	etails			
Test mode:	Refer to sect	tion 5.2 for d	etails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

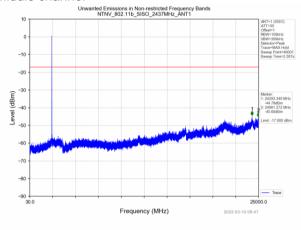


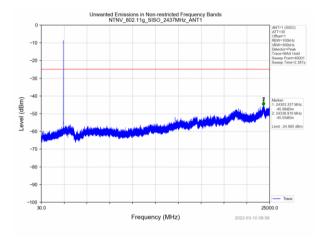
Measurement Data:



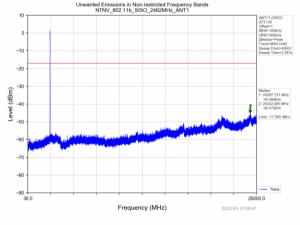


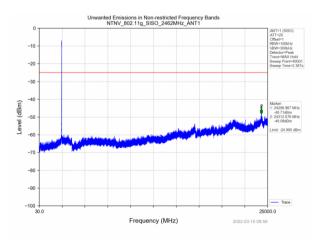
802.11b 802.11g


Lowest channel



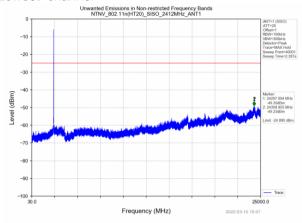
30MHz~25GHz

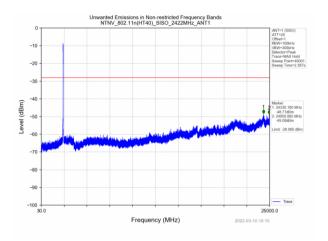

Middle channel



30MHz~25GHz

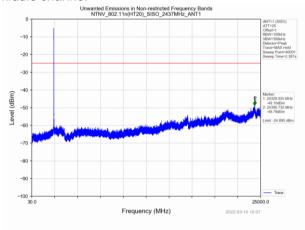
Highest channel

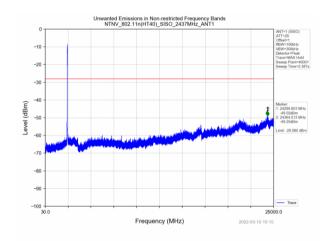

30MHz~25GHz



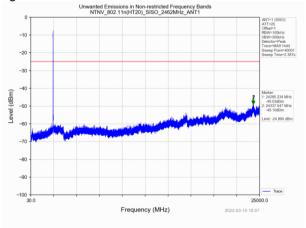
802.11n(HT20)

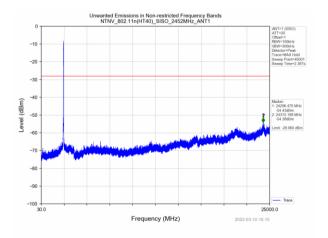
802.11n(HT40)


Lowest channel



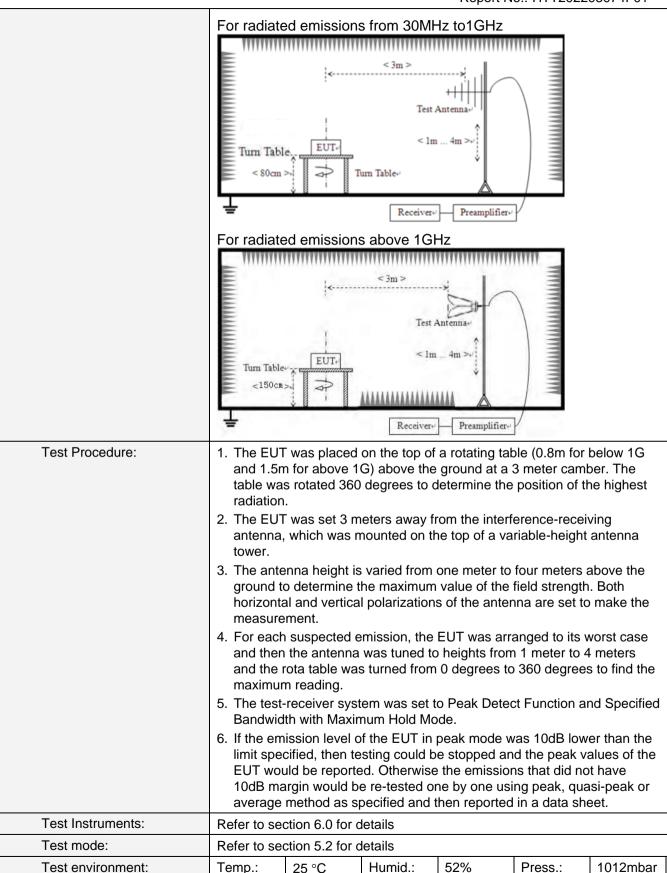
30MHz~25GHz


Middle channel



30MHz~25GHz

Highest channel


30MHz~25GHz

6.6.2. Radiated Emission Method

0.0.2.	ateu Liiiissioii Wetiiou								
Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013								
Test Frequency Ran	ge: 9kHz to 25GHz								
Test site:	Measurement Distar	nce: (3m						
Receiver setup:	Frequency		Detector	RBV	٧	VBW	'	Value	
	9KHz-150KHz	Qι	ıasi-peak	200H	Ηz	600Hz	Z	Quasi-peak	
	150KHz-30MHz	Qι	ıasi-peak	9KH	lz	30KH:	Z	Quasi-peak	
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak	
	Above 1GHz		Peak	1MF	łz	3MHz	<u> </u>	Peak	
	Above 1GHz		Peak	1MH	lz	10Hz	<u>'</u>	Average	
Limit:	Frequency				٧	'alue	N	Measurement Distance	
	0.009MHz-0.490M	1Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	1Hz	24000/F(KHz)		QP		30m	
	1.705MHz-30MH	1.705MHz-30MHz				QP		30m	
	30MHz-88MHz	30MHz-88MHz				QP			
	88MHz-216MHz	88MHz-216MHz				QP			
	216MHz-960MH	z	200			QP		3m	
	960MHz-1GHz	960MHz-1GHz				QP		OIII	
	Above 1GHz	Above 1GHz		500		Average			
	7,0070 10112			5000		Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	Z			
For radiated emissions from 9kHz to 30MHz Test Antenna Tum Table Tum Table									
	< 80cm >-	T	um Table↔	Receiver	~		TYTY		

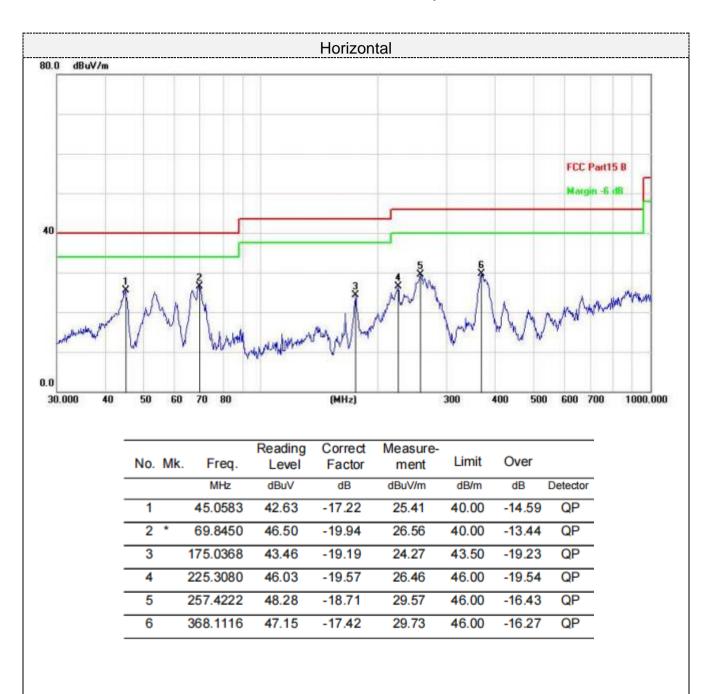
Tel: 0755-23595200 Fax: 0755-23595201

Test voltage:	AC 120V, 60Hz
Test results:	Pass

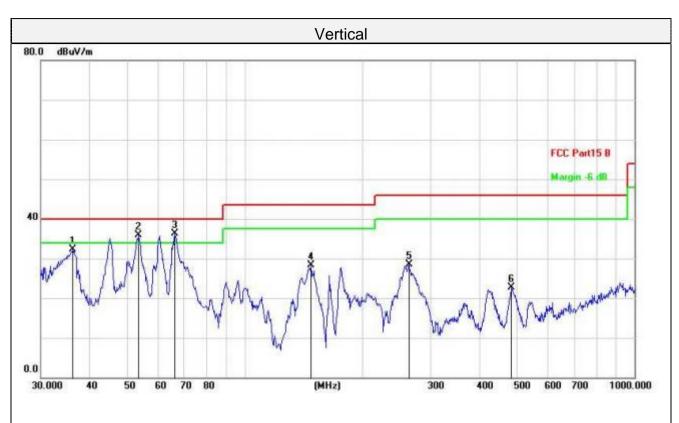
Remarks:

- 1. Only the worst case Main Antenna test data.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


■ Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		36.2541	50.30	-17.90	32.40	40.00	-7.60	QP
2	!	53.5052	53.39	-17.52	35.87	40.00	-4.13	QP
3	*	66.2661	55.57	-19.28	36.29	40.00	-3.71	QP
4		147.9214	46.28	-17.88	28.40	43.50	-15.10	QP
5		263.8190	46.79	-18.37	28.42	46.00	-17.58	QP
6		483.9094	36.67	-14.06	22.61	46.00	-23.39	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:Lowest

Horizontal:

	nzontai.	Α .		_				
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
,	(* 1 /	(/	(- /	(- /	(, , ,	(* 1 * /	(- /	71-
4824	51.11	31.40	8.18	31.50	59.19	74.00	-14.81	peak
4824	37.15	31.40	8.18	31.50	45.23	54.00	-8.77	AVG
7236	45.31	35.80	10.83	31.40	60.54	74.00	-13.46	peak
7236	28.15	35.80	10.83	31.40	43.38	54.00	-10.62	AVG
Remark: Facto	or = Antenna Fact	tor + Cable Los	s – Pre-amplifier	•				

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
	(-) 0							Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.37	31.40	8.18	31.50	60.45	74.00	-13.55	peak
4824	35.15	31.40	8.18	31.50	43.23	54.00	-10.77	AVG
7236	44.44	35.80	10.83	31.40	59.67	74.00	-14.33	peak
7236	27.99	35.80	10.83	31.40	43.22	54.00	-10.78	AVG

802.11b:Middle

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	51.30	31.40	9.17	32.10	59.77	74.00	-14.23	peak
4874	37.23	31.40	9.17	32.10	45.70	54.00	-8.30	AVG
7311	43.78	35.80	10.83	31.40	59.01	74.00	-14.99	peak
7311	28.12	35.80	10.83	31.40	43.35	54.00	-10.65	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4874	51.20	31.40	9.17	32.10	59.67	74.00	-14.33	peak
4874	36.12	31.40	9.17	32.10	44.59	54.00	-9.41	AVG
7311	44.15	35.80	10.83	31.40	59.38	74.00	-14.62	peak
7311	27.85	35.80	10.83	31.40	43.08	54.00	-10.92	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

802.11b:Highest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detecto
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	50.05	31.40	9.17	32.10	58.52	74	-15.48	peak
4924	35.12	31.40	9.17	32.10	43.59	54	-10.41	AVG
7386	43.85	35.80	10.83	31.40	59.08	74	-14.92	peak
7386	28.87	35.80	10.83	31.40	44.1	54	-9.9	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	50.88	31.40	9.17	32.10	59.35	74	-14.65	peak
4924	35.30	31.40	9.17	32.10	43.77	54	-10.23	AVG
7386	43.90	35.80	10.83	31.40	59.13	74	-14.87	peak
7386	27.60	35.80	10.83	31.40	42.83	54	-11.17	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark:

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----