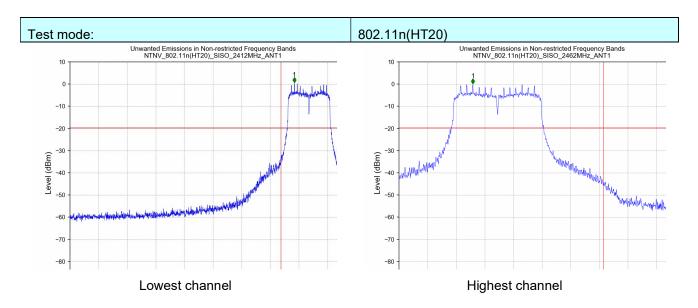
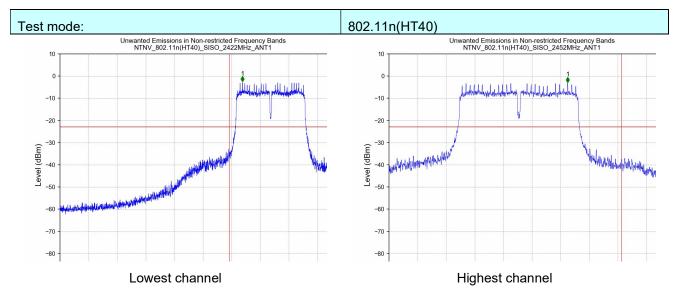

6.5. Band Edge

6.5.1. Conducted Emission Method


Test Requirement:	FCC Part15	C Section 1	5.247 (d)						
Test Method:	KDB558074	4 D01 15.247	Meas Guida	ance v05r02					
Limit:	spectrum ir is produced the 100 kH	ntentional rac l by the inten z bandwidth d power, ba	liator is oper tional radiato within the b	e frequency brating, the racer shall be at and that conter an RF c	dio frequency least 20 dB b ains the high	power that pelow that in nest level of			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane								
Test Instruments:	Refer to see	ction 6.0 for o	details						
Test mode:	Refer to see	ction 5.2 for o	letails						
Test results:	Pass								
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							



Test plot as follows:

6.5.2. Radiated Emission Method

		iiiou						
Test Requirement:	FCC Part15	C Section 1	5.209 a	and 15.20	5			
Test Method:	ANSI C63.10	D: 2013						
Test Frequency Range:	All of the res 2500MHz) da			tested, on	ly the wo	orst band's (2	2310MHz to	
Test site:	Measuremer	nt Distance:	3m					
Receiver setup:	Frequency			RBW	VBV		emark	
	Above 1GF	Iz Pea		1MHz 1MHz	3MH 10H:		k Value ge Value	
Limit:	Free	quency	L	_imit (dBu'			emark	
	Abov	/e 1GHz		54. 74.			ge Value k Value	
Test setup:	Test Antenna. Compared to the compared to t							
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 							
Test Instruments:	Refer to sect	•			- - 5 5 4	in a data sh		
Test mode:	Refer to sect							
Test results:	Pass							
Test environment:		25 °C	Humi	d.: 52	%	Press.:	1012mbar	

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

Total mode.		Test mode:	802.11b	Test channel:	Lowest
-------------	--	------------	---------	---------------	--------

Horizontal (Worst case)

Frequency	Meter Reading	Ántenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	61.35	26.2	5.72	33.3	59.97	74	-14.03	peak
2390	47.8	26.2	5.72	33.3	46.42	54	-7.58	AVG

Vertical:

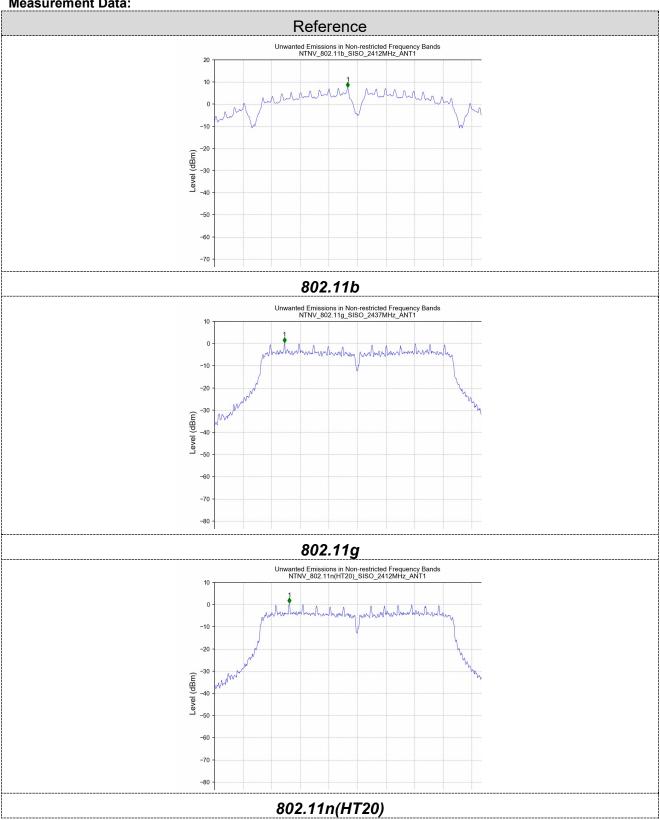
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	58.88	26.2	5.72	33.3	57.5	74	-16.5	peak
2390	46.36	26.2	5.72	33.3	44.98	54	-9.02	AVG

Test mode:	802.11b	Test channel:	Highest
1 dot mode.	002.115	1 oot onamic.	riigiioot

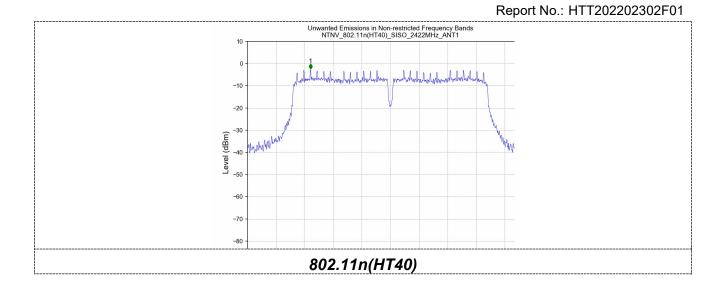
Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	56.09	28.6	6.97	32.7	58.96	74	-15.04	peak
2483.5	41.88	28.6	6.97	32.7	44.75	54	-9.25	AVG

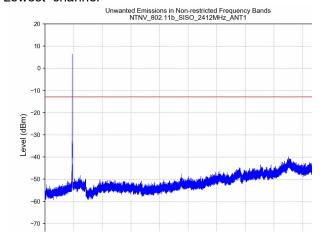
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level Limits Ma		Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.08	28.6	6.97	32.7	59.95	74	-14.05	peak
2483.5	43.08	28.6	6.97	32.7	45.95	54	-8.05	AVG

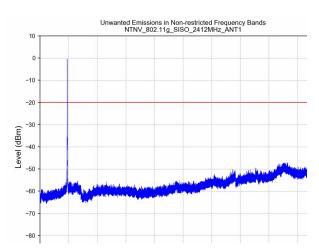

6.6. Spurious Emission

6.6.1. Conducted Emission Method

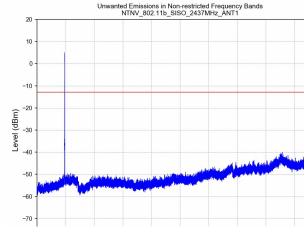

Test Requirement:	FCC Part15	C Section 15	5 247 (d)											
•			. ,											
Test Method:	KDB558074	D01 15.247	Meas Guida	nce v05r02										
Limit:	In any 100 k spectrum into is produced the 100 kHz the desired measuremer	entional radi by the intent bandwidth power, bas	iator is opera ional radiato within the ba	ating, the rac r shall be at l and that cont	least 20 dB b ains the high	power that elow that in nest level of								
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane													
Test Instruments:	Refer to sect	tion 6.0 for d	etails											
Test mode:	Refer to sect	tion 5.2 for d	etails											
Test results:	Pass													
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

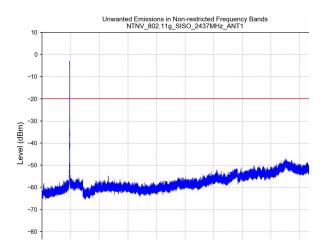
Measurement Data:



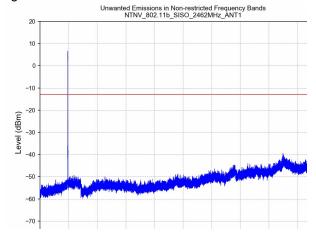


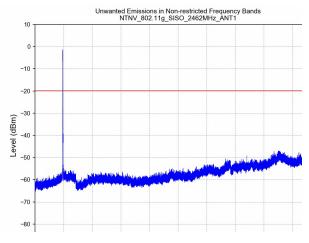
802.11b 802.11g


Lowest channel



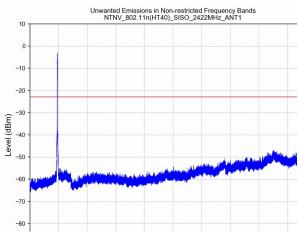
30MHz~25GHz


Middle channel

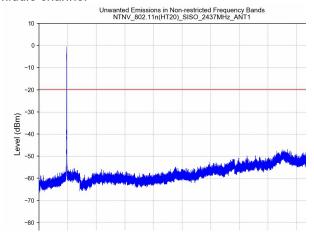


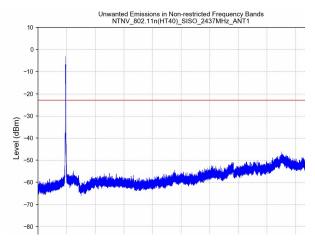
30MHz~25GHz

Highest channel

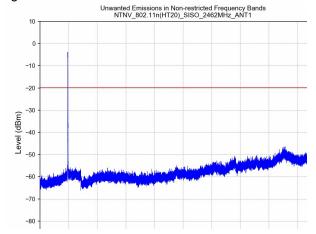


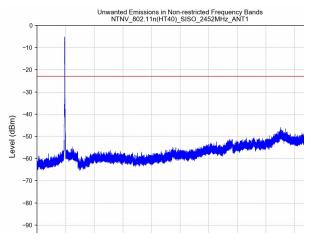
30MHz~25GHz


802.11n(HT20) 802.11n(HT40) Lowest channel



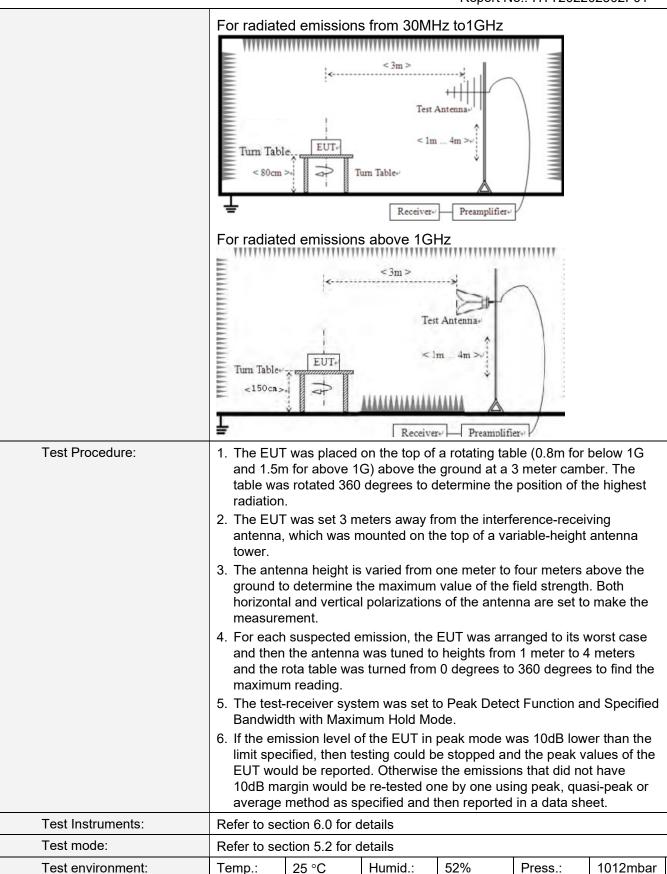
30MHz~25GHz


Middle channel



30MHz~25GHz

Highest channel


30MHz~25GHz

6.6.2. Radiated Emission Method

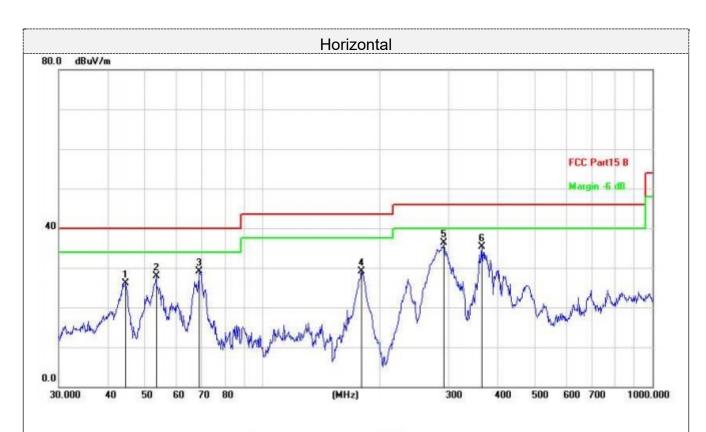
C.C.Z. Nadiated Liniosion Method										
Test Requirement:	FCC Part15 C Section	on 15	5.209							
Test Method:	ANSI C63.10:2013									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement Distar	nce: 3	3m							
Receiver setup:	Frequency		Detector	RBV	٧	VBW	'	Value		
	9KHz-150KHz	Qı	Quasi-peak 200Hz		600Hz	Z	Quasi-peak			
	150KHz-30MHz	Qı	ıasi-peak	9KH	lz 30KH		Z	Quasi-peak		
	30MHz-1GHz	Qι	ıasi-peak	120K	Hz	300KH	lz	Quasi-peak		
	Above 1GHz		Peak	1M⊢	lz	3MHz	<u>z</u>	Peak		
	Above 19112		Peak	1M⊢	lz	10Hz		Average		
Limit:	Frequency							Measurement Distance		
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP		300m		
	0.490MHz-1.705M	0.490MHz-1.705MHz				QP		30m		
	1.705MHz-30MH	30			QP		30m			
	30MHz-88MHz		100			QP				
	88MHz-216MHz	<u> </u>	150			QP				
	216MHz-960MH	Z	200			QP	3m			
	960MHz-1GHz	500			QP		OIII			
	Above 1GHz		500		Average					
	718878 18112	Above IGHZ		5000		Peak				
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH:	Z				
	*************************************	77777	-2->	*******	*****	********	1111111			
Tum Table Tum Table Im Receiver										

Test voltage:	AC 120V, 60Hz
Test results:	Pass

Remarks:

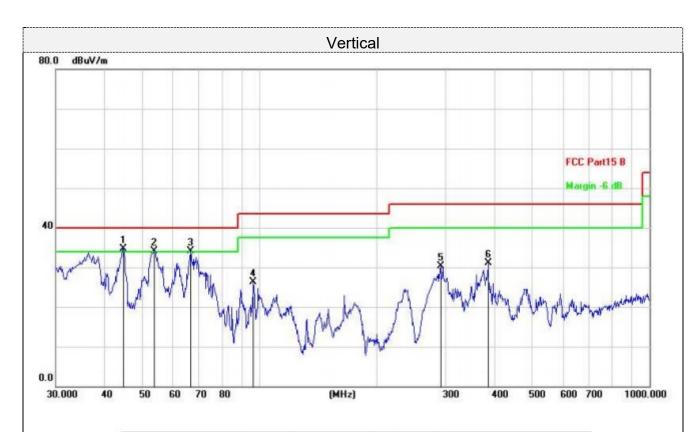
- 1. Only the worst case Main Antenna test data.
- 2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

■ Below 1GHz


Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
	44.5868	43.38	-17.24	26.14	40.00	-13.86	QP
	53.3179	45.33	-17.50	27.83	40.00	-12.17	QP
	68.8721	48.80	-19.76	29.04	40.00	-10.96	QP
	179.3863	48.56	-19.40	29.16	43.50	-14.34	QP
*	292.0583	53.57	-17.30	36.27	46.00	-9.73	QP
	364.2595	52.62	-17.25	35.37	46.00	-10.63	QP
	*	MHz 44.5868 53.3179 68.8721 179.3863	Mk. Freq. Level MHz dBuV 44.5868 43.38 53.3179 45.33 68.8721 48.80 179.3863 48.56 * 292.0583 53.57	Mk. Freq. Level Factor MHz dBuV dB 44.5868 43.38 -17.24 53.3179 45.33 -17.50 68.8721 48.80 -19.76 179.3863 48.56 -19.40 * 292.0583 53.57 -17.30	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m 44.5868 43.38 -17.24 26.14 53.3179 45.33 -17.50 27.83 68.8721 48.80 -19.76 29.04 179.3863 48.56 -19.40 29.16 * 292.0583 53.57 -17.30 36.27	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dB/m 44.5868 43.38 -17.24 26.14 40.00 53.3179 45.33 -17.50 27.83 40.00 68.8721 48.80 -19.76 29.04 40.00 179.3863 48.56 -19.40 29.16 43.50 * 292.0583 53.57 -17.30 36.27 46.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dB/m dB 44.5868 43.38 -17.24 26.14 40.00 -13.86 53.3179 45.33 -17.50 27.83 40.00 -12.17 68.8721 48.80 -19.76 29.04 40.00 -10.96 179.3863 48.56 -19.40 29.16 43.50 -14.34 * 292.0583 53.57 -17.30 36.27 46.00 -9.73

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	*	44.7433	52.13	-17.42	34.71	40.00	-5.29	QP
2	1	53.6931	51.73	-17.54	34.19	40.00	-5.81	QP
3	1	66.4989	53.33	-19.32	34.01	40.00	-5.99	QP
4		96.4362	47.53	-21.27	26.26	43.50	-17.24	QP
5		291.0360	47.66	-17.29	30.37	46.00	-15.63	QP
6		385.2805	46.82	-15.65	31.17	46.00	-14.83	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:Lowest

Horizontal:

	nizoritar.							
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	53.19	31.40	8.18	31.50	61.27	74.00	-12.73	peak
4824	38.57	31.40	8.18	31.50	46.65	54.00	-7.35	AVG
7236	41.92	35.80	10.83	31.40	57.15	74.00	-16.85	peak
7000	07.07	05.00	40.00	0.4.40	40.00	54.00		11/0
7236	27.67	35.80	10.83	31.40	42.90	54.00	-11.10	AVG
Remark: Facto	or = Antenna Fact	or + Cable Los	s – Pre-amplifier					

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
								ĺ
4824	52.30	31.40	8.18	31.50	60.38	74.00	-13.62	peak
4004		04.40	0.40	04.50	44.00	54.00		
4824	36.91	31.40	8.18	31.50	44.99	54.00	-9.01	AVG
7236	45.82	35.80	10.83	31.40	61.05	74.00	-12.95	peak
7230	45.02	33.00	10.03	31.40	01.03	74.00	-12.93	реак
7236	27.91	35.80	10.83	31.40	43.14	54.00	-10.86	AVG
	1		I .	I .			1	I
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	r.				

802.11b:Middle

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	52.39	31.40	9.17	32.10	60.86	74.00	-13.14	peak
4874	37.15	31.40	9.17	32.10	45.62	54.00	-8.38	AVG
7311	43.08	35.80	10.83	31.40	58.31	74.00	-15.69	peak
7311	28.11	35.80	10.83	31.40	43.34	54.00	-10.66	AVG

	Antenna		Preamp				
Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
							Detector
(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
52.68	31.40	9.17	32.10	61.15	74.00	-12.85	peak
38.71	31.40	9.17	32.10	47.18	54.00	-6.82	AVG
45.06	35.80	10.83	31.40	60.29	74.00	-13.71	peak
27.81	35.80	10.83	31.40	43.04	54.00	-10.96	AVG
	(dBµV) 52.68 38.71 45.06 27.81	Meter Reading Factor (dBμV) (dB/m) 52.68 31.40 38.71 31.40 45.06 35.80 27.81 35.80	Meter Reading Factor Cable Loss (dBμV) (dB/m) (dB) 52.68 31.40 9.17 38.71 31.40 9.17 45.06 35.80 10.83 27.81 35.80 10.83	Meter Reading Factor Cable Loss Factor (dBμV) (dB/m) (dB) (dB) 52.68 31.40 9.17 32.10 38.71 31.40 9.17 32.10 45.06 35.80 10.83 31.40 27.81 35.80 10.83 31.40	Meter Reading Factor Cable Loss Factor Emission Level (dBμV) (dB/m) (dB) (dBμV/m) 52.68 31.40 9.17 32.10 61.15 38.71 31.40 9.17 32.10 47.18 45.06 35.80 10.83 31.40 60.29 27.81 35.80 10.83 31.40 43.04	Meter Reading Factor Cable Loss Factor Emission Level Limits (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) 52.68 31.40 9.17 32.10 61.15 74.00 38.71 31.40 9.17 32.10 47.18 54.00 45.06 35.80 10.83 31.40 60.29 74.00 27.81 35.80 10.83 31.40 43.04 54.00	Meter Reading Factor Cable Loss Factor Emission Level Limits Margin (dBμV) (dB/m) (dB) (dB) (dBμV/m) (dBμV/m) (dB 52.68 31.40 9.17 32.10 61.15 74.00 -12.85 38.71 31.40 9.17 32.10 47.18 54.00 -6.82 45.06 35.80 10.83 31.40 60.29 74.00 -13.71 27.81 35.80 10.83 31.40 43.04 54.00 -10.96

802.11b:Highest

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	52.22	31.40	9.17	32.10	60.69	74	-13.31	peak
4924	37.15	31.40	9.17	32.10	45.62	54	-8.38	AVG
7386	45.15	35.80	10.83	31.40	60.38	74	-13.62	peak
7386	27.66	35.80	10.83	31.40	42.89	54	-11.11	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	49.5	31.40	9.17	32.10	57.97	74	-16.03	peak
4924	37.15	31.40	9.17	32.10	45.62	54	-8.38	AVG
7386	45.02	35.80	10.83	31.40	60.25	74	-13.75	peak
7386	28.1	35.80	10.83	31.40	43.33	54	-10.67	AVG

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----