

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EST REPORT<br>For 2.4GHz devices                                                                                        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
| Report No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CHTEW22070091 Report Verification:                                                                                      |  |  |
| Project No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SHT2203021903EW                                                                                                         |  |  |
| FCC ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2ANIV-QPRO                                                                                                              |  |  |
| Applicant's name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Shenzhen Neewer Technology Co., Ltd                                                                                     |  |  |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023<br>CHUNFENG RD LUO HU DISTRICT, SHENZHEN,<br>GUANGDONG, 518001, CHINA |  |  |
| Product Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TTL Wireless Flash Trigger                                                                                              |  |  |
| Trade Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NEEWER                                                                                                                  |  |  |
| Model No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | QPro-C                                                                                                                  |  |  |
| Listed Model(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | QPro-N, QPro-S                                                                                                          |  |  |
| Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FCC CFR Title 47 Part 15 Subpart C Section 15.249                                                                       |  |  |
| Date of receipt of test sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mar.21, 2022                                                                                                            |  |  |
| Date of testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mar.21, 2022- Jul.19, 2022                                                                                              |  |  |
| Date of issue:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jul.20, 2022                                                                                                            |  |  |
| Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PASS                                                                                                                    |  |  |
| Compiled by<br>( Position+Printed name+Signature):                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | File administrator Echo Wei                                                                                             |  |  |
| Supervised by (Position+Printed name+Signature):                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Engineer Kiki Kong                                                                                              |  |  |
| Approved by<br>(Position+Printed name+Signature):                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RF Manager Hans Hu                                                                                                      |  |  |
| Testing Laboratory Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Shenzhen Huatongwei International Inspection Co., Ltd.                                                                  |  |  |
| Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road,<br>Tianliao, Gongming, Shenzhen, China                         |  |  |
| Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                         |  |  |
| This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample. |                                                                                                                         |  |  |

# Contents

| <u>1.</u>                                            | TEST STANDARDS AND REPORT VERSION                                                                                                                                                                                                                  | 3                                      |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| 1.1.<br>1.2.                                         | Test Standards<br>Report version                                                                                                                                                                                                                   | 3<br>3                                 |
| <u>2.</u>                                            | TEST DESCRIPTION                                                                                                                                                                                                                                   | 4                                      |
| <u>3.</u>                                            | SUMMARY                                                                                                                                                                                                                                            | 5                                      |
| 3.1.<br>3.2.<br>3.3.<br>3.4.                         | Client Information<br>Product Description<br>Radio Specification Description<br>Testing Laboratory Information                                                                                                                                     | 5<br>5<br>5<br>6                       |
| <u>4.</u>                                            | TEST CONFIGURATION                                                                                                                                                                                                                                 | 7                                      |
| 4.1.<br>4.2.<br>4.3.<br>4.4.<br>4.5.<br>4.6.<br>4.7. | Test frequency list<br>Descriptions of Test mode<br>Test sample information<br>Support unit used in test configuration and system<br>Testing environmental condition<br>Statement of the measurement uncertainty<br>Equipment Used during the Test | 7<br>7<br>8<br>8<br>8<br>8<br>9        |
| <u>5.</u>                                            | TEST CONDITIONS AND RESULTS                                                                                                                                                                                                                        | 11                                     |
| 5.1.<br>5.2.<br>5.3.<br>5.4.<br>5.5.<br>5.6.<br>5.7. | Antenna Requirement<br>AC Conducted Emission<br>20dB bandwidth<br>99% Occupied Bandwidth<br>Radiated field strength of the fundamental signal<br>Radiated Band edge Emission<br>Radiated Spurious Emission                                         | 11<br>12<br>13<br>15<br>17<br>19<br>21 |
| <u>6.</u>                                            | TEST SETUP PHOTOS                                                                                                                                                                                                                                  | 26                                     |
| <u>7.</u>                                            | EXTERNAL AND INTERNAL PHOTOS OF THE EUT                                                                                                                                                                                                            | 28                                     |
| 7.1.<br>7.2.                                         | External Photos<br>Internal Photos                                                                                                                                                                                                                 | 28<br>30                               |

# 1. TEST STANDARDS AND REPORT VERSION

# 1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.
- <u>ANSI C63.10:2013:</u> American National Standard for Testing Unlicensed Wireless Devices

# 1.2. Report version

| Revision No. | Date of issue | Description |
|--------------|---------------|-------------|
| N/A          | 2022-07-20    | Original    |
|              |               |             |
|              |               |             |
|              |               |             |
|              |               |             |

4 of 31

2022-07-20

# 2. TEST DESCRIPTION

| Report<br>clause | Test Items                                        | Standard Requirement   | Result             | Test Engineer |
|------------------|---------------------------------------------------|------------------------|--------------------|---------------|
| 5.1              | Antenna Requirement                               | 15.203                 | PASS               | Quanhai Deng  |
| 5.2              | AC Conducted Emission                             | 15.207                 | N/A                | N/A           |
| 5.3              | 20dB Bandwidth                                    | 15.215/15.249          | PASS               | Quanhai Deng  |
| 5.4              | 99% Occupied Bandwidth                            | -                      | PASS <sup>*1</sup> | Quanhai Deng  |
| 5.5              | Radiated field strength of the fundamental signal | 15.249(a)              | PASS               | Quanhai Deng  |
| 5.6              | Radiated Band Edge Emission                       | 15.249(a)15.205/15.209 | PASS               | Quanhai Deng  |
| 5.7              | Radiated Spurious Emission                        | 15.249(d)15.205/15.209 | PASS               | Hongbin Zhong |

Note:

The measurement uncertainty is not included in the test result. \_

\*1: No requirement on standard, only report these test data. \_

# 3. SUMMARY

## 3.1. Client Information

| Applicant:    | Shenzhen Neewer Technology Co., Ltd                                                                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Address:      | ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023 CHUNFENG<br>RD LUO HU DISTRICT, SHENZHEN, GUANGDONG, 518001, CHINA                                                                              |
| Manufacturer: | Shenzhen Neewer Technology Co., Ltd                                                                                                                                                               |
| Address:      | ROOM 1901-1903, Block A, LU SHAN BUILDING NO.3023 CHUNFENG<br>RD LUO HU DISTRICT, SHENZHEN, GUANGDONG, 518001, CHINA                                                                              |
| Factory:      | Shenzhen Xingyingda Industrial Co., Ltd.                                                                                                                                                          |
| Address:      | 401,No.2 Factory Building, Chuangweiqunxin Science and Technology<br>Park, No.1 Baolong 6 Road, Baolong Community, Baolong Street,<br>Longgang District, Shenzhen City, Guangdong Province, China |

# 3.2. Product Description

| Main unit information: |                                 |
|------------------------|---------------------------------|
| Product Name:          | TTL Wireless Flash Trigger      |
| Trade Mark:            | NEEWER                          |
| Model No.:             | QPro-C                          |
| Listed Model(s):       | QPro-N, QPro-S                  |
| Power supply:          | DC 3.0V from 2* AA size battery |
| Hardware version:      | V1.1                            |
| Software version:      | V1.01                           |

## 3.3. Radio Specification Description

| Operation frequency: | 2412.75-2464.25MHz |
|----------------------|--------------------|
| Channel number:      | 31                 |
| Modulation:          | MSK                |
| Antenna type:        | FPC Antenna        |
| Antenna gain:        | 3.46dBi            |

# 3.4. Testing Laboratory Information

| Laboratory Name      | Shenzhen Huatongwei International Inspection Co., Ltd.                                          |                      |  |
|----------------------|-------------------------------------------------------------------------------------------------|----------------------|--|
| Laboratory Location  | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao,<br>Gongming, Shenzhen, China |                      |  |
| Connect information: | Phone: 86-755-26715499<br>E-mail: <u>cs@szhtw.com.cn</u><br><u>http://www.szhtw.com.cn</u>      |                      |  |
| Qualifications       | Туре                                                                                            | Accreditation Number |  |
| Qualifications       | FCC                                                                                             | 762235               |  |

# 4. TEST CONFIGURATION

## 4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

| Channel No.           | Frequency (MHz) | Channel No.           | Frequency (MHz) |
|-----------------------|-----------------|-----------------------|-----------------|
| 00 (CH <sub>L</sub> ) | 2412.75         | 16                    | 2439.25         |
| 01                    | 2414.25         | 17                    | 2441.50         |
| 02                    | 2415.75         | 18                    | 2442.75         |
| 03                    | 2417.75         | 19                    | 2444.25         |
| 04                    | 2419.25         | 20                    | 2446.50         |
| 05                    | 2420.75         | 21                    | 2447.75         |
| 06                    | 2422.75         | 22                    | 2449.25         |
| 07                    | 2424.25         | 23                    | 2451.50         |
| 08                    | 2426.50         | 24                    | 2452.75         |
| 09                    | 2427.75         | 25                    | 2454.25         |
| 10                    | 2429.25         | 26                    | 2456.50         |
| 11                    | 2431.50         | 27                    | 2457.75         |
| 12                    | 2432.75         | 28                    | 2459.25         |
| 13                    | 2434.25         | 29                    | 2461.50         |
| 14 (CH <sub>M</sub> ) | 2436.00         | 30                    | 2462.75         |
| 15                    | 2437.75         | 31 (CH <sub>H</sub> ) | 2464.25         |

## 4.2. Descriptions of Test mode

#### For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

## 4.3. Test sample information

| Test item               | HTW sample no.  |
|-------------------------|-----------------|
| RF Conducted test items | YPHT22030219002 |
| RF Radiated test items  | YPHT22030219002 |
| EMI test items          | YPHT22030219002 |

Note:

RF Conducted test items: 20dB Bandwidth,99% Occupied Bandwidth,

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission, Radiated field strength of the fundamental signal

EMI test items : AC Conducted Emission

## 4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

| Whether support unit is used? |           |            |           |
|-------------------------------|-----------|------------|-----------|
| ✓ No                          |           |            |           |
| Item                          | Equipment | Trade Name | Model No. |
| 1                             |           |            |           |
| 2                             |           |            |           |

## 4.5. Testing environmental condition

| Туре               | Requirement  | Actual   |
|--------------------|--------------|----------|
| Temperature:       | 15~35°C      | 25°C     |
| Relative Humidity: | 25~75%       | 50%      |
| Air Pressure:      | 860~1060mbar | 1000mbar |

## 4.6. Statement of the measurement uncertainty

| Test Item                            | Measurement Uncertainty           |
|--------------------------------------|-----------------------------------|
| AC Conducted Emission (150kHz~30MHz) | 3.00 dB                           |
| Radiated Emission (30MHz~1000MHz     | 4.36 dB                           |
| Radiated Emissions (1GHz~25GHz)      | 5.10 dB                           |
| Peak Output Power                    | 0.77dB                            |
| Power Spectral Density               | 0.77dB                            |
| Conducted Spurious Emission          | 0.77dB                            |
| 6dB Bandwidth                        | 70Hz for <1GHz<br>130Hz for >1GHz |

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

| •    | Conducted E            | mission            |               |                    |                   |                              |                              |
|------|------------------------|--------------------|---------------|--------------------|-------------------|------------------------------|------------------------------|
| Used | Test Equipment         | Manufacturer       | Equipment No. | Model No.          | Serial No.        | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |
| •    | Shielded Room          | Albatross projects | HTWE0114      | N/A                | N/A               | 2018/09/28                   | 2023/09/27                   |
| •    | EMI Test<br>Receiver   | R&S                | HTWE0111      | ESCI               | 101247            | 2021/09/14                   | 2022/09/13                   |
| •    | Artificial Mains       | SCHWARZBECK        | HTWE0113      | NNLK 8121          | 573               | 2021/09/17                   | 2022/09/16                   |
| •    | Pulse Limiter          | R&S                | HTWE0193      | ESH3-Z2            | 101447            | 2021/09/16                   | 2022/09/15                   |
| •    | RF Connection<br>Cable | HUBER+SUHNER       | HTWE0113-02   | ENVIROFLE<br>X_142 | EF-NM-<br>BNCM-2M | 2021/09/17                   | 2022/09/16                   |
| •    | Test Software          | R&S                | N/A           | ES-K1              | N/A               | N/A                          | N/A                          |

# 4.7. Equipment Used during the Test

| •    | Radiated emi               | ssion-6th test sit | te            |             |            |                              |                              |
|------|----------------------------|--------------------|---------------|-------------|------------|------------------------------|------------------------------|
| Used | Test Equipment             | Manufacturer       | Equipment No. | Model No.   | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |
| •    | Semi-Anechoic<br>Chamber   | Albatross projects | HTWE0127      | SAC-3m-02   | C11121     | 2018/09/30                   | 2022/09/29                   |
| •    | EMI Test<br>Receiver       | R&S                | HTWE0099      | ESCI        | 100900     | 2021/09/14                   | 2022/09/13                   |
| •    | Loop Antenna               | R&S                | HTWE0170      | HFH2-Z2     | 100020     | 2021/04/06                   | 2024/04/05                   |
| •    | Ultra-Broadband<br>Antenna | SCHWARZBECK        | HTWE0123      | VULB9163    | 538        | 2021/04/06                   | 2024/04/05                   |
| •    | Pre-Amplifer               | SCHWARZBECK        | HTWE0295      | BBV 9742    | N/A        | 2021/11/05                   | 2022/11/04                   |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0062-01   | N/A         | N/A        | 2022/02/25                   | 2023/02/24                   |
| •    | RF Connection<br>Cable     | HUBER+SUHNER       | HTWE0062-02   | SUCOFLEX104 | 501184/4   | 2022/02/25                   | 2023/02/24                   |
| •    | Test Software              | R&S                | N/A           | ES-K1       | N/A        | N/A                          | N/A                          |

| •    | Radiated em                 | ission-7th test s  | ite           |                      |             |                              |                              |
|------|-----------------------------|--------------------|---------------|----------------------|-------------|------------------------------|------------------------------|
| Used | Test Equipment              | Manufacturer       | Equipment No. | Model No.            | Serial No.  | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |
| •    | Semi-Anechoic<br>Chamber    | Albatross projects | HTWE0122      | SAC-3m-01            | C11121      | 2018/09/27                   | 2022/09/26                   |
| •    | Spectrum<br>Analyzer        | R&S                | HTWE0098      | FSP40                | 100597      | 2021/09/13                   | 2022/09/12                   |
| •    | Horn Antenna                | SCHWARZBECK        | HTWE0126      | 9120D                | 1011        | 2020/04/01                   | 2023/03/31                   |
| •    | Broadband<br>Horn Antenna   | SCHWARZBECK        | HTWE0103      | BBHA9170             | BBHA9170472 | 2020/04/27                   | 2023/04/26                   |
| •    | Pre-amplifier               | CD                 | HTWE0071      | PAP-0102             | 12004       | 2021/11/05                   | 2022/11/04                   |
| •    | Broadband Pre-<br>amplifier | SCHWARZBECK        | HTWE0201      | BBV 9718             | 9718-248    | 2022/02/28                   | 2023/02/27                   |
| •    | RF Connection<br>Cable      | HUBER+SUHNER       | HTWE0120-01   | 6m 18GHz<br>S Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |
| •    | RF Connection<br>Cable      | HUBER+SUHNER       | HTWE0120-02   | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |
| •    | RF Connection<br>Cable      | HUBER+SUHNER       | HTWE0119-05   | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |
| •    | RF Connection<br>Cable      | HUBER+SUHNER       | HTWE0120-04   | 6m 3GHz<br>RG Serisa | N/A         | 2022/02/25                   | 2023/02/24                   |
| •    | Test Software               | Audix              | N/A           | E3                   | N/A         | N/A                          | N/A                          |

| •    | RF Conducted Method             |              |           |            |                              |                              |
|------|---------------------------------|--------------|-----------|------------|------------------------------|------------------------------|
| Used | Test Equipment                  | Manufacturer | Model No. | Serial No. | Last Cal. Date<br>(YY-MM-DD) | Next Cal. Date<br>(YY-MM-DD) |
| •    | Signal and spectrum<br>Analyzer | R&S          | FSV40     | 100048     | 2021/09/13                   | 2022/09/12                   |
| •    | Spectrum Analyzer               | Agilent      | N9020A    | MY50510187 | 2021/09/13                   | 2022/09/12                   |
| •    | Power Meter                     | Anritsu      | ML249A    | N/A        | 2021/09/13                   | 2022/09/12                   |
| 0    | Radio communication tester      | R&S          | CMW500    | 137688-Lv  | 2021/09/13                   | 2022/09/12                   |

## 5.1. Antenna Requirement

## REQUIREMENT

## FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

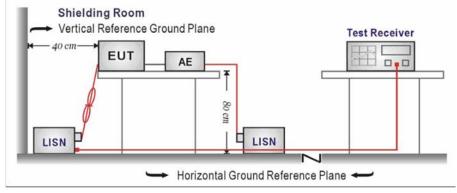
## TEST RESULT

## ☑ Passed □ Not Applicable

The antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi, please refer to the below antenna photo.



## 5.2. AC Conducted Emission


## <u>LIMIT</u>

### FCC CFR Title 47 Part 15 Subpart C Section 15.207

|                       | Limit (dBuV) |           |  |  |
|-----------------------|--------------|-----------|--|--|
| Frequency range (MHz) | Quasi-peak   | Average   |  |  |
| 0.15-0.5              | 66 to 56*    | 56 to 46* |  |  |
| 0.5-5                 | 56           | 46        |  |  |
| 5-30                  | 60           | 50        |  |  |

\* Decreases with the logarithm of the frequency.

## **TEST CONFIGURATION**

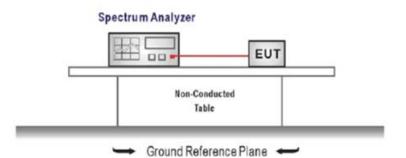


#### TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

## TEST MODE

Please refer to the clause 4.2


## TEST RESULT

## 5.3. 20dB bandwidth

<u>LIMIT</u>

N/A

### **TEST CONFIGURATION**



#### TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency = channel center frequency

Span= approximately 2 to 3 times the 20 dB bandwidth

RBW = 100 kHz, VBW  $\ge$  3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

#### TEST MODE

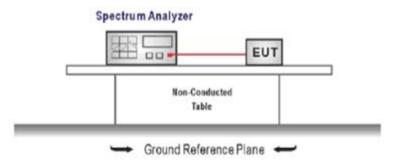
Please refer to the clause 4.2

#### TEST RESULT

#### ☑ Passed □ Not Applicable

| Test Channel    | 20dB Bandwidth<br>(KHz) | Limit<br>(KHz) | Result |
|-----------------|-------------------------|----------------|--------|
| CHL             | 768.5                   | -              | Pass   |
| CH <sub>M</sub> | 768.5                   | -              | Pass   |
| CH <sub>H</sub> | 764.1                   | -              | Pass   |

Page:


|                 | Spectrum   Imp     Ref Level 20.00 clim.   Offset 1.00 cli e Raw 10 1Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Ref Level 20.00 clim   Offset 1.00 cli = RBW 10.1942   Li     Att   25 cli SWT 199.6 µs = VBW 20.1942   Mode Auto FFT     B/PL Versit   SWT 199.6 µs = VBW 20.1942   Mode Auto FFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | M2[1] 2.46 duto<br>2,4192810 GH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 10 dbm   M2[1]   2.86 dbm     10 dbm   M2[1]   2.4120400 Oct     0 dbm   M2[1]   1.95 A7 dbm     0 dbm   M2[1]   2.41244180 Oct     -10 dbm   M4[.0]   M4[.0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 0 dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | -10 dan<br>-20 dan 01 -17.140 dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | to also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 40 dbn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | CF 2.41275 GHz 691 pts Span 3.0.184z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Markor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | Marker   Trypis   Ref   Trc.   X-value   Y-value   Function     Mil   1   2.4124410 GHz   -10.67 dfm   Function   Function Result     Mil   1   2.412001 GHz   -2.06 dfm   Function   Function     Mil   1   2.412001 GHz   -2.06 dfm   Function   Function     00   Mil   1   70.6 5Hz   2.54 db   Function   Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | MQ   1   2.4120201 GHz   2.06 dHm     DOI   M1   768.5 EHz   2.95 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | Neasuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CH              | Deter 21 APR 2022 15 37 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CHL             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Spectrum (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Ref Level 20.00 clim   Offset 1.00 clip   B RBW 10 1041     Att   35 clip   SWIT   199.6 µs @ VBW 30 1042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 619k View 50211 2:36 dbas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 10 dBm 2,43607810 GH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 | 0 clin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | -10 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | to day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | -30 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | -60 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | CF 2.436 GHz 691 pts Span 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | Marker   Y-ype   Ref   Trc   Y-velue   Y-velue   Function   Function     M1   1   2.4356918 GHz   -10.79 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Marker   Y-value   Y-value   Function     Mil   1   2.430418 GHz   -16.79 dHm     Mil   1   2.430418 GHz   -26.79 dHm     Mil   1   2.430418 GHz   -36.49 dHm     Mil   1   2.430418 GHz   -36.40 dHm     00   Mil   1   70.65 SHz   1.44 dH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Neasuring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | Date: 21 APR 2022 15:35:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CH <sub>M</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Spectrum   (20)     RefLevel 20.00 d/m   Offset 1.00 d/s   RBW 10 1012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | RefLevel 20.00 dBm Offset 1.00 dB e RBW 10.042<br>Att 35 dB SWT 100.6 µs e VBW 30.042 Mode Auto FFT<br>\$P\$P\$. Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | M2[1] 2.09.00v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 10 dkm M2 M1[1] -17.41 dkm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 | -10 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | and when when a week of the second se |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 40 dbm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | -70 dan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | CF 2.46425 GHz 691 pts Spon 3.0 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | Hot   1   2-4443228 GHz   2-203 Bhm     (5)   M1   1   764 L Mrz   1.689 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | Date 21 APR 2022 1534-35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CH <sub>H</sub> | Seets a run na seata incensió                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## 5.4. 99% Occupied Bandwidth

## LIMIT

N/A

## **TEST CONFIGURATION**



## TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold Place the radio in continuous transmit mode, a

3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

### TEST MODE

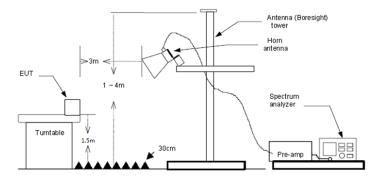
Please refer to the clause 4.2

#### TEST RESULT

#### ☑ Passed □ Not Applicable

| Test Channel    | 99% Occupied Bandwidth<br>(KHz) | Limit<br>(KHz) | Result |
|-----------------|---------------------------------|----------------|--------|
| CH∟             | 768.45                          | -              | Pass   |
| CH <sub>M</sub> | 768.45                          | -              | Pass   |
| CH <sub>H</sub> | 768.45                          | -              | Pass   |

| CHL             | Spectram DBC   100 0000 00000 100000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 000000 0                                                                                                                                                                                        |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CH <sub>M</sub> | Spectnam   Imp     Ref Level 20:00 dim   Offset 1:00 dim & RBW 10:340     Att   2:00 dim     0:00 dim   0:00 dim     0:00 dim                                                        |
| CH <sub>H</sub> | Spectrum Statistics   Figure 20:00 dim Offset 1.00 dim 9.00 dim 0.00 dim |


## 5.5. Radiated field strength of the fundamental signal

<u>LIMIT</u>

| Fundamental frequency | Field strength of fundamental<br>(millivolts/meter) | Field strength of harmonics<br>(microvolts/meter) |
|-----------------------|-----------------------------------------------------|---------------------------------------------------|
| 902-928 MHz           | 50 (94dBuV/m @3m)                                   | 500 (54dBuV/m @3m)                                |
| 2400-2483.5 MHz       | 50 (94dBuV/m @3m)                                   | 500 (54dBuV/m @3m)                                |
| 5725-5875 MHz         | 50 (94dBuV/m @3m)                                   | 500 (54dBuV/m @3m)                                |
| 24.0-24.25 GHz        | 250 (108dBuV/m @3m)                                 | 2500 (68dBuV/m @3m)                               |

Frequencies above 1000 MHz, the field strength limits are based on average limits

## **TEST CONFIGURATION**



## TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
  - a) Span shall wide enough to fully capture the emission being measured
  - b) Set RBW=100kHz for <1GHz, VBW=3\*RBW, Sweep time=auto, Detector=peak, Trace=max hold
  - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

#### TEST MODE

Please refer to the clause 4.2

#### TEST RESULTS

#### ☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Margin = Limit Level

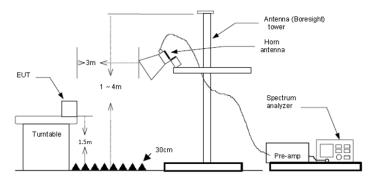
Page: 18 of 31

2022-07-20

| Test channel | C                | CH∟               |               | Pola        | rization     |                 | Но              | rizontal      |         |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Ove<br>limi   |         |
| 1            | 2412.86          | 54.03             | 27.65         | 6.21        | 0.00         | 87.89           | 114.00          | -26.1         | 1 Peak  |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2412.96          | 53.53             | 27.65         | 6.21        | 0.00         | 87.39           | 94.00           | -6.61         | Average |
| Fest channel | 0                | CHL               |               | Pola        | rization     |                 | Ve              | rtical        |         |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2412.82          | 56.66             | 27.65         | 6.21        | 0.00         | 90.52           | 114.00          | -23.48        | Peak    |
| Mark         | Frequency        | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp       | Level<br>dBuV/m | Limit           | Over<br>limit |         |
| 1            | MHz<br>2412.90   | 56.13             | 27.65         | 6.21        | 0.00         | 89.99           | dBuV/m<br>94.00 | -4.01         |         |

| Test channel | С                | Нм                |               | Pola        | rization     |                 | Ho              | rizontal      |         |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB |                 | Limit<br>dBuV/m |               |         |
| 1            | 2436.08          | 55.18             | 27.56         | 6.19        | 0.00         | 88.93           | 114.00          | -25.0         | 7 Peak  |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2435.92          | 53.87             | 27.56         | 6.19        | 0.00         | 87.62           | 94.00           | -6.38         | Average |
| Test channel | С                | H <sub>M</sub>    |               | Pola        | rization     |                 | Ve              | rtical        |         |
| Mark         | Frequency        | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB |                 | Limit<br>dBuV/m |               |         |
| 1            | 2436.12          | 56.35             | 27.56         | 6.19        | 0.00         | 90.10           | 114.00          | -23.90        | Peak    |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2436.14          | 55.75             | 27.56         | 6.19        | 0.00         | 89.50           | 94.00           | -4.50         | Average |

| Test channel | C                | :H <sub>H</sub>   |               | Pola        | rization     |                 | Hor             | izontal       |         |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2464.24          | 54.87             | 27.47         | 6.17        | 0.00         | 88.51           | 114.00          | -25.49        | Peak    |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2464.48          | 54.62             | 27.47         | 6.17        | 0.00         | 88.26           | 94.00           | -5.74         | Average |
| Fest channel | C                | :H <sub>H</sub>   |               | Pola        | rization     |                 | Vert            | tical         |         |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2464.24          | 56.53             | 27.47         | 6.17        | 0.00         | 90.17           | 114.00          | -23.83        | Peak    |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2464.68          | 54.33             | 27.47         | 6.17        | 0.00         | 87.97           | 94.00           | -6.03         | Average |


## 5.6. Radiated Band edge Emission

### <u>LIMIT</u>

## FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

### **TEST CONFIGURATION**



## TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
  - a) Span shall wide enough to fully capture the emission being measured
  - b) Set RBW=100kHz for <1GHz, VBW=3\*RBW, Sweep time=auto, Detector=peak, Trace=max hold
  - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

#### TEST MODE

Please refer to the clause 4.2

#### TEST RESULT

☑ Passed □ Not Applicable

Note:

- 3) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 4) Over Limit = Level- Limit
- 5) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

20 of 31

Page:

| Test channel |                  | CH∟               |               |             | Polarity       |                 |                 | Horizon       | tal     |
|--------------|------------------|-------------------|---------------|-------------|----------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | e Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/r |               |         |
| 1            | 2310.00          | 37.91             | 27.96         | 5.43        | 37.56          | 53.74           | 74.00           | -20.26        | 6 Peak  |
| 2            | 2390.01          | 37.79             | 27.72         | 5.53        | 37.45          | 53.59           | 74.00           | -20.41        | l Peak  |
| 3            | 2399.99          | 37.51             | 27.70         | 5.54        | 37.41          | 53.34           | 74.00           | -20.66        | 5 Peak  |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB   | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2310.00          | 26.77             | 27.96         | 5.43        | 37.56          | 42.60           | 54.00           | -11.40        | Average |
| 2            | 2390.01          | 26.92             | 27.72         | 5.53        | 37.45          | 42.72           | 54.00           | -11.28        | Average |
| 3            | 2399.99          | 26.88             | 27.70         | 5.54        | 37.41          | 42.71           | 54.00           | -11.29        | Average |

| Test channel |                  | $CH_{L}$          |               |             | Polarity     |                 | ,               | Vertical      |         |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2310.00          | 39.35             | 27.96         | 5.43        | 37.56        | 55.18           | 74.00           | -18.82        | Peak    |
| 2            | 2390.01          | 38.56             | 27.72         | 5.53        | 37.45        | 54.36           | 74.00           | -19.64        | Peak    |
| 3            | 2399.99          | 37.66             | 27.70         | 5.54        | 37.41        | 53.49           | 74.00           | -20.51        | Peak    |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 2310.00          | 27.11             | 27.96         | 5.43        | 37.56        | 42.94           | 54.00           | -11.06        | Average |
| 2            | 2390.01          | 27.04             | 27.72         | 5.53        | 37.45        | 42.84           | 54.00           | -11.16        | Average |
| 3            | 2399.99          | 26.95             | 27.70         | 5.54        | 37.41        | 42.78           | 54.00           | -11.22        | Average |

| Test channel   |                                        | СH <sub>H</sub>                     |                                 |                             | Po                             | larity                      |                                   | H                                 | lorizonta     | d       |
|----------------|----------------------------------------|-------------------------------------|---------------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------------|-----------------------------------|---------------|---------|
| Mark<br>1<br>2 | Frequency<br>MHz<br>2483.49<br>2500.00 | Reading<br>dBuV/m<br>37.36<br>37.69 | Antenna<br>dB<br>27.43<br>27.40 | Cable<br>dB<br>6.16<br>6.15 | Preamp<br>dB<br>37.26<br>37.26 | Aux<br>dB<br>20.00<br>20.00 | Level<br>dBuV/m<br>53.69<br>53.98 | Limit<br>dBuV/m<br>74.00<br>74.00 | -20.31        | Peak    |
| Mark           | Frequency<br>MHz                       | Reading<br>dBuV/m                   | Antenna<br>dB                   | Cable<br>dB                 | Preamp<br>dB                   | Aux<br>dB                   | Level<br>dBuV/m                   | Limit<br>dBuV/m                   | Over<br>limit | Remark  |
| 1              | 2483.49                                | 26.55                               | 27.43                           | 6.16                        | 37.26                          | 20.00                       | 42.88                             | 54.00                             | -11.12        | Average |
| 2              | 2500.00                                | 26.40                               | 27.40                           | 6.15                        | 37.26                          | 20.00                       | 42.69                             | 54.00                             | -11.31        | Average |

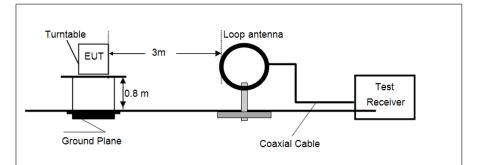
| Test channel   |                                        | СН <sub>н</sub>                     |                                 |                             | Po                             | olarity                     |                                   | V                                 | ertical       |         |
|----------------|----------------------------------------|-------------------------------------|---------------------------------|-----------------------------|--------------------------------|-----------------------------|-----------------------------------|-----------------------------------|---------------|---------|
| Mark<br>1<br>2 | Frequency<br>MHz<br>2483.49<br>2500.00 | Reading<br>dBuV/m<br>36.93<br>37.43 | Antenna<br>dB<br>27.43<br>27.40 | Cable<br>dB<br>6.16<br>6.15 | Preamp<br>dB<br>37.26<br>37.26 | Aux<br>dB<br>20.00<br>20.00 | Level<br>dBuV/m<br>53.26<br>53.72 | Limit<br>dBuV/m<br>74.00<br>74.00 | -20.74        | Peak    |
| Mark           | Frequency<br>MHz                       | Reading<br>dBuV/m                   | Antenna<br>dB                   | Cable<br>dB                 | Preamp<br>dB                   | Aux<br>dB                   | Level<br>dBuV/m                   | Limit<br>dBuV/m                   | Over<br>limit | Remark  |
| 1              | 2483.49                                | 26.62                               | 27.43                           | 6.16                        | 37.26                          | 20.00                       | 42.95                             | 54.00                             | -11.05        | Average |
| 2              | 2500.00                                | 26.21                               | 27.40                           | 6.15                        | 37.26                          | 20.00                       | 42.50                             | 54.00                             | -11.50        | Average |

## 5.7. Radiated Spurious Emission

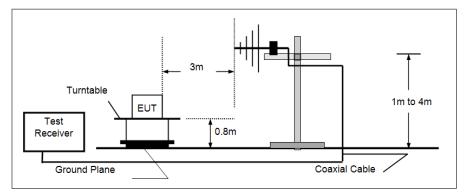
## <u>LIMIT</u>

## FCC CFR Title 47 Part 15 Subpart C Section 15.209

| Frequency            | Limit (dBuV/m)    | Value      |
|----------------------|-------------------|------------|
| 0.009 MHz ~0.49 MHz  | 2400/F(kHz) @300m | Quasi-peak |
| 0.49 MHz ~ 1.705 MHz | 24000/F(kHz) @30m | Quasi-peak |
| 1.705 MHz ~30 MHz    | 30 @30m           | Quasi-peak |


Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40\*log(300/3)= Limit dBuV/m @300m +80,

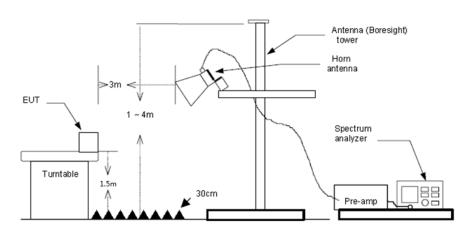
Limit dBuV/m @3m = Limit dBuV/m @30m +40\*log(30/3)= Limit dBuV/m @30m + 40.


| Frequency     | Limit (dBuV/m @3m) | Value      |
|---------------|--------------------|------------|
| 30MHz~88MHz   | 40.00              | Quasi-peak |
| 88MHz~216MHz  | 43.50              | Quasi-peak |
| 216MHz~960MHz | 46.00              | Quasi-peak |
| 960MHz~1GHz   | 54.00              | Quasi-peak |
| Above 1GHz    | 54.00              | Average    |
|               | 74.00              | Peak       |

## **TEST CONFIGURATION**

9 kHz ~ 30 MHz




> 30 MHz ~ 1 GHz



> Above 1 GHz

Page: 22 of 31

Date of issue:



#### TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
  - a) Span shall wide enough to fully capture the emission being measured;
  - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

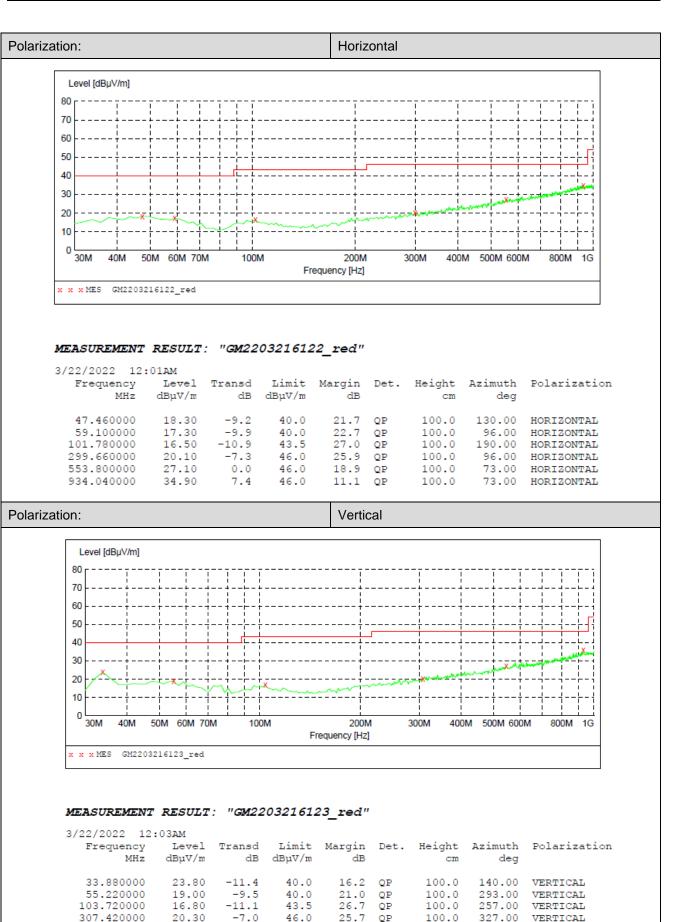
#### TEST MODE

Please refer to the clause 4.2

#### TEST RESULT

☑ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

#### For 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

#### For 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found  $CH_M$  which it was worst case, so only show the worst case's data on this report.



18.7 QP

10.0 QP

100.0

100.0

234.00

245.00 VERTICAL

27.30

36.00

-0.2

7.3

46.0

46.0

546.040000

928.220000

VERTICAL

dBuV/m

74.00

54.00

74.00

74.00

74.00

Remark

Average

Peak

Peak

Peak

Peak

Remark

Average

Peak

Peak

Peak

Peak

0ver

limit

-19.42

-14.96

-32.73

-27.00

-23.10

**Over** 

limit

-19.90

-15.06

-33.99

-31.53

-23.71

| Test channel |                  |                   |               | СН          | -            |                 |                 |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m |
| 1            | 1768.59          | 61.17             | 25.27         | 5.23        | 37.09        | 54.58           | 74.00           |
| 2            | 1768.59          | 45.62             | 25.28         | 5.23        | 37.09        | 39.04           | 54.00           |
| 3            | 2827.20          | 43.46             | 28.51         | 6.60        | 37.30        | 41.27           | 74.00           |
| 4            | 4821.76          | 41.83             | 31.40         | 9.01        | 35.24        | 47.00           | 74.00           |
| 5            | 9251.58          | 34.06             | 39.01         | 13.96       | 36.13        | 50.90           | 74.00           |
| Mark         | Frequency        | Reading           | Antenna       | Cable       | Preamp       | Level           | Limit           |

dBuV/m

60.65

45.49

42.10

36.39

33.44

dB

5.24

5.24

6.68

9.36

13.90

dB

37.08

37.08

37.37

35.48

34.75

dBuV/m

38.94

54.10

40.01

42.47

50.29

dB

25.29

25.29

28.60

32.20

37.70

## For 1 GHz ~ 25 GHz

1

2

3

4

5

MHz

1772.48

1772.48

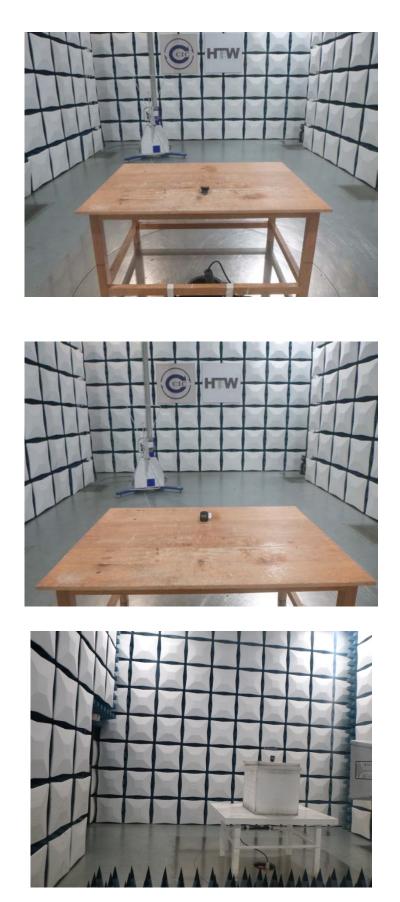
2880.50

5099.49

8725.48

| est channel |                  |                   |               | CH⊾         | n            |                 |                 |               |         |
|-------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark        | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1           | 1768.59          | 61.17             | 25.27         | 5.23        | 37.09        | 54.58           | 74.00           | -19.42        | Peak    |
| 2           | 1768.59          | 45.62             | 25.28         | 5.23        | 37.09        | 39.04           | 54.00           | -14.96        | Average |
| 3           | 2827.20          | 43.46             | 28.51         | 6.60        | 37.30        | 41.27           | 74.00           | -32.73        | Peak    |
| 4           | 4908.44          | 41.91             | 31.42         | 9.15        | 35.22        | 47.26           | 74.00           | -26.74        | Peak    |
| 5           | 9298.80          | 33.89             | 39.20         | 13.88       | 36.31        | 50.66           | 74.00           | -23.34        | Peak    |
| Mark        | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1           | 1772.48          | 60.65             | 25.29         | 5.24        | 37.08        | 54.10           | 74.00           | -19.90        | Peak    |
| 2           | 1772.48          | 45.49             | 25.29         | 5.24        | 37.08        | 38.94           | 54.00           | -15.06        | Average |
| 3           | 2880.50          | 42.10             | 28.60         | 6.68        | 37.37        | 40.01           | 74.00           | -33.99        | Peak    |
| 4           | 5034.99          | 35.62             | 32.11         | 9.34        | 35.34        | 41.73           | 74.00           | -32.27        | Peak    |
| 5           | 7432.62          | 32.56             | 36.60         | 11.48       | 33.98        | 46.66           | 74.00           | -27.34        | Peak    |

| Fest channel |                  |                   |               | CH⊦         | I            |                 |                 |               |         |
|--------------|------------------|-------------------|---------------|-------------|--------------|-----------------|-----------------|---------------|---------|
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 1768.59          | 61.17             | 25.27         | 5.23        | 37.09        | 54.58           | 74.00           | -19.42        | Peak    |
| 2            | 1768.59          | 45.62             | 25.28         | 5.23        | 37.09        | 39.04           | 54.00           | -14.96        | Average |
| 3            | 2827.20          | 43.46             | 28.51         | 6.60        | 37.30        | 41.27           | 74.00           | -32.73        | Peak    |
| 4            | 4933.50          | 42.08             | 31.47         | 9.20        | 35.20        | 47.55           | 74.00           | -26.45        | Peak    |
| 5            | 7376.08          | 33.69             | 36.55         | 11.46       | 34.04        | 47.66           | 74.00           | -26.34        | Peak    |
| Mark         | Frequency<br>MHz | Reading<br>dBuV/m | Antenna<br>dB | Cable<br>dB | Preamp<br>dB | Level<br>dBuV/m | Limit<br>dBuV/m | Over<br>limit | Remark  |
| 1            | 1772.48          | 60.65             | 25.29         | 5.24        | 37.08        | 54.10           | 74.00           | -19.90        | Peak    |
| 2            | 1772.48          | 45.49             | 25.29         | 5.24        | 37.08        | 38.94           | 54.00           | -15.06        | Average |
| 3            | 2880.50          | 42.10             | 28.60         | 6.68        | 37.37        | 40.01           | 74.00           | -33.99        | Peak    |
| 4            | 4933.50          | 35.95             | 31.47         | 9.20        | 35.20        | 41.42           | 74.00           | -32.58        | Peak    |
| 5            | 8681.17          | 33.52             | 37.62         | 14.00       | 34.83        | 50.31           | 74.00           | -23.69        | Peak    |


26 of 31

Page:

2022-07-20

# 6. TEST SETUP PHOTOS

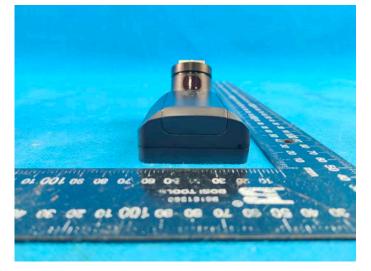
**Radiated Emissions** 

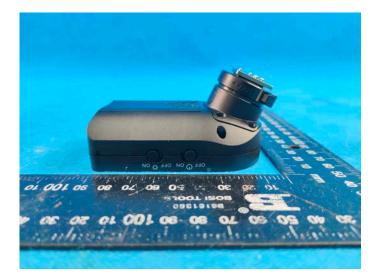


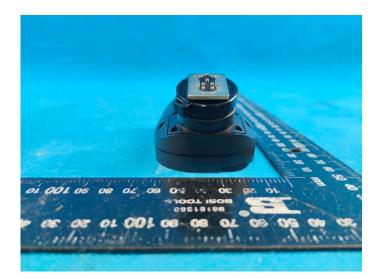
Page:

2022-07-20




# 7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT


## 7.1. External Photos

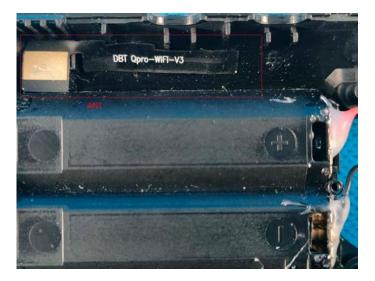


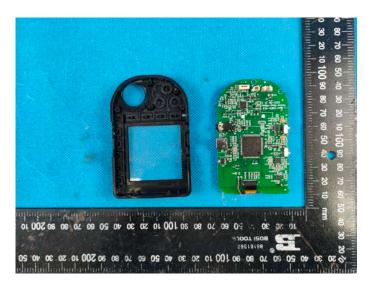


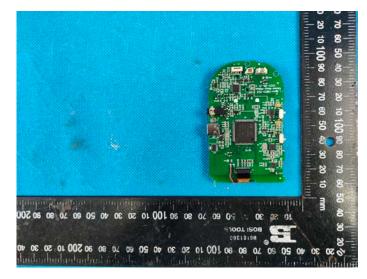


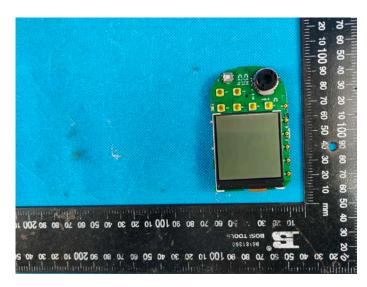






30 of 31


2022-07-20


## 7.2. Internal Photos













-----End of Report------