

SAR EVALUATION REPORT

For

LUXPAD TABLET

YangGuangGaoErFU Building, No 7008, SHENNAN Road, FuTian, SHENZHEN, China

FCC ID: 2ANIRTABMAX7

Report Type:		Product Type:	
Original Report		TABLET	
Report Number:	_DG1210517-1766	58E-20	
Report Date:	2021-07-03		
Reviewed By:	Brave Lu SAR Engineer	Brown	. Lu
Prepared By:	Bay Area Compli No.12, Pulong Ea Guangdong, Chin Tel: +86-769-868 Fax: +86-769-868 www.baclcorp.co	58888 358891	(Dongguan) /n, Dongguan,

Attestation of Test Results				
	EUT Description	n TABLET		
	Tested Model	TAB MAX 7		
EUT Information	FCC ID	2ANIRTABMAX7		
	Serial Number	DG1210517-17668E-SA-S1		
	Test Date	2021-06-18		
MOI	DE	Max. SAR Level(s) Reported(W/kg)	Limit (W/kg)	
WLAN 2.4G	1g Body SAR	0.29	1.6	
FCC 47 CFR part 2.1093 Radiofrequency radiation exposure evaluation: portable devicesRF Exposure Procedures: TCB Workshop April 2019IEEE 1528:2013 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement TechniquesIEC 62209-1:2016Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – 				
KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04KDB 865664 D02 RF Exposure Reporting v01r02KDB 616217 D04 SAR for laptop and tablets v01r02KDB 248227 D01 802 11 Wi-Fi SAR v02r02Note: This wireless device has been shown to be capable of compliance for localized specific absorption rate (SAR)for General Population/Uncontrolled Exposure limits specified in FCC 47 CFR part 2.1093 and has been tested inaccordance with the measurement procedures specified in IEEE 1528-2013 and RF exposure KDB procedures.The results and statements contained in this report pertain only to the device(s) evaluated.				

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
EUT DESCRIPTION	5
TECHNICAL SPECIFICATION	5
REFERENCE, STANDARDS, AND GUIDELINES	6
SAR LIMITS	7
FACILITIES	8
DESCRIPTION OF TEST SYSTEM	9
4, IN THIS CASE, IEC PARAMETERS APPLIED. THE TOLERANCE IS ±10%.EQUIPMENT LIST AND CALIBRATION	14
Equipments List & Calibration Information	15
SAR MEASUREMENT SYSTEM VERIFICATION	16
LIQUID VERIFICATION	
SYSTEM ACCURACY VERIFICATION SAR SYSTEM VALIDATION DATA	
EUT TEST STRATEGY AND METHODOLOGY	
EUT TEST STRATEGY AND METHODOLOGY Test Positions for Device Operating Next to a Person's Ear	
CHEEK/TOUCH POSITION	
EAR/TILT POSITION	20
Test positions for body-worn and other configurations Test Distance for SAR Evaluation	
SAR EVALUATION PROCEDURE	
CONDUCTED OUTPUT POWER MEASUREMENT	23
Provision Applicable	23
Test Procedure	
Maximum Target Output Power Test Results:	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	-
ANTENNAS LOCATION:	
ANTENNA DISTANCE TO EDGE	25
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS	
STANDALONE SAR TEST EXCLUSION CONSIDERATIONS: SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESULT	
SAR TEST EXCLUSION FOR THE EUT EDGE CONSIDERATIONS RESOLT	
SAR MEASUREMENT RESULTS	27
SAR TEST DATA	27
SAR MEASUREMENT VARIABILITY	28
SAR SIMULTANEOUS TRANSMISSION DESCRIPTION	29
SAR PLOTS	30
APPENDIX A MEASUREMENT UNCERTAINTY	33
APPENDIX B EUT TEST POSITION PHOTOS	35
APPENDIX C CALIBRATION CERTIFICATES	36

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
1.0	DG1210517-17668E-20	Original Report	2021-07-03

EUT DESCRIPTION

This report has been prepared on behalf of *LUXPAD TABLET* and their product *TABLET*, Model: *TAB MAX 7*, FCC ID: *2ANIRTABMAX7* or the EUT (Equipment under Test) as referred to in the rest of this report.

*All measurement and test data in this report was gathered from production sample serial number: DG1210517-17668E-SA (Assigned by BACL, Dongguan). The EUT supplied by the applicant was received on 2021-05-17.

Technical Specification

Device Type:	Portable
Exposure Category:	Population / Uncontrolled
Antenna Type(s):	Internal Antenna
Body-Worn Accessories:	None
Face-Head Accessories:	None
Operation Mode :	Wi-Fi and Bluetooth
Frequency Band:	WLAN 2.4G : 2412 MHz-2462 MHz/2422-2452MHz Bluetooth : 2402 MHz-2480 MHz
Conducted RF Power:	WLAN 2.4G: 12.84 dBm Bluetooth(BDR/EDR): 4.88 dBm
Power Source:	3.7 VDC Rechargeable Battery
Normal Operation:	Body Supported

REFERENCE, STANDARDS, AND GUIDELINES

FCC:

The Report and Order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g as recommended by the ANSI/IEEE standard C95.1-1992 [6] for an uncontrolled environment (Paragraph 65). According to the Supplement C of OET Bulletin 65 "Evaluating Compliance with FCC Guide-lines for Human Exposure to Radio frequency Electromagnetic Fields", released on Jun 29, 2001 by the FCC, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in North America is 1.6 mW/g average over 1 gram of tissue mass.

CE:

The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 2 mW/g as recommended by EN62209-1 for an uncontrolled environment. According to the Standard, the device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling.

This report describes the methodology and results of experiments performed on wireless data terminal. The objective was to determine if there is RF radiation and if radiation is found, what is the extent of radiation with respect to safety limits. SAR (Specific Absorption Rate) is the measure of RF exposure determined by the amount of RF energy absorbed by human body (or its parts) – to determine how the RF energy couples to the body or head which is a primary health concern for body worn devices. The limit below which the exposure to RF is considered safe by regulatory bodies in Europe is 2 mW/g average over 10 gram of tissue mass.

The test configurations were laid out on a specially designed test fixture to ensure the reproducibility of measurements. Each configuration was scanned for SAR. Analysis of each scan was carried out to characterize the above effects in the device.

SAR Limits

FCC/IC Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / (Occupation) Uncontrolled Exposure Controlled Exp Environment) Environmer		
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

CE Limit

	SAR (W/kg)		
EXPOSURE LIMITS	(General Population / Uncontrolled Exposure	(Occupational / Controlled Exposure	
	Environment)	Environment)	
Spatial Average (averaged over the whole body)	0.08	0.4	
Spatial Peak (averaged over any 10 g of tissue)	2.0	10	
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0	

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

General Population/Uncontrolled environments Spatial Peak limit 1.6W/kg (FCC&IC) & 2 W/kg (CE) applied to the EUT.

FACILITIES

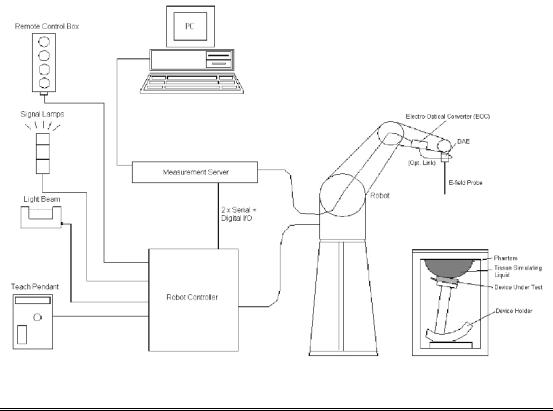
The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.12, Pulong East 1st Road, Tangxia Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 897218, the FCC Designation No. : CN1220.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier : CN0022.

The test sites and measurement facilities used to collect data are located at:

SAR Lab 1	SAR Lab 2
-----------	-----------


DESCRIPTION OF TEST SYSTEM

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG) which is the Fifth generation of the system shown in the figure hereinafter:

DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal application, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win7 professional operating system and the DASY52 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

DASY5 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz Intel ULV Celeron, 128MB chip-disk and 128MB RAM. The necessary circuits for communication with the DAE4 (or DAE3) electronics box, as well as the 16 bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical

processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized point out, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.

Data Acquisition Electronics

The data acquisition electronics (DAE4) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of both the DAE4 as well as of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 E-Field Probes

Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	\pm 0.3 dB in TSL (rotation around probe axis) \pm 0.5 dB in TSL (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%.
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

Calibration Frequency Points for EX3DV4 E-Field Probes SN: 7522 Calibrated: 2021/4/19

Calibration Frequency	Frequency Range(MHz)		Conversion Factor		
Point(MHz)	From	То	X	Y	Z
750 Head	650	850	9.93	9.93	9.93
750 Body	650	850	9.87	9.87	9.87
900 Head	850	1000	9.39	9.39	9.39
900 Body	850	1000	9.31	9.31	9.31
1750 Head	1650	1850	8.16	8.16	8.16
1750 Body	1650	1850	7.83	7.83	7.83
1900 Head	1850	2000	7.94	7.94	7.94
1900 Body	1850	2000	7.66	7.66	7.66
2300 Head	2200	2400	7.61	7.61	7.61
2300 Body	2200	2400	7.45	7.45	7.45
2450 Head	2400	2550	7.25	7.25	7.25
2450 Body	2400	2550	7.29	7.29	7.29
2600 Head	2550	2700	7.05	7.05	7.05
2600 Body	2550	2700	7.01	7.01	7.01

SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness

increases to 6 mm). The phantom has three measurement areas: Left Head

- Right Head
- Flat phantom

The phantom table for the DASY systems based on the robots have the size of $100 \times 50 \times 85$ cm (L x W x H). For easy dislocation these tables have fork lift cut outs at the bottom.

The bottom plate contains three pairs of bolts for locking the device holder. The device holder positions are adjusted to the

standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different liquids)

A white cover is provided to cover the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on top of this phantom cover are possible. Three reference marks are provided on the phantom counter. These reference marks are used to teach the absolute phantom position relative to the robot.

Robots

The DASY5 system uses the high precision industrial robot. The robot offers the same features important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchrony motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)

The above mentioned robots are controlled by the Staubli CS8c robot controllers. All information regarding the use and maintenance of the robot arm and the robot controller is contained on the CDs delivered along with the robot. Paper manuals are available upon request direct from Staubli.

Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 15mm 2 step integral, with 1.5mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.

Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the DASY5 software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m^3 is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1g cube is 10mm, with the side length of the 10g cube is 21.5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7 x7 x 7 (5mmx5mmx5mm) providing a volume of 30 mm in the X & Y & Z axis.

Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEC 62209-1:2016

Recommended Tissue Dielectric Parameters for Head liquid

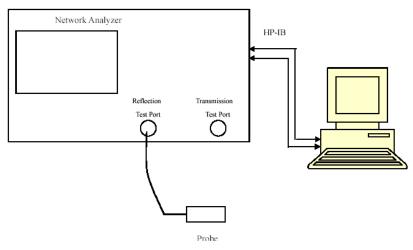
Table A.3 – Dielectric properties of the head tissue-equivalent liquid

Frequency	Relative permittivity	Conductivity (σ) S/m	
MHz	ε _r		
300	45,3	0,87	
450	43,5	0,87	
750	41,9	0,89	
835	41,5	0,90	
900	41,5	0,97	
1 450	40,5	1,20	
1 500	40,4	1,23	
1 640	40,2	1,31	
1 750	40,1	1,37	
1 800	40,0	1,40	
1 900	40,0	1,40	
2 000	40,0	1,40	
2 100	39,8	1,49	
2 300	39,5	1,67	
2 450	39,2	1,80	
2 600	39,0	1,96	
3 000	38,5	2,40	
3 500	37,9	2,91	
4 000	37,4	3,43	
4 500	36,8	3,94	
5 000	36,2	4,45	
5 200	36,0	4,66	
5 400	35,8	4,86	
5 600	35,5	5,07	
5 800	35,3	5,27	
6 000	35,1	5,48	

NOTE For convenience, permittivity and conductivity values at those frequencies which are not part of the original data provided by Drossos et al. [33] or the extension to 5 800 MHz are provided (i.e. the values shown *in italics*). These values were linearly interpolated between the values in this table that are immediately above and below these values, except the values at 6 000 MHz that were linearly extrapolated from the values at 3 000 MHz and 5 800 MHz.

Note:

- 1, Effective February 19, 2019, FCC has permitted the use of single head-tissue simulating liquid specified in IEC 62209-1 for all SAR tests.
- 2, Mix and Match of traditional FCC SAR TSLs and IEC 62209-1 TSL in a single application is not permitted TSL can be changed in a Permissive Change.
- 3, If SAR increases and original SAR > 1.2 W/kg, additional SAR measurements will be required IEC 62209-1 TSL is an alternative, not mandatory at this time.
- 4, In this case, IEC parameters applied. the tolerance is $\pm 10\%$.


EQUIPMENT LIST AND CALIBRATION

Equipments List & Calibration Information

Equipment	Model	S/N	Calibration Date	Calibration Due Date
DASY5 Test Software	DASY52.10	N/A	NCR	NCR
DASY5 Measurement Server	DASY5 4.5.12	1567	NCR	NCR
Data Acquisition Electronics	DAE4	1354	2020/9/30	2021/9/29
E-Field Probe	EX3DV4	7522	2021/4/19	2022/4/18
Mounting Device	MD4HHTV5	BJPCTC0152	NCR	NCR
Twin SAM	Twin SAM V5.0	1412	NCR	NCR
Dipole, 2450 MHz	D2450V2	971	2018/6/26	2021/6/25
Simulated Tissue 2450 MHz	TS-2450	2003245001	Each Time	/
Network Analyzer	8753C	3033A02857	2020/9/12	2021/9/11
Dielectric assessment kit	1253	SM DAK 040 CA	NCR	NCR
synthesized signal generator	8665B	3438a00584	2020/9/12	2021/9/11
EPM Series Power Meter	E4419B	MY45103907	2020/9/12	2021/9/11
Power Amplifier	ZVA-183-S+	5969001149	NCR	NCR
Directional Coupler	441493	520Z	NCR	NCR
Attenuator	20dB, 100W	LN749	NCR	NCR
Attenuator	6dB, 150W	2754	NCR	NCR

SAR MEASUREMENT SYSTEM VERIFICATION

Liquid Verification

Liquid Verification Setup Block Diagram

Liquid Verification Results

Frequency	Liquid Type	Liquid Parameter		Target Value		Delta (%)		Tolerance
(MHz) Liquid Type		ε _r	0' (S/m)	ε _r	0' (S/m)	$\Delta \epsilon_r$	ΔƠ (S/m)	(%)
2412	Simulated Tissue 2450 MHz	39.421	1.724	39.28	1.77	0.36	-2.6	±10
2437	Simulated Tissue 2450 MHz	39.394	1.753	39.23	1.79	0.42	-2.07	±10
2450	Simulated Tissue 2450 MHz	39.332	1.796	39.2	1.8	0.34	-0.22	±10
2462	Simulated Tissue 2450 MHz	39.275	1.812	39.18	1.81	0.24	0.11	±10

*Liquid Verification above was performed on 2021/6/18.


System Accuracy Verification

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of $\pm 10\%$. The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The spacing distances in the System Verification Setup Block Diagram is given by the following:

- a) s = 15 mm \pm 0,2 mm for 300 MHz \leq f \leq 1 000 MHz;
- b) $s=10\ mm\pm0.2\ mm$ for 1 000 MHz $< f \leq 3$ 000 MHz;
- c) $s=10~mm\pm0.2~mm$ for 3 000 MHz $< f \le 6$ 000 MHz.

System Verification Setup Block Diagram

System Accuracy Check Results

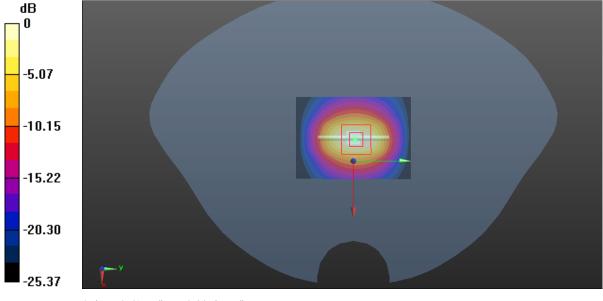
	Date	Frequency Band	Liquid Type	Input Power (mW)	S.	sured AR 7/kg)	Normalized to 1W (W/kg)	Target Value (W/kg)	Delta (%)	Tolerance (%)
20	021/06/18	2450 MHz	Simulated Tissue 2450 MHz	100	1g	5.61	56.1	53.3	5.25	±10

*The SAR values above are normalized to 1 Watt forward power.

SAR SYSTEM VALIDATION DATA

System Performance 2450MHz

DUT: D2450V2; Type: 2450 MHz; Serial: 971

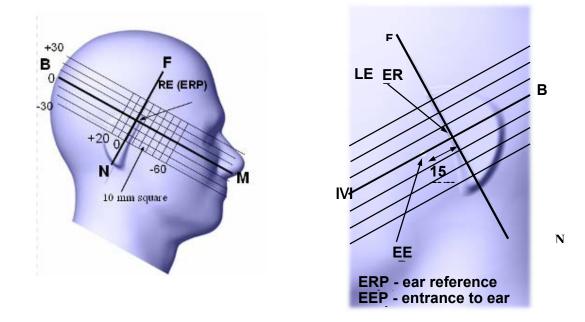

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.796$ S/m; $\epsilon_r = 39.332$; $\rho = 1000$ kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.25, 7.25, 7.25) @ 2450 MHz; Calibrated: 2021/4/19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (41x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 10.7 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 74.73 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 11.8 W/kg SAR(1 g) = 5.61 W/kg; SAR(10 g) = 2.49 W/kg Maximum value of SAR (measured) = 9.61 W/kg


0 dB = 9.61 W/kg = 9.83 dBW/kg

EUT TEST STRATEGY AND METHODOLOGY

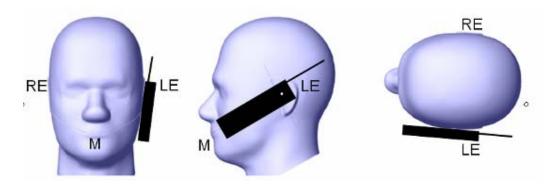
Test Positions for Device Operating Next to a Person's Ear

This category includes most wireless handsets with fixed, retractable or internal antennas located toward the top half of the device, with or without a foldout, sliding or similar keypad cover. The handset should have its earpiece located within the upper 1/4 of the device, either along the centerline or off-centered, as perceived by its users. This type of handset should be positioned in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point". The "test device reference point" should be located at the same level as the center of the earpiece region. The "vertical centerline" should bisect the front surface of the handset at its top and bottom edges. A "ear reference point" is located on the outer surface of the head phantom on each ear spacer. It is located 1.5 cm above the center of the ear canal entrance in the "phantom reference plane" defined by the three lines joining the center of each "ear reference point" (left and right) and the tip of the mouth.

A handset should be initially positioned with the earpiece region pressed against the ear spacer of a head phantom. For the SCC-34/SC-2 head phantom, the device should be positioned parallel to the "N-F" line defined along the base of the ear spacer that contains the "ear reference point". For interim head phantoms, the device should be positioned parallel to the cheek for maximum RF energy coupling. The "test device reference point" is aligned to the "ear reference point" on the head phantom and the "vertical centerline" is aligned to the "phantom reference plane". This is called the "initial ear position". While maintaining these three alignments, the body of the handset is gradually adjusted to each of the following positions for evaluating SAR:

Cheek/Touch Position

The device is brought toward the mouth of the head phantom by pivoting against the "ear reference point" or along the "N-F" line for the SCC-34/SC-2 head phantom.


This test position is established:

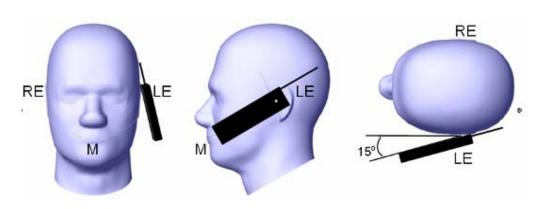
When any point on the display, keypad or mouthpiece portions of the handset is in contact with the phantom.

(or) When any portion of a foldout, sliding or similar keypad cover opened to its intended self-adjusting normal use position is in contact with the cheek or mouth of the phantom.

For existing head phantoms – when the handset loses contact with the phantom at the pivoting point, rotation should continue until the device touches the cheek of the phantom or breaks its last contact from the ear spacer.

Cheek /Touch Position

Ear/Tilt Position


With the handset aligned in the "Cheek/Touch Position":

1) If the earpiece of the handset is not in full contact with the phantom's ear spacer (in the "Cheek/Touch position") and the peak SAR location for the "Cheek/Touch" position is located at the ear spacer region or corresponds to the earpiece region of the handset, the device should be returned to the "initial ear position" by rotating it away from the mouth until the earpiece is in full contact with the ear spacer.

2) (otherwise) The handset should be moved (translated) away from the cheek perpendicular to the line passes through both "ear reference points" (note: one of these ear reference points may not physically exist on a split head model) for approximate 2-3 cm. While it is in this position, the device handset is tilted away from the mouth with respect to the "test device reference point" until the inside angle between the vertical centerline on the front surface of the phone and the horizontal line passing through the ear reference point is by 15 80°. After the tilt, it is then moved (translated) back toward the head perpendicular to the line passes through both "ear reference points" until the device touches the phantom or the ear spacer. If the antenna touches the head first, the positioning process should be repeated with a tilt angle less than 15° so that the device and its antenna would touch the phantom simultaneously. This test position may require a device holder or positioner to achieve the translation and tilting with acceptable positioning repeatability.

If a device is also designed to transmit with its keypad cover closed for operating in the head position, such positions should also be considered in the SAR evaluation. The device should be tested on the left and right side of the head phantom in the "Cheek/Touch" and "Ear/Tilt" positions. When applicable, each configuration should be tested with the antenna in its fully extended and fully retracted positions. These test configurations should be tested at the high, middle and low frequency channels of each operating mode; for example, AMPS, CDMA, and TDMA. If the SAR measured at the middle channel for each test configuration (left, right, Cheek/Touch, Tilt/Ear, extended and retracted) is at least 2.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s). If the transmission band of the test device is less than 10 MHz, testing at the high and low frequency channels is optional.

Ear /Tilt 15° Position

Test positions for body-worn and other configurations

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. Devices with a headset output should be tested with a headset connected to the device. When multiple accessories that do not contain metallic components are supplied with the device, the device may be tested with only the accessory that dictates the closest spacing to the body. When multiple accessories that contain metallic components are supplied with the device, the device must be tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (e.g., the same metallic belt-clip used with different holsters with no other metallic components), only the accessory that dictates the closest spacing to the body must be tested.

Body-worn accessories may not always be supplied or available as options for some devices that are intended to be authorized for body-worn use. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distances may be used, but they should not exceed 2.5 cm. In these cases, the device may use body-worn accessories that provide a separation distance greater than that tested for the device provided however that the accessory contains no metallic components.

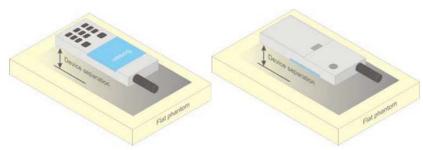


Figure 5 – Test positions for body-worn devices

Test Distance for SAR Evaluation

In this case the EUT(Equipment Under Test) is set directly against the phantom, the test distance is 0mm.

SAR Evaluation Procedure

The evaluation was performed with the following procedure:

Step 1: Measurement of the SAR value at a fixed location above the ear point or central position was used as a reference value for assessing the power drop. The SAR at this point is measured at the start of the test and then again at the end of the testing.

Step 2: The SAR distribution at the exposed side of the head was measured at a distance of 4 mm from the inner surface of the shell. The area covered the entire dimension of the head or radiating structures of the EUT, the horizontal grid spacing was 15 mm x 15 mm, and the SAR distribution was determined by integrated grid of 1.5mm x 1.5mm. Based on these data, the area of the maximum absorption was determined by spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

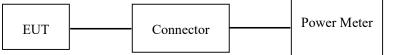
Step 3: Around this point, a volume of 30 mm x 30 mm x 30 mm was assessed by measuring 7x 7 x 7 points. On the basis of this data set, the spatial peak SAR value was evaluated under the following procedure:

1) The data at the surface were extrapolated, since the center of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

2) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed by the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one dimensional splines with the "Not a knot"-condition (in x, y and z-directions). The volume was integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the averages.

All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

Step 4: Re-measurement of the SAR value at the same location as in Step 1. If the value changed by more than 5%, the evaluation was repeated.


CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the Power Meter through Connector.

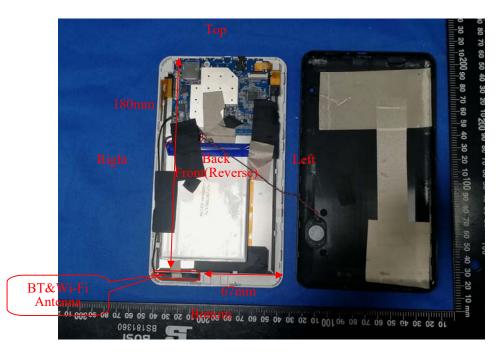
Wi-Fi

Maximum Target Output Power

Max Target Power(dBm)								
Mada/Dand		Channel						
Mode/Band	Low Middle Hi							
WLAN 2.4G(802.11b)	12.9	12.9	12.9					
WLAN 2.4G(802.11g)	10.5	10.5	10.5					
WLAN 2.4G(802.11n HT20)	11.6	11.6	11.6					
WLAN 2.4G(802.11n HT40)	11.4	11.4	11.4					
Bluetooth (BDR/EDR)	5	5	5					

Test Results:

Wi-Fi 2.4G:


Mode	Channel frequency (MHz)	Data Rate	RF Output Power (dBm)
	2412		12.73
802.11b	2437	1Mbps	12.68
	2462		12.84
	2412		10.42
802.11g	2437	6Mbps	10.31
	2462		10.41
	2412		11.54
802.11n HT20	2437	MCS0	11.43
	2462		11.54
	2422		11.22
802.11n HT40	2437	MCS0	11.31
	2452		11.19

Bluetooth:

Mode	Channel frequency (MHz)	RF Output Power (dBm)
	2402	2.95
BDR(GFSK)	2441	2.78
	2480	2.63
	2402	4.62
$EDR(\pi/4-DQPSK)$	2441	4.64
	2480	4.43
	2402	4.88
EDR(8DPSK)	2441	4.81
	2480	4.68

Standalone SAR test exclusion considerations

Antennas Location:

Antenna Distance To Edge

Antenna Distance To Edge(mm)									
Antenna Back Left Right Top Bottom									
Wi-Fi&Bluetooth Antenna	< 5	67	< 5	180	< 5				

Standalone SAR test exclusion considerations

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Distance (mm)	Calculated value	Threshold (1-g)	SAR Test Exclusion
Wi-Fi 2.4G	2462	12.9	19.5	0	6.1	3	NO
Bluetooth	2480	5	3.16	0	1.0	3	YES

Note: The bluetooth based peak power for calculation, and WLAN based average power for calculation.

NOTE:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Bay Area Compliance Laboratories Corp. (Dongguan)

Standalone SAR test exclusion considerations:

Mode	Frequency (MHz)	Pavg (dBm)	Pavg (mW)	Test exclusion Threshold (mm)
WLAN 2.4G	2462	12.9	12.3	10.3

Note: The WLAN based average power for calculation.

SAR test exclusion for the EUT edge considerations Result

Mode	Back Edge	Left Edge	Right Edge	Top Edge	Bottom Edge
ВТ	Exclusion*	Exclusion*	Exclusion*	Exclusion*	Exclusion*
Wi-Fi 2.4G	Required	Exclusion	Required	Exclusion	Required

Note:

Required: The distance is less than **Test Exclusion Distance**, the SAR test is required. Exclusion: The distance is large than **Test Exclusion Distance**, SAR test is not required. Exclusion*: SAR test exclusion evaluation has been done above

SAR test exclusion for the EUT edge considerations detail:

Distance< 50mm(To Edges)

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1.f(GHz) is the RF channel transmit frequency in GHz.

2.Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Distance> 50mm(To Edges)

At 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

a.[Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot (f(MHz)/150)] mW, at 100 MHz to 1500 MHz

b.[Power allowed at numeric threshold for 50 mm in step 1) + (test separation distance - 50 mm) \cdot 10] mW at > 1500 MHz and \leq 6 GHz.

SAR MEASUREMENT RESULTS

This page summarizes the results of the performed dosimetric evaluation.

SAR Test Data

Environmental Conditions

Temperature:	22.3-23.9 °C
Relative Humidity:	38 %
ATM Pressure:	100.2 kPa
Test Date:	2021/6/18

Testing was performed by Gaochao Gong, Jaime Zong, Vayne Lu.

WLAN 2.4G:

EUT	Frequency		Max. Meas.	Max. Rated	Max. 1g SAR (W/kg)					
Position	(MHz)			Power (dBm)	Scaled Factor	Meas. SAR	Scaled SAR	Plot		
	2412	802.11b	/	/	/	/	/	/		
Body Back (0mm)	2437	802.11b	12.68	12.9	1.052	0.079	0.08	1#		
(*****)	2462	802.11b	/	/	/	/	/	/		
	2412	802.11b	/	/	/	/	/	/		
Body Right (0mm)	2437	802.11b	12.68	12.9	1.052	0.052	0.05	2#		
(omm)	2462	802.11b	/	/	/	/	/	/		
D 1 D //	2412	802.11b	/	/	/	/	/	/		
Body Bottom (0mm)	2437	802.11b	12.68	12.9	1.052	0.276	0.29	3#		
(omm)	2462	802.11b	/	/	/	/	/	/		

Note:

2. When SAR or MPE is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance.

3.KDB 248227 D01-SAR measurement is not required for 2.4 GHz OFDM(801.11g/n) when the highest reported SAR for DSSS(802.11b) is \leq 1.2 W/kg, and the output power for DSSS is not less than that for OFDM.

^{1.} When the 1-g SAR is \leq 0.8W/kg, testing for other channels are optional.

SAR Measurement Variability

In accordance with published RF Exposure KDB procedure 865664 D01 SAR measurement 100 MHz to 6 GHz v01. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg (~ 10% from the 1-g SAR limit).
- Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Note: The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The Highest Measured SAR Configuration in Each Frequency Band

Body

SAR probe calibration point	Frequency		EUT Desition	Meas. SA	R (W/kg)	Largest to
	Band Freq.(MHz)		EUT Position	Original	Repeated	Smallest SAR Ratio
/	/	/	/	/	/	/

Note:

1. Second Repeated Measurement is not required since the ratio of the largest to smallest SAR for the original and first repeated measurement is not > 1.20.

2. The measured SAR results **do not** have to be scaled to the maximum tune-up tolerance to determine if repeated measurements are required.

3. SAR measurement variability must be assessed for each frequency band, which is determined by the **SAR probe calibration point and tissue-equivalent medium** used for the device measurements.

SAR SIMULTANEOUS TRANSMISSION DESCRIPTION

Simultaneous Transmission:

Description of Simultaneous Transmit Capabilities					
Transmitter Combination	Simultaneous?	Hotspot?			
WLAN + Bluetooth	×	×			

Note: Wi-Fi and Bluetooth share the same antenna and cannot transmit simultaneously.

SAR Plots

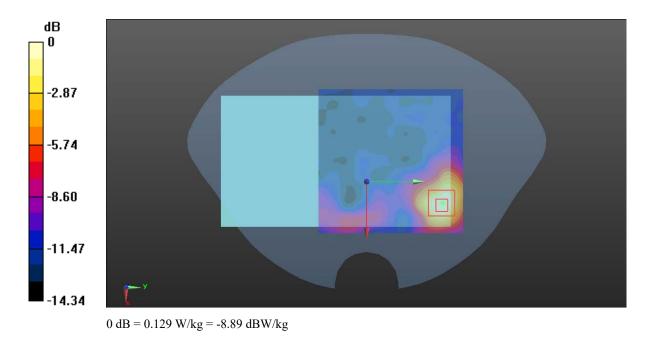
Plot 1#: 2.4G Wi-Fi Mode B_ Body Back_Mid

DUT: TABLET; Type: TAB MAX 7; Serial: DG1210517-17668E-SA-S1

Communication System: 802.11 b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.753 S/m; ϵ_r = 39.394; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.25, 7.25, 7.25) @ 2437 MHz; Calibrated: 2021/4/19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


Area Scan (101x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.137 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.165 V/m; Power Drift = -0.15 dB

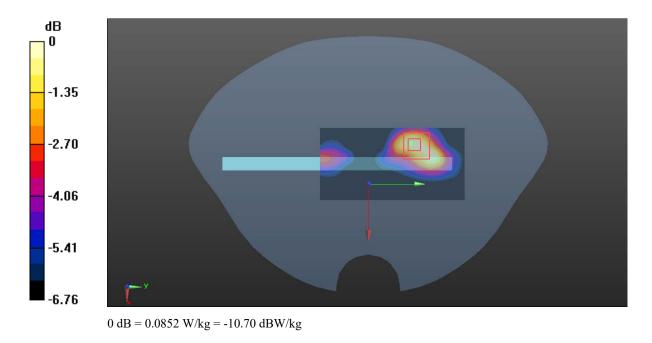
Peak SAR (extrapolated) = 0.175 W/kg

SAR(1 g) = 0.079 W/kg; SAR(10 g) = 0.039 W/kg

Maximum value of SAR (measured) = 0.129 W/kg

Plot 2#: 2.4G Wi-Fi Mode B_ Body Right_Mid

DUT: TABLET; Type: TAB MAX 7; Serial: DG1210517-17668E-SA-S1


Communication System: 802.11 b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.753 S/m; ϵ_r = 39.394; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

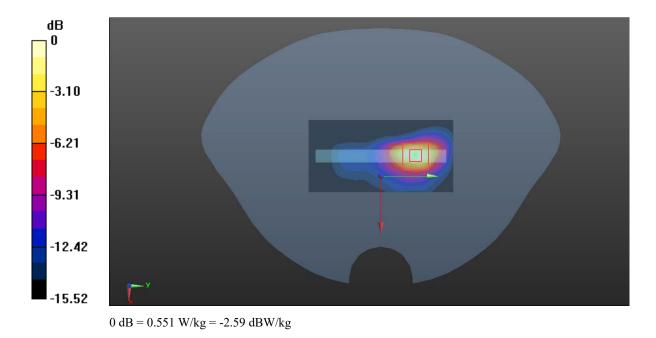
- Probe: EX3DV4 SN7522; ConvF(7.25, 7.25, 7.25) @ 2437 MHz; Calibrated: 2021/4/19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (101x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0891 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 2.650 V/m; Power Drift = -0.17 dB Peak SAR (extrapolated) = 0.113 W/kg SAR(1 g) = 0.052 W/kg; SAR(10 g) = 0.028 W/kg Maximum value of SAR (measured) = 0.0852 W/kg

Plot 3#: 2.4G Wi-Fi Mode B_ Body Bottom_Mid

DUT: TABLET; Type: TAB MAX 7; Serial: DG1210517-17668E-SA-S1


Communication System: 802.11 b; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2437 MHz; σ = 1.753 S/m; ϵ_r = 39.394; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7522; ConvF(7.25, 7.25, 7.25) @ 2437 MHz; Calibrated: 2021/4/19
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1354; Calibrated: 2020/9/30
- Phantom: Twin SAM; Type: Twin SAM V5.0; Serial: TP:1412
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Area Scan (101x51x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.621 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.820 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.750 W/kg SAR(1 g) = 0.276 W/kg; SAR(10 g) = 0.113 W/kg Maximum value of SAR (measured) = 0.551 W/kg

APPENDIX A MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the measurement system and is given in the following Table.

Measurement uncertainty evaluation for IEEE1528-2013 SAR test

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)		
Measurement system									
Probe calibration	6.55	N	1	1	1	6.6	6.6		
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7		
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0		
Boundary effect	1.0	R	√3	1	1	0.6	0.6		
Linearity	4.7	R	√3	1	1	2.7	2.7		
Detection limits	1.0	R	√3	1	1	0.6	0.6		
Readout electronics	0.3	N	1	1	1	0.3	0.3		
Response time	0.0	R	√3	1	1	0.0	0.0		
Integration time	0.0	R	√3	1	1	0.0	0.0		
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6		
RF ambient conditions–reflections	1.0	R	√3	1	1	0.6	0.6		
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5		
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9		
Post-processing	2.0	R	√3	1	1	1.2	1.2		
		Test sample	e related						
Test sample positioning	2.8	N	1	1	1	2.8	2.8		
Device holder uncertainty	6.3	Ν	1	1	1	6.3	6.3		
Drift of output power	5.0	R	√3	1	1	2.9	2.9		
	-	Phantom an	d set-up		_				
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3		
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2		
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1		
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4		
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2		
Combined standard uncertainty		RSS				12.2	12.0		
Expanded uncertainty 95 % confidence interval)						24.3	23.9		

Source of uncertainty	Tolerance/ uncertainty ± %	Probability distribution	Divisor	ci (1 g)	ci (10 g)	Standard uncertainty ± %, (1 g)	Standard uncertainty ± %, (10 g)		
Measurement system									
Probe calibration	6.55	N	1	1	1	6.6	6.6		
Axial Isotropy	4.7	R	√3	1	1	2.7	2.7		
Hemispherical Isotropy	9.6	R	√3	0	0	0.0	0.0		
Boundary effect	1.0	R	√3	1	1	0.6	0.6		
Linearity	4.7	R	√3	1	1	2.7	2.7		
Detection limits	1.0	R	√3	1	1	0.6	0.6		
Readout electronics	0.3	N	1	1	1	0.3	0.3		
Response time	0.0	R	√3	1	1	0.0	0.0		
Integration time	0.0	R	√3	1	1	0.0	0.0		
RF ambient conditions – noise	1.0	R	√3	1	1	0.6	0.6		
RF ambient conditions–reflections	1.0	R	√3	1	1	0.6	0.6		
Probe positioner mech. Restrictions	0.8	R	√3	1	1	0.5	0.5		
Probe positioning with respect to phantom shell	6.7	R	√3	1	1	3.9	3.9		
Post-processing	2.0	R	√3	1	1	1.2	1.2		
		Test sampl	e related						
Test sample positioning	2.8	N	1	1	1	2.8	2.8		
Device holder uncertainty	6.3	N	1	1	1	6.3	6.3		
Drift of output power	5.0	R	√3	1	1	2.9	2.9		
Phantom and set-up									
Phantom uncertainty (shape and thickness tolerances)	4.0	R	√3	1	1	2.3	2.3		
Liquid conductivity target)	5.0	R	√3	0.64	0.43	1.8	1.2		
Liquid conductivity meas.)	2.5	N	1	0.64	0.43	1.6	1.1		
Liquid permittivity target)	5.0	R	√3	0.6	0.49	1.7	1.4		
Liquid permittivity meas.)	2.5	N	1	0.6	0.49	1.5	1.2		
Combined standard uncertainty		RSS				12.2	12.0		
Expanded uncertainty 95 % confidence interval)						24.3	23.9		

Measurement uncertainty evaluation for IEC62209-1 SAR test

APPENDIX B EUT TEST POSITION PHOTOS

Please Refer to the Attachment.

APPENDIX C CALIBRATION CERTIFICATES

Please Refer to the Attachment.

Declarations

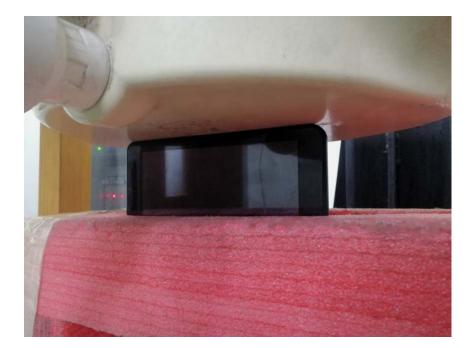
- BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "△". Customer model name, addresses, names, trademarks etc. are not considered data.
- 2. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.
- 3. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.
- 4. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.
- 5. This report cannot be reproduced except in full, without prior written approval of the Company.
- 6. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.
- 7. This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the U.S. Government.
- 8. This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★".

***** END OF REPORT *****

Report No.: DG1210517-17668E-20

APPENDIX B EUT TEST POSITION PHOTOS

Liquid depth \geq 15cm



Phantom Type: SAM 1; Type: QD000P40CC; Serial: TP:1412

Body Back Setup Photo (0mm)

Body Right Setup Photo (0mm)

Report No.: DG1210517-17668E-20

Body Top Setup Photo (0mm)

APPENDIX C PROBE CALIBRATION CERTIFICATES

Add: No.52 HuaVua	nBei Road, Haidian Distri	ict, Beijing, 100191, China	CALIBR
Tel: +86-10-623046: E-mail: cttl@chinatt	33-2512 Fax: +86-10		
Client BACL		Certificate No:	Z21-60079
CALIBRATION CE	RTIFICATE		
Object	EX3DV4 - S	SN : 7522	
Calibration Presedura(a)			
Calibration Procedure(s)	FF-Z11-004	-02	
	Calibration	Procedures for Dosimetric E-field Probes	
Calibration date:	April 19, 202	21	
		eability to national standards, which real	
All calibrations have been	conducted in the	closed laboratory facility: environment	temperature(22±3)°C ar
humidity<70%.	conducted in the		temperature(22±3)°C ar
humidity<70%. Calibration Equipment used	conducted in the		temperature(22±3)°C ar Scheduled Calibratic
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2	Conducted in the (M&TE critical for ca)	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344)	
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91	(M&TE critical for ca ID # 101919 101547	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344)	Scheduled Calibratic Jun-21 Jun-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	Conducted in the (M&TE critical for ca ID # 101919 101547 101548	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344)	Scheduled Calibratic Jun-21 Jun-21 Jun-21 Jun-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato	(M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibratic Jun-21 Jun-21 Jun-21 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91	Conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526)	Scheduled Calibratic Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 Feb-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato	Conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525)	Scheduled Calibratic Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4	(M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB & SN 7307	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May	Scheduled Calibratic Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4	(M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB SN 7307 SN 1555	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May) 25-Aug-20(SPEAG, No.DAE4-1555_Aug)	Scheduled Calibratio Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards	Conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB s N 7307 SN 1555 SN 3617 SN 1556 ID #	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May) 25-Aug-20(SPEAG, No.DAE4-1555_Aug) 27-Jan-21(SPEAG, No.EX3-3617_Jan21	Scheduled Calibratio Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700.	Conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB SN 7307 SN 1555 SN 3617 SN 3617 SN 1556 ID # A 6201052605	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 25-Aug-20(SPEAG, No.DAE4-1555_Aug 27-Jan-21(SPEAG, No.DAE4-1556_Jan Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343)	Scheduled Calibratio Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22 21) Jan-22 Scheduled Calibration Jun-21
humidity<70%. Calibration Equipment used Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB r 18N50W-20dB SN 7307 SN 1555 SN 3617 SN 3617 SN 1556 ID # A 6201052605 S MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 25-Aug-20(SPEAG, No.DAE4-1555_Aug 27-Jan-21(SPEAG, No.DAE4-1556_Jan Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 21-Jan-21(CTTL, No.J20X00515)	Scheduled Calibratio Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22 21) Jan-22 Scheduled Calibration Jun-21 Jan-22
humidity<70%. Calibration Equipment used a Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	conducted in the of (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB SN 7307 SN 1555 SN 3617 SN 1556 ID # A 6201052605 MY46110673 Name	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 25-Aug-20(SPEAG, No.DAE4-1555_Aug 27-Jan-21(SPEAG, No.DAE4-1556_Jan Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 21-Jan-21(CTTL, No.J20X00515) Function	Scheduled Calibratio Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22 21) Jan-22 Scheduled Calibration Jun-21
humidity<70%. Calibration Equipment used a Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700 Network Analyzer E50710	conducted in the (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB r 18N50W-20dB SN 7307 SN 1555 SN 3617 SN 3617 SN 1556 ID # A 6201052605 S MY46110673	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 25-Aug-20(SPEAG, No.DAE4-1555_Aug 27-Jan-21(SPEAG, No.DAE4-1556_Jan Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 21-Jan-21(CTTL, No.J20X00515)	Scheduled Calibratio Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22 21) Jan-22 Scheduled Calibration Jun-21 Jan-22
humidity<70%. Calibration Equipment used a Primary Standards Power Meter NRP2 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 10dBAttenuato Reference 20dBAttenuato Reference Probe EX3DV4 DAE4 Reference Probe EX3DV4 DAE4 Secondary Standards SignalGenerator MG3700. Network Analyzer E50710	conducted in the of (M&TE critical for ca ID # 101919 101547 101548 r 18N50W-10dB r 18N50W-20dB SN 7307 SN 1555 SN 3617 SN 1556 ID # A 6201052605 MY46110673 Name	libration) Cal Date(Calibrated by, Certificate No.) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 16-Jun-20(CTTL, No.J20X04344) 10-Feb-20(CTTL, No.J20X00525) 10-Feb-20(CTTL, No.J20X00526) 29-May-20(SPEAG, No.EX3-7307_May 25-Aug-20(SPEAG, No.DAE4-1555_Aug 27-Jan-21(SPEAG, No.DAE4-1556_Jan Cal Date(Calibrated by, Certificate No.) 23-Jun-20(CTTL, No.J20X04343) 21-Jan-21(CTTL, No.J20X00515) Function	Scheduled Calibratio Jun-21 Jun-21 Jun-21 Feb-22 Feb-22 20) May-21 g20) Aug-21) Jan-22 21) Jan-22 Scheduled Calibration Jun-21 Jan-22

Certificate No: Z21-60079

Page 1 of 10

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 Http://www.chinattl.en

Glossary:

tissue simulating liquid
sensitivity in free space
sensitivity in TSL / NORMx,y,z
diode compression point
crest factor (1/duty_cycle) of the RF signal
modulation dependent linearization parameters
Φ rotation around probe axis
θ rotation around an axis that is in the plane normal to probe axis (at measurement center), $\theta=0$ is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat
 phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60079

Page 2 of 10

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m) ²) ^A	0.43	0.44	0.53	±10.0%
DCP(mV) ^B	98.6	99.2	99.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (<i>k</i> =2)
0	CW	X	0.0	0.0	1.0	0.00	167.8	±2.5%
		Y	0.0	0.0	1.0		170.2	
		Z	0.0	0.0	1.0		187.9	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 4 and Page 5). ^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Page 3 of 10

Relative Conductivity Depth^G Unct. f [MHz]C ConvF X ConvF Y ConvF Z Alpha^G Permittivity F (k=2) (S/m) F (mm) 750 0.89 9.93 9.93 9.93 0.40 0.75 ±12.1% 41.9 9.39 ±12.1% 41.5 0.97 9.39 9.39 0.12 1.95 900 1750 40.1 1.37 8.16 8.16 8.16 0.21 1.20 $\pm 12.1\%$ 1900 40.0 1.40 7.94 7.94 7.94 0.25 1.10 $\pm 12.1\%$ 7.61 7.61 ±12.1% 2300 39.5 1.67 7.61 0.53 0.72 ±12.1% 2450 39.2 1.80 7.25 7.25 7.25 0.34 1.00 7.05 7.05 7.05 0.37 0.94 $\pm 12.1\%$ 2600 39.0 1.96

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z21-60079

Page 4 of 10

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	55.5	0.96	9.87	9.87	9.87	0.40	0.78	±12.1%
900	55.0	1.05	9.31	9.31	9.31	0.16	1.65	±12.1%
1750	53.4	1.49	7.83	7.83	7.83	0.26	1.14	±12.1%
1900	53.3	1.52	7.66	7.66	7.66	0.19	1.29	±12.1%
2300	52.9	1.81	7.45	7.45	7.45	0.70	0.72	±12.1%
2450	52.7	1.95	7.29	7.29	7.29	0.70	0,71	±12.1%
2600	52.5	2.16	7.01	7.01	7.01	0.65	0.72	±12.1%

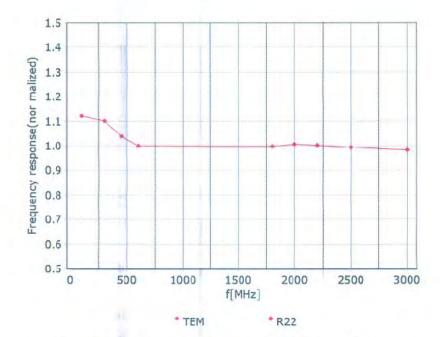
Calibration Parameter Determined in Body Tissue Simulating Media

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z21-60079

Page 5 of 10



 Add: No.52 HuaYuanBel Road, Haldlan District, Beijing, 100191, Chira

 Te: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

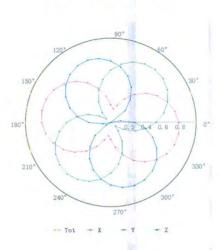
 E-mail: cttl@chirattl.com
 Http://www.chirattl.cn

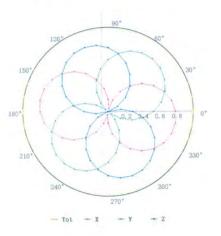
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

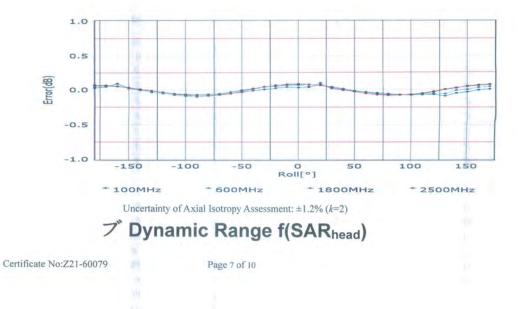
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

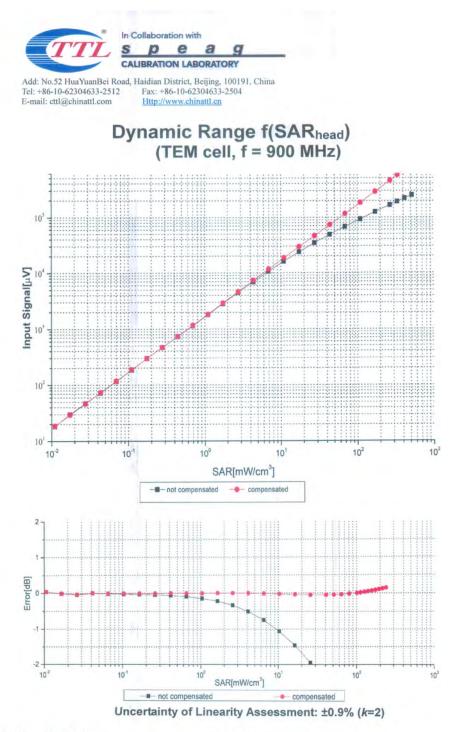
Page 6 of 10

 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China


 Tel: +86-10-62304633-2512
 Fax: +86-10-62304633-2504

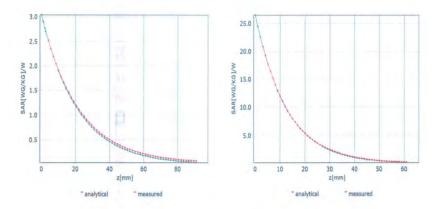

 E-mail: ettl@chinattl.com
 <u>Http://www.chinattl.cn</u>

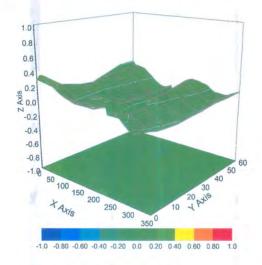

Receiving Pattern (Φ), θ=0°


f=600 MHz, TEM

f=1800 MHz, R22

Certificate No:Z21-60079


Page 8 of 10


Conversion Factor Assessment

f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

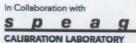
Certificate No:Z21-60079

Page 9 of 10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	32.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60079


Page 10 of 10

DIPOLE CALIBRATION CERTIFICATES

June 26, 2018 ts the traceability to its and the uncertaint ed in the closed la ritical for calibration)	es for dipole validation kits national standards, which ties with confidence probab	CALIBRATION CNAS L0570 Z18-60218
D2450V2 - SN: 971 FF-Z11-003-01 Calibration Procedure June 26, 2018 ts the traceability to tts and the uncertaint ed in the closed la ritical for calibration)	es for dipole validation kits national standards, which ties with confidence probab	n realize the physical units of pility are given on the following
D2450V2 - SN: 971 FF-Z11-003-01 Calibration Procedure June 26, 2018 ts the traceability to tts and the uncertaint ed in the closed la ritical for calibration)	national standards, which ties with confidence probab	ility are given on the following
FF-Z11-003-01 Calibration Procedure June 26, 2018 ts the traceability to its and the uncertaint ed in the closed la ritical for calibration)	national standards, which ties with confidence probab	ility are given on the following
Calibration Procedure June 26, 2018 Its the traceability to the and the uncertaint ed in the closed la ritical for calibration)	national standards, which ties with confidence probab	ility are given on the following
Calibration Procedure June 26, 2018 Its the traceability to the and the uncertaint ed in the closed la ritical for calibration)	national standards, which ties with confidence probab	ility are given on the following
June 26, 2018 ts the traceability to its and the uncertaint ed in the closed la ritical for calibration)	national standards, which ties with confidence probab	ility are given on the following
nts and the uncertaint ed in the closed la ritical for calibration)	ties with confidence probat	ility are given on the following
Cal Date(Ca		
	alibrated by, Certificate No.) Scheduled Calibration
	CTTL, No.J17X08756)	Oct-18
01-Nov-17 (0	CTTL, No.J17X08756)	Oct-18
4 12-Sep-17(S	SPEAG,No.EX3-7464_Sep	17) Sep-18
4 13-Sep-17(S	SPEAG, No. DAE4-1524_Se	p17) Sep-18
Cal Date(Cal	librated by, Certificate No.)	Scheduled Calibration
71430 23-Jan-18 (C	CTTL, No.J18X00560)	Jan-19
10673 24-Jan-18 (C	CTTL, No.J18X00561)	Jan-19
Fun	nction	Signature
ig SAR Te	est Engineer	A - CAR
SAR Te	est Engineer	林祐
ruan SAR P	Project Leader	ta
	Issued: J	une 28, 2018
	4 12-Sep-17(S 4 13-Sep-17(S Cal Date(Ca 71430 23-Jan-18 (C 10673 24-Jan-18 (C Fur g SAR To SAR To	4 12-Sep-17(SPEAG,No.EX3-7464_Sep 4 13-Sep-17(SPEAG,No.DAE4-1524_Sep Cal Date(Calibrated by, Certificate No.) 71430 23-Jan-18 (CTTL, No.J18X00560) 10673 24-Jan-18 (CTTL, No.J18X00561) Function g SAR Test Engineer SAR Test Engineer

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Glossary: TSL

ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z18-60218

Page 2 of 8

In Collaboration with SDEAG

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.1.1476
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	1.84 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.3 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.26 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.0 mW /g ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.1 ± 6 %	1.92 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	49.5 mW /g ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.68 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	22.9 mW /g ± 18.7 % (k=2)

Certificate No: Z18-60218

 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.1Ω+ 6.31jΩ
Return Loss	- 22.9dB

Antenna Parameters with Body TSL

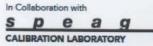
Impedance, transformed to feed point	50.9Ω+ 7.63jΩ	
Return Loss	- 22.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.020 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.


Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z18-60218

Page 4 of 8

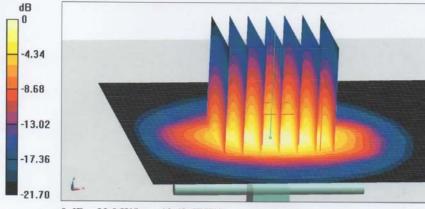
 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

Date: 06.26.2018

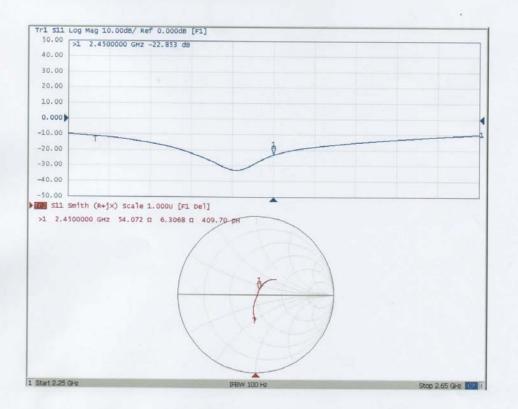

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 971 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.844$ S/m; $\epsilon_r = 40.25$; $\rho = 1000$ kg/m³ Phantom section: Center Section

DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.89, 7.89, 7.89) @ 2450 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

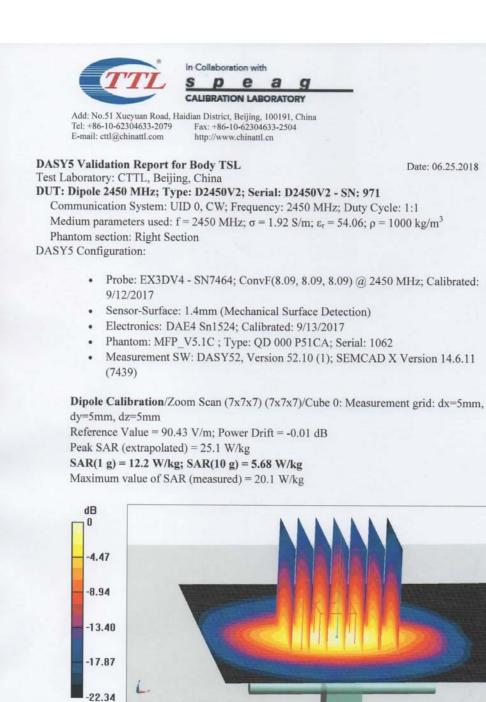
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.13 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 27.4 W/kg SAR(1 g) = 13.4 W/kg; SAR(10 g) = 6.26 W/kg Maximum value of SAR (measured) = 22.0 W/kg


0 dB = 22.0 W/kg = 13.42 dBW/kg

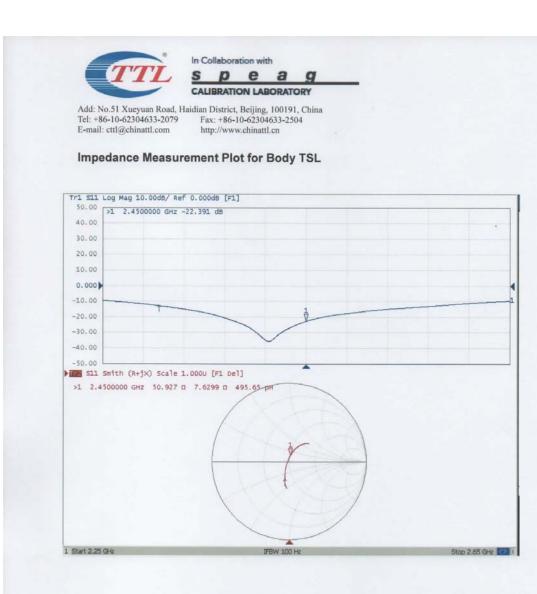
Certificate No: Z18-60218

Page 5 of 8



Impedance Measurement Plot for Head TSL

Certificate No: Z18-60218


Page 6 of 8

0 dB = 20.1 W/kg = 13.03 dBW/kg

Certificate No: Z18-60218

Page 7 of 8

Page 8 of 8