

TEST REPORT

Applicant: LUXPAD TABLET

YangGuangGaoErFU Building, No 7008 SHENNAN Road, FuTian Address: SHENZHEN, China

FCC ID: 2ANIRASTRO8R

- **Product Name: TABLET**
 - Standard(s): 47 CFR Part 2 47 CFR Part 22, Subpart H 47 CFR Part 24, Subpart E 47 CFR Part 27 ANSI C63.26-2015 **KDB 971168 D01 Power Meas License Digital Systems** v03r01

The above equipment has been tested and found compliant with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan)

Report Number: CR22080045-00D

Date Of Issue: 2022-09-28

Reviewed By: Sun Zhong

Sun 2hong

Title: Manager

Test Laboratory: China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888

Test Facility

The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123.

Declarations

China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "▲". Customer model name, addresses, names, trademarks etc. are not considered data.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

This report cannot be reproduced except in full, without prior written approval of the Company.

This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk " \star ".

CONTENTS

TEST FACILITY	2
DECLARATIONS	2
1. GENERAL INFORMATION	5
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	5
1.2 Description of Test Configuration	6
1.2.2 Support Equipment List and Details	
1.2.3 Support Cable List and Details1.2.4 Block Diagram of Test Setup	
1.3 MEASUREMENT UNCERTAINTY	
2. SUMMARY OF TEST RESULTS	
3. REQUIREMENTS AND TEST PROCEDURES	
3.1 Applicable Standard For Part 22 Subpart H:	
3.1.1 RF Output Power	13
3.1.2 Spurious Emissions	
3.1.3 Frequency stability	
3.2 Applicable Standard For Part 24 Subpart E:3.2.1 RF Output Power	14
3.2.2 Spurious Emissions	
3.2.3 Frequency stability	
3.3 Applicable Standard For Part 27:	
3.3.1 RF Output Power	
3.3.2 Spurious Emissions	
3.3.3 Frequency stability	
3.4 Test Method:	
3.4.1 RF Output Power	
Test Setup Block:	
3.4.2 Occupied Bandwidth	
Test Setup Block:	
Test Setup Block:	
3.4.4 Out of band emission	
Test Setup Block:	
3.4.5 Frequency stability	
Test Setup Block:	
3.4.6 Field strength of spurious radiation	23
4. Test DATA AND RESULTS	
4.1 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 850 BAND:	
4.2 ANTENNA PORT TEST DATA AND RESULTS FOR GSM 1900 BAND:	
4.3 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 2:	
4.4 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 4:	

Page 3 of 221

Report No.: CR22080045-00D

4.5 ANTENNA PORT TEST DATA AND RESULTS FOR WCDMA BAND 5:	51
4.6ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 2	58
4.7 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 4	79
4.8 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 5	
4.9 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 12	116
4.10 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 13	132
4.11 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 17	144
4.12 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 41	154
4.13 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 66	170
4.14 ANTENNA PORT TEST DATA AND RESULTS FOR LTE BAND 71	
4.15 RADIATED SPURIOUS EMISSIONS	207

1. GENERAL INFORMATION

1.1 Product Description for Equipment under Test (EUT)

EUT Name:	TABLET
EUT Model:	ASTRO 8R
	GPRS: 850/1900
Operation Bands and modes:	WCDMA: Band 2/4/5
	LTE: Band 2/4/5/12/13/17/41/66/71
Modulation Type:	GMSK, BPSK, QPSK, 16QAM
Rated Input Voltage:	DC 5V from adapter or DC 3.8V from battery
Serial Number:	CR22080045-RF-S1
EUT Received Date:	2022.8.25
EUT Received Status:	Good

Accessory Information:

Accessory Description	Manufacturer	Model	Parameters			
Adapter 1#	MAXWEST	ASTRO 8R	Input: AC 100- 240V~50/60Hz 0.2A Output: 5.0V 1A			
Adapter 2#	MAXWEST	TPA-46B050100UU	Input: 100-240V~50/60Hz 0.2A Output: 5.0V 1000mA			
USB Cable	Unknown	Unknown	Unshielded, 1m			

Antenna Information▲:

Antenna Manufacturer	Antenna Type	input impedance (Ohm)	Antenna Gain /Operation Band
Shenzhen KuruijieCommunication Technologies Co.,Ltdp	FPC	50	0.64 dBi(GSM/GPRS1900/WCDMA B2/LTE B2) 0.58 dBi(WCDMA B4/LTE B4/B66) 0.43 dBi(GSM/GPRS850/WCDMA B5/LTE B5) 0.26 dBi(LTE B13) 0.21 dBi(LTE B12/LTE B17) 0.54 dBi(LTE B41) 0.59 dBi(LTE B66) 0.17 dBi(LTE B71)

1.2 Description of Test Configuration

1.2.1 EUT Operation Condition:

EUT Operation Mode:	The system was configured for testing in each operation mode.
Equipment Modifications:	
EUT Exercise Software:	
The maximum power was configured per	3GPP Standard for each operation modes as below setting:
GPRS	
Press Connection control to choose the di Press RESET > choose all the reset all se Connection Press Signal Off to turn Network Support > GSM + GPRS or GSI Main Service > Packet Data Service selection > Test Mode A – Auto MS Signal Press Slot Config Bott slots and power setting > Slot configuration > Uplink > 33 dBm for GPRS 850 > 30 dBm for GPRS 1900 BS Signal Enter the same channe Frequency Offset > + 0 Hz	ttings n off the signal and change settings M + EGSM Slot Config. off om on the right twice to select and change the number of time
	ed to adjust if link is not stable) channel [Enter the same channel number for TCH channel (test
TCH >choose desired toHopping >OffMain Timeslot >3	ready set under MS signal) est channel > CS4 (GPRS)
Bit Stream >2E9-1 PSR Bit StAF/RFEnter appropriatConnectionPress Signal on	ream e offsets for Ext. Att. Output and Ext. Att. Input to turn on the signal and change settings

WCDMA

The following tests were conducted according to the test requirements outlines in section 5.2 of the 3GPP TS34.121-1 specification.

	Mode	HSUPA	HSUPA	HSUPA	HSUPA	HSUPA					
	Subset	1	2		4	5					
	Loopback Mode	Test Mode 1									
	Rel99 RMC	12.2kbps RMC									
	HSDPA FRC	H-Set1									
	HSUPA Test	HSUPA Loopback									
WCDMA	Power Control	Algorithm2									
General	Algorithm	/			A // A						
Settings	βc	11/15	6/15	15/15	2/15	15/15					
Settings	βd	15/15	15/15	9/15	15/15	0					
	βec	209/225	12/15	30 15	2/15	5/15					
	βc/ βd	11/15	6/15	15/9	2/15	-					
	βhs	22/15	12/15	30/15	4/15	5/15					
	CM(dB)	1.0	3.0	2.0	3.0	1.0					
	MPR(dB)	0	2	1	2	0					
	DACK			8							
	DNAK			8							
HSDPA	DCQI	8									
Specific	Ack-Nack repetition	3									
Settings	factor										
Settings	CQI Feedback			4ms							
	CQI Repetition Factor			2							
	Ahs=βhs/ βc		_	30/15	_	_					
	DE-DPCCH	6	8	8	5	7					
	DHARQ	0	0	0	0	0					
	AG Index	20	12	1	17	21					
	ETFCI	75	67	92	71	81					
	Associated Max UL Data Rate k ps	242.1	174.9	482.8	205.8	308.9					
HSUPA Specific Settings	Reference E_FCls	E-TFC E-TF E-TFC E-TF E-TFC E-TFC	1 PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26	11 E-TF E-TFCI E-TF PO4 E-TF E-TFCI E-TF 92 E-TF E-TFCI E-T PO 18 E-TF E-TF E-TF		CI 11 E CI PO 4 CI 67 I PO 18 CI 71 I PO23 CI 75 I PO26 CI 81 I PO 27					

LTE (FDD):

The following tests were conducted according to the test requirements in 3GPP TS36.101

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
1	1.4 3.0 MHz MHz M		5 MHz	10 MHz	15 MHz	1	
OPSK	> 5	>4	>8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤4	≤8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	>4	>8	> 12	> 16	> 18	≤ 2

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RS})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA	
			3	>5	≤1	
			5	>6	≤1	
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤1	
			15	>8	≤1	
			20	>10	≤ 1	
NS 04	6.6.2.2.2	41	5	>6	s 1	
145_04	NS_04 6.6.2.2.2 41		10, 15, 20	le 6.2.4-4		
NS_05	6.6.3.3.1	1	10,15,20	≥ 50	≤1	
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10 Table 5.6-1		n/a	
NS_07	6.6.2.2.3	13	10	Table 6.2.4-2	Table 6.2.4-2	
110_07	6.6.3.3.2			1000 0.2.7 2	10010 0.2.4-2	
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ 3	
NS_09	6.6.3.3.4	21	10, 15	> 40	≤1 ≤2	
NS 10		20	15, 20	> 55 Table 6.2.4-3	Table 6.2.4-3	
NS_10	6.6.2.2.1	20	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5	
NS_32				•		
Note 1: A	pplies to the lower	block of Band 23, i.e	a carrier place	d in the 2000-201	10 MHz region.	

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

LTE(TDD)

LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special subframe configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

		lormal cyclic prefix in de	Extended cyclic prefix in downlink						
Special subframe	DwPTS	UpF		DwPTS		UpPTS			
configuration		Normal cyclic prefix	Extended cyclic		Normal cyclic	Extended cyclic			
		in uplink	prefix in uplink		prefix in uplink	prefix in uplink			
0	$6592 \cdot T_s$			$7680 \cdot T_s$					
1	$19760 \cdot T_s$		20480 · T _s 2192 · 7		$2192 \cdot T_{e}$	2560 · T.			
2	$21952 \cdot T_s$	$2192 \cdot T_s$	$2560 \cdot T_s$	$23040 \cdot T_s$	21/2 18	2000 1,			
3	$24144 \cdot T_s$			$25600 \cdot T_s$					
4	$26336 \cdot T_s$			$7680 \cdot T_{\rm s}$					
5	$6592 \cdot T_s$			$20480 \cdot T_s$	$4384 \cdot T_{*}$	5120 · T			
6	$19760 \cdot T_s$			$23040 \cdot T_s$	4504 · 1 ₈	5120-1			
7	$21952 \cdot T_s$	$4384 \cdot T_s$	5120 · T _s	$12800 \cdot T_s$					
8	$24144 \cdot T_s$			-	-	-			
9	$13168 \cdot T_{s}$			-	-				

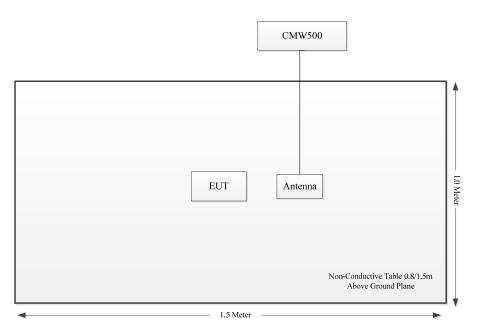
Table 4.2-2: Uplink-downlink configurations.											
Uplink-downlink	Downlink-to-	Subframe number									
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	υ	U	U	D	s	U	U	U
1	5 ms	D	S	υ	U	D	D	s	U	U	D
2	5 ms	D	S	υ	D	D	D	s	U	D	D
3	10 ms	D	S	υ	U	U	D	D	D	D	D
4	10 ms	D	S	υ	U	D	D	D	D	D	D
5	10 ms	D	S	υ	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D

Calculated Duty Cycle

Uplink-	Downlink-to-	Subframe Number										Calculated
Downlink Configuration	Uplink Switch- point Periodicity	0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

1.2.2 Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
R&S	Wideband Radio Communication Tester	CMW500	149218
Unknown	Antenna	Unknown	Unknown

1.2.3 Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
/	/	/	/	/	/

1.2.4 Block Diagram of Test Setup

Radiation Test:

1.3 Measurement Uncertainty

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval.

Parameter	Measurement Uncertainty
Occupied Channel Bandwidth	$\pm 5\%$
RF output power, conducted	±0.61dB
Power Spectral Density, conducted	±0.61 dB
Unwanted Emissions, radiated	30M~200MHz: 4.15 dB,200M~1GHz: 5.61 dB,1G~6GHz: 5.14 dB, 6G~18GHz: 5.93 dB,18G~26.5G:5.47 dB,26.5G~40G:5.63 dB
Unwanted Emissions, conducted	±1.26 dB
Temperature	±1℃
Humidity	$\pm 5\%$
DC and low frequency voltages	$\pm 0.4\%$
Duty Cycle	1%
RF Frequency	$\pm 0.082 \times 10^{-6}$

2. SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§2.1046; § 22.913 (a); § 24.232 (c); §27.50	RF Output Power	Compliant
FCC§ 2.1047	Modulation Characteristics	Not Applicable
FCC§ 2.1049; § 22.905 § 22.917; § 24.238; §27.53	Occupied Bandwidth	Compliant
FCC§ 2.1051, § 22.917 (a); § 24.238 (a); § 27.53	Spurious Emissions at Antenna Terminal	Compliant
FCC§ 22.917 (a); § 24.238 (a); §27.53	Out of band emission, Band Edge	Compliant
FCC§ 2.1055 § 22.355; § 24.235; §27.54	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant
FCC§ 2.1053 § 22.917 (a); § 24.238 (a); §27.53	Field Strength of Spurious Radiation	Compliant

3. REQUIREMENTS AND TEST PROCEDURES

3.1 Applicable Standard For Part 22 Subpart H:

3.1.1 RF Output Power

FCC §22.913(a)

(5) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7watts.

(d) Power measurement.Measurement of the ERP of Cellular base transmitters and repeaters must be made using an average power measurement technique. The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.

3.1.2 Spurious Emissions

FCC §22.917

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a reference bandwidth as follows:

(1) In the spectrum below 1 GHz, instrumentation should employ a reference bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy, provided that the measured power is integrated over the full required reference bandwidth (i.e., 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
 (2) In the spectrum above 1 GHz, instrumentation should employ a reference bandwidth of 1 MHz

3.1.3 Frequency stability

FCC §22.355

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Frequency range (MHz)	Base, fixed (ppm)	Mobile >3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20	20	50
50 to 450	5	5	50
450 to 512	2.5	5	5
821 to 896	1.5	2.5	2.5
928 to 929	5	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10	n/a	n/a

Table C-1 - Frequency Tolerance for Transmitters in the Public Mobile Services

3.2 Applicable Standard For Part 24 Subpart E:

3.2.1 RF Output Power

FCC §24.232

(c) Mobile and portable stations are limited to 2 watts EIRP and the equipment must employ a means for limiting power to the minimum necessary for successful communications.

(d) Power measurements for transmissions by stations authorized under this sectionmay be made either in accordance with a Commission-approved average powertechnique or in compliance with paragraph (e) of this section. In both instances, equipment employed must be authorized in accordance with the provisions of §24.51. Inmeasuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

3.2.2 Spurious Emissions

FCC §24.238

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

(a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

(b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

(c) Alternative out of band emission limit. Licensees in this service may establish an alternative out of band emission limit to be used at specified band edge(s) in specified geographical areas, in lieu of that set forth in this section, pursuant to a private contractual arrangement of all affected licensees and applicants. In this event, each party to such contract shall maintain a copy of the contract in their station files and disclose it to prospective assignees or transferees and, upon request, to the FCC.

(d) Interference caused by out of band emissions. If any emission from a transmitter operating in this service results in interference to users of another radio service, the FCC may require a greater attenuation of that emission than specified in this section.

3.2.3 Frequency stability

FCC §24.235

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

3.3 Applicable Standard For Part 27:

3.3.1 RF Output Power

FCC §27.50

(a)(3) Mobile and portable stations.

(i) For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, *except that* for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

(ii) Mobile and portable stations are not permitted to transmit in the 2315-2320 MHz and 2345-2350 MHz bands.

(iii) *Automatic transmit power control*. Mobile and portable stations transmitting in the 2305-2315 MHz band or in the 2350-2360 MHz band must employ automatic transmit power control when operating so the stations operate with the minimum power necessary for successful communications.

(iv) *Prohibition on external vehicle-mounted antennas*. The use of external vehicle-mounted antennas for mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band is prohibited.

(b)(10) Portable stations (hand-held devices) transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands are limited to 3 watts ERP.

(c)(10) Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP.

(d)(4) Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP. Fixed stations operating in the 1710-1755 MHz band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in these bands must employ a means for limiting power to the minimum necessary for successful communications.

(d)(5) Equipment employed must be authorized in accordance with the provisions of §24.51. Power measurements for transmissions by stations authorized under this sectionmay be made either in accordance with a Commission-approved average powertechnique or in compliance with paragraph (d)(6) of this section. In measuring transmissions in this band using an average power technique, the peak-to-average ratio(PAR) of the transmission may not exceed 13 dB.

(h) The following power limits shall apply in the BRS and EBS:(2)Mobile and other user stations. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0 watts transmitter output power.

3.3.2 Spurious Emissions

FCC §27.53

(a) For operations in the 2305-2320 MHz band and the 2345-2360 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power P (with averaging performed only during periods of transmission) within the licensed band(s) of operation, in watts, by the following amounts:

(4)For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

(i) By a factor of not less than: $43 + 10 \log (P) dB$ on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(ii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(iii) By a factor of not less than $43 + 10 \log (P) dB$ on all frequencies between 2360 and 2365 MHz, and not less than $70 + 10 \log (P) dB$ above 2365 MHz.

(c)For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least $43 + 10 \log (P) dB$;

(3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $76 + 10 \log (P)$ dB in a 6.25 kHz band segment, for base and fixed stations;

(4) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than $65 + 10 \log (P) dB$ in a 6.25 kHz band segment, for mobile and portable stations;

(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

(f) For operations in the 746-758 MHz, 775-788 MHz, and 805-806 MHz bands, emissions in the band 1559-1610 MHz shall be limited to – 70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and – 80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

(g) For operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

(h) AWS emission limits

(1) *General protection levels.* Except as otherwise specified below, for operations in the 1695-1710 MHz, 1710-1755 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2110-2155 MHz, 2155-2180 MHz, and 2180-2200 bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log₁₀ (P) dB.

(m)(4) For mobile digital stations, the attenuation factor shall be not less than $40 + 10 \log (P) dB$ on all frequencies between the channel edge and 5 megahertz from the channel edge, $43 + 10 \log (P) dB$ on all frequencies between 5 megahertz and X megahertz from the channel edge, and $55 + 10 \log (P) dB$ on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that $43 + 10 \log (P) dB$ on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

3.3.3 Frequency stability

FCC §27.54

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

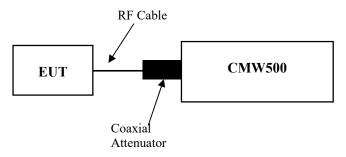
3.4 Test Method:

3.4.1 RF Output Power

According to CFR Part 2.1046, ANSI C63.26-2015 Section 5.2.5.5 and KDB 971168 D01 Power Meas License Digital Systems v03r01:

The relevant equation for determining the ERP or EIRP from the conducted RF output power measured using the guidance provided above is:

ERP or EIRP = $P_{Meas} + G_T - L_C$


where:

 $ERP \text{ or } EIRP = effective \text{ radiated power or equivalent isotropically radiated power, respectively} (expressed in the same units as P_{Meas}, typically dBW or dBm);$

- P_{Meas} = measured transmitter output power or PSD, in dBm or dBW;
- G_T = gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP);

L_C = signal attenuation in the connecting cable between the transmitter and antenna, in dB.

Test Setup Block:

Note: The Insertion loss of the RF cable and Coaxial Attenuator was offset into the Reading of CMW500.

3.4.2 Occupied Bandwidth

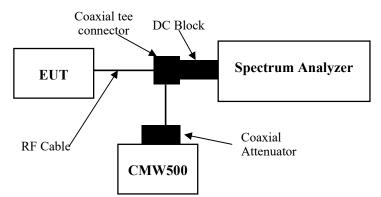
According to CFR Part 2.1049, ANSI C63.26-2015 Section 5.4.4

The OBW is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring (99%) power bandwidth:

a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient).

b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set \ge 3 × RBW.

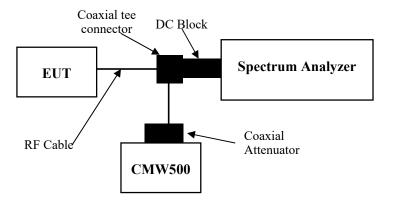

c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.

d) Set the detection mode to peak, and the trace mode to max-hold.

e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.

f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).

Test Setup Block:

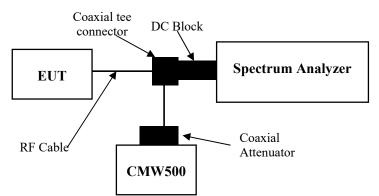

Note: 4.5dB is the Insertion loss of the RF cable, Coaxial tee connector and DC Block, which was offset into the Spectrum Analyzer.

3.4.3 Spurious emissions at antenna terminals

According to CFR Part 2.1051, 22.917(a), 24.238(a) and/or 27.53, 90, ANSI C63.26-2015 Section 5.7.4, KDB 971168 D01 Power Meas License Digital Systems v03r01:

the applicable rule part specifies the reference bandwidth for measuring unwanted emission levels (typically, 100 kHz if the authorized frequency band/block is at or below 1 GHz and 1 MHz if the authorized frequency band/block is above 1 GHz),8 effectively depicting the unwanted emission limit in terms of a power spectral density. In those cases where no reference bandwidth is explicitly specified, the values in the preceding sentence should be used.

Test Setup Block:


Note: 4.5dB is the Insertion loss of the RF cable, Coaxial tee connector and DC Block, which was offset into the Spectrum Analyzer.

3.4.4 Out of band emission

According to CFR Part 2.1051, 22.917(a), 24.238(a), 27.53,90, ANSI C63.26-2015 Section 5.7.3, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Typically, a measurement (resolution) bandwidth smaller than the reference bandwidth is allowed for measurements within a specified frequency range at the edge of the authorized frequency block/band (e.g., within the first Y MHz outside of the authorized frequency band/block, where the value of Y is specified in the relevant rule part). Some FCC out-of-band emission rules permit the use of a narrower RBW (typically limited to a minimum RBW of 1 % of the OBW) for measuring the out-of-band emissions without a requirement to integrate the result over the full reference bandwidth. Beyond the specified frequency range in which this relaxation of the uniform reference bandwidth is permitted, it typically is also acceptable to use a narrower RBW (again limited to a minimum of 1 % of OBW) to increase accuracy, but the measurement result must subsequently be integrated over the full reference bandwidth.

Test Setup Block:

Note: The 4.5dB is the Insertion loss of the RF cable, Coaxial tee connector and DC Block, which was offset into the Spectrum Analyzer.

3.4.5 Frequency stability

According to CFR Part 2.1055, ANSI C63.26-2015 Section 5.6, KDB 971168 D01 Power Meas License Digital Systems v03r01:

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage.

The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

a) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and

b) At +20 °C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer.

If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.

Test Setup Block:

3.4.6 Field strength of spurious radiation

According to CFR Part 2.1053, 22.917(a), 24.238(a) and/or 27.53, ANSI C63.26-2015 Section 5.5.3:

Test setup:

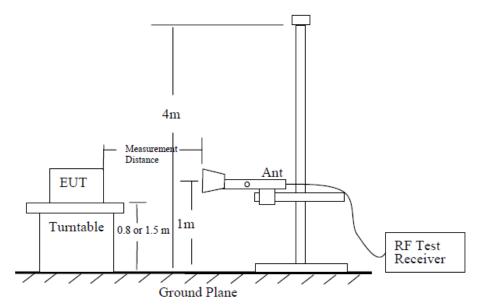
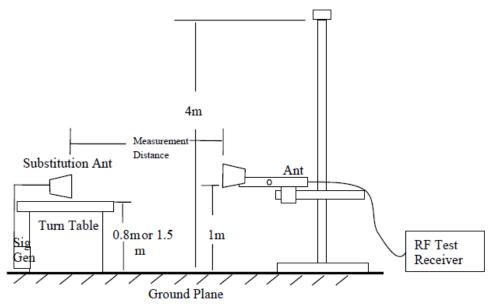



Figure 6—Test site-up for radiated ERP and/or EIRP measurements

Test Procedure:

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
 - Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- e) Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- f) Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- g) For each emission that was detected and measured in the initial test [i.e., in step b) and step c)]:
 - 1) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step b) and step c).
 - Record the output power level of the signal generator when equivalence is achieved in step 2).
- Repeat step e) through step g) with the measurement antenna oriented in the opposite polarization.
- i) Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

- Pe = equivalent emission power in dBm
- Ps = source (signal generator) power in dBm

NOTE-dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

- j) Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) - 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information
- k) Provide the complete measurement results as a part of the test report.

4. Test DATA AND RESULTS

4.1 Antenna Port Test Data and Results for GSM 850 band:

Serial Number:	CR22080045-RF-S1	Test Date:	2022-09-06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

Environmental Conditions:								
Temperature: (°C)	28	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3			

Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer	FSV40	101474	2022-07-15	2023-07-14		
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A		
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A		
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A		
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A		
R&S	Wideband Radio Communication Tester	CMW500	149218	2022-07-15	2023-07-14		
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05		
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29		
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A		
* Statement of T	Traceability: China Certificat	ion ICT Co., Ltd (Dongguan) attests that	all calibrations	have been		

performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ GSM 850 Band▲:							
Antenna Gain (dBi):	0.43	Antenna Gain (dBd):	-1.72	Path Loss L _C (dB):	0.2		
Operation Volta	Operation Voltage(V _{DC}):						
Lowest:							

Test Frequency For Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
GPRS	824.2	836.6	848.8			

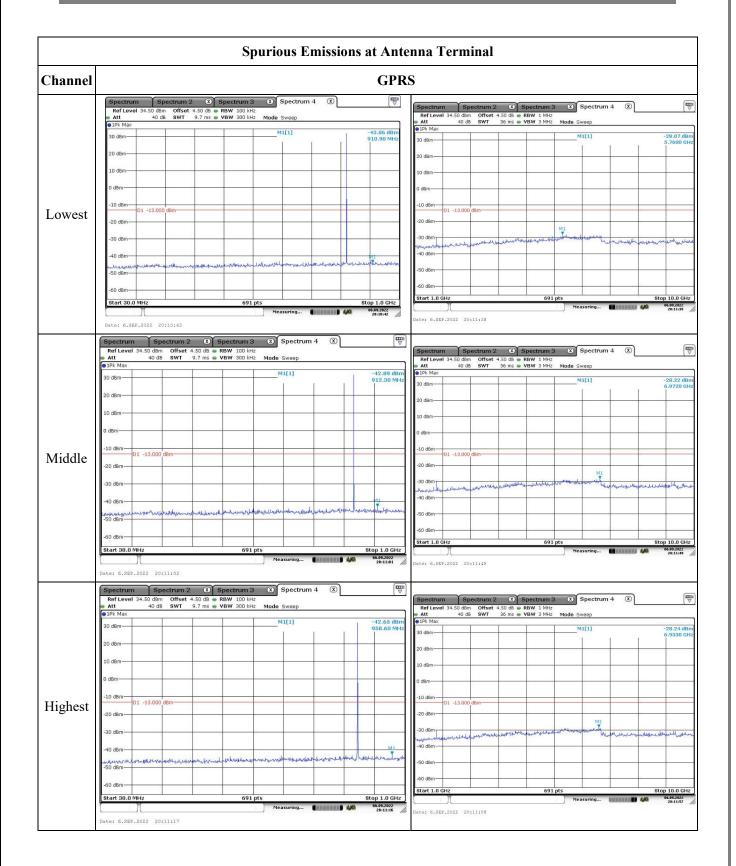
Test Data:	
------------	--

FCC§2.1046;§ 22.913 (a):RF Output Power								
	Conducted Peak Output Power(dBm)			Maximum ERP	ERP			
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dBm)	Limit (dBm)			
GPRS 1 Slot	30.99	30.85	30.86	29.07	38.45			
GPRS 2 Slots	28.99	29.1	29.19	27.27	38.45			
GPRS 3 Slots	27.35	27.2	27.57	25.65	38.45			
GPRS 4 Slots	25.72	25.61	25.61	23.8	38.45			
Note: ERP=Cor	Note: ERP=Conducted Power(dBm) - Cable loss(dB) + Antenna Gain(dBd)							
				Result:	Pass			

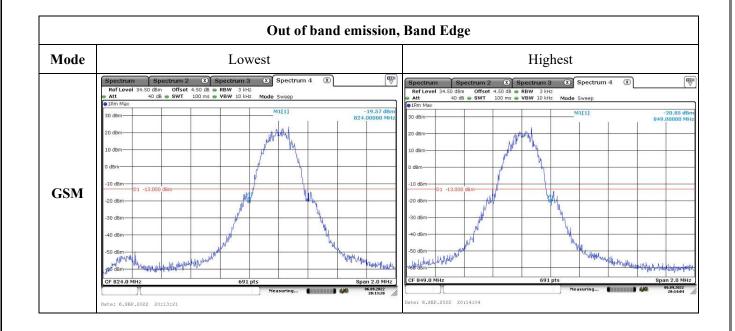
FCC §2.1049	, §22.917, §22.9	905:Occupied	Bandwidth			
Operation	99% (Occupied Band (MHz)	width		ipied Bandw MHz)	idth
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
GPRS	0.244	0.242	0.24	0.307	0.314	0.31
Note: The test p	olots please refer	to the Plots of O	ccupied Bandwid	dth		

FCC §2.1051, §22.917(a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, §22.917(a):Out of band emission, Band EdgeResult:Pass, Please refer to the test plots of Out of band emission, Band Edge.


FCC §2.1055	, §22.355: Freq	uency Stabili	ty		
Test Modulation:	GMSK		Test Channel:	836.6	MHz
Test Item	Temperature	Voltage	Frequ	ency Error	Limit
Test Item	(°C)	(Vdc)	(Hz)	(ppm)	(ppm)
	-30	3.8	-6	-0.007	2.5
	-20	3.8	1	0.001	2.5
	-10	3.8	35	0.042	2.5
Frequency	0	3.8	21	0.025	2.5
Stability vs.	10	3.8	5	0.006	2.5
Temperature	20	3.8	49	0.059	2.5
	30	3.8	12	0.014	2.5
	40	3.8	3	0.004	2.5
	50	3.8	5	0.006	2.5
Frequency	20	3.5	1	0.001	2.5
Stability vs. Voltage	20	4.35	9	0.011	2.5
				Result:	Pass

Test Plots:


	Occupied Bandwidth
Channel	GPRS
Lowest	Spectrum Spectrum 3 Spectrum 4 C Ref Level 34.50 dim Offset 4.50 dil e RBW 3 ktz C C e Att 40 dil SWT 11.2 ms e VBW 10 ktz Mode 5weep E K Max 30 dim 01.25.010 dim 0.02 dil -0.02 dil -0.02 dil 20 dim 01.25.010 dim 0.01 dim 0.02 dil -0.02 dil -0.02 dil 10 dim 01.25.010 dim 0.02 dil -0.02 dil -0.02 dil -0.02 dil 10 dim 0.2 -0.950 dim -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.0 dim 0.2 -0.950 dim -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.0 dim -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.0 dim -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil -0.02 dil
Middle	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Control of Spectrum 4 <thimage: 4<="" control="" of="" spectrum="" td=""></thimage:>
Highest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 C Rof Level 34.50 dBm Offset 4.50 dB RBW 9 Hz Mode Sweep Image: Control of Sweep Image: Contro

Page 28 of 221

Report No.: CR22080045-00D

Report No.: CR22080045-00D

	ore rest Data and Results		
Serial Number:	CR22080045-RF-S1	Test Date:	2022-09-06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

4.2 Antenna Port Test Data and Results for GSM 1900 band:

Environment	al Conditions:				
Temperature: (°C)	28	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3

Test Equipme	nt List and Details:				
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Spectrum Analyzer	FSV40	101474	2022-07-15	2023-07-14
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A
R&S	Wideband Radio Communication Tester	CMW500	149218	2022-07-15	2023-07-14
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A
* Statement of T	raceability: China Certification I	CT Co., Ltd (Do	ngguan) attests that all	calibrations ha	ve heen

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Informa	tion@PCS190) Band A :			
Antenna Gain (dBi):	0.64			Path Loss L _C (dB):	0.4
Operation Volta	ge(VDC):				
Lowest:	3.5	Normal:	3.8	Highest:	4.35

Test Frequence	cy For Each M	ode:	
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)
GPRS	1850.2	1880	1909.8

Test Data:

FCC§2.1046;§	§ 24.232 (c):RF	Output Powe	r		
	Conducted	Peak Output Po	ower(dBm)	Maximum	EIRP
Test Mode	Lowest Channel	Middle Channel	Highest Channel	EIRP(dBm)	Limit(dBm)
GPRS 1 Slot	30.06	30.7	30.35	30.94	33
GPRS 2 Slots	29.82	30.45	30.16	30.69	33
GPRS 3 Slots	29.58	30.35	29.83	30.59	33
GPRS 4 Slots	29.39	29.88	29.39	30.12	33
Note: EIRP=Con	nducted Power(d	Bm) - Cable loss	(dB) + Antenna (Gain(dBi)	
				Result:	Pass

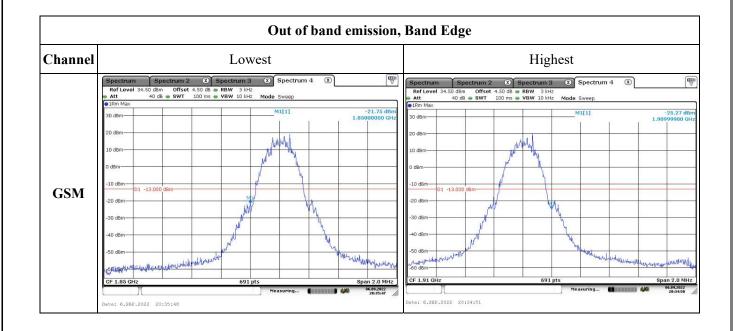
FCC §2.1049,	§24.238:Occuj	pied Bandwidt	h			
Operation	99%	Occupied Band (MHz)	width	26 dB Occupied Bandwidth (MHz)		idth
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel
GPRS	0.242	0.243	0.24	0.307	0.311	0.303
Note: The test p	lots please refer t	o the Plots of Oc	cupied Bandwid	th		

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band Edge

Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055	, §24.235: Frequ	ency Stabilit	у		
Test Modulation:	GMSK		Test Channel:	1880	MHz
Test Item	Temperature	Voltage	Frequ	ency Error	Result
Test Item	(°C)	(VDC)	(Hz)	(ppm)	Result
	-30	3.8	5	0.003	Pass
	-20	3.8	4	0.002	Pass
	-10	3.8	11	0.006	Pass
Frequency	0	3.8	54	0.029	Pass
Stability vs.	10	3.8	10	0.005	Pass
Temperature	20	3.8	57	0.030	Pass
	30	3.8	21	0.011	Pass
	40	3.8	22	0.012	Pass
	50	3.8	1	0.001	Pass
Frequency	20	3.5	3	0.002	Pass
Stability vs. Voltage	20	4.35	5	0.003	Pass
				Result:	Pass


Test Plots:

	Occupied Bandwidth
Channel	GPRS
Lowest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 C Ref Level 34.50 dbm Offsot 4.50 db RBW 3 Hz Att 40 db SWT 11.2 ms VBW 10 Hz Mode Sweep BUR Max 0.025 db 0 Ha 0 Ha 0 Ha 0.225 db 30 dbm 0 0 Ha 0 Ha 0 Ha 0.235 db 10 dbm 0 0 Ha 0 Ha 0 Ha 0 Ha 10 dbm 0 0 Ha 0 Ha 0 Ha 0 Ha 0 Ha 40 dbm 0 Ha
Middle	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Control of State 1, 50, 68, 70, 74, 68, 75, 75, 75, 68, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75
Highest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Spectrum

Page 34 of 221

	Spurious Emissions at Ant	tenna Terminal
Channel	GPI	RS
Lowest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Constraint of the system I	Spectrum Spectrum 3 C Spectrum 4 C Ref Level 34.50 dBm Offset 4,50 dB 8BW 1 MHz V V w Att 40 dB © WBV 1 MHz W SWE V V V
		1Pk Max 30 dBm 15,8890 GHz
	10 dBm	20 dbm
	-10 d8m	0 d8h
	-20 d8m	20 dan -20 dan -30 dan -30 dan -40 dan
	40 dem we were all which is a second of the	-40 dam
	-00 dBm	Start 1.0 GHz 691 pts 8top 20.0 GHz Start 1.0 GHz 691 pts 8top 20.0 GHz Date: 6.582,2022 20129130 Massuring
Middle	Date: 6.582.2022 20129102 Spectrum Spectrum 2 3 Spectrum 3 3 Spectrum 4 3 ♥ Ref Level 34.50 dBm Offset 4.50 dB ● RBW 100 HHz	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: The spectrum 3 Ref Level 34.50 dBm Offset 4.50 dB RBW 1 MHz
	Att 40 dB ● SWT 100 ms ● VBW 300 H/z Mode Sweep ●1Pk Max	Att 40 dB SWT 100 ms VSW 3 MHz Mode Sweep ●JFk Max 30 dBm
	20 dem	20 d8m
	0 dBm	0 dBm
	-20 dBm	-20 dam
	-40 dem	-40 d8m
	-60 dBm	-60 dBm Start 1.0 GHz 691 pts Stop 20.0 GHz Neosuring 44 693 22
	Date: 6.5EP.2022 20:29:13 Spectrum Spectrum 2 ③ Spectrum 3 ③ Spectrum 4 ⑧	Date: 6.88P.2022 20129136
Highest	Ref Level 34.50 dBm Offset 4.50 dBm RBW 100 Hz Att 40 dBm SWT 100 ms VBW 300 Hz Mode Sweep 919k Max	RefLevel 34.50 dBm Offset 4.50 dB ■ RBW 1 MHz ■ Att 40 dB ■ SWT 100 ms ■ VBW 3 MHz Mode Sweep ● IFK Max ■
	20 dBm 806.98 MH2	30 dbm M1[1] -27.46 dbm 15.6690 GHz 20 dbm
	0 dBm	10 dBm
	-10 dBm 01 -13.000 dBm -	-10 dBm 01 -13.000 dBm
	-30 dem-	-30 cm
	-50 dem	-50 dBm -60 dBm -60 dBm -81 pts Stop 20.0 CH2
	Start 30.0 MHz 691 pts Stop 1.0 GHz Neasuring Weasuring Weasuring 282828 Date: 6.589.2022 20129120 Measuring 20129120	Measuring Masuring Masuring

Report No.: CR22080045-00D

Serial Number:	CR22080045-RF-S1	Test Date:	2022-09-06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Rinka Li	Test Result:	Pass

4.3 Antenna Port Test Data and Results for WCDMA Band 2:

Environmental Conditions:					
Temperatur (°C	28	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3

Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer	FSV40	101474	2022-07-15	2023-07-14		
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A		
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A		
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A		
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A		
R&S Wideband Radio Communication Tester		CMW500	149218	2022-07-15	2023-07-14		
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05		
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29		
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A		
* Statement of T	raceability: China Certification I	CT Co. Itd (Do	nooyan) attests that all	calibrations ha	we heen		

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ WCDMA Band II :					
Antenna Gain (dBi):	0.64			Path Loss L _C (dB):	0.4
Operation Volta	Operation Voltage(VDC):				
Lowest:	3.5	Normal:	3.8	Highest:	4.35

Test Frequency For Each Mode:					
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)		
WCDMA	1852.4	1880	1907.6		

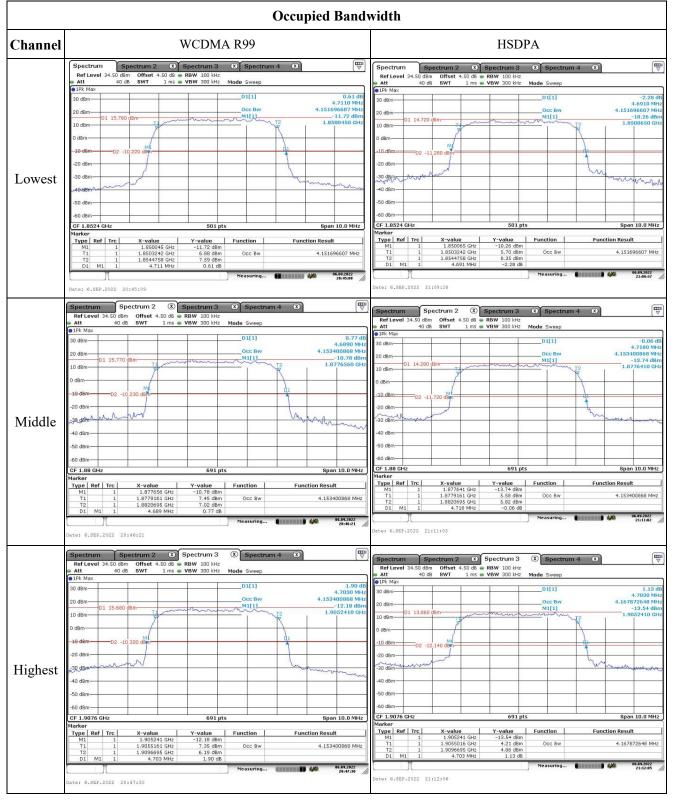
Test Data:

FCC§2.1046;§ 24.232 (c) RF Output Power:						
	Conducted Average Output Power(dBm)					
Test Mode	Lowest Channel	Middle Channel	Highest Channel	Maximum EIRP (dBm)	EIRP Limit (dBm)	
WCDMA R99	23.15	22.65	22.74	23.39	33	
HSDPA Subtest 1	22.76	22.6	22.63	23	33	
HSDPA Subtest 2	22.71	22.57	22.36	22.95	33	
HSDPA Subtest 3	22.58	22.24	22.04	22.82	33	
HSDPA Subtest 4	22.45	21.99	21.95	22.69	33	
HSUPA Subtest 1	21.65	21.65	21.35	21.89	33	
HSUPA Subtest 2	21.65	21.55	21.05	21.89	33	
HSUPA Subtest 3	21.17	21.09	20.67	21.41	33	
HSUPA Subtest 4	20.86	20.93	20.4	21.17	33	
HSUPA Subtest 5 20.85 20.87 19.92				21.11	33	
Note: EIRP=Con	Note: EIRP=Conducted Power(dBm) - Cable loss(dB) + Antenna Gain(dBi)					
				Result:	Pass	

Peak-to-average Ratio(PAR)					
		Pe	T :		
	Test Mode	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)
	WCDMA R99	3.04	2.78	2.87	13
	HSDPA	5.57	4.87	5.33	13
	HSUPA	6.99	4.64	4.84	13
				Result:	Pass

FCC §2.1049, §24.238:Occupied Bandwidth							
Operation	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)			
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel	
WCDMA R99	4.152	4.153	4.153	4.711	4.689	4.703	
HSDPA	4.152	4.153	4.168	4.691	4.718	4.703	
HSUPA	4.152 4.153 4.153		4.711	4.703	4.689		
Note: The test p	lots please refer t	to the Plots of Oc	cupied Bandwid	th			

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.


FCC §2.1051, § 24.238 (a):Out of band emission, Band Edge

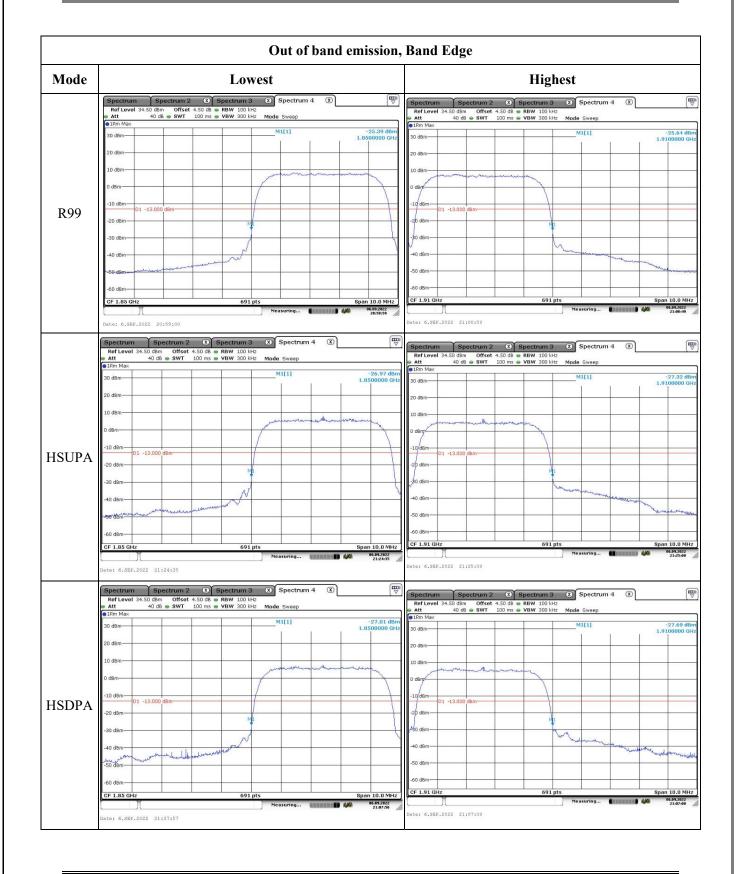
Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055,	§24.235: Frequ	ency Stability	Y		
Test Modulation:	WCDMA R99	WCDMA R99		1880	MHz
Test Item	Temperature Voltage		Frequ	ency Error	Result
Test Item	(°C)	(VDC)	(Hz)	(ppm)	Kesuit
	-30	3.8	6	0.003	Pass
	-20	3.8	11	0.006	Pass
	-10	3.8	32	0.017	Pass
Frequency	0	3.8	48	0.026	Pass
Stability vs.	10	3.8	11	0.006	Pass
Temperature	20	3.8	68	0.036	Pass
	30	3.8	10	0.005	Pass
	40	3.8	3	0.002	Pass
	50	3.8	4	0.002	Pass
Frequency	20	3.5	5	0.003	Pass
Stability vs. Voltage	20	4.35	7	0.004	Pass
				Result:	Pass

Report No.: CR22080045-00D

Test Plots:

Page 40 of 221


	Occupied Bandwidth				
Channel	HSUPA				
Lowest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 C Ref Level 34.50 dBm Offset 4.50 dB RBW 100 Hz C				
Middle	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Top Ref Level 34:50 dbm offsst 4:50 db RBW 100 Hz Mode Sweep 11:50 dbm 11:50 dbm 11:50 dbm 1:50 dbm 1:5				
Highest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Spectrum 3 Spectrum 4 Image: Spectrum 3 Spectrum 4 Image: Spectrum 4 <thima< td=""></thima<>				

Page 41 of 221

Report No.: CR22080045-00D

	Spurious Emissions at Ant	enna Terminal
Channel	WCDMA	A R99
	Spectrum Spectrum 3 Spectrum 4 Image: Constraint	Spectrum Spectrum 2 X Spectrum 3 X Spectrum 4 X Tmp Ref Level 34.50 dBm Offset 4.50 dB RBW 1 MHz
	10 d8m	10 dbm
Lowest	-10 dBm-01 -13.000 dBm-01 -10 dBm	-10 (Bm 01 -13.00) (Bm
	-30 dBm	-30 dbs-
	-50 dBm -60 dBm -51 dBm -52 dB	-50 dBm -60 dBm- -80 dBm- (8tart 1.0 GHz) 691 pts Stop 20.0 GHz
	NAME OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION O	Measuring
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Imp Ref Level 34.50 dbm Offset 4.50 db RBW 100 kHz Imp Imp Att 40 dB SWT 100 ms VBW 300 kHz Mode Sweep 91Pk Max Imp Imp Imp Imp Imp	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Comparison of the system of th
	30 dBm	30 d8m 17.7590 GHz
	10 dBm	0 dbin
Middle	-10 dBm 01 -13.000 dBm	
	-30 dem	-30 Bm
	-60 dBm	-50 dBm
	Date: 6.5EP.2022 20:46:53	Date: 6.8EP.2022 20:51:04
	Ref Level 34.50 dbm Offset 4.50 db € RBW 100 kHz 4tt 40 db € SWT 100 ms € VBW 300 kHz ●19k Max Mode Sweep	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Time Ref Level 34.50 dB Offset 4.50 dB RBW 1 MHz Time
	20 dbm	30 dBm 19.8210 GHz
	10 d8m	10 dkm
Highest	01 -13.000 dBm	01 - 13.000 dBm
	40 dBm	40 dBm
	-60 d8m	-60 dBm -60 dBm -61 pts Stop 20.0 GHz -691 pts Stop 20.0 GHz -691 pts
		200 Date: 6.SEP.2022 20:50:34

Page 42 of 221

Page 43 of 221

III I IIICOIIII I	Threema i oit i est Duta and Results for Webbint Dana n						
Serial Number:	CR22080045-RF-S1	Test Date:	2022-09-06				
Test Site:	RF	Test Mode:	Transmitting				
Tester:	Rinka Li	Test Result:	Pass				

4.4 Antenna Port Test Data and Results for WCDMA Band 4:

Environmental Conditions:						
Temperature: (°C)	28	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3	

Test Equipme	Test Equipment List and Details:							
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date			
R&S	Spectrum Analyzer	FSV40	101474	2022-07-15	2023-07-14			
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A			
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A			
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A			
Mini-Circuits	DC Block	BLK-18-S+	1554403	Each time	N/A			
R&S	Wideband Radio Communication Tester	CMW500	149218	2022-07-15	2023-07-14			
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05			
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29			
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A			
* C			· · · · · · · · · · · · · · · · · · ·	1.1 1	1			

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ WCDMA Band IV .						
Antenna Gain (dBi):	a Gain (dBi): 0.58			Path Loss L _C (dB):	0.3	
Operation Volta	Operation Voltage(VDC):					
Lowest:	3.5	Normal:	3.8	Highest:	4.35	

Test Frequency For Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA	1712.4	1732.6	1752.6			

Test Data:

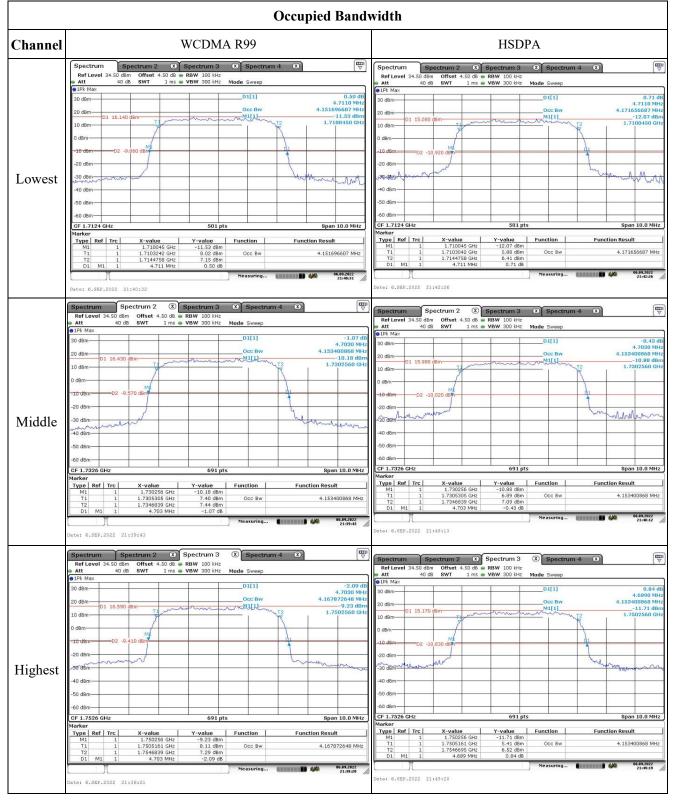
FCC§2.1046;§27.50(d)(4) RF Output Power:							
	Conducted Av	erage Output I	Maximum EIRP	EIRP			
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dBm)	Limit (dBm)		
WCDMA R99 Subtest 1	22.84	22.64	22.18	23.12	30		
HSDPA Subtest 1	22.67	22.43	22.04	22.95	30		
HSDPA Subtest 2	22.41	21.99	21.91	22.69	30		
HSDPA Subtest 3	22.24	21.67	21.59	22.52	30		
HSDPA Subtest 4	21.88	21.53	21.29	22.16	30		
HSUPA Subtest 1	22.45	22.16	22.11	22.73	30		
HSUPA Subtest 2	22.04	22.16	22.08	22.44	30		
HSUPA Subtest 3	22.03	22.15	21.94	22.43	30		
HSUPA Subtest 4	21.94	21.68	21.63	22.22	30		
HSUPA Subtest 5	21.51	21.67	21.21	21.95	30		
Note: EIRP=Cor	Note: EIRP=Conducted Power(dBm) - Cable loss(dB) + Antenna Gain(dBi)						
				Result:	Pass		

Peak-to-average Ratio(PAR)							
		P	Peak-to-average Ratio(dB)				
	Test Mode	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)		
	WCDMA R99	3.04	2.99	2.67	13		
	HSDPA	5.19	5.59	4.9	13		
	HSUPA	4.99	4.67	4.81	13		
				Result:	Pass		

FCC §2.1049, §27.53:Occupied Bandwidth							
Opration	99% O	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)		
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel	
WCDMA R99	4.152	4.153	4.168	4.711	4.703	4.703	
HSDPA	4.172	4.153	4.153	4.711	4.703	4.689	
HSUPA 4.152 4.139 4.153 4.711 4.689 4.689						4.689	
Note: The test pl	lots please refer to the	he Plots of Occu	pied Bandwidth				

FCC §2.1051, § 27.53:Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 27.53:Out of band emission, Band Edge

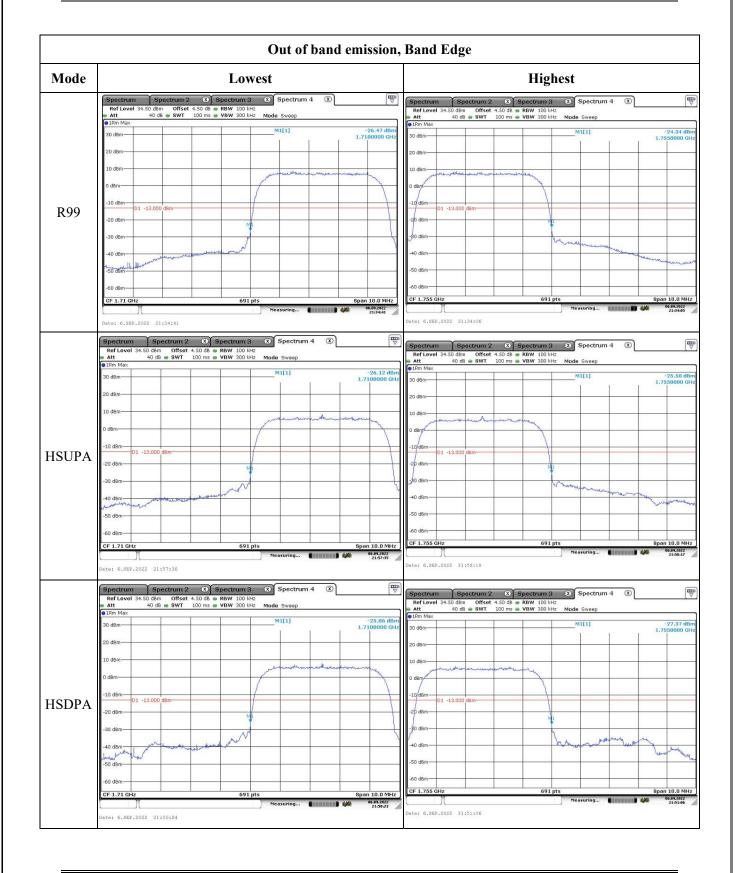

Result: Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §27.54: Frequency Stability

Test Mode:	WCDMA R99	Test Channel: Lowest for Lower Edge, Highest for Upper Edge				
Test Item	Temperature(℃)	emperature(°C) Voltage(V _{DC})		Edge(MHz)	Upper Edge(MHz)	
			Result	Limit	Result	Limit
	-30	3.8	1710.619	1710.00	1754.843	1755
	-20	3.8	1710.540	1710.00	1754.838	1755
	-10	3.8	1710.490	1710.00	1754.828	1755
Frequency	0	3.8	1710.394	1710.00	1754.780	1755
Stability vs.	10	3.8	1710.362	1710.00	1754.739	1755
Temperature	20	3.8	1710.324	1710.00	1754.684	1755
	30	3.8	1710.319	1710.00	1754.670	1755
	40	3.8	1710.314	1710.00	1754.663	1755
	50	3.8	1710.301	1710.00	1754.653	1755
Frequency	20	3.5	1710.297	1710.00	1754.652	1755
Stability vs. Voltage	20	4.35	1710.287	1710.00	1754.648	1755
					Result:	Pass

Report No.: CR22080045-00D

Test Plots:


Page 47 of 221

	Occupied Bandwidth
Channel	HSUPA
Lowest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 C Rof Level 34.50 dBm Offset 4.50 dB RBW 100 5H2 Mode Sweep C C Bit Max 40 dB SWT 1 ms VBW 300 5H2 Mode Sweep C
Middle	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Control of the second s
Highest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Weight 3:50 dBm Weight 4:50 dBm Spectrum 4:3 Weight 3:50 dBm Weight 3:50 dBm Weight 3:50 dBm Spectrum 4:3 Weight 3:50 dBm Weigh

Page 48 of 221

Report No.: CR22080045-00D

	Spurious Emissions at An	tenna Terminal
Channel	WCDM	IA R99
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Construct a construction of the construction o	Spectrum Spectrum 2 X Spectrum 3 X Spectrum 4 X TTT Ref Level 34.50 dBm Offset 4.50 dB ● RBW 1 MHz IMHz
	PFk Max 30 dBm 20 dBm 20 dBm 40	
T	10 dBm	10 dBm -10 dBm -10 dBm 01 -13.000 dBm
Lowest	-20 d8m	-20 BBm - Million - Millio
	50 dam	-50 dBm
	Oric doi:0 winz Oriz pr3 Measuring Measuring.	Measuring 06677.0027 Date: 6.SEP.2022 21:36:04
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 The sector is a s	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Constraint 2
	30 dBm 43.00 dBm 82.25 MHz	30 dBm 19.9040 GHz
	10 dBm	10 dBm -10 dBm -10 dBm 01 -13.000 dBm
Middle	-20 dBm	-20 Bm
	40 dem	-60 dBm
	Start 30.0 MHz 691 pts Stop 1.0 GHz Measuring %47 3822 21:45:34 // Date: 6.5EP.2022 21:35:35 21:45:34 //	Start 1.0 GHz 691 pts Stop 20.0 GHz Measuring 04.83,3027 21.19626 Date: 6.8EF.2022 21:36:27 21.36:27 21.36:27
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Time Ref Level 34.50 dBm Offset 4.50 dB @ RBW 100 kHz Spectrum 4 Image: Comparison of the	Spectrum Opectrum C Opectrum <
	20 dBm M1[1]43.45 dBm492.54 MHz	e JPk Max 30 dBm 30 dBm 20 qBm 20 qBm
	10 dBm 0 dBm0 d	10 clam
Highest	-20 dBm	10 part 01 -13.000 dam
	-40 dem-	-40 dkm
	60 dbm	Start 1.0 GHz 691 pts Stop 20.0 GHz Measuring 04.87.3922 21.3642 Date: 6.35E.2022 21:36452 21.36452

Serial Number:	CR22080045-RF-S1	Test Date:	2022-09-06				
Test Site:	RF	Test Mode:	Transmitting				
Tester:	Rinka Li	Test Result:	Pass				

4.5 Antenna Port Test Data and Results for WCDMA Band 5:

Environmental Conditions:						
Temperatur (°C	28	Relative Humidity: (%)	48	ATM Pressure: (kPa)	100.3	

Test Equipment List and Details:						
Manufacturer	Description Model Serial ONumber		Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer FSV40 101474		2022-07-15	2023-07-14		
zhuoxiang	Coaxial Cable	SMA-178	211001	Each time	N/A	
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A	
YINSAIGE	Coaxial Cable	SS402	SJ0100001	Each time	N/A	
Mini-Circuits	DC Block BLK-18-S+ 1554403		Each time	N/A		
R&S	Wideband Radio Communication Tester	CMW500	149218	2022-07-15	2023-07-14	
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05	
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29	
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A	
* Statement of T	raceability: China Certification I	CT Co. Itd (Do	nooyan) attests that all	calibrations ha	we heen	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

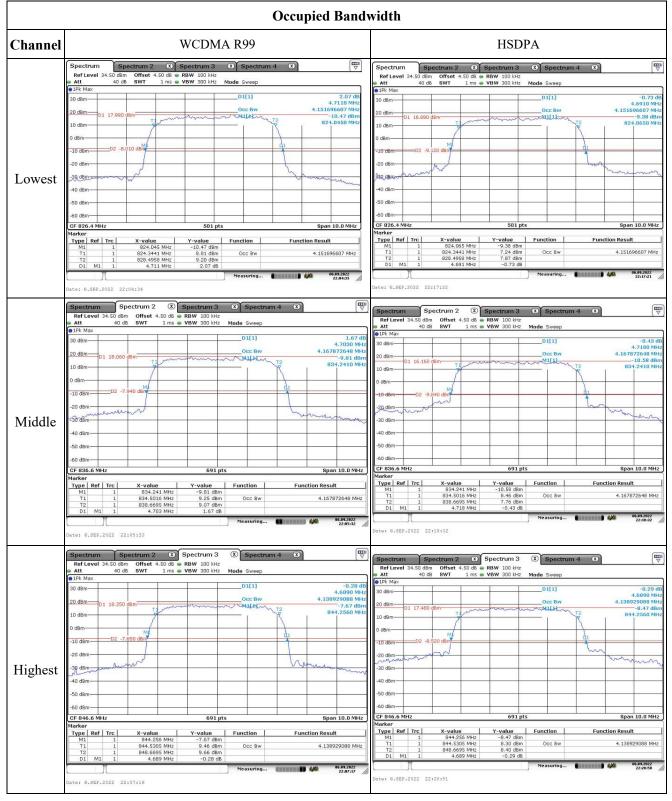
EUT Information@ WCDMA Band VA:						
Antenna Gain (dBi):	0.43	Antenna Gain (dBd):	-1.72	Path Loss L _C (dB):	0.2	
Operation Volta	Operation Voltage(V _{DC}):					
Lowest:	3.5	Normal:	3.8	Highest:	4.35	

Test Frequency For Each Mode:						
Operation Modes	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
WCDMA	826.4	836.6	846.6			

Test Data:						
	FCC§2.1046;§ 22.913 (a)					
RF Output Po	ower:					
	Conducted A	verage Output	Power(dBm)	Maximum ERP	ERP Limit	
Test Mode	Lowest Channel	Middle Channel	Highest Channel	(dBm)	(dBm)	
WCDMA R99 Subtest 1	22.34	22.39	22.43	20.51	38.45	
HSDPA Subtest 1	21.97	21.92	22.09	20.17	38.45	
HSDPA Subtest 2	21.82	21.51	21.92	20	38.45	
HSDPA Subtest 3	21.47	21.46	21.79	19.87	38.45	
HSDPA Subtest 4	21.1	21.15	21.51	19.59	38.45	
HSUPA Subtest 1	21.65	21.85	21.6	19.93	38.45	
HSUPA Subtest 2	21.3	21.6	21.49	19.68	38.45	
HSUPA Subtest 3	21.28	21.58	21.47	19.66	38.45	
HSUPA Subtest 4	21.18	21.32	21.28	19.4	38.45	
HSUPA Subtest 5	21.15	20.85	20.79	19.23	38.45	
Note: ERP=Con	ducted Power(dH	Bm) - Cable loss(dB) + Antenna (Gain(dBd)	•	
				Result:	Pass	

-to-average Ratio(PAR)						
	Pe	eak-to-average R	atio(dB)	Ŧ · ·,		
Test Mode	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)		
WCDMA R99	3.1	2.87	2.96	13		
HSDPA	5.62	5.19	5.25	13		
HSUPA	5.01	4.52	4.64	13		
			Result:	Pass		

FCC §2.1049, §22.917, §22.905:Occupied Bandwidth							
Operation	99% Occupied Bandwidth (MHz)		26 dB Occupied Bandwidth (MHz)				
Mode	Low Channel	Middle channel	Low Channel	Middle Channel	High Channel		
WCDMA R99	4.152	4.168	4.139	4.711	4.703	4.689	
HSDPA	4.152	4.168	4.139	4.691	4.718	4.689	
HSUPA	4.152 4.153 4.139			4.711	4.718	4.703	
Note: The test p	lots please refer t	to the Plots of Oc	cupied Bandwid	th			

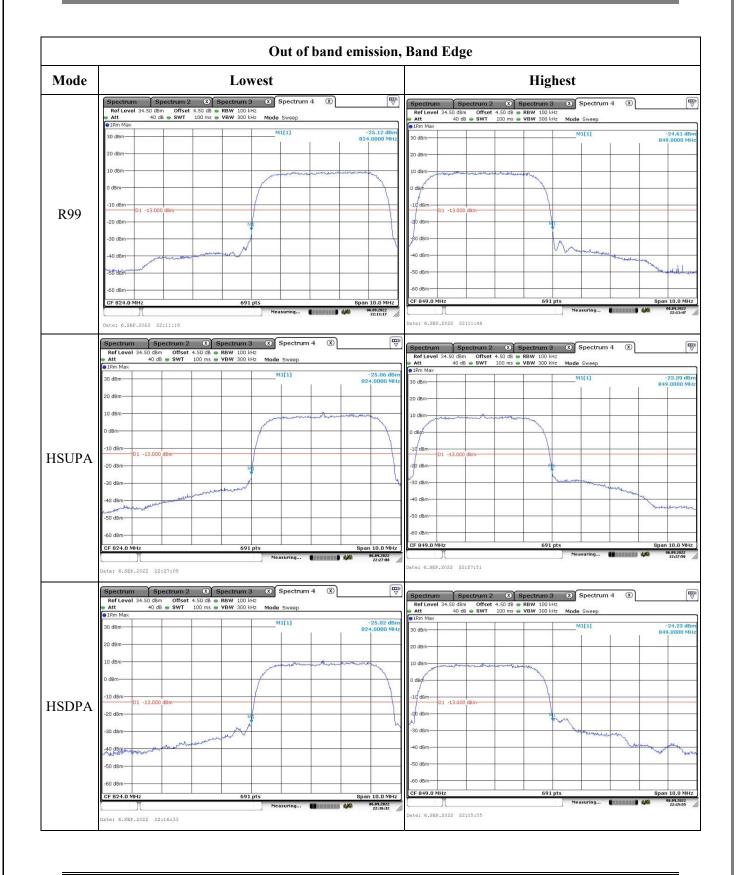

FCC §2.1051, §22.917(a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, §22.917(a):Out of band emission, Band EdgeResult:Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §22.355: Frequency Stability Test WCDMA R99 Test Channel: 836.6 MHz Modulation: Frequency Error Limit Temperature Voltage Test Item (°C) (VDC) (Hz) (ppm) (ppm) -30 3.8 0.001 2.5 1 -20 3.8 11 0.013 2.5 -10 3.8 32 2.5 0.038 0 3.8 21 2.5 0.025 Frequency 10 3.8 4 0.005 2.5 Stability vs. Temperature 20 3.8 58 0.069 2.5 30 3.8 11 0.013 2.5 40 3.8 32 0.038 2.5 50 3.8 6 0.007 2.5 Frequency 20 3.5 7 0.008 2.5 Stability vs. 20 4.35 3 0.004 2.5 Voltage **Result:** Pass

Report No.: CR22080045-00D

Test Plots:



	Occupied Bandwidth
Channel	HSUPA
Lowest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 C Ref Level 34.50 dem Offset 4.50 de Ref BW 100 4Hz C C • PK Max 40 de SWT 1 ms • VBW 300 4Hz Mode Sweep • PK Max 0 1111 1.97 dB 4.7110 PHz 4.7110 PHz 20 dBm 01 16.430 dBm 0 cc Bw 4.1310 600607 PHz 11.34 dBm 10 dBm 02 -9.370 dBm 0 cc Bw 4.1310 PHz 8224 0450 PHz -00 dBm 02 -9.370 dBm 0 cc Bw 4.1310 PHz 8224 0450 PHz -00 dBm 0 cc Bw 4.1310 PHz 8224 0450 PHz 924 0450 PHz -00 dBm 0 cc Bw 4.1310 PHz 924 0450 PHz 924 0450 PHz -00 dBm 0 cc Bw 4.131 PHz 1.94 dBm 1.94 dBm -00 dBm 0 cc Bw 4.131 PHz 1.94 dBm 1.94 dBm -10 dBm 0 cc Bw 4.151 PHz PMz PMz -10 dBm 0 cc Bw 4.151 PHz PMz PMz <t< td=""></t<>
Middle	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Control of Start 4, Solids RBW 100 kHz Aft 40 db SWT 1 ms VSW 300 kHz Mode Sweep 91PK Max 0 db SWT 1 ms VSW 300 kHz Mode Sweep 30 dBm 0 cm 0 lt1 -0.61 dB -0.61 dB 20 dBm 0 lt6,410 dBm 0 cm 4.153400666 MHz -0.66 dBm 10 dBm 0 cm -0.66 dBm -0.66 dBm -0.66 dBm 10 dBm 0 dBm -0.66 dBm -0.61 dB -0.61 dB -0 dBm 0 dBm -0.61 dB -0.61 dB -0.61 dB -0 dBm 0 dBm -0.61 dB -0.61 dB -0.61 dB -0 dBm -0.61 dB -0.61 dB -0.61 dB -0.61 dB -0 dBm -0.61 dB -0.61 dB -0.61 dB -0.61 dB
Highest	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 The sector of the secto

Page 55 of 221

Report No.: CR22080045-00D

	Spurious Emissions at An	tenna Terminal			
Channel	WCDM	MA R99			
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Control of the state	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Comparison of the state of the st			
	●1Pk Max 30 dBm				
	20 dBm	20 dBm-			
-	0 d8m	0 dBm			
Lowest	-20 d8m	-20 dBm			
	-40 dBm	-00 dBm			
	-60 d8m -60 d8m Start 30.0 MHz 691 pts Stop 1.0 GHz	-50 d8m			
	Measuring 4 4 4 4 22 22 22:08:48	Measuring 1 444 06.99.3922 Date: 6.582F.2022 22:10:15			
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Employed Ref Level 34.50 dBm Offset 4.50 dB RBW 100 kHz Mode Sweep Employed	RefLevel 34.50 dBm Offset 4.50 dB RBW 3 MHz Mode Sweep			
	30 dBm M1[1] -43.62 dBm 929,10 MHz				
	10 dam-	10 dBm			
Middle	-10 dBm	0 dBm			
muure	-20 dBm	-20 dBm - M3 -30 d			
	-40 dem	-40 dBm			
	-60 dBm	-60 dBm Start 1.0 GHz 691 pts Stop 10.0 GHz Neasuring 10 GHz 691 pts			
	Measuring Measuring<	Date: 6.582.2022 22:10:07			
	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Image: Comparison of the system Ref Level 34.50 dBm Offset 4.50 dB @ RBW 100 HHz Image: Comparison of the system Image: Comparison of the syste	Spectrum Spectrum 2 Spectrum 3 Spectrum 4 Time Ref Level 34.50 dBm Offset 4.50 dB RBW 1 MHz Time			
	30 dBm M1[1]44.38 dBm 923.50 MHz 20 dBm 0 dBm0 dBm 0 dBm0 dBm	30 dBm M1[1] -27.00 dBm 20 dBm 3.3770 GHz			
	10 dBm	10 dBm			
Highest	-10 dBm- 01 -13.000 dBm20 d	-10 dBm 01 -13.000 dBm			
	-30 dBm	30 cmm			
	-40 dem- multilandelenethend 500 delenethendelen	-60 dBm			
	60 dBm Stort 30.0 MHz 691 pts Stop 1.0 GHz 5 tort 30.0 MHz 691 pts 8 top 1.0 GHz	-60 dBm Stort 1.0 GHz 691 pts Stop 10.0 GHz Neasuring B 44 664.9822 220495			
	Measuring 1	Date: 6.5EP.2022 22:09:58			

4.6Antenna Port Test Data and Results for LTE Band 2

Serial Number:	CR22080045-RF-S1	Test Date:	2022-08-31~2022-09-02
Test Site:	RF	Test Mode:	Transmitting
Tester:	George Chen	Test Result:	Pass

Environmental Conditions:					
Temperature: (°C)	25.2~25.9	Relative Humidity: (%)	53~61	ATM Pressure: (kPa)	100.1~100.6

Test Equipment List and Details:						
Manufacturer	Description Model Serial Number		Calibration Date	Calibration Due Date		
R&S	Spectrum Analyzer FSV40 101474		101474	2022-07-15	2023-07-14	
zhuoxiang	Coaxial Cable SMA-178 211001		Each time	N/A		
Unknown	Coaxial tee connector	Unknown	2204004	Each time	N/A	
YINSAIGE	Coaxial Cable SS402 SJ0100001		SJ0100001	Each time	N/A	
Mini-Circuits	DC Block	DC Block BLK-18-S+ 1554403		Each time	N/A	
R&S	Wideband Radio Communication Tester	CMW500	149218	2022-07-15	2023-07-14	
BACL	TEMP&HUMI Test Chamber	BTH-150-40	30174	2022-04-06	2023-04-05	
UNI-T	Multimeter	UT39A+	C210582554	2021-09-30	2022-09-29	
ZHAOXIN	DC Power Supply	RXN-6010D	21R6010D0912386	N/A	N/A	

* Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

EUT Information@ LTE Band 2▲:					
Antenna Gain (dBi):	¹ : 0.64		Path Loss L _C (dB):	0.4	
Operation Voltage(VDC):					
Lowest:	3.5	Normal:	3.8	Highest:	4.35

Test Frequency For Each Mode:						
Operation Bandwidth	Lowest Frequency (MHz)	Middle Frequency (MHz)	Highest Frequency (MHz)			
1.4MHz	1850.7	1880	1909.3			
3MHz	1851.5	1880	1908.5			
5MHz	1852.5	1880	1907.5			
10MHz	1855	1880	1905			
15MHz	1857.5	1880	1902.5			
20MHz	1860	1880	1900			

Page 58 of 221

Test Data:

FCC§2.1046;§	§ 24.232					
RF Output Po	ower:					
Test	Test Resource Conducted Average Output Power(dBm)					
Bandwidth & Modulation	Block & RB offset	Lowest Middle Channel Channel Highest Channel		EIRP (dBm)	EIRP Limit (dBm)	
	RB1#0	22.38	22.38	22.59		
	RB1#3	22.41	22.38	22.55		33
	RB1#5	22.44	22.39	22.57	22.90	
1.4MHz QPSK	RB3#0	22.52	22.55	22.62	22.86	
	RB3#3	22.49	22.49	22.58		
	RB6#0	21.41	21.46	21.59		
	RB1#0	22.11	21.99	21.89		
	RB1#3	22.15	21.97	21.94]	33
1 4141- 160 414	RB1#5	22.16	21.91	21.95	22.4	
1.4MHz 16QAM	RB3#0	21.54	21.41	21.44	22.4	
	RB3#3	21.58	21.44	21.41]	
	RB6#0	20.73	20.68	20.58		
	RB1#0	22.45	22.44	22.5	22.79	33
	RB1#8	22.53	22.47	22.55		
	RB1#14	22.46	22.42	22.55		
3MHz QPSK	RB6#0	21.5	21.43	21.58		
	RB6#9	21.4	21.5	21.51		
	RB15#0	21.56	21.51	21.64		
	RB1#0	22.14	21.25	21.92		33
	RB1#8	22.21	21.2	21.94		
	RB1#14	22.11	21.29	21.9	22.45	
3MHz 16QAM	RB6#0	20.59	20.64	20.47	22.45	
	RB6#9	20.64	20.55	20.54		
	RB15#0	20.55	20.55	20.68	1	
	RB1#0	22.53	22.44	22.63		33
	RB1#13	22.47	22.49	22.57]	
SMU- OPOV	RB1#24	22.48	22.38	22.55	22.97	
5MHz QPSK	RB15#0	21.53	21.44	21.65	22.87	
	RB15#10	21.41	21.5	21.66		
ľ	RB25#0	21.4	21.45	21.57]	
	RB1#0	21.66	21.11	20.86		33
	RB1#13	21.6	21.1	20.8		
	RB1#24	21.67	21.29	20.78	21.01	
5MHz 16QAM	RB15#0	20.43	20.56	20.66	21.91	
	RB15#10	20.36	20.59	20.67	1	
	RB25#0	20.46	20.45	20.7	1	
	RB1#0	22.6	22.53	22.49	22.94	22
10MHz QPSK	RB1#25	22.52	22.46 22.55		22.84	33

Page 59 of 221

Report No.: CR22080045-00D

	RB1#49	22.56	22.44	22.56		
	RB25#0	21.34	21.44	21.51		
	RB25#25	21.48	21.53	21.62		
	RB50#0	21.49	21.41	21.71		
	RB1#0	21.67	20.97	21.71		
	RB1#25	21.59	20.98	21.87		33
10MII: 160 AM	RB1#49	21.62	20.97	21.8	22.11	
10MHz 16QAM	RB25#0	20.55	20.63	20.61	22.11	
	RB25#25	20.55	20.66	20.62		
	RB50#0	20.6	20.56	20.7		
	RB1#0	22.55	22.46	22.32		33
	RB1#38	22.52	22.48	22.48		
	RB1#74	22.53	22.45	22.56	22.0	
15MHz QPSK	RB36#0	21.34	21.39	21.59	22.8	
	RB36#39	21.46	21.5	21.65		
	RB75#0	21.39	21.38	21.63		
	RB1#0	21.66	21.77	21.67		33
	RB1#38	21.54	21.92	21.77		
12 84 160 104	RB1#74	21.6	21.88	21.85	22.16	
15MHz 16QAM	RB36#0	20.61	20.54	20.63	22.16	
	RB36#39	20.61	20.59	20.68		
	RB75#0	20.49	20.61	20.72		
	RB1#0	22.64	22.43	22.42		33
	RB1#50	22.56	22.47	22.64		
	RB1#99	22.6	22.54	22.71	22.05	
20MHz QPSK	RB50#0	21.42	21.52	21.46	22.95	
	RB50#50	21.42	21.41	21.63		
	RB100#0	21.47	21.45	21.6		
	RB1#0	21.58	22.1	21.65		33
	RB1#50	21.48	22.19	21.72		
20101 162 116	RB1#99	21.51	22.26	21.82	22.5	
20MHz 16QAM	RB50#0	20.52	20.55	20.57	22.5	
	RB50#50	20.51	20.49	20.74		
	RB100#0	20.49	20.55	20.57		

Result:

Pass

Peak-to-average Ratio(PAR)							
Test	Resource	Pea					
Bandwidth & Modulation	Block & RB offset	Lowest Channel	Middle Channel	Highest Channel	Limit (dB)		
20MIL- ODSK	RB1#0	5.48	3.59	3.62	13		
20MHz QPSK	RB100#0	5.57	4.96	4.43	13		
20MHz	RB1#0	6.17	4.17	4.64	13		
16QAM	RB100#0	6.46	5.94	5.45	13		
				Result:	Pass		

FCC §2.1049, §24.238:Occupied Bandwidth								
Operation	99% Occupied Bandwidth (MHz)			26 dB Occupied Bandwidth (MHz)				
Mode	Low Channel	Middle channel	High Channel	Low Channel	Middle Channel	High Channel		
1.4MHz QPSK	1.102	1.102	1.102	1.254	1.254	1.26		
1.4MHz 16QAM	1.102	1.108	1.096	1.254	1.266	1.254		
3MHz QPSK	2.695	2.683	2.707	3.012	3.024	2.988		
3MHz 16QAM	2.683	2.695	2.695	3	3.024	3		
5MHz QPSK	4.511	4.511	4.531	5	5	4.98		
5MHz 16QAM	4.531	4.551	4.531	5.02	5.02	5.02		
10MHz QPSK	8.982	8.982	8.982	9.8	9.8	9.76		
10MHz 16QAM	8.982	8.982	8.942	9.84	9.88	9.8		
15MHz QPSK	13.533	13.533	13.473	15.06	15.06	14.94		
15MHz 16QAM	13.593	13.533	13.473	15.12	15.06	14.88		
20MHz QPSK	17.884	18.044	17.884	19.52	19.84	19.44		
20MHz 16QAM	17.964	18.044	17.964	19.76	19.68	19.68		

FCC §2.1051, § 24.238 (a):Spurious Emissions at Antenna TerminalResult:Pass, Please refer to the test plots of Spurious Emissions at Antenna Terminal.

FCC §2.1051, § 24.238 (a):Out of band emission, Band EdgeResult:Pass, Please refer to the test plots of Out of band emission, Band Edge.

FCC §2.1055, §24.235: Frequency Stability Test Mode: 20 MHz QPSK Test Channel: 1880 MHz Temperature Frequency Error Voltage Test Item Result (°C) (V_{DC}) (Hz) (ppm) -30 3.8 0.019 35 Pass -20 3.8 -9.97 -0.005 Pass -10 3.8 -6.13 -0.003 Pass 0 3.8 0.003 Pass 6.17 Frequency 10 0.004 Stability vs. 3.8 7.92 Pass Temperature 20 3.8 0.003 6.46 Pass 30 3.8 -0.003 Pass -6.52 7.18 40 3.8 0.004 Pass 50 3.8 -9.7 -0.005 Pass 20 3.5 -8.17 -0.004 Pass Frequency Stability vs. 20 4.35 -7.05 -0.004 Pass Voltage **Result:** Pass

Test Mode:	20 MHz 16QAM		Test Channel:	1880	MHz
Test Item	Temperature	Voltage (V _{DC})	Frequency Error		Result
Test fiem	(°C)		(Hz)	(ppm)	Kesun
	-30	3.8	-54.73	-0.029	Pass
	-20	3.8	-6.68	-0.004	Pass
	-10	3.8	9.77	0.005	Pass
Frequency Stability vs. Temperature	0	3.8	-7.62	-0.004	Pass
	10	3.8	-9.91	-0.005	Pass
	20	3.8	-9.82	-0.005	Pass
	30	3.8	-6.68	-0.004	Pass
	40	3.8	-8.86	-0.005	Pass
	50	3.8	5.67	0.003	Pass
Frequency	20	3.5	6.05	0.003	Pass
Stability vs. Voltage	20	4.35	7.52	0.004	Pass
	•		•	Result:	Pass