

FCC RADIO TEST REPORT

FCC ID: 2ANIE-GT5C

Sample: Wearable Smart Watch

Trade Name: FITUP, WoFit, cavo, CAVOSMART

Main Model: GT5C

Additional Model: GT5D, GT5DA, GT5CD, GT6P, GT6PD,

GT7, GT7PD, GT8D, GT9D

Report No.: UNIA22112407ER-61

Prepared for

WO-SMART TECHNOLOGIES (SHENZHEN) CO.,LTD

2C, AB Block, Tianji Building, Tian'an Cyber Park, Chegongmiao, Futian

District, Shenzhen, China

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Applicant	WO-SMART TECHNOLOGIES (SHENZHEN) CO.,LTD					
Address	dress					
Manufacturer	WO-SMART TECHNOLOGIES (SHENZHEN) CO.,LTD					
Address	2C, AB Block, Tianji Building, Tian'an Cyber Park, Chegongmiao, Futian District, Shenzhen, China					
Product description						
Product	Wearable Smart Watch					
Trade Name	FITUP, WoFit, cavo, CAVOSMART					
Model Name	GT5C, GT5D, GT5DA, GT5CD, GT6P, GT6PD, GT7, GT7PD, GT8D, GT9D					
Test Methods	FCC Rules and Regulations Part 15 Subpart C Section 15.249, ANSI C63.10: 2013					
with the FCC requireme report. This report shall not be document may be altered	sults show that the equipment under test (EUT) is in compliance nts. And it is applicable only to the tested sample identified in the eproduced except in full, without the written approval of UNI, this d or revised by Shenzhen United Testing Technology Co., Ltd., Il be noted in the revision of the document.					
Date of Test						
Date (s) of performance of	testsNov. 24, 2022 ~ Dec. 02, 2022					
Date of Issue	Dec. 06, 2022					
Test Result	Pass					
	kahn.yang					
Prepared by:						
	Kahn yang/Supervisor					
Reviewer:						
	Kelly Cheng/Supervisor					
Approved & Authorized						
	Liuze/Manager					

Table of Contents

Pages

Report No.: UNIA22112407ER-61

1 TEST SUMMARY	4
1.1 TEST PROCEDURES AND RESULTS	4
1.2 TEST FACILITY	4
1.3 MEASUREMENT UNCERTAINTY	
2 GENERAL INFORMATION	
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 CARRIER FREQUENCY OF CHANNELS	7
2.3 TEST MODE	
2.4 TEST SETUP	8
2.5 EQUIPMENT USED IN TESTED SYSTEM	
2.6 MEASUREMENT INSTRUMENTS LIST	
3 CONDUCTED EMISSION	10
3.1 TESTLIMIT	10
3.2 TEST SETUP	10
3.3 TEST PROCEDURE	
3.4 TESTRESULT	
4 RADIATED EMISSION	14
4.1 TESTLIMIT	14
4.2 TESTSETUP	15
4.3 TEST PROCEDURE	16
4.4 TESTRESULT	
5 BAND EDGE	22
5.1 TESTLIMIT	22
5.2 TEST PROCEDURE	22
5.3 TESTRESULT	22
6 OCCUPIED BANDWIDTH	25
6.1 TESTSETUP	25
6.2 TEST PROCEDURE	25
6.3 TESTRESULT	25
7 ANTENNA REQUIREMENT	28
8 PHOTO OF TEST	29
8.1 RADIATED EMISSION	
8.2 CONDUCTED EMISSION	30

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

Item	FCC Rules	Description Of Test	Result
1	FCC Part 15.207	Conducted Emission	Pass
2	FCC Part 15.209/15.249	Radiated Emission	Pass
3	FCC Part 15.249/15.205	Band Edge	Pass
4	FCC Part 15.215	Occupied Bandwidth	Pass
5	FCC Part 15.203	Antenna Requirement	Pass

Note: "N/A" denotes test is not applicable in this Test Report.

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 0027159896

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

Page 5 of 30

Report No.: UNIA22112407ER-61

1.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 150kHz	2.96	
	i	150kHz ~ 30MHz	2.44	

B. Radiated Measurement:

Test Site	Method	Measurement Frequency Range	U, (dB)	NOTE
UNI	ANSI	9kHz ~ 30MHz	2.50	
		30MHz ~ 1000MHz	4.80	
		Above 1000MHz	4.13	

C. RF Conducted Method:

Item	Measurement Uncertainty
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$
Uncertainty of RF power density, conducted	$U_{c} = \pm 2.6 \text{ dB}$
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$
Uncertainty of Occupied Channel Bandwidth	$U_{c} = \pm 2 \%$

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product:	Wearable Smart Watch
Trade Name:	FITUP, WoFit, cavo, CAVOSMART
Main Model:	GT5C
Additional Model:	GT5D, GT5DA, GT5CD, GT6P, GT6PD, GT7, GT7PD, GT8D, GT9D
Model Difference:	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: GT5C.
FCC ID:	2ANIE-GT5C
Operation Frequency:	2402MHz~2480MHz
Number of Channels:	40CH
Modulation Type:	GFSK
Antenna Type:	Internal Antenna
Antenna Gain:	-1dBi
Battery:	DC 3.8V, 250mAh
Adapter:	N/A
Power Source:	DC 3.8V from Li-battery or DC 5.0V from adapter with AC 120(240)V/60Hz

2.2 CARRIER FREQUENCY OF CHANNELS

Channel List							
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
2402	10	2422	20	2442	30	2462	
2404	11	2424	21	2444	31	2464	
2406	12	2426	22	2446	32	2466	
2408	13	2428	23	2448	33	2468	
2410	14	2430	24	2450	34	2470	
2412	15	2432	25	2452	35	2472	
2414	16	2434	26	2454	36	2474	
2416	17	2436	27	2456	37	2476	
2418	18	2438	28	2458	38	2478	
2420	19	2440	29	2460	39	2480	
	(MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	(MHz) Charmel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38	

2.3 TEST MODE

The EUT was programmed to be in continuously transmitting mode.

Channel List					
Test Channel	EUT Channel	Test Frequency (MHz)			
Low	CH00	2402			
Middle	CH19	2440			
High	CH39	2480			

2.4 TEST SETUP

Operation of EUT during Conducted testing:

Operation of EUT during Radiation testing:

2.5 EQUIPMENT USED IN TESTED SYSTEM

I	tem	Equipment	Model No.	ID or Specification	Cable Length(cm)	Remark
	1	Wearable Smart Watch	GT5C	2ANIE-GT5C		EUT
	2	Adapter	MDY-08-EF	XIAOMI		AE

Note:

- 1. The support equipment was authorized by Declaration of Confirmation.
- 2. All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

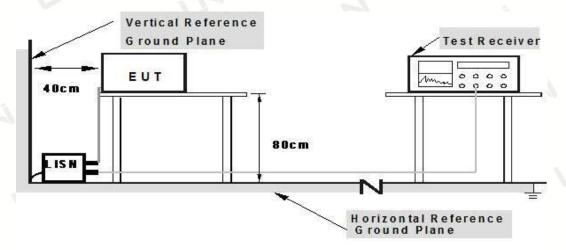
2.6 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
		Conduction Emi	ssions Measuremer	nt	
1	Conducted Emission Test Software	EZ-EMC	Ver.CCS-3A1-CE	N/A	N/A
2	AMN	Schwarzbeck	NNLK8121	8121370	2023.09.22
3	AAN	TESEQ	T8-Cat6	38888	2023.09.22
4	Pulse Limiter	CYBRTEK	EM5010	E115010056	2023.05.30
5	EMI Test Receiver	Rohde&Schwarz	ESCI	101210	2023.09.22
		Radiated Emis	sions Measurement	P	i
1	Radiated Emission Test Software	EZ-EMC	Ver.CCS-03A1	N/A	N/A
2	Horn Antenna	Sunol	DRH-118	A101415	2023.09.27
3	Broadband Hybrid Antenna	Sunol	JB1	A090215	2024.02.26
4	PREAMP	HP	8449B	3008A00160	2023.09.22
5	PREAMP	HP	8447D	2944A07999	2023.05.30
6	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2023.09.22
7	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2023.09.22
8	Signal Generator	Agilent	E4421B	MY4335105	2023.09.22
9	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2023.09.22
10	MXA Signal Analyzer	Keysight	N9020A	MY51110104	2023.09.22
11	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2023.05.30
12	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2023.05.30
13	RF power divider	Anritsu	K241B	992289	2023.09.22
14	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2023.09.22
15	Active Loop Antenna	Com-Power	AL-130R	10160009	2023.05.30
16	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2023.09.22
17	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2023.05.30
18	Horn Antenna	A-INFOMW	LB-180400-KF	J211060660	2023.09.27
19	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2023.09.22
20	Signal Generator	Agilent	N5183A	MY47420153	2023.09.22
21	Spctrum Analyzer	Rohde&Schwarz	FSP 40	100501	2023.09.22
22	Power Meter	KEYSIGHT	N1911A	MY50520168	2023.09.22
23	Frequency Meter	VICTOR	VC2000	997406086	2023.09.22
24	DC Power Source	HYELEC	HY5020E	055161818	2023.09.22

Page 10 of 30

Report No.: UNIA22112407ER-61

3 CONDUCTED EMISSION


3.1 TEST LIMIT

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

Frequency (MHz)	Maximum RF Line Voltage(dBμV)					
	CLASS A		CLASS B			
(**** ****)	Q.P.	Ave.	Q.P.	Ave.		
0.15~0.50	79	66	66~56*	56~46*		
0.50~5.00	73	60	56	46		
5.00~30.0	73	60	60	50		

^{*} Decreasing linearly with the logarithm of the frequency. For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

3.2 TEST SETUP

Note: 1.Support units were connected to second LISM.

2.Both of LISMs (AMM) are 80 cm from EUT and at least 80 from other units and other metal planes

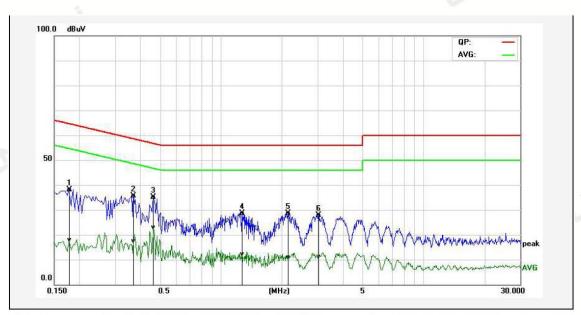
Page 11 of 30

Report No.: UNIA22112407ER-61

3.3 TEST PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is placed on a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10: 2013.
- 2. Support equipment, if needed, was placed as per ANSI C63.10: 2013.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10: 2013.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hzpower through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.

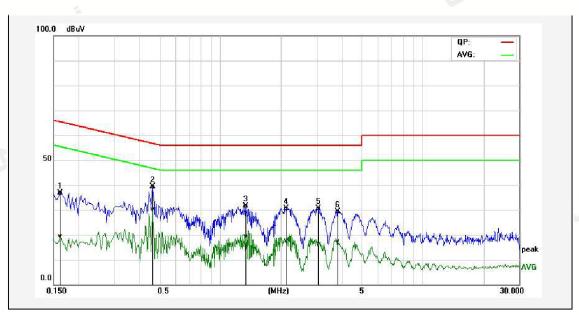
3.4 TEST RESULT


PASS

Remark:

- 1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.
- All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel was reported.

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 26, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Line
Test Mode:	Transmitting mode of GF	SK 2402MHz	į,



No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	-
1P	0.1780	28.00	7.72	10.13	38.13	17.85	64.58	54.58	-26.45	-36.73	Pass
2P	0.3700	25.65	7.28	10.10	35.75	17.38	58.50	48.50	-22.75	-31.12	Pass
3*	0.4620	25.02	12.80	10.12	35.14	22.92	56.66	46.66	-21.52	-23.74	Pass
4P	1.2700	18.48	2.05	10.10	28.58	12.15	56.00	46.00	-27.42	-33.85	Pass
5P	2.1460	18.44	0.66	10.12	28.56	10.78	56.00	46.00	-27.44	-35.22	Pass
6P	3.0260	17.76	0.96	10.17	27.93	11.13	56.00	46.00	-28.07	-34.87	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 26, 2022	Pressure:	1010hPa
Test Voltage:	AC 120V, 60Hz	Phase:	Neutral
Test Mode:	Transmitting mode of GF	SK 2402MHz	, i

No.	Frequency	QuasiPeak reading	Average reading	Correction factor	QuasiPeak result	Average result	QuasiPeak limit	Average limit	QuasiPeak margin	Average margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1P	0.1620	26.87	9.27	10.13	37.00	19.40	65.36	55.36	-28.36	-35.96	Pass
2*	0.4620	29.24	20.03	10.12	39.36	30.15	56.66	46.66	-17.30	-16.51	Pass
3P	1.3340	21.42	9.18	10.12	31.54	19.30	56.00	46.00	-24.46	-26.70	Pass
4P	2.1140	20.54	7.41	10.12	30.66	17.53	56.00	46.00	-25.34	-28.47	Pass
5P	3.0500	20.37	6.07	10.18	30.55	16.25	56.00	46.00	-25.45	-29.75	Pass
6P	3.8020	19.34	7.14	10.16	29.50	17.30	56.00	46.00	-26.50	-28.70	Pass

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Page 14 of 30

Report No.: UNIA22112407ER-61

4 RADIATED EMISSION

4.1 TEST LIMIT

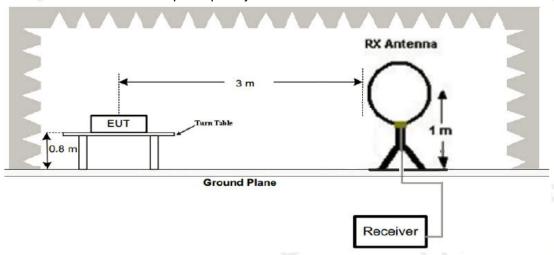
For unintentional device, according to § 15.209(a), except for Class B digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	,-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Al 40U-	500	54.0	Average	3
Above 1GHz	500	74.0	Peak	3

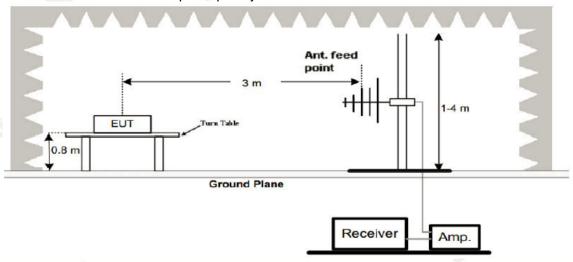
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

Limit: (Field strength of the fundamental signal)

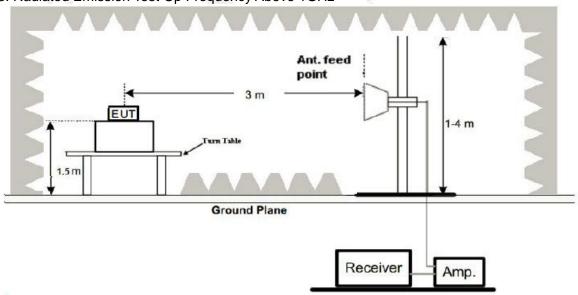
Frequency	Limit (dBuV/m @3m)	Remark
2400MHz-2483.5MHz	94.0	Average Value
	114.0	Peak Value


Page 15 of 30

Report No.: UNIA22112407ER-61



4.2 TEST SETUP


1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

Page 16 of 30

Report No.: UNIA22112407ER-61

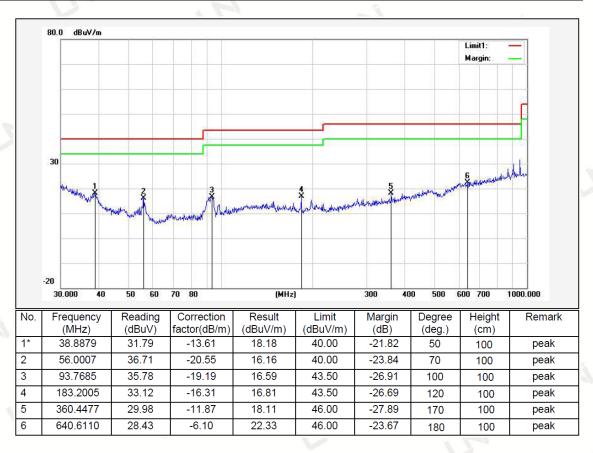
4.3 TEST PROCEDURE

- Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane.
 And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9kHz to 25GHz per FCC PART 15.33(a).

Note: For battery operated equipment, the equipment tests shall be performed using a new battery.

4.4 TEST RESULT

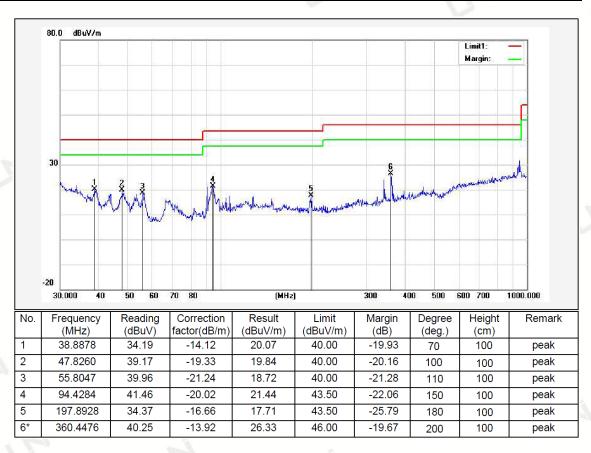
PASS


Remark:

- 1. All modes were test at Low, Middle, and High channel, only the worst result of GFSK Low Channel of 1M was reported for below 1GHz test.
- 2. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, and test data recorded in this report.
- 3. Radiated emission test from 9kHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9kHz to 30MHz and not recorded in this report.

Below 1GHz Test Results:

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 30, 2022	Pressure:	1010hPa
Test Voltage:	DC 3.8V	Phase:	Horizontal
Test Mode:	Transmitting mode of GF	SK 2402MHz	



Remark: Result = Reading Level+ Factor, Margin= Result- Limit Factor=Ant. Factor + Cable Loss - Pre-amplifier

Temperature:	24°C	Relative Humidity:	48%
Test Date:	Nov. 30, 2022	Pressure:	1010hPa
Test Voltage:	DC 3.8V	Phase:	Vertical
Test Mode:	Transmitting mode of GF	SK 2402MHz	į,

Remark: Result = Reading Level+ Factor, Margin= Result – Limit Factor=Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- 1. Measuring frequencies from 9kHz to the 1GHz, Radiated emission test from 9kHz to 30MHz was verified, and no any emission was found except system noise floor.
- 2. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 3. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1MHz for measuring above 1GHz, below 30MHz was 10kHz.

Above 1 GHz Test Results:

CH00 (2402MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2402	112.40	-5.84	106.56	114	-7.44	PK
2402	82.39	-5.84	76.55	94	-17.45	AV
4804	60.08	-3.64	56.44	74	-17.56	PK
4804	50.14	-3.64	46.50	54	-7.50	AV
7206	57.12	-0.95	56.17	74	-17.83	PK
7206	46.87	-0.95	45.92	54	-8.08	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2402	112.32	-5.84	106.48	114	-7.52	PK
2402	82.29	-5.84	76.45	94	-17.55	AV
4804	60.12	-3.64	56.48	74	-17.52	PK
4804	50.25	-3.64	46.61	54	-7.39	AV
7206	57.09	-0.95	56.14	74	-17.86	PK
7206	46.88	-0.95	45.93	54	-8.07	AV

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

CH19 (2440MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	112.11	-5.71	106.40	114	-7.60	PK
2440	82.04	-5.71	76.33	94	-17.67	AV
4880	59.76	-3.51	56.25	74	-17.75	PK
4880	50.16	-3.51	46.65	54	-7.35	AV
7320	57.10	-0.82	56.28	74	-17.72	PK
7320	46.73	-0.82	45.91	54	-8.09	AV
Remark: Fac	ctor = Antenna	Factor + Cab	ole Loss – Pre-amp	lifier. Margin :	= Absolute L	evel – Limi

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2440	112.05	-5.71	106.34	114	-7.66	PK
2440	82.11	-5.71	76.40	94	-17.60	AV
4880	59.73	-3.51	56.22	74	-17.78	PK
4880	49.90	-3.51	46.39	54	-7.61	AV
7320	56.86	-0.82	56.04	74	-17.96	PK
7320	46.77	-0.82	45.95	54	-8.05	AV
1						

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
2480	112.15	-5.65	106.50	114	-7.50	PK	
2480	82.07	-5.65	76.42	94	-17.58	AV	
4960	59.47	-3.43	56.04	74	-17.96	PK	
4960	49.70	-3.43	46.27	54	-7.73	AV	
7440	56.79	-0.75	56.04	74	-17.96	PK	
7440	46.70	-0.75	45.95	54	-8.05	AV	
Remark: Fac	Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2480	112.10	-5.65	106.45	114	-7.55	PK
2480	82.05	-5.65	76.40	94	-17.60	AV
4960	59.61	-3.43	56.18	74	-17.82	PK
4960	49.55	-3.43	46.12	54	-7.88	AV
7440	56.83	-0.75	56.08	74	-17.92	PK
7440	46.65	-0.75	45.90	54	-8.10	AV
Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier. Margin = Absolute Level - Limit						

Remark:

- 1. Measuring frequencies from 1GHz to the 25GHz.
- 2. "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- 3. * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120kHz, 1 MHz for measuring above 1GHz, below 30MHz was 10kHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHzand video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 6. When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.
- 7. For fundamental frequency, RBW>20dB Bandwidth, VBW>=3*RBW, Peak detector for PK value, RMS detector for AV value.

Page 22 of 30

Report No.: UNIA22112407ER-61

5 BAND EDGE

5.1 TEST LIMIT

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

5.2 TEST PROCEDURE

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10: 2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW to 1MHz and VBM to 3MHz to measure the peak field strength and set RBW to 1MHz and VBW to 10Hz to measure the average radiated field strength. Peak detector is for both

5.3 TEST RESULT

PASS

Operation Mode: TX CH00 (2402MHz)

Horizontal:

4 1 4 1						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2310	57.21	-5.81	51.40	74	-22.60	PK
2310	/	-5.81	/	54	/	AV
2390	57.29	-5.84	51.45	74	-22.55	PK
2390	1	-5.84	/	54	/	AV
2400	57.52	-5.84	51.68	74	-22.32	PK
2400	/	-5.84	/	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Vertical:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2310	57.21	-5.81	51.40	74	-22.60	PK
2310		-5.81	/	54	/	AV
2390	57.29	-5.84	51.45	74	-22.55	PK
2390	/	-5.84	/	54	1	AV
2400	57.26	-5.84	51.42	74	-22.58	PK
2400	/	-5.84	1	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.						

Operation Mode: TX CH39 (2480MHz)

Horizontal:

		32			100	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.08	-5.65	51.43	74	-22.57	PK
2483.5	/	-5.65	/	54	1	AV
2500	57.11	-5.72	51.39	74	-22.61	PK
2500	1	-5.72	/	54	/	AV
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier						

Vertical:

						and the second second
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2483.5	57.45	-5.65	51.80	74	-22.20	PK
2483.5	/	-5.65	/	54	1	AV
2500	57.12	-5.72	51.40	74	-22.60	PK
2500	/	-5.72	/	54	/	AV
Provide Forting Actions Forting Oalth Lange Provincial						

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Page 25 of 30

Report No.: UNIA22112407ER-61

6 OCCUPIED BANDWIDTH

6.1 TEST SETUP

Same as Radiated Emission Measurement.

6.2 TEST PROCEDURE

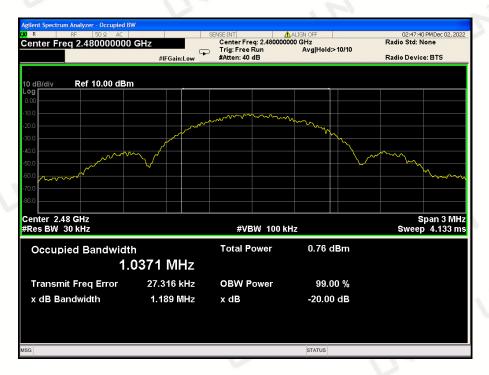
- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Set EUT as normal operation.
- 3. Based on ANSI C63.10: 2013 section 6.9.2: RBW=30kHz, VBW=100kHz, Span=3MHz.
- 4. The useful radiated emission from the EUT was detected by the spectrum analyzer with peak detector.

6.3 TEST RESULT

PASS

GFSK Modulation:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
CH00	2402	1.184	PASS
CH19	2440	1.166	PASS
CH39	2480	1.189	PASS


CH00: 2402MHz

CH19: 2440MHz

CH39: 2480MHz

Page 28 of 30

Report No.: UNIA22112407ER-61

7 ANTENNA REQUIREMENT

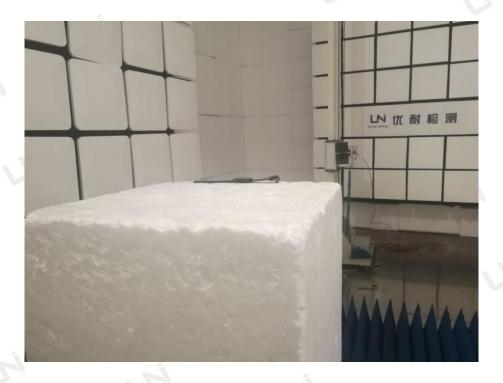
Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is an Internal Antenna, The directional gains of antenna used for transmitting is -1dBi.

ANTENNA:



8 PHOTO OF TEST

8.1 RADIATED EMISSION

8.2 CONDUCTED EMISSION

End of Report