

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com

Report No.: 1709RSU00101 Report Version: V01 Issue Date: 09-14-2017

# **MEASUREMENT REPORT** FCC PART 15.231(a)

- FCC ID: 2ANHJGDR12
- **APPLICANT:** Shanghai shengzhen commercial & trade Ltd company
- Certification **Application Type:**

**Product:** Remote Control

Model No.: **GD-R12** 

FCC Classification: FCC Part 15 Security/Remote Control Transmitter

September 01~ September 14, 2017

- (DSC)
- FCC Rule Part(s): Part 15.231(a)
- ANSI C63.10-2013 **Test Procedure(s):**

Test Date:

Reviewed By : Kevin Guo ) (Kevin Guo ) Approved By : Marlinchen

(Marlin Chen)



The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.



# **Revision History**

| Report No.   | Version | Description    | Issue Date | Note  |
|--------------|---------|----------------|------------|-------|
| 1709RSU00101 | Rev. 01 | Initial report | 09-14-2017 | Valid |
|              |         |                |            |       |



# CONTENTS

| Des | scriptio                                                               | n Pa                                                                                   | ge                   |
|-----|------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|
| 1.  | INTRO                                                                  | DDUCTION                                                                               | 6                    |
|     | 1.1.                                                                   | Scope                                                                                  | 6                    |
|     | 1.2.                                                                   | MRT Test Location                                                                      | 6                    |
| 2.  | PROD                                                                   |                                                                                        | 7                    |
|     | 2.1.<br>2.2.<br>2.3.<br>2.4.                                           | Equipment Description<br>Test Standards<br>Test Methodology<br>EUT Setup and Test Mode | 7<br>7<br>7<br>8     |
| 3.  | ANTE                                                                   | NNA REQUIREMENTS                                                                       | 9                    |
| 4.  | TEST                                                                   | EQUIPMENT CALIBRATION DATA                                                             | 10                   |
| 5.  | MEAS                                                                   | UREMENT UNCERTAINTY                                                                    | .11                  |
| 6.  | TEST                                                                   | RESULT                                                                                 | 12                   |
|     | <ol> <li>6.1.</li> <li>6.2.</li> <li>6.2.1.</li> <li>6.2.2.</li> </ol> | Summary<br>Radiated Emissions<br>Standard Applicable<br>Test Procedure.                | 12<br>13<br>13<br>13 |
|     | 6.2.3.                                                                 | Test Setup                                                                             | 14                   |
|     | 6.2.4.                                                                 | Test Results                                                                           | 16                   |
|     | 6.3.<br>6.3.1.<br>6.3.2.                                               | 20dB Bandwidth<br>Standard Applicable<br>Test Procedure                                | 22<br>22<br>22       |
|     | 6.3.3.                                                                 | Test Setup                                                                             | 22                   |
|     | 6.3.4.                                                                 | Test Result                                                                            | 23                   |
|     | 6.4.1.<br>6.4.2.                                                       | Standard Applicable                                                                    | 24<br>24<br>24       |
|     | 6.4.3.                                                                 | Test Setup                                                                             | 24                   |
|     | 6.4.4.                                                                 | Test Result                                                                            | 25                   |
|     | 6.5.                                                                   | Duty Cycle                                                                             | 26                   |
|     | 6.5.1.                                                                 | Standard Applicable                                                                    | 26                   |
|     | 6.5.2.                                                                 | Test Procedure                                                                         | 26                   |
|     | 6.5.3.                                                                 | Test Setup                                                                             | 26                   |
|     | 6.5.4.                                                                 | Test Result                                                                            | 27                   |





| Applicant:              | Shanghai shengzhen commercial & trade Ltd company                 |  |  |  |
|-------------------------|-------------------------------------------------------------------|--|--|--|
| Applicant Address:      | Xinlong road No.1373 Room 606 Minhang Distirct Shanghai China     |  |  |  |
| Manufacturer:           | Shanghai shengzhen commercial & trade Ltd company                 |  |  |  |
| Manufacturer Address:   | Xinlong road No.1373 Room 606 Minhang Distirct Shanghai China     |  |  |  |
| Test Site:              | MRT Technology (Suzhou) Co., Ltd                                  |  |  |  |
| Test Site Address:      | D8 Building, Youxin Industrial Park, No.2 Tian'edang Rd., Wuzhong |  |  |  |
|                         | Economic Development Zone, Suzhou, China                          |  |  |  |
| MRT Registration No.:   | 893164                                                            |  |  |  |
| FCC Rule Part(s):       | Part 15.231(a)                                                    |  |  |  |
| Model No.               | GD-R12                                                            |  |  |  |
| FCC ID:                 | 2ANHJGDR12                                                        |  |  |  |
| Test Device Serial No.: | N/A Droduction Pre-Production Engineering                         |  |  |  |
| FCC Classification:     | FCC Part 15 Security/Remote Control Transmitter(DSC)              |  |  |  |

## §2.1033 General Information

#### **Test Facility / Accreditations**

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-4179, G-814, C-4664, T-2206) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications and Radio testing for FCC, Industry Canada, EU and TELEC Rules.





## 1. INTRODUCTION

#### 1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

#### 1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2009 on September 30, 2013.





## 2. PRODUCT INFORMATION

#### 2.1. Equipment Description

| Product Name       | Remote Control   |
|--------------------|------------------|
| Model No.          | GD-R12           |
| Frequency Range    | 390 MHz          |
| Type of modulation | ASK              |
| Antenna Type       | Integral Antenna |
| Antenna Gain       | 0 dBi            |

#### 2.2. Test Standards

The following report is prepared on behalf of the Shanghai shengzhen commercial & trade Ltd company in accordance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commission rules.

The objective is to determine compliance with FCC Part 15, Subpart C, and section 15.231, 15.203, 15.205 and 15.209 of the Federal Communication Commission rules.

**Maintenance of compliance** is the responsibility of the manufacturer. Any modification of the product, which results in lowering the emission/immunity, should be checked to ensure compliance has been maintained.

#### 2.3. Test Methodology

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2013).

Deviation from measurement procedure.....None



#### 2.4. EUT Setup and Test Mode

The EUT was operated at continuous transmitting mode that was for the purpose of the measurements. All testing shall be performed under maximum output power condition, and to measure its highest possible emissions level, more detailed description as follows:

| Test Mode List |              |                 |  |  |  |
|----------------|--------------|-----------------|--|--|--|
| Test Mode      | Description  | Remark          |  |  |  |
| Mode 1         | Transmitting | With modulation |  |  |  |



## 3. ANTENNA REQUIREMENTS

#### Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the **Remote Control** is permanently attached.
- There are no provisions for connection to an external antenna.

#### Conclusion:

The Remote Control FCC ID: 2ANHJGDR12 unit complies with the requirement of §15.203.



## 4. TEST EQUIPMENT CALIBRATION DATA

#### Radiated Disturbance – AC1

| Instrument                 | Manufacturer | Туре No.    | Asset No.   | Cali. Interval | Cal. Due Date |
|----------------------------|--------------|-------------|-------------|----------------|---------------|
| MXE EMI Receiver           | Agilent      | N9038A      | MRTSUE06125 | 1 year         | 2018/08/03    |
| Microwave System Amplifier | Agilent      | 83017A      | MRTSUE06076 | 1 year         | 2018/03/28    |
| Bilog Period Antenna       | Schwarzbeck  | VULB 9168   | MRTSUE06172 | 1 year         | 2017/11/19    |
| Horn Antenna               | Schwarzbeck  | BBHA9120D   | MRTSUE06023 | 1 year         | 2017/10/22    |
| Loop Antenna               | Schwarzbeck  | FMZB1519    | MRTSUE06025 | 1 year         | 2017/11/21    |
| Digitial Thermometer &     | Minggao      | ETH529      | MRTSUE06170 | 1 year         | 2017/11/29    |
| Hygrometer                 |              |             |             |                |               |
| Anechoic Chamber           | TDK          | Chamber-AC1 | MRTSUE06212 | 1 year         | 2018/05/10    |

20dB Bandwidth – AC1

| Instrument             | Manufacturer | Type No.    | Asset No.   | Cali. Interval | Cal. Due Date |
|------------------------|--------------|-------------|-------------|----------------|---------------|
| MXE EMI Receiver       | Agilent      | N9038A      | MRTSUE06125 | 1 year         | 2018/08/03    |
| Bilog Period Antenna   | Schwarzbeck  | VULB 9168   | MRTSUE06172 | 1 year         | 2017/11/19    |
| Digitial Thermometer & | Minagao      |             |             | 1 yoar         | 2017/11/20    |
| Hygrometer             | wiinggao     | E111529     | MRTSOE00170 | туса           | 2017/11/29    |
| Anechoic Chamber       | TDK          | Chamber-AC1 | MRTSUE06212 | 1 year         | 2018/05/10    |

Release Time – AC1

| Instrument             | Manufacturer | Туре No.    | Asset No.   | Cali. Interval | Cal. Due Date |
|------------------------|--------------|-------------|-------------|----------------|---------------|
| MXE EMI Receiver       | Agilent      | N9038A      | MRTSUE06125 | 1 year         | 2018/08/03    |
| Bilog Period Antenna   | Schwarzbeck  | VULB 9168   | MRTSUE06172 | 1 year         | 2017/11/19    |
| Digitial Thermometer & | Minagao      |             |             | 1 yoor         | 2017/11/20    |
| Hygrometer             | wiinggao     | E1H329      | MR130E00170 | i year         | 2017/11/29    |
| Anechoic Chamber       | TDK          | Chamber-AC1 | MRTSUE06212 | 1 year         | 2018/05/10    |

Duty Cycle – AC1

| Instrument             | Manufacturer | Type No.    | Asset No.   | Cali. Interval | Cal. Due Date |
|------------------------|--------------|-------------|-------------|----------------|---------------|
| MXE EMI Receiver       | Agilent      | N9038A      | MRTSUE06125 | 1 year         | 2018/08/03    |
| Bilog Period Antenna   | Schwarzbeck  | VULB 9168   | MRTSUE06172 | 1 year         | 2017/11/19    |
| Digitial Thermometer & | Minagoo      |             |             | 1 year         | 2017/11/20    |
| Hygrometer             | wiinggao     | E1H329      | MRTSUE00170 | i year         | 2017/11/29    |
| Anechoic Chamber       | TDK          | Chamber-AC1 | MRTSUE06212 | 1 year         | 2018/05/10    |



## 5. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

| Radiated Emission Measurement – AC1                                |
|--------------------------------------------------------------------|
| Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): |
| 9kHz ~ 1GHz: 4.18dB                                                |
| 1GHz ~ 18GHz: 4.76dB                                               |
| Release Time Measurement – AC1                                     |
| Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)): |
| 0.09ms                                                             |



## 6. TEST RESULT

#### 6.1. Summary

# Company Name:Shanghai shengzhen commercial & trade Ltd companyFCC ID:2ANHJGDR12

| FCC Part Section(s) | Test Description  | Test Condition | Test Result |
|---------------------|-------------------|----------------|-------------|
| 15.205              | Radiated Spurious |                | Deee        |
| 15.231(b)           | Emissions         |                | r ass       |
| 15.231(c)           | 20dB Bandwidth    | Radiated       | Pass        |
| 15.231(a)(1)        | Release Time      |                | Pass        |
| 15.231(b)           | Duty Cycle        |                | Pass        |

#### Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.



#### 6.2. Radiated Emissions

#### 6.2.1. Standard Applicable

According to §15.231(b), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

| Fundamental Frequency | Field Strength of Fundamental | Field Strength of Spurious Emissions |
|-----------------------|-------------------------------|--------------------------------------|
| (MHz)                 | (microvolts/meter)            | (microvolts/meter)                   |
| 40.66 - 40.70         | 2250                          | 225                                  |
| 70 - 130              | 1250                          | 125                                  |
| 130 - 174             | <sup>1</sup> 1250 to 3750     | <sup>1</sup> 125 to 375              |
| 174 - 260             | 3750                          | 375                                  |
| 260 - 470             | <sup>1</sup> 3750 to 12500    | <sup>1</sup> 375 to 1250             |
| Above 470             | 12500                         | 1250                                 |

The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in §15.209, whichever limit permits a higher field strength.

The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements start below or at the lowest crystal frequency.

Compliance with the provisions of §15.205 shall be demonstrated using the measurement instrumentation specified in that section.

#### 6.2.2. Test Procedure

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.231(b) and FCC Part 15.209 Limit.



#### 6.2.3. Test Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.231(b) and FCC Part 15.209 Limit.

9kHz ~ 30MHz Test Setup:





#### 1GHz ~ 18GHz Test Setup:





#### 6.2.4. Test Results



Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz ~ 30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 390MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 390MHz.

Note 3: Peak Measure Level (dB $\mu$ V/m) = Reading Level (dB $\mu$ V) + Factor (dB).

AV Measure Level = Peak Measure Level - Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).





Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise within frequency range 9 kHz  $\sim$  30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 390MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 390MHz.

Note 3: Peak Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB).

AV Measure Level = Peak Measure Level - Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m).



| Site: AC1                        |               | Time: 2017/09/08 - 05:05 |                      |        |        |                            |                            |                       |        |
|----------------------------------|---------------|--------------------------|----------------------|--------|--------|----------------------------|----------------------------|-----------------------|--------|
| Limit: FCC_Part15.209_RE(3m)     |               |                          | Engineer: Snake Ni   |        |        |                            |                            |                       |        |
| Probe: BBHA9120D_1-18GHz         |               |                          | Polarity: Horizontal |        |        |                            |                            |                       |        |
| EUT:                             | Remote Contro | bl                       |                      |        | Powe   | er: By Battery             |                            |                       |        |
| Note: Transmit at Channel 390MHz |               |                          |                      |        |        |                            |                            |                       |        |
|                                  | 90            |                          |                      |        |        |                            |                            |                       |        |
|                                  | 80            |                          |                      |        |        |                            |                            |                       |        |
|                                  | 70            |                          |                      |        | 160    |                            |                            |                       |        |
|                                  | 60 1          |                          | 2                    |        | 3<br>* |                            |                            | 5 6<br>* *            | 7<br>* |
| E                                | 50            |                          | 1                    |        |        | 4                          |                            |                       |        |
| dBuV                             | 40            |                          |                      |        |        | *                          |                            |                       | _      |
| Level(                           | 30 mg mm      | methodown                | maranterin           |        | -      | All marked and an and an a | rate and an and the second | and the second second | ****** |
|                                  | 20            |                          |                      |        |        |                            |                            |                       |        |
|                                  | 10            |                          |                      |        |        |                            |                            |                       |        |
|                                  | 0             |                          |                      |        |        |                            |                            |                       |        |
|                                  | 10            |                          |                      |        |        |                            |                            |                       |        |
|                                  | 1000          |                          |                      | -      |        |                            |                            |                       | 4000   |
| Ne                               | Frequency     | Deading                  | Factor               | Freq   |        | Maggura                    | Linsit                     | Over                  | Turne  |
| INO                              |               | Reading                  |                      | Eactor | cie    | lovol                      | (dBu)//m)                  | Limit                 | туре   |
|                                  |               |                          | (ub)                 |        |        |                            | (ubuv/iii)                 |                       |        |
| 1                                | 1160 500      | (ubuv)<br>58 312         | -6.835               |        |        | (ubu v/iii)                | 70 244                     | (ub)<br>-27 767       | PK     |
| 1                                | 1169.500      | 58 312                   | -6.835               | 1/ 368 |        | 37 109                     | 50 244                     | -27.107               |        |
| 2                                | 1559 500      | 60.012                   | -0.000               | Ν/Δ    |        | 54 854                     | 70 244                     | -24 390               |        |
| 2                                | 1559.500      | 60.918                   | -6.065               | 1/ 368 |        | 40.486                     | 50 244                     | -18 758               |        |
| 3                                | 1949 500      | 64 181                   | -4 885               | N/A    |        | 59 296                     | 79 244                     | -19 948               | PK     |
|                                  | 1949,500      | 64,181                   | -4.885               | 14,368 |        | 44,928                     | 59,244                     | -14,316               | AV     |
| 4                                | 2339,500      | 46.697                   | -2.387               | N/A    |        | 44.310                     | 79,244                     | -34,934               | PK     |
| •                                | 2339 500      | 46 697                   | -2 387               | 14 368 |        | 29.942                     | 59 244                     | -29 302               | AV     |
| 5                                | 3119.500      | 61.975                   | -2.807               | N/A    |        | 59.168                     | 79.244                     | -20.076               | PK     |
| -                                | 3119.500      | 61.975                   | -2.807               | 14.368 |        | 44.800                     | 59.244                     | -14.444               | AV     |
| 6                                | 3509.500      | 60.255                   | -1.413               | N/A    |        | 58.842                     | 79.244                     | -20.402               | PK     |
|                                  | 3509.500      | 60.255                   | -1.413               | 14,368 |        | 44.474                     | 59.244                     | -14.770               | AV     |
| 7                                | 3899.500      | 59.662                   | -0.618               | N/A    |        | 59.044                     | 79.244                     | -20.200               | PK     |
|                                  | 3899.500      | 59.662                   | -0.618               | 14,368 |        | 44.676                     | 59.244                     | -14.568               | AV     |
|                                  |               |                          |                      |        |        |                            |                            |                       |        |

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise



within frequency range 9 kHz  $\sim$  30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 390MHz, so the fundamental and spurious emissions radiated limit base on the operating frequency 390MHz.

Note 3: Peak Measure Level  $(dB\mu V/m)$  = Reading Level  $(dB\mu V)$  + Factor (dB).

AV Measure Level = Peak Measure Level – Duty Cycle Factor.

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre\_Amplifier Gain (dB).



| Site: AC1                                                                                                  |                                  |            | Time     | Time: 2017/09/08 - 05:28 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------|------------|----------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------|--|
| Limit: FCC_Part15.209_RE(3m)                                                                               |                                  |            | Eng      | Engineer: Snake Ni       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
| Probe: BBHA9120D_1-18GHz                                                                                   |                                  |            | Pola     | Polarity: Vertical       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
| EUT:                                                                                                       | Remote Contro                    | bl         |          | Pow                      | er: By Battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                     |          |  |
| Note                                                                                                       | Note: Transmit at Channel 390MHz |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 90                               |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 80                               | 0          |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 70                               | 70         |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 60 1                             | 8          | 2        | 3                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | 5<br>4 * 6          |          |  |
| (m/v                                                                                                       | 50                               |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             | *                   | *        |  |
| el(dBu                                                                                                     | 40                               |            |          |                          | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ana ana a                   | فروية مناسبي ومعاقب | 1 Martin |  |
| Leve                                                                                                       | 30 m Muthin make                 | nontration | monorman | manhanter                | and the strategy and the state of the state | all a particular a surround |                     |          |  |
|                                                                                                            | 20                               |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 10                               |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     | -        |  |
|                                                                                                            | 0                                |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     | _        |  |
|                                                                                                            | -10                              |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |
|                                                                                                            | 1000                             |            |          | Frequency(               | MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                     | 4000     |  |
| No                                                                                                         | Frequency                        | Reading    | Factor   | Duty Cycle               | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Limit                       | Over                | Туре     |  |
|                                                                                                            | (MHz)                            | Level      | (dB)     | Factor                   | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (dBuV/m)                    | Limit               |          |  |
|                                                                                                            |                                  | (dBuV)     |          | (dB)                     | (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | (dB)                |          |  |
| 1                                                                                                          | 1169.500                         | 58.500     | -6.835   | N/A                      | 51.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -27.579             | PK       |  |
|                                                                                                            | 1169.500                         | 58.500     | -6.835   | 14.368                   | 37.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -21.947             | AV       |  |
| 2                                                                                                          | 1559.500                         | 59.755     | -6.065   | N/A                      | 53.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -25.553             | PK       |  |
|                                                                                                            | 1559.500                         | 59.755     | -6.065   | 14.368                   | 39.323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -19.921             | AV       |  |
| 3                                                                                                          | 1949.500                         | 59.597     | -4.885   | N/A                      | 54.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -24.532             | PK       |  |
|                                                                                                            | 1949.500                         | 59.597     | -4.885   | 14.368                   | 40.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -18.900             | AV       |  |
| 4                                                                                                          | 3119.500                         | 54.765     | -2.807   | N/A                      | 51.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -27.286             | PK       |  |
|                                                                                                            | 3119.500                         | 54.765     | -2.807   | 14.368                   | 37.590                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -21.654             | AV       |  |
| 5                                                                                                          | 3509.500                         | 58.482     | -1.413   | N/A                      | 57.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -22.175             | PK       |  |
|                                                                                                            | 3509.500                         | 58.482     | -1.413   | 14.368                   | 42.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -16.543             | AV       |  |
| 6                                                                                                          | 3899.500                         | 52.767     | -0.618   | N/A                      | 52.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79.244                      | -27.095             | PK       |  |
|                                                                                                            | 3899.500                         | 52.767     | -0.618   | 14.368                   | 37.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.244                      | -21.463             | AV       |  |
| Note 1: Testing is carried out with frequency rang 0 kHz to the test hermonics. There is the embient poice |                                  |            |          |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                     |          |  |

Note 1: Testing is carried out with frequency rang 9 kHz to the tenth harmonics. There is the ambient noise

within frequency range 9 kHz  $\sim$  30 MHz, the permissible value is not show in the report.

Note 2: The fundamental frequency is 390MHz, so the fundamental and spurious emissions radiated limit base



Note 3: Peak Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB). AV Measure Level = Peak Measure Level – Duty Cycle Factor. Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) – Pre\_Amplifier Gain (dB).



#### 6.3. 20dB Bandwidth

#### 6.3.1. Standard Applicable

According to FCC Part 15.231(c), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

#### 6.3.2. Test Procedure

With the EUT's antenna attached, the EUT's 20dB Bandwidth power was received by the test antenna, which was connected to the spectrum analyzer with the START, and STOP frequencies set to the EUT's operation band.

#### 6.3.3. Test Setup





#### 6.3.4. Test Result

| Test Frequency | 20dB Bandwidth | Limit | Result |
|----------------|----------------|-------|--------|
| (MHz)          | (KHz)          | (KHz) |        |
| 390            | 50.08          | ≤ 975 | Pass   |

Limit = Fundamental Frequency \* 0.25% = 390MHz \* 0.25% = 975KHz



#### 20dB Bandwidth Test Plot



#### 6.4. Release Time

#### 6.4.1. Standard Applicable

According to FCC 15.231(a), (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

#### 6.4.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 390MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

#### 6.4.3. Test Setup





#### 6.4.4. Test Result

| Item         | Measured Value | Limit | Result |
|--------------|----------------|-------|--------|
| Release Time | 0.320 s        | ≤5 s  | Pass   |

Measure Value = Release<sub>(on time)</sub> = 40ms \* 8 = 320ms

#### Keysight Spectrum Analyzer - Swept SA ALIGN AUTO 06:53:15 AM Sep 12, 2017 Avg Type: Log-Pwr TRACE 2 3 4 5 6 TYPE WANNER DET P NNNNN SENSE:INT Marker rker 1 ∆ 40.0000 ms Trig: Free Run Atten: 10 dB PNO: Fast Select Marker ΔMkr1 40.00 ms -0.10 dB 10 dB/div <sup>Log</sup> Ref 0.00 dBm Normal 1Δ2 Delta **Fixed** Off Properties ► More Center 390.000000 MHz Res BW 1.0 MHz 1 of 2 Span 0 Hz Sweep 5.000 s (2001 pts) #VBW 3.0 MHz

#### **Release** Time



#### 6.5. Duty Cycle

#### 6.5.1. Standard Applicable

According to FCC Part 15.231(b) and 15.35(c), for pulse operation transmitter, the averaging pulsed emissions are calculated by peak value of measured emission plus duty cycle factor.

#### 6.5.2. Test Procedure

With the EUT's antenna attached, the EUT's output signal was received by the test antenna, which was connected to the spectrum analyzer. Set the center frequency to 390MHz, than set the spectrum analyzer to Zero Span for the release time reading. During the testing, the switch was released then the EUT automatically deactivated.

#### 6.5.3. Test Setup





#### 6.5.4. Test Result

| Total Time (Ton) | The duration of one cycle | Duty Cycle | Duty Cycle Factor |  |
|------------------|---------------------------|------------|-------------------|--|
| (ms)             | (ms)                      | (%)        | (dB)              |  |
| 19.125           | 100                       | 19.125     | 14.368            |  |

Note: Duty Cycle Factor = 20\*Log(Duty Cycle).

## Total Time $(T_{on})(ms)= 0.425*7+0.975*9+1.475*5=19.125(ms)$

Width of Pulse



| 💓 Keysight Spectrum Analyzer - Swept SA                |                                                                         |                   |                                 |                |
|--------------------------------------------------------|-------------------------------------------------------------------------|-------------------|---------------------------------|----------------|
|                                                        | SENSE:INT                                                               |                   | 07:06:42 AM Sep 08, 2017        | Marker         |
| Marker 5 ∆ 1.47500 ms<br>PNO: Fast ↔<br>IFGain:Low     | Trig: Free Run<br>Atten: 10 dB                                          | Avg Type. Log-Fwi | TYPE WWWWWW<br>DET P NNNNN      | Select Marker  |
| 10 dB/div Ref 0.00 dBm                                 |                                                                         |                   | 0.84 dB                         | 5              |
| -10.0<br>-20.0<br>-30.0                                |                                                                         |                   |                                 | Normal         |
| -40.0                                                  |                                                                         |                   |                                 | Delta          |
| -70.0<br>-80.0<br>-90.0                                | had been for                                                            | have been a lar   | White Laterstrapers             | Fixed⊳         |
| Center 390.000000 MHz<br>Res BW 1.0 MHz #VBW           | 3.0 MHz                                                                 | Sweep 50          | Span 0 Hz<br>0.00 ms (2001 pts) | Off            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0.01 dB<br>-18.59 dBm<br>0.08 dB<br>-18.67 dBm<br>0.84 dB<br>-19.43 dBm |                   | E                               | Properties▶    |
| 7<br>8<br>9<br>10<br>11                                |                                                                         |                   |                                 | More<br>1 of 2 |
| MSG                                                    |                                                                         | STATUS            |                                 |                |



## CONCLUSION

The data collected relate only the item(s) tested and show that the **Remote Control FCC ID**:

**2ANHJGDR12** is in compliance with FCC Part 15.231(a) of the FCC Rules.

The End