

FCC Part 15C Test Report

FCC ID: 2ANHITX-P10

Product Name:	Dog Training Collar
Trademark:	N/A
Model Name :	TX-P10 TX-P09, TX-P11, TX-P12, TX-P13, TX-P15, TX-P16, TX-P17, TX-P18
Prepared For :	Shenzhen Smart Pet Technology Co., Ltd
Address :	304 A Blog, ZhongCheng Industry Park, Longhua, Shenzhen, China
Prepared By :	Shenzhen BCTC Technology Co., Ltd.
Address :	No.101,Yousong Road,Longhua New District, Shenzhen,China
Test Date:	Jul. 01 – Jul. 07, 2017
Date of Report :	Jul. 07, 2017
Report No.:	BCTC-LH170803399-2E

VERIFICATION OF COMPLIANCE

Applicant's name	Shenzhen Smart Pet Technology Co., Ltd
Address	304 A Blog, ZhongCheng Industry Park, Longhua, Shenzhen, China
Manufacture's Name:	Shenzhen Smart Pet Technology Co., Ltd
Address:	304 A Blog, ZhongCheng Industry Park, Longhua, Shenzhen, China
Product description	
Product name:	Dog Training Collar
Trademark:	N/A
Model Name:	TX-P10 TX-P09, TX-P11, TX-P12, TX-P13, TX-P15, TX-P16, TX-P17, TX-P18

This device described above has been tested by BCTC, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of BCTC, this document may be altered or revised by BCTC, personal only, and shall be noted in the revision of the document.

Test Result Pass

Prepared by(Engineer):

Snow Zeng

Reviewer(Supervisor):

Jade Yang

Approved(Manager):

Carson Zhang

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	4
1.1 TEST FACILITY	5
1.2 MEASUREMENT UNCERTAINTY	5
2 . GENERAL INFORMATION	6
2.1 GENERAL DESCRIPTION OF EUT	6
2.2 DESCRIPTION OF TEST MODES	7
2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	7
2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	7
2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	8
3. EMC EMISSION TEST	9
3.1 CONDUCTED EMISSION MEASUREMENT	9
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS	9
3.1.2 TEST PROCEDURE	9
3.1.3 DEVIATION FROM TEST STANDARD	9
3.1.4 TEST SETUP	10
3.1.5 EUT OPERATING CONDITIONS	10
3.1.6 TEST RESULTS	10
3.2 RADIATED EMISSION MEASUREMENT	13
3.2.1 RADIATED EMISSION LIMITS	13
3.2.2 TEST PROCEDURE	14
3.2.3 DEVIATION FROM TEST STANDARD	15
3.2.4 TEST SETUP	15
3.2.5 EUT OPERATING CONDITIONS	16
3.2.6 TEST RESULTS	17
	24
4.1 APPLIED PROCEDURES / LIMIT	24
4.1.1 TEST PROCEDURE	24
4.1.2 DEVIATION FROM STANDARD	24
4.1.3 TEST SETUP	24
4.1.4 EUT OPERATION CONDITIONS	24
4.1.5 TEST RESULTS	25
5 . CALCULATION OF AVERAGE FACTOR	26
6 . ACTIVE TIME	28
6.1 DEVIATION FROM STANDARD	28
6.2 TEST SETUP	28
6.3 EUT OPERATION CONDITIONS	28
6.4 TEST RESULTS	29
7 . ANTENNA REQUIREMENT	30
7.1 STANDARD REQUIREMENT	30
7.2 EUT ANTENNA	30
8. SETUP PHOTOS	31
9. EUT PHOTOS	33
APPENDIX-PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.231) , Subpart C						
Standard Section	Test Item	Judgment	Remark			
15.207	Conducted Emission	PASS				
15.209,15.231b	Radiated Emission Test	PASS				
15.231c	20dB Occupy Bandwidth	PASS				
15.231a	Dwell time	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

1.1 TEST FACILITY

Shenzhen BCTC Technology Co., Ltd. Add.:No.101,Yousong Road,Longhua New District, Shenzhen,China FCC Registration No.:187086

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $\ k=2$, providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power, conducted	±0.16dB
3	Spurious emissions,conducted	±0.21dB
4	All emissions,radiated(<1G)	±4.68dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Dog Training Collar				
Trade Name	N/A				
	TX-P10				
Model Name	TX-P09, TX-P11, TX-P1	2, TX-P13, TX-P15, TX-P16,			
	TX-P17, TX-P18				
Model Difference	except the model names				
	The EUT is a Dog Traini	Ŭ l			
	Operation Frequency:	433.92MHz			
	Modulation Type:	FSK			
Product Description	Antenna Designation:	integrated Antenna			
	Antenna Gain	3.0dBi			
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.				
Adapter	N/A				
Power	DC 3.7V				
rowei	DC 5V from adapter				
Adapter					
Connecting I/O Port(s)	Please refer to the User's Manual				
Hardware Version					
Software Version					

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.2 DESCRIPTION OF TEST MODES

For All Emission				
Final Test Mode	Description			
Mode 1	TX Channel			

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Emission Test

Conducted Emission Test

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Dog Training Collar	N/A	TX-P10		EUT
E-2	Adapter(Provide by test lab)	N/A	BC050050	N/A	I/P:AC 100-240V 50/60Hz O/P:DC 5V/0.5A

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4407B	MY45108040	2016.08.27	2017.08.26
2	Test Receiver (9kHz-7GHz)	R&S	ESPI	101318	2016.08.27	2017.08.26
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB 9168	VULB91 68-438	2016.08.27	2017.08.26
4	Horn Antenna (1GHz-18GHz)	SCHWARZBECK	BBHA9120D	1201	2016.09.03	2017.09.03
5	Horn Antenna (14GHz-40GHz)	SCHWARZBECK	BBHA 9170	9170-181	2016.09.03	2017.09.03
6	Amplifier (9KHz-6GHz)	SCHWARZBECK	BBV9744	9744-0037	2016.08.27	2017.08.26
7	Amplifier (1GHz-18GHz)	SCHWARZBECK	BBV9718	9718-309	2016.08.27	2017.08.26
8	Amplifier (18GHz-40GHz)	SCHWARZBECK	BBV 9721	9721-205	2016.08.27	2017.08.26
9	Loop Antenna (9KHz-30MHz)	SCHWARZBECK	FMZB1519B	00014	2016.09.03	2017.09.03
10	RF cables1 (9kHz-1GHz)	R&S	R203	R20X	2016.08.27	2017.08.26
11	RF cables2 (1GHz-40GHz)	R&S	R204	R21X	2016.08.27	2017.08.26
12	Antenna connector	Florida RF Labs	N/A	RF 01#	2016.08.27	2017.08.26
13	Power Metter	ANRITSU	ML2487A	6K00001568	2016.08.27	2017.08.26
14	Power Sensor (AV)	ANRITSU	ML2491A	030989	2016.08.27	2017.08.26
15	Signal Analyzer 9kHz-26.5GHz	Agilent	N9010A	MY48030494	2016.08.27	2017.08.26
16	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	2016.08.27	2017.08.26
17	D.C. Power Supply	LongWei	PS-305D	010964729	2016.08.27	2017.08.26

Conduction Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Test Receiver	R&S	ESCI	1166.5950K03-1 01165-ha	2016.08.27	2017.08.26
2	LISN	SCHWARZBECK	NSLK8127	8127739	2016.08.27	2017.08.26
3	LISN	R&S	NSLK8126	8126487	2016.08.27	2017.08.26
4	RF cables	R&S	R204	R20X	2016.08.27	2017.08.26
5	Attenuator	R&S	ESH3-Z2	143206	2016.08.27	2017.08.26

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

	Limit (dE	Standard	
FRE U NCY (MHz)	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

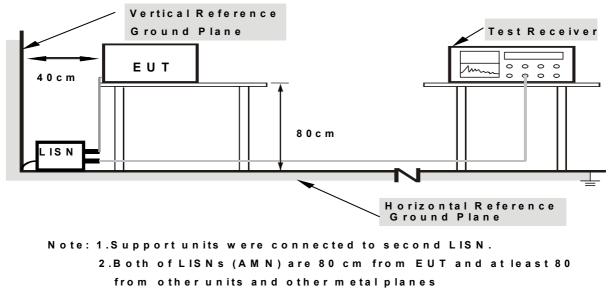
(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

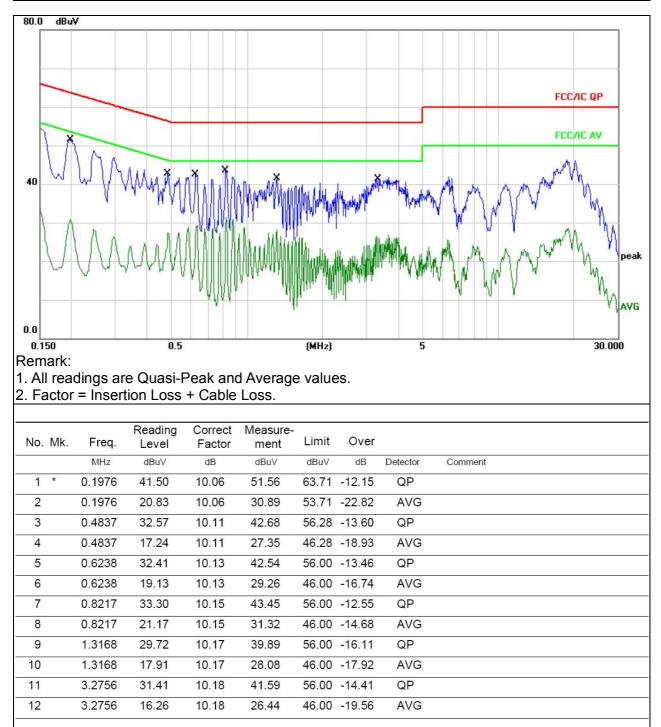
3.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

3.1.3 DEVIATION FROM TEST STANDARD

No deviation

3.1.4 TEST SETUP


3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.6 TEST RESULTS

Temperature :	25 ℃	Relative Humidity :	54%
Pressure :	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode :	Mode 1

Temp	oerati	ure :	25 ℃				Relati	ve Humidity :	54%
Press	sure :	:	1010hPa			Phase :		N	
Test \	Volta	oltage : AC 120V/60Hz		Test Mode :		Mode 1			
		-							
40			AMM						FCC/IC QP FCC/IC AV MMMMMMMMMM peak
0.0 0.11 Rem	ark:		0.5	, MMA		(MHz)		5	30.000
0.19 Rem 1. All	ark: reac				d Average Loss.		es.	5	30.000
0.19 Rem 1. All	ark: read actor		e Quasi-				es.	5	30.000
0.11 Rem 1. All 2. Fa	ark: read actor	= Inser	e Quasi- tion Loss _{Reading}	+ Cable	Measure- ment dBuV	e value			30.000
0.19 Rem 1. All 2. Fa	ark: read actor	= Insert	e Quasi- tion Loss Reading Level	+ Cable Correct Factor	Loss. Measure- ment	Limit 63.71	Over dB -9.41	Detector Com QP	
0.19 Rem 1. All 2. Fa No. 1 2	ark: read actor	= Insert Freq. MHz 0.1976 0.1976	Reading Level dBuV 44.24 21.62	+ Cable Correct Factor dB 10.06	A Loss. Measure- ment dBuV 54.30 31.68	E value	Over dB -9.41 -22.03	Detector Com QP AVG	
0.11 Rem 1. All 2. Fa No. 1 2 3	ark: read actor	= Insert Freq. MHz 0.1976 0.2940	re Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24	+ Cable Correct Factor dB 10.06 10.09	Loss. Measure- ment dBuV 54.30 31.68 49.33	E value Limit dBuV 63.71 53.71 60.41	Over dB -9.41 -22.03 -11.08	Detector Com QP AVG QP	
0.13 Rem 1. All 2. Fa No. 1 2 3 4	ark: read actor	= Insert Freq. MHz 0.1976 0.1976 0.2940 0.2940	Reading Level dBuV 44.24 21.62 39.24 17.32	+ Cable Correct Factor dB 10.06 10.09 10.09	E Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41	e value Limit dBuV 63.71 53.71 60.41 50.41	Over dB -9.41 -22.03 -11.08 -23.00	Detector Com QP AVG QP AVG	
0.19 Rem 1. All 2. Fa No. 1 2 3 4 5	ark: read actor	= Insert Freq. MHz 0.1976 0.2940 0.2940 0.6790	re Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24 17.32 31.57	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70	E value Limit dBuV 63.71 53.71 60.41 50.41 56.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30	Detector Com QP AVG QP AVG QP AVG	
0.11 Rem 1. All 2. Fa No. 1 2 3 4 5 6	ark: reac actor Mk.	= Insert Freq. MHz 0.1976 0.1976 0.2940 0.2940 0.6790 0.6790	Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21	e value Limit dBuV 63.71 53.71 60.41 50.41 56.00 46.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -16.79	Detector Com QP AVG QP AVG QP AVG	
0.11 Rem 1. All 2. Fa No. 1 2 3 4 5 6 7	ark: reac actor Mk.	= Insert Freq. МHz 0.1976 0.2940 0.2940 0.6790 0.6790 0.8261	Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08 36.85	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13 10.15	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21 47.00	E value Limit dBuV 63.71 53.71 60.41 50.41 56.00 46.00 56.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -16.79 -9.00	Detector Com QP AVG QP AVG QP AVG QP AVG QP	
0.13 Rem 1. All 2. Fa No. 1 2 3 4 5 6 7 8	ark: reac actor Mk.	= Insert	e Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08 36.85 20.68	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13 10.13 10.15	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21 47.00 30.83	e value Limit dBuV 63.71 53.71 60.41 56.00 46.00 56.00 46.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -14.30 -16.79 -9.00 -15.17	Detector Com QP AVG QP AVG QP AVG QP AVG AVG	
0.19 Rem 1. All 2. Fa No. 1 2 3 4 5 6 7 8 9	ark: reac actor Mk.	= Insert Freq. МHz 0.1976 0.2940 0.2940 0.6790 0.6790 0.8261 1.6537	re Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08 36.85 20.68 34.97	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13 10.13 10.15 10.15	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21 47.00 30.83 45.15	e value Limit dBuV 63.71 53.71 50.41 56.00 46.00 56.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -14.30 -16.79 -9.00 -15.17 -10.85	Detector Com QP AVG QP AVG QP AVG QP AVG QP AVG QP	
0.13 Rem 1. All 2. Fa No. 1 2 3 4 5 6 7 8 9 10	ark: reac actor Mk.	= Insert Freq. MHz 0.1976 0.2940 0.2940 0.6790 0.6790 0.8261 0.8261 1.6537 1.6537	e Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08 36.85 20.68 34.97 18.30	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13 10.13 10.15 10.15 10.18	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21 47.00 30.83 45.15 28.48	e value Limit dBuV 63.71 53.71 60.41 50.41 56.00 46.00 56.00 46.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -14.30 -9.00 -15.17 -10.85 -17.52	Detector Com QP AVG QP AVG QP AVG QP AVG QP AVG QP	
0.19 Rem 1. All 2. Fa No. 1 2 3 4 5 6 7 8 9	ark: reac actor Mk.	= Insert Freq. МHz 0.1976 0.2940 0.2940 0.6790 0.6790 0.8261 1.6537	re Quasi- tion Loss Reading Level dBuV 44.24 21.62 39.24 17.32 31.57 19.08 36.85 20.68 34.97	+ Cable Correct Factor dB 10.06 10.09 10.09 10.13 10.13 10.13 10.15 10.15	Loss. Measure- ment dBuV 54.30 31.68 49.33 27.41 41.70 29.21 47.00 30.83 45.15	e value Limit dBuV 63.71 53.71 60.41 56.00 46.00 56.00 46.00 56.00	Over dB -9.41 -22.03 -11.08 -23.00 -14.30 -14.30 -16.79 -9.00 -15.17 -10.85	Detector Com QP AVG QP AVG QP AVG QP AVG QP AVG QP	

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.231(b) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(micorvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dB	BuV/m) (at 3M)	
FREQUENCY (MHz)	PEAK AVERAGE		
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

FUNDAMENTAL AND HARMONICS EMISSION LIMITS

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	375
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, μ V/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, μ V/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

FREQUENCY RANGE OF RADIATED MEASUREMENT (For unintentional radiators)

Highest frequency generated or Upper frequency of measurement used in the device or on which the device operates or tunes (MHz)	Range (MHz)
Below 1.705	30
1.705 – 108	1000
108 – 500	2000
500 – 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW setting	1 MHz / 1 MHz for Peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

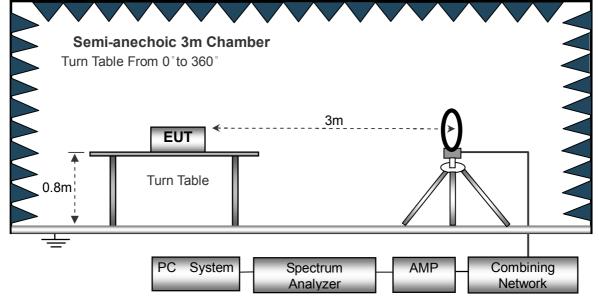
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

Shenzhen BCTC Technology Co., Ltd.

- g. Different between above is the test site, change from Semi-Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

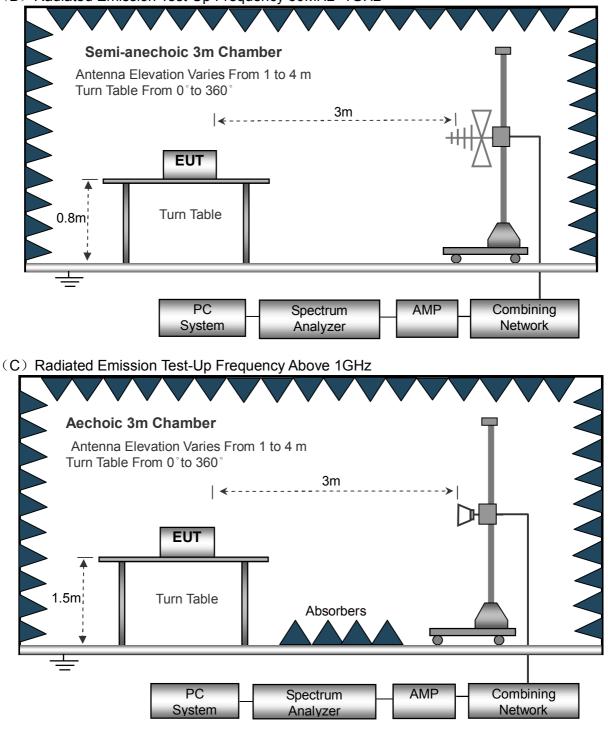
Both horizontal and vertical antenna polarities were tested


and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP



Shenzhen BCTC Technology Co., Ltd.

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

3.2.6 TEST RESULTS

Radiated Spurious Emission (Below 30MHz)

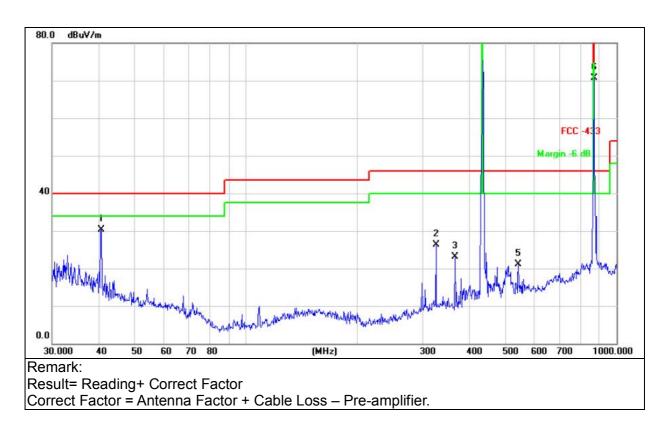
Temperature :	20 °C	Relative Humidity :	48%
Pressure :	1010 hPa	Polarization :	
Test Voltage :	DC 3.7V		
Test Mode :	Mode 1		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

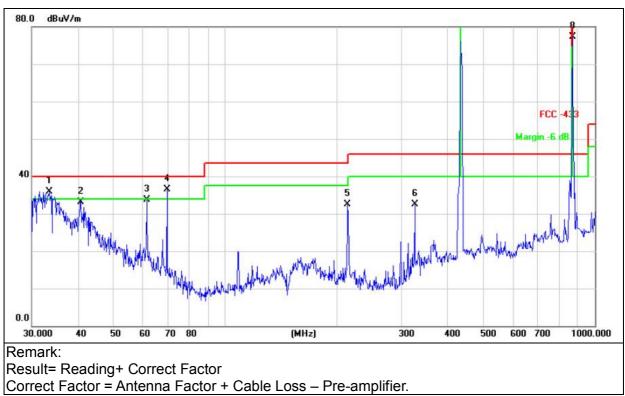
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);


Limit line = specific limits(dBuv) + distance extrapolation factor.

Shenzhen BCTC Technology Co., Ltd.

Radiated Spurious Emission (Between 30MHz – 1GHz)


Temperature :	26°C	Relative Humidity :	54%
Pressure :	1010 hPa	Polarization :	Horizontal
Test Voltage :	DC 3.7V		
Test Mode :	Mode 1		

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	40.7016	39.16	-8.94	30.22	40.00	-9.78	QP
2		325.5958	38.26	-11.92	26.34	46.00	-19.66	QP
3		366.8231	34.22	-11.03	23.19	46.00	-22.81	QP
4		433.9200	95.73	-9.37	86.36	100.80	-14.44	peak
5		543.2740	28.35	-7.29	21.06	46.00	-24.94	QP
6		867.8400	68.65	-1.85	66.80	80.80	-14.00	peak

Temperature :	26 °C	Relative Humidity :	54%
Pressure :	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 3.7V		
Test Mode :	Mode 1		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	İ	33.4449	44.24	-8.42	35.82	40.00	-4.18	QP
2		40.7016	42.13	-8.94	33.19	40.00	-6.81	QP
3		61.3463	45.48	-11.78	33.70	40.00	-6.30	QP
4	ļ	69.6005	50.81	-14.37	36.44	40.00	-3.56	QP
5	3	214.5143	48.33	-15.78	32.55	43.50	-10.95	QP
6		325.5958	44.48	-11.92	32.56	46.00	-13.44	QP
7	(433.9200	94.32	-9.37	84.95	100.80	-15.85	peak
8	*	867.8400	67.41	-2.05	65.36	80.80	-15.44	peak

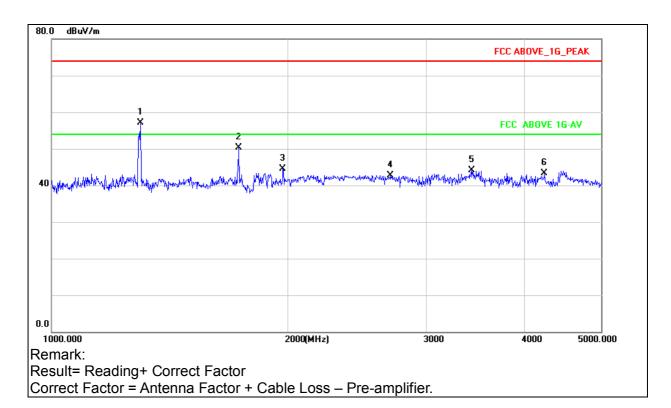
For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
433.92	84.95	-8.15	76.80	Vertical	80.80	-4.00
867.84	65.36	-8.15	57.21	Vertical	60.80	-3.59

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
433.92	86.36	-8.15	78.21	Horizontal	80.80	-2.59
867.84	66.80	-8.15	58.65	Horizontal	60.80	-2.15

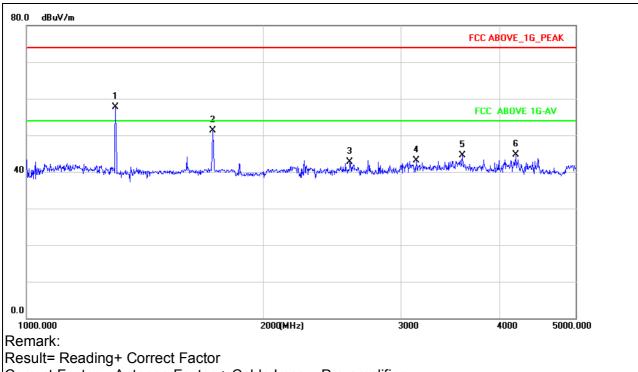
Notes: 1. Average emission Level = Peak Level + Duty cycle factor

- 2. Duty cycle level please see clause 5.
- 3. Pulse Desensitization Correction Factor


Pulse Width (PW) = 34.80ms 2/PW = 2/34.80ms = 0.057kHz RBW (100 kHz) > 2/PW (0.057kHz) Therefore PDCF is not needed

Shenzhen BCTC Technology Co., Ltd.

Radiated Spurious Emission (1GHz to 10th harmonics)


Temperature	:	26 ℃	Relative Humidity :	54%	
Pressure :		1010 hPa	Polarization :	Horizontal	
Test Voltage	:	DC 3.7V			
Test Mode :		Mode 1			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1301.7600	57.69	0.86	58.55	74.00	-15.45	peak
2	1735.6800	49.79	1.60	51.39	80.80	-29.41	peak
3	1969.0940	43.55	2.04	45.59	74.00	-28.41	peak
4	2699.3830	40.12	3.50	43.62	74.00	-30.38	peak
5	3419.8970	39.88	5.11	44.99	74.00	-29.01	peak
6	4236.1970	37.27	6.90	44.17	74.00	-29.83	peak

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Polarization :	Vertical
Test Voltage :	DC 3.7V		
Test Mode :	Mode 1		

Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier.

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	1301.7600	58.15	0.86	59.01	74.00	-14.99	peak
2	1735.6800	50.90	1.59	52.49	80.80	-28.31	peak
3	2580.4370	40.44	3.26	43.70	74.00	-30.30	peak
4	3135.2250	39.70	4.42	44.12	74.00	-29.88	peak
5	3589.0720	39.93	5.52	45.45	74.00	-28.55	peak
6	4195.4860	38.76	6.83	45.59	74.00	-28.41	peak

For average Emission

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
1301.76	59.01	-8.15	50.86	Vertical	54.00	-3.14
1735.68	52.49	-8.15	44.34	Vertical	60.80	-16.46

Frequency MHz	Peak Level dBuV/m	Duty cycle factor	AverageLevel dBuV/m	Polarization	Limit AV	Margin
1301.76	58.55	-8.15	50.40	Horizontal	54.00	-3.60
1735.68	51.39	-8.15	43.24	Horizontal	60.80	-17.56

Notes: 1. Average emission Level = Peak Level + Duty cycle factor 2.Duty cycle level please see clause 5.

4. BANDWIDTH TEST

4.1 APPLIED PROCEDURES / LIMIT

According to FCC 15.231(c) requirement:

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz to 900 MHz. Those devices operating above 900 MHz, the emission spurious shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

B.W (20dBc) Limit = 0.25% * f(MHz) = 0.25% * 433.92MHz = 1.0848MHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> Measurement Bandwidth or Channel Separation
RB	30kHz
VB	≥RBW
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting : RBW= 10kHz, VBW≥ RBW, Sweep time = Auto.

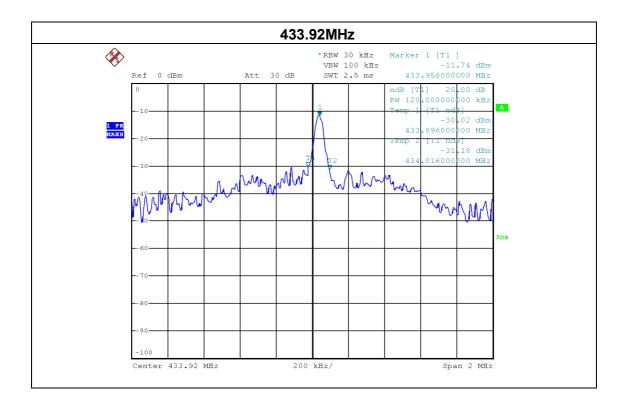
4.1.2 DEVIATION FROM STANDARD

No deviation.

4.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

4.1.4 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

4.1.5 TEST RESULTS

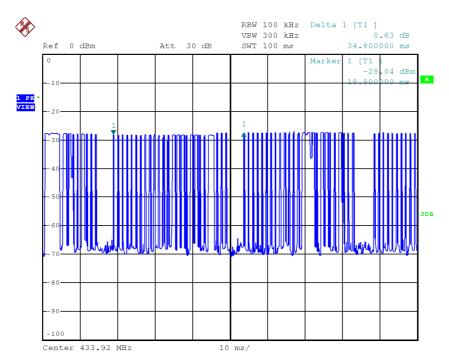
Temperature :	25 ℃	Relative Humidity :	60%
Pressure :	1012 hPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1		

Frequency	20dB Bandwidth (MHz)	Limit (MHz)	Result
433.92MHz	0.12	<1.0848	PASS

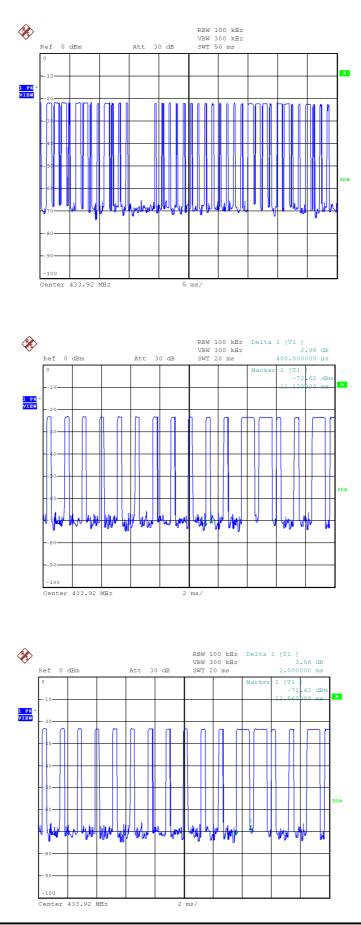
5. CALCULATION OF AVERAGE FACTOR

The output field strengths of specification in accordance with the FCC rules specify measurements with an average detector. During the test, a spectrum analyzer incorporating a peak detector was used. Therefore, a reduction factor can be applied to the resultant peak signal level and compared to the limit for measurement instrumentation incorporating an average detector.

The duty cycle is measured in 100 ms or the repetition cycle period, whichever is a shorter time frame. The duty cycle is measured by placing the spectrum analyzer to set zero span at 100kHz resolution bandwidth.


Duty Cycle= Effective time one cycle/ Total time one cycle

Averaging factor in dB =20log (duty cycle)


Duty Cycle = (19*0.4+6*1)/ 34.80=0.391

Therefore, the averaging factor is found by 20log0.391=-8.15dB

Test plot as follows:

6. ACTIVE TIME APPLICABLE STANDARD

According to FCC 15.231(a) requirement:

A manually operated transmitter shall employ a switch that will automatically

deactivate the transmitter within not more than 5 seconds of being released.

TEST PROCEDURE

- a) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b) Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- c) Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- d) Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- e) Repeat above procedures until all measured frequencies were complete.

6.1 DEVIATION FROM STANDARD

No deviation.

6.2 TEST SETUP


6.3 EUT OPERATION CONDITIONS

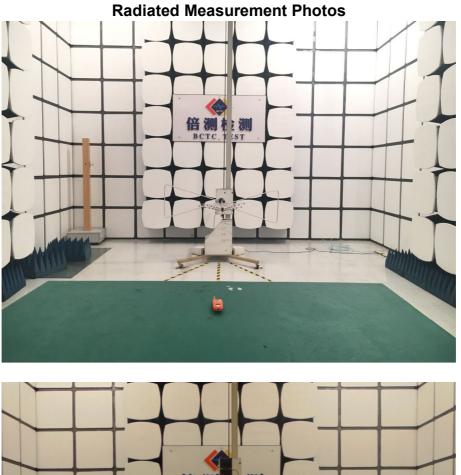
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

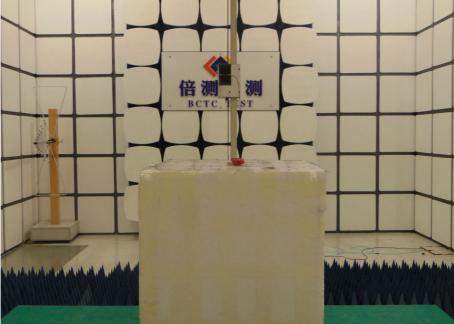
6.4 TEST RESULTS

	active time (second)	Limit (second)	Result
Normal	3.401	<5s	Pass

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

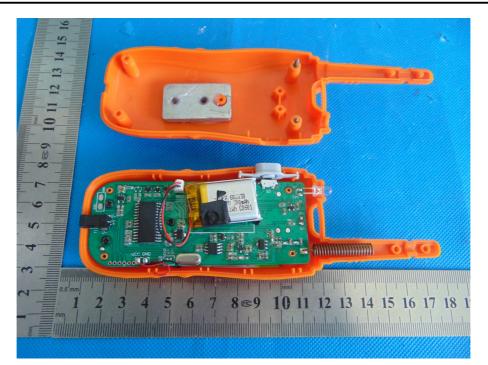

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.


7.2 EUT ANTENNA

The EUT antenna is the integrated antenna, It comply with the standard requirement.

8. SETUP PHOTOS

Conducted Measurement Photos



9. EUT PHOTOS

Shenzhen BCTC Technology Co., Ltd.

-----END-----