

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

VOICE ACTIVATED CLOCK WITH AMAZON ALEXA

MODEL No.: ICWFV428B

FCC ID: 2ANH7ALB428B

Trade Mark: ILIVE, ILIVE PLATINUM

REPORT NO: ES180209004E2

ISSUE DATE: March 13, 2018

Prepared for

MODERN ELECTRONICS FACTORY LIMITED FLAT/RM C, BLK 4, 10/F., KWUN TONG INDUSTRIAL CENTRE, 436-446 KWUN TONG ROAD, KWUN TONG, HONG KONG

Prepared by

EMTEK(SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

TABLE OF CONTENTS

TEST RESULT CERTIFICATION	3
EUT TECHNICAL DESCRIPTION	4
SUMMARY OF TEST RESULT	5
TEST METHODOLOGY	6
2 MEASUREMENT EQUIPMENT USED	6
FACILITIES AND ACCREDITATIONS	8
TEST SYSTEM UNCERTAINTY	9
SETUP OF EQUIPMENT UNDER TEST1	0
2 RADIO FREQUENCY TEST SETUP 2	0 1 2
TEST REQUIREMENTS	
	SUMMARY OF TEST RESULT

1 TEST RESULT CERTIFICATION

Applicant:	MODERN ELECTRONICS FACTORY LIMITED FLAT/RM C, BLK 4, 10/F., KWUN TONG INDUSTRIAL CENTRE, 436-446 KWUN TONG ROAD, KWUN TONG, HONG KONG
Manufacturer:	MODERN ELECTRONICS FACTORY LIMITED FLAT/RM C, BLK 4, 10/F., KWUN TONG INDUSTRIAL CENTRE, 436-446 KWUN TONG ROAD, KWUN TONG, HONG KONG
Factory: EUT Description:	Keng Fu Jia Electronics (Shenzhen) Co., Ltd. 5/F. Building C, 175 Huasheng Rd. Langkou Community, Dalang Street, Baoan District, Shenzhen, Guangdong VOICE ACTIVATED CLOCK WITH AMAZON ALEXA
Model Number:	ICWFV428B
Trade Mark:	ILIVE, ILIVE PLATINUM
File Number:	ES180209004E2
Date of Test:	February 11, 2018 to March 12, 2018

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD TEST RESULT				
FCC 47 CFR Part 2 2017, Subpart J				
FCC 47 CFR Part 15 2017, Subpart C	PASS			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 2017 and Part 15.247 2017 The test results of this report relate only to the tested sample identified in this report.

Date of Test :

Prepared by :

Reviewer:

February 11, 2018 to March 12, 2018

Abel Wu/Editor

Lee Ha

Joe Xia/ Supervisor

Approve & Authorized Signer :

Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
IEEE 802.11 WLAN Mode Supported	 ⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth)
Data Rate	 ⊠802.11 b:1,2,5.5,11Mbps; ⊠802.11 g:6,9,12,18,24,36,48,54Mbps; ⊠802.11n(HT20):MCS0-MCS7; ⊠802.11n(HT40):MCS0-MCS7;
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Operating Frequency Range	 ⊠2412-2462MHz for 802.11b/g; ⊠2412-2462MHz for 802.11n(HT20); ⊠2422-2452MHz for 802.11n(HT40);
Number of Channels	 ☑ 11 channels for 802.11b/g; ☑ 11 channels for 802.11n(HT20); ☑ 7 channels for 802.11n(HT40);
Transmit Power Max	18.24 dBm for 802.11b; 17.63 dBm for 802.11g; 17.24 dBm for 802.11n(HT20); 16.69 dBm for 802.11n(HT40);
Antenna Type	FPC Antenna
Antenna Gain	0 dBi
	DC 5V from adapter
Power supply	Adapter: Model: JDA0501500WUS AC Input: 100-240V~ 50/60Hz, 0.8A DC Output: 5.0V, 1.5A
Temperature Range	-10°C ~ +55°C

FCC Part Clause	Test Parameter	Verdict	Remark			
15.247(a)(2)	DTS (6dB) Bandwidth	PASS				
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS				
15.247(e)	Maximum Power Spectral Density Level	PASS				
15.247(d)	Unwanted Emission Into Non-Restricted Frequency Bands	PASS				
15.247(d) 15.209	Unwanted Emission Into Restricted Frequency Bands (conducted)	PASS				
15.247(d) 15.209	Radiated Spurious Emission	PASS				
15.207	Conducted Emission Test	PASS				
15.247(b)	Antenna Application	PASS				
	NOTE1:N/A (Not Applicable) NOTE2:According to FCC OET KDB 558074, the report use radiated measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.					

3 SUMMARY OF TEST RESULT

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: 2ANH7ALB428B filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v04

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Test Receiver	Rohde & Schwarz	ESCI	26115-010-0027	May 20, 2017	May 19, 2018
L.I.S.N.	Rohde & Schwarz	ENV216	101161	May 20, 2017	May 19, 2018
50Ω Coaxial Switch	Anritsu	MP59B	6100175589	May 21, 2017	May 20, 2018
Voltage Probe	Rohde & Schwarz	ESH2-Z3	100122	May 21, 2017	May 20, 2018
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100006	May 20, 2017	May 19, 2018
I.S.N	Teseq GmbH	ISN T800	30327	May 21, 2017	May 20, 2018

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 21, 2017	May 20, 2018
Pre-Amplifier	HP	8447F	2944A07999	May 20, 2017	May 19, 2018
Bilog Antenna	Schwarzbeck	VULB9163	142	May 20, 2017	May 19, 2018
Loop Antenna	ARA	PLA-1030/B	1029	May 20, 2017	May 19, 2018
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	May 21, 2017	May 20, 2018
Horn Antenna	Schwarzbeck	BBHA 9120	D143	May 20, 2017	May 19, 2018
Cable	Schwarzbeck	AK9513	ACRX1	May 21, 2017	May 20, 2018
Cable	Rosenberger	N/A	FP2RX2	May 21, 2017	May 20, 2018
Cable	Schwarzbeck	AK9513	CRPX1	May 21, 2017	May 20, 2018
Cable	Schwarzbeck	AK9513	CRRX2	May 21, 2017	May 20, 2018

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 21, 2017	May 20, 2018
Signal Analyzer	Agilent	N9010A	My53470879	May 21, 2017	May 20, 2018
Power meter	Anritsu	ML2495A	0824006	May 21, 2017	May 20, 2018
Power sensor	Anritsu	MA2411B	0738172	May 21, 2017	May 20, 2018

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps;802.11g: 6 Mbps;802.11n(HT20): MCS0; 802.11n(HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

2.2								
	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	1	2412	5	2432	9	2452		
	2	2417	6	2437	10	2457		
	3	2422	7	2442	11	2462		
	4	2427	8	2447				

Frequency and Channel list for 802.11 b/g/n(HT20)/n(HT40):

Frequency and Channel list for 802.11n(HT40):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452
4	2427	7	2442		
5	2432	8	2447		

Test Frequency and Channel for 802.11 b/g/n (HT20)/n(HT40):

Lowest F	Frequency	Middle F	requency	Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and Channel list for 802.11n(HT40):

Lowest F	Frequency	Middle F	requency	Highes	st Frequency
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

- EMC Lab.
- : Accredited by CNAS, 2016.10.24 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L229
- : Accredited by TUV Rheinland Shenzhen, 2016.5.19 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
- : Accredited by FCC, August 03, 2017 Designation Number: CN1204 Test Firm Registration Number: 882943

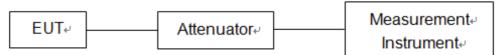
Accredited by A2LA, July 31, 2017 The Certificate Registration Number is 4321.01.

: Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A.

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%


Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

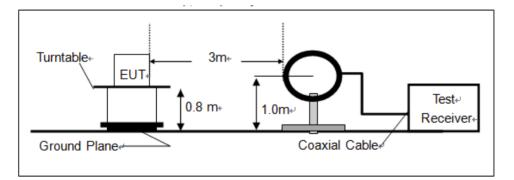
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

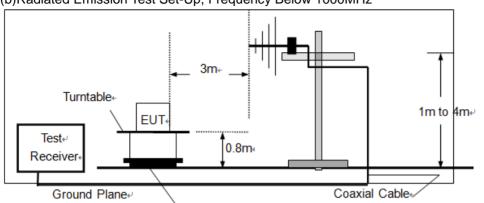
The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT and rotated about its vertical axis for maximum response at each azimuth about the EUT. The center of the loop shall be 1 m above the ground. For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT.

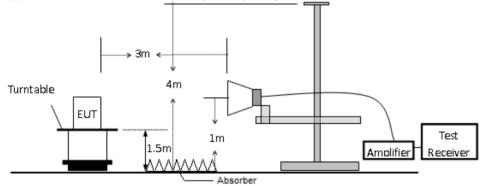

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

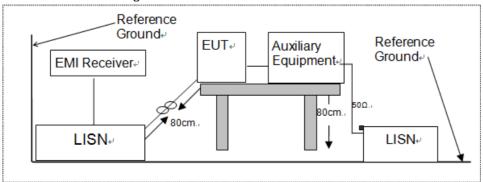
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



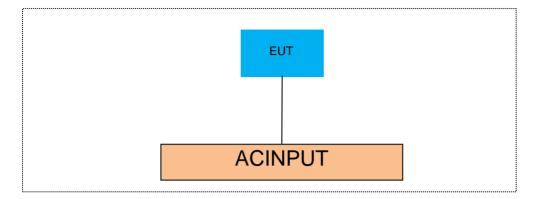
(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	Note
N/A	N/A	N/A	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS(6DB)BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247(a)(2) and KDB558074 DTS 01 Meas. Guidance v04

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

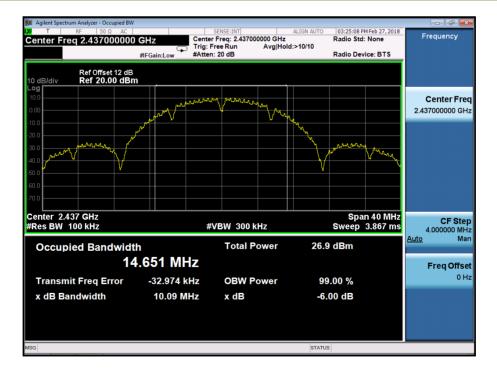
Set Sweep = auto couple.

Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Measure and record the results in the test report.

8.1.5 Test Results

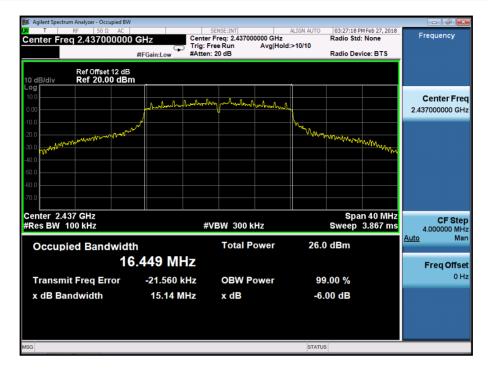

Temperature :	26 ℃	Test Date :	March 1, 2018
Humidity :	53 %	Test By:	King Kong

Operation	Channel	Channel	Measurement Bandwidth	Limit	Verdict
Mode	Number	Frequency (MHz)	(MHz)	(kHz)	
	1	2412	10.05	500	PASS
802.11b	6	2437	10.09	500	PASS
	11	2462	10.09	500	PASS
	1	2412	15.14	500	PASS
802.11g	6	2437	15.14	500	PASS
	11	2462	15.15	500	PASS
000 11p	1	2412	15.15	500	PASS
802.11n (HT20)	6	2437	15.14	500	PASS
(1120)	11	2462	15.15	500	PASS
902 11p	3	2422	33.88	500	PASS
802.11n (HT40)	6	2437	35.09	500	PASS
(1140)	9	2452	35.13	500	PASS

DTS (6dB) Bandwidth

DTS (6dB) Bandwidth 802.11b Channel 11: 2462MHz

Test Model


Test Model

DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz

Agilent Spectrum Analyzer - Occupied BW Δ Τ RF 50 Ω AC Center Freq 2.412000000 G			Radio S d:>10/10	PM Feb 27, 2018 td: None evice: BTS	Frequency
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm					
0.00	Andread marked	ymharhan han han han han han han han han han			Center Freq 2.412000000 GHz
-10.0 -20.0 -30.0			mullergunnen	mmmm	
-40.0 -50.0 -60.0					
-70.0			Sr	an 40 MHz	05.04
#Res BW 100 kHz	#\	/BW 300 kHz		3.867 ms	CF Step 4.000000 MHz Auto Man
Occupied Bandwidth	448 MHz	Total Power	25.3 dBm		
Transmit Freq Error	26.571 kHz	OBW Power	99.00 %		Freq Offset 0 Hz
x dB Bandwidth	15.14 MHz	x dB	-6.00 dB		
MSG			STATUS		

DTS (6dB) Bandwidth 802.11g Channel 6: 2437MHz

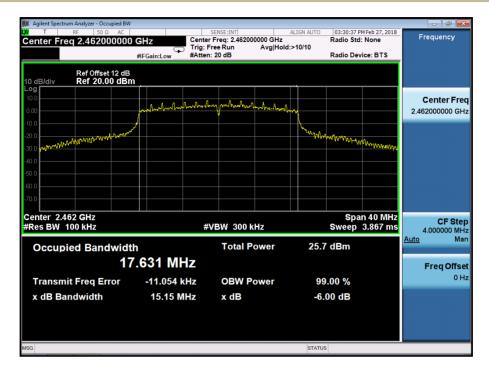
Test Model


Test Model

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz

	CENCEANT	ALICH AUTO 02-27-	52 DM 5-6 27 2010	- 7 -
GHz Center Trig: F	Freq: 2.462000000 GHz ree Run Avg Hol	Radio : d:>10/10	Std: None	Frequency
harbertowhere	mp Marlanhoulu	Λ.,		Center Freq 2.462000000 GHz
		May Margar Margar	rahuviMalaa	
			- TUNA	
#	VBW 300 kHz			CF Step 4.000000 MHz
	Total Power	25.9 d B m		<u>Auto</u> Man
-21.608 kHz	OBW Power	99.00 %		Freq Offset 0 Hz
15.15 MHz	x dB	-6.00 dB		
		STATUS		
	GHz #FGain:Low Center #Atten ##Atten ## ##Atten	#FGaintow Trig: Free Run Avg Hol #Atten: 20 dB Avg Hol Avg Hol	GHz Center Freq: 2.46200000 GHz Radio 1 #FGaln:Low Trig: Free Run Avg Hold:>10/10 Radio 1 Trig: Free Run Sweet h Total Power 25.9 dBm 5.502 MHz Sweet	GHz Center Freq: 2.46200000 GHz Radio Std: None #FGain:Low #Atten: 20 dB Avg Hold:>10/10 Radio Device: BTS #FGain:Low #Atten: 20 dB Avg Hold:>10/10 Radio Device: BTS #FGain:Low #Atten: 20 dB Avg Hold:>10/10 Radio Device: BTS #Atten: 20 dB Span 40 MHz Span 40 MHz #VBW 300 kHz Span 40 MHz Sweep 3.867 ms h Total Power 25.9 dBm 5.502 MHz -21.608 kHz OBW Power 99.00 % 15.15 MHz x dB -6.00 dB -6.00 dB

DTS (6dB) Bandwidth 802.11n (HT20) Channel 1: 2412MHz


Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz

Agilent Spectrum Analyzer - Occupied BW				107 0010	- 6 -
X T RF 50 Ω AC AC Center Freq 2.437000000	GHz Center	SENSE:INT Freq: 2.437000000 GHz ree Run Avg Hol : 20 dB	Radio Std		Frequency
Ref Offset 12 dB 10 dB/div Ref 20.00 dBn Log	n				
0.00	mobulation	when have been been been been been been been be	hn		Center Freq 2.437000000 GHz
-10.0 -20.0 -30.0 mmmWMMMMMMMMMMMMMMMMM			J. Mar WMWWWWWW	Munhangaga	
-40.0					
-60.0					
Center 2.437 GHz #Res BW 100 kHz	#\	/BW 300 kHz		n 40 MHz 3.867 ms	CF Step 4.000000 MHz
Occupied Bandwidt		Total Power	26.0 dBm		<u>Auto</u> Man
17	7.609 MHz				Freq Offset
Transmit Freq Error	-11.548 kHz	OBW Power	99.00 %		0 Hz
x dB Bandwidth	15.14 MHz	x dB	-6.00 dB		
MSG			STATUS		

DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz

Test Model

Test Model

DTS (6dB) Bandwidth 802.11n(HT40) Channel 1: 2422MHz

🎉 Agilent Spectru	m Analyzer - Occupied BW									
	RF 50 Ω AC q 2.422000000			NSE:INT rea: 2.42200		ALIGN AUTO	03:31:20 Radio Ste	PM Feb 27, 2018	Frequ	uency
Center Fre	q 2.42200000	G	Trig: Fre	e Run	Avg Hold:	>10/10				
		#IFGain:Low	#Atten: 2	0 dB			Radio De	vice: BTS		
10 dB/div	Ref Offset 12 dB Ref 20.00 dBn									
Log 10.0									Cor	nter Freg
0.00		ليسطحهم المالي	Robal Andrew	a fals falses	-					0000 GHz
-10.0		alahahahahahahahahahahahahahahahahahaha		J	a more to de telet	nol 1			E.4EE00	0000 0112
-20.0]				<u>\</u>				
-30.0	Colorad Mary Mary					M. Miraline	marchard you			
-40.0 white with	N- and a state of the state of							and a state of the second states of the second stat		
-50.0										
-60.0										
-70.0										
-70.0										
Center 2.42 #Res BW 1			#VE	3W 300 k	Hz			an 80 MHz 7.667 ms		CF Step
									Auto 8.00	Man
Occupi	ed Bandwidt	th		Total P	ower	24.9	dBm (
	38	5.772 M	Hz						Fre	eq Offset
Transmi	it Freq Error	62.932	kHz	OBW P	ower	99	0.00 %			0 Hz
x dB Ba	ndwidth	33.88 M	IHz	x dB		-6.	00 dB			
MSG						STATUS	5			

Test Model

DTS (6dB) Bandwidth

802.11n(HT40) Channel 6: 2437MHz

Test Model

DTS (6dB) Bandwidth 802.11n(HT40) Channel 9: 2452MHz

🎉 Agilent Spectrum	Analyzer - Occu	upied BW								- 6 -
Center Freq		AC	GHz #IFGain:Low	Center F			ALIGN AUT	Radio S	7 PM Feb 27, 2018 Std: None Device: BTS	Frequency
10 dB/div Log	Ref Offset Ref 20.0				1					
10.0 0.00 -10.0			International	<u>Arbalaha</u> laa	y mahalanda faat	er markalala	љ.,			Center Freq 2.452000000 GHz
-20.0	benertly advertige of the	Mr. Jawa					L V	Mannakaphasha	wined where	
-40.0 -50.0										
.70.0 Center 2.452	2 GH7								pan 80 MHz	
#Res BW 10				#V	BW 300 k	Hz			p 7.667 ms	CF Step 8.000000 MHz
Occupie	d Band	width			Total P	ower	2	5.5 dBm		<u>Auto</u> Man
		35	.903 M	Hz						Freq Offset
Transmit	Freq Err	or	-45.023	kHz	OBW P	ower		99.00 %		0 Hz
x dB Ban	dwidth		35.13 M	ſHz	x dB			-6.00 dB		
MSG							ST	ATUS		

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247(b)(3) and KDB558074 DTS 01 Meas. Guidance v04

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

8.2.5 Test Results

Temperature :	26 ℃	Test Date :	March 1, 2018
Humidity :	53 %	Test By:	King Kong

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	2412	17.69	30	PASS
802.11b	6	2437	18.24	30	PASS
	11	2462	18.07	30	PASS
	1	2412	16.93	30	PASS
802.11g	6	2437	17.63	30	PASS
802.11b 802.11g 802.11n (HT20) 802.11n	11	2462	17.48	30	PASS
902 11p	1	2412	16.56	30	PASS
	6	2437	17.24	30	PASS
(1120)	11	2462	17.11	30	PASS
902 11p	3	2422	16.10	30	PASS
(HT40)	6	2437	16.69	30	PASS
(1140)	9	2452	16.58	30	PASS

Duty cycle=(8.54-0.12)/8.54*100%=98.6%

Ji Agilent Spectrum Analyzer - Swept SA					- 8 💌
Center Freq 2.462000000 G				M Feb 27, 2018	equency
P	NO: Wide ↔ Trig: Free Gain:Low #Atten: 20	Run	TY		
Ref Offset 12 dB 10 dB/div Ref 20.00 dBm			ΔMkr1 1 -1	120.0 μs 2.69 dB	Auto Tune
Log 10.0 0.00 -10.0 #M/M/M/M/M/M/M/M/M/		NGANANANANANANANA	(WHANNMANNA) SAM		enter Freq 000000 GHz
-20.0 -30.0 -40.0		a ha late ta ha		2.462	Start Freq
-50.0				2.462	Stop Freq 000000 GHz
Center 2.462000000 GHz Res BW 100 kHz	#VBW 300 kHz		Sweep 20.00 ms (Auto	CF Step 100.000 kHz Man
MKR MODE TRC SCL X	Y 20.0 μs (Δ) -12.69 d		ICTION WIDTH FUNCTI	ON VALUE	
	280 ms -8.90 dB			F	F req Offset 0 Hz
6 7 8 9 10					
11				-	
K SG	m		STATUS	· ·	

📕 Agilent Spectrum Analyzer - Swept SA			
X/ T RF 50Ω AC Center Freq 2.462000000 (Avg Type: Log-Pwr TRA	M Feb 27, 2018 CE 1 2 3 4 5 6 Frequency
Ref Offset 12 dB	PNO: Wide → Trig: Free Run IFGain:Low #Atten: 20 dB	ΔMkr1 8	540 ms 8.54 dB
Log 10.0 0.00 -10.0 (学校内心内内心内内心内内内内内内内内内内内内内内内内内内内内内内内内内内内内内	Malanahan Kalandan Kalanah	MINNIN MINNIN MINNIN MIN NIN MINNIN MINNI MINNIN MINNIN	Center Free 2.462000000 GH:
-20.0			2.462000000 GH
-50.0 -60.0 -70.0			Stop Free 2.462000000 GH
Center 2.462000000 GHz Res BW 100 kHz	#VBW 300 kHz	Sweep 20.00 ms	Auto Ma
	Υ FUN 8,540 ms (Δ) -8,54 dB 3,280 ms -8,90 dBm	TION FUNCTION WIDTH FUNCT	ON VALUE
4SG		STATUS	

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB558074 DTS 01 Meas. Guidance v04

8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.3.4 Test Procedure

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to:10 kHz. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

8.3.5 Test Results

Temperature :	26 ℃	Test Date :	March 1, 2018
Humidity :	53 %	Test By:	King Kong

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	2412	-10.144	8	PASS
802.11b	6	2437	-9.626	8	PASS
	11	2462	-9.501	8	PASS
	1	2412	-15.989	8	PASS
802.11g	6	2437	-15.606	8	PASS
	11	2462	-16.239	8	PASS
900 11p	1	2412	-17.303	8	PASS
802.11n (HT20)	6	2437	-13.829	8	PASS
(1120)	11	2462	-16.514	8	PASS
000.44m	3	2422	-21.133	8	PASS
802.11n	6	2437	-20.543	8	PASS
(HT40) –	9	2452	-19.640	8	PASS
Note:					

Power Spectral Density 802.11b Channel 1: 2412MHz


Agilent Spectr 03:59:30 PM Feb 27, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN Frequency Center Freq 2.412000000 GHz PNO: Fast IFGain:Low #Atten: 20 dB Avg Type: Log-Pwr Avg|Hold: 5/100 Auto Tune Mkr1 2.411 092 GHz -10.144 dBm Ref Offset 12 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.412000000 GHz Start Freq 2.404430000 GHz سالمه الملامية الم يسلس مطلسا الساسي المسالية المسال hin. L Stop Freq և փմ 2.419570000 GHz **CF Step** 1.514000 MHz Man Auto Freq Offset 0 Hz Center 2.412000 GHz #Res BW 3.0 kHz Span 15.14 MHz Sweep 1.596 s (1001 pts) #VBW 10 kHz **Power Spectral Density** 802.11b **Test Model** Channel 6: 2437MHz

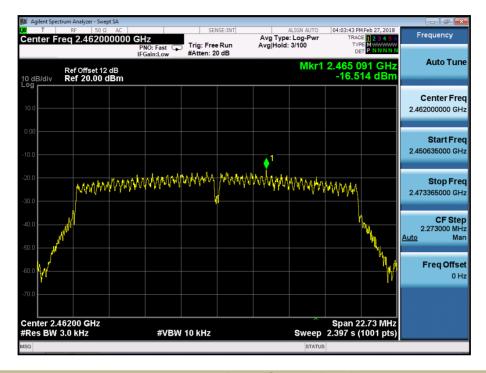
Power Spectral Density 802.11b Channel 11: 2462MHz



alvzer - Swept SA Center Freq 2.412000000 GHz PNO: Fast C IFGain:Low Trig: Free Run #Atten: 20 dB 04:01:30 PM Feb 27, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 3/100 Frequency Auto Tune Mkr1 2.410 727 GHz -15.989 dBm Ref Offset 12 dB Ref 20.00 dBm 10 dB/di **Center Freq** 2 412000000 GHz Start Freq 2.400635000 GHz www.www.www.www.www. www.wannawww.wa Stop Freq 2.423365000 GHz CF Step 2.273000 MHz 2 Man <u>Auto</u> Freq Offset 0 Hz Span 22.73 MHz Sweep 2.397 s (1001 pts) Center 2.41200 GHz #Res BW 3.0 kHz #VBW 10 kHz

Power Spectral Density 802.11g Channel 6: 2437MHz

Agilent Spectru 04:01:55 PM Feb 27, 2018 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N Frequency Center Freq 2.437000000 GHz PNO: Fast IFGain:Low #Atten: 20 dB Avg Type: Log-Pwr Avg|Hold: 4/100 Auto Tune Mkr1 2.439 478 GHz -15.606 dBm Ref Offset 12 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.437000000 GHz Start Freq 2.425635000 GHz mmmmmmmmmm Marianananana Stop Freq 2.448365000 GHz CF Step 2.273000 MHz Man Auto Freq Offset 0 Hz Center 2.43700 GHz #Res BW 3.0 kHz Span 22.73 MHz Sweep 2.397 s (1001 pts) #VBW 10 kHz **Power Spectral Density Test Model** 802.11g Channel 11: 2462MHz


Power Spectral Density 802.11n (HT20) Channel 1: 2412MHz

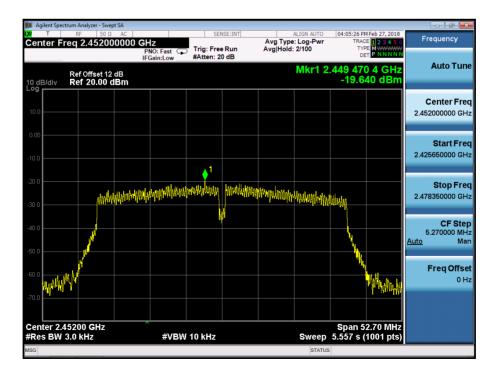
Agilent Spectr 04:03:01 PM Feb 27, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN Frequency Center Freq 2.412000000 GHz PNO: Fast IFGain:Low #Atten: 20 dB Avg Type: Log-Pwr Avg|Hold: 5/100 Auto Tune Mkr1 2.410 727 GHz -17.303 dBm Ref Offset 12 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.412000000 GHz Start Freq 2.400635000 GHz **∮**¹, handreamphanester www.www.www.www.www.www. Stop Freq 2.423365000 GHz CF Step 2.273000 MHz Man <u>Auto</u> Freq Offset 0 Hz Center 2.41200 GHz #Res BW 3.0 kHz Span 22.73 MHz Sweep 2.397 s (1001 pts) #VBW 10 kHz **Power Spectral Density** 802.11n (HT20) **Test Model** Channel 6: 2437MHz



Power Spectral Density 802.11n (HT20) Channel 11: 2462MHz

Test Model

Power Spectral Density 802.11n(HT40) Channel 1: 2422MHz



Power Spectral Density 802.11n(HT40) Channel 6: 2437MHz

Agilent Spectrum Analyze 04:05:01 PM Feb 27, 2018 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P NNNN Frequency Center Freq 2.437000000 GHz PNO: Fast IFGain:Low #Atten: 20 dB Avg Type: Log-Pwr Avg|Hold: 1/100 Auto Tune Mkr1 2.438 844 5 GHz -20.543 dBm Ref Offset 12 dB Ref 20.00 dBm 10 dB/div **Center Freq** 2.437000000 GHz Start Freq 2.410650000 GHz northalland and an an Stop Freq hould manufacture 2.463350000 GHz CF Step 5.270000 MHz Man Auto Freq Offset Markingham 0 Hz Center 2.43700 GHz #Res BW 3.0 kHz Span 52.70 MHz Sweep 5.557 s (1001 pts) #VBW 10 kHz

Test Model

Power Spectral Density 802.11n(HT40) Channel 11: 2452MHz

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB558074 DTS 01 Meas. Guidance v04

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \ge 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

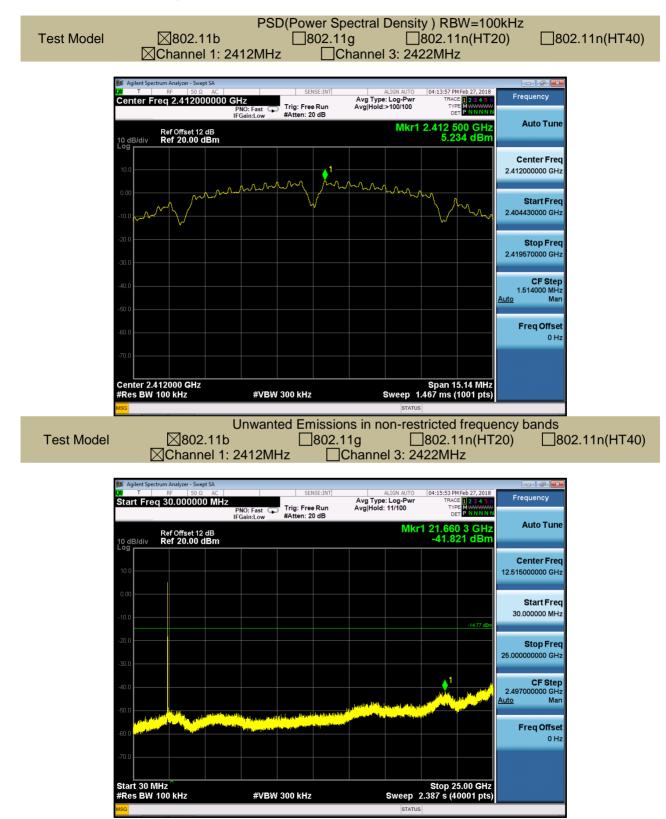
Set the VBW =300 kHz.

Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

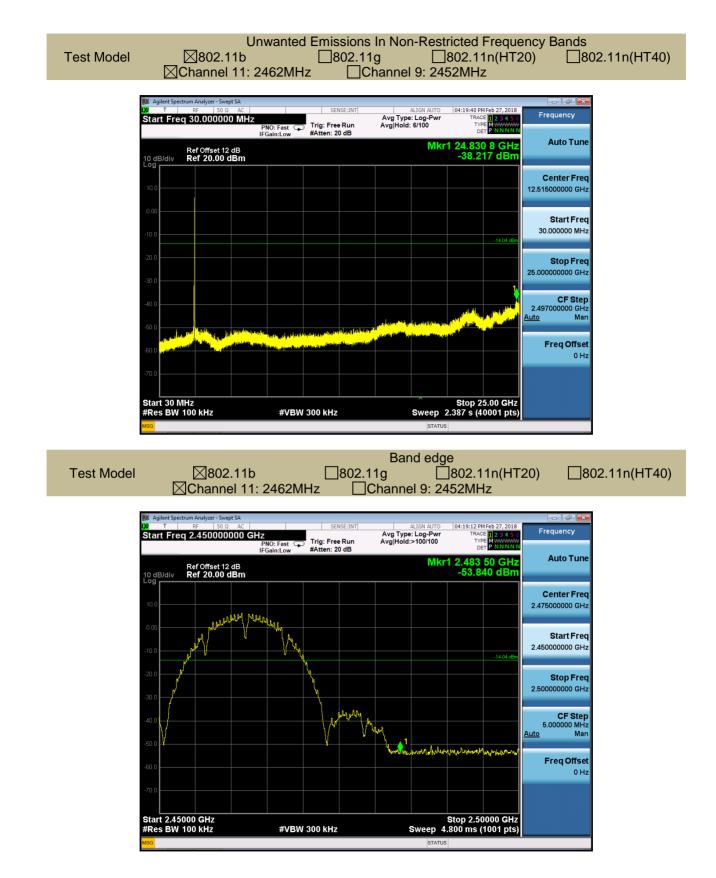
Allow trace to fully stabilize.


Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

8.4.5 Test Results

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:



8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB558074 DTS 01 Meas. Guidance v04

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz	MHz	GHz			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	cted Frequency(MHz) Field Strength (µV/m)		Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	88-216 150 43.5		3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30KHz)

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature:	24 °C	Test Date:	Nov. 24, 2017
Humidity:	53 %	Test By:	King Kong
Test mode:	TX Mode		

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(IVITZ)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

Temperature :	24 ℃	Test Date :	Nov. 24, 2017
Humidity :	53 %	Test By:	King Kong
Test mode:	802.11b	Frequency:	Channel 1: 2412MHz

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4981	V	53.88	39.9	74	54	-20.12	-14.1
7393	V	51.7	37.75	74	54	-22.3	-16.25
9805	V	48.12	34.68	74	54	-25.88	-19.32
4981	Н	55	40.43	74	54	-19	-13.57
7393	Н	50.7	37.16	74	54	-23.3	-16.84
9805	Н	49.11	36.45	74	54	-24.89	-17.55

Temperature : 24℃		Test Date :		Nov. 24	, 2017		
Humidity :	Humidity : 53 %		Test By:		King Kong		
Test mode:	802.	11b	Freque	ncy:	Channe	l 6: 2437MH	Z
Freq.	Ant.Pol.	Emission Le	evel(dBuV/m)	Limit 3m	n(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
5031	V	54.33	42.28	74	54	-19.67	-11.72
7468	V	51.35	38.17	74	54	-22.65	-15.83
9905	V	48.16	36.38	74	54	-25.84	-17.62
5031	Н	57.31	40.62	74	54	-16.69	-13.38
7468	Н	50.05	37.53	74	54	-23.95	-16.47
9905	Н	48.78	36.45	74	54	-25.22	-17.55
Temperature	e: 24℃	1	Test Date : Nov. 24, 2017				
Humidity :	53 %	6	Test By:		King Ko	King Kong	
Test mode:	802.	11b	Frequency: Chan		Channe	nel 11: 2462MHz	
Freq.	Ant.Pol.	Emission Le	evel(dBuV/m)	Limit 3m	n(dBuV/m)	Ove	er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
5081	V	54.06	40.91	74	54	-19.94	-13.09
7543	V	51.77	38.46	74	54	-22.23	-15.54
10005	V	46.8	36.22	74	54	-27.2	-17.78
5081	Н	53.9	40.11	74	54	-20.1	-13.89
7543	Н	48.33	37.46	74	54	-25.67	-16.54
10005	Н	46.81	35.8	74	54	-27.19	-18.2

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

 (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

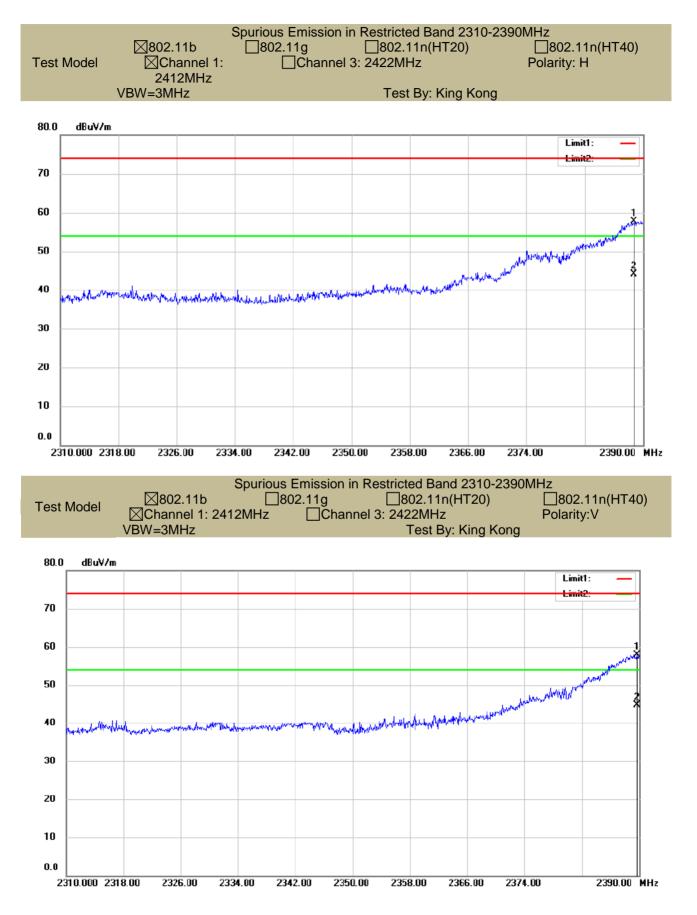
Margin

(dB) -9.80 -9.30

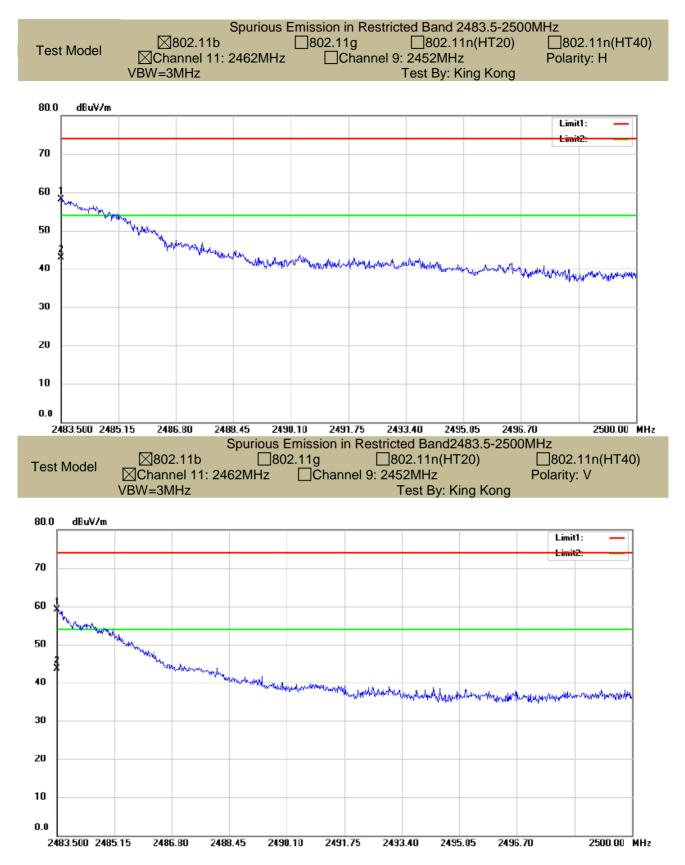
■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

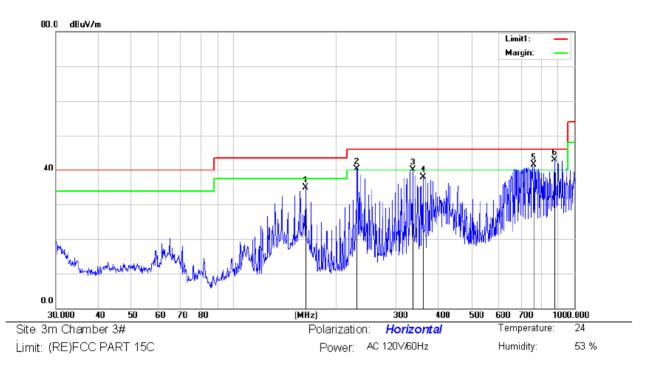
Temperature : Humidity : Test mode:	24℃ 53 % 802.11b	٢	Fest Date : Fest By: Frequency:	King ł	ary 27, 2018 Kong nel 1: 2412MHz	
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)
2388.8	Н	57.68	74	-16.32	44.2	54
2389.68	V	57.86	74	-16.14	44.7	54
Temperature : Humidity : Test mode:	24℃ 53 % 802.11b	F	Test Date : Test By: Frequency:	King ł	9, 2017 Kong nel 11: 2462MHz	


Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.5	Н	58.07	74	-15.93	42.9	54	-11.10
2483.517	V	59.19	74	-14.81	43.7	54	-10.30

Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).

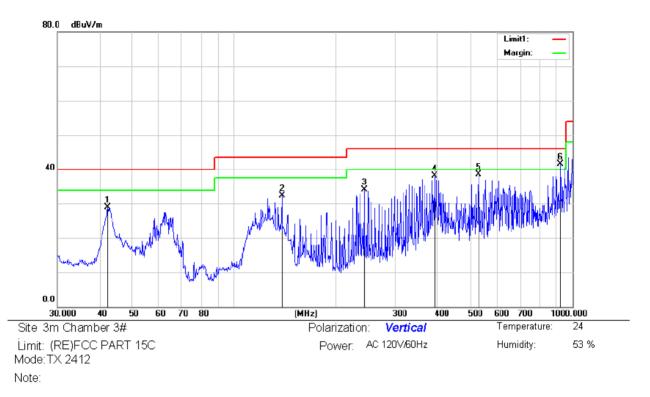

(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Spurious Emission below 1GHz (30MHz to 1GHz)

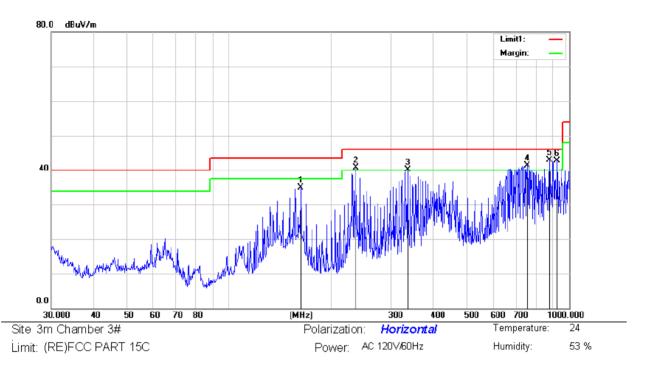
All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:



Mode:TX 2412 Note:

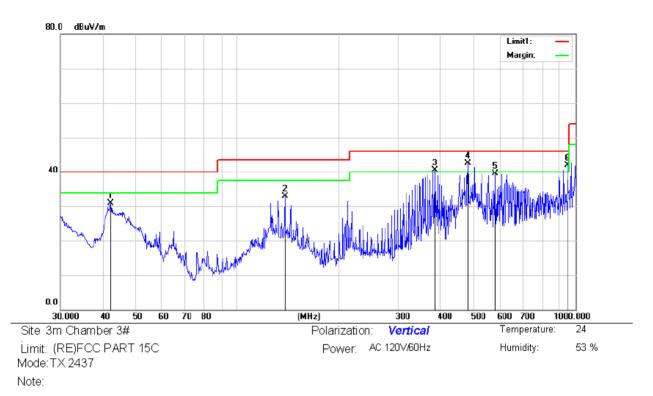
No. Mk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	162.6105	53.23	8.45	28.54	1.74	34.88	43.50	-8.62	QP	
2 !	230.0985	54.69	12	28.47	2.11	40.33	46.00	-5.67	QP	
3 !	334.8588	51.13	14.69	28.37	2.57	40.02	46.00	-5.98	QP	
4	359.1860	48.47	15.01	28.34	2.7	37.84	46.00	-8.16	QP	
5 !	760.7035	43.94	21.29	27.86	4.07	41.44	46.00	-4.56	QP	
6 *	875.2470	43.56	22.6	27.72	4.37	42.81	46.00	-3.19	QP	

*:Maximum data x:Over limit I:over margin



No. Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBu∨/m	dB	Detector	Comment
1	42.3022	43.20	13.6	28.68	0.82	28.94	40.00	- 11.06	QP	
2	138.3873	51.44	7.77	28.56	1.59	32.24	43.50	- 11.26	QP	
3	242.5252	48.05	12.35	28.46	2.17	34.11	46.00	- 11.89	QP	
4	390.7225	47.94	15.61	28.31	2.82	38.06	46.00	-7.94	QP	
5	528.2458	45.15	18.13	28.17	3.3	38.41	46.00	-7.59	QP	
6 *	922.5157	41.29	23.33	27.68	4.51	41.45	46.00	-4.55	QP	

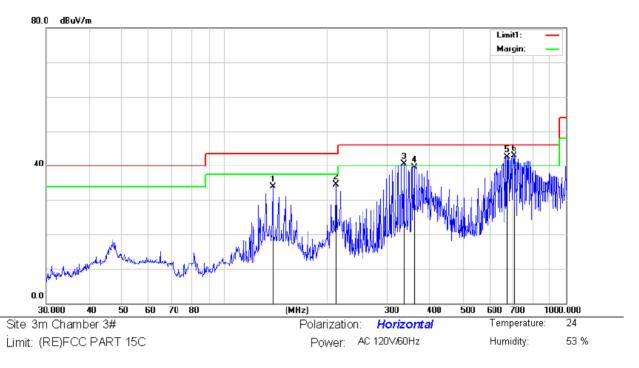
*:Maximum data x:Over limit I:over margin



Mode: TX 2437 Note:

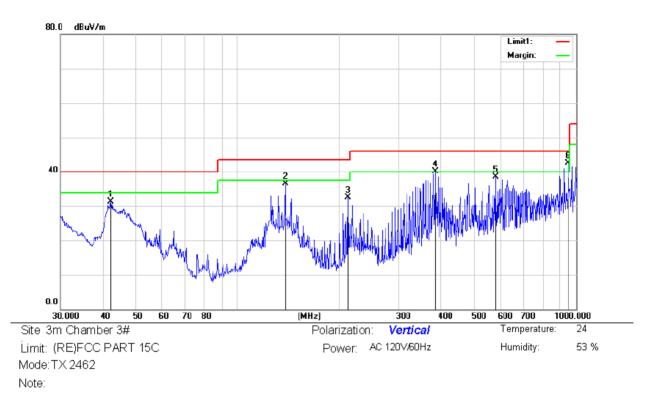
No. N	Иk.	Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
		MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	1	62.6105	53.16	8.45	28.54	1.74	34.81	43.50	-8.69	QP	
2	2	36.6447	54.78	12.27	28.46	2.14	40.73	46.00	-5.27	QP	
3	3	34.8588	51.12	14.69	28.37	2.57	40.01	46.00	-5.99	QP	
4 !	7	52.7431	43.89	21.15	27.87	4.06	41.23	46.00	-4.77	QP	
5 *	* 8	375.2470	43.65	22.6	27.72	4.37	42.90	46.00	-3.10	QP	
6 !	9	22.5157	42.64	23.33	27.68	4.51	42.80	46.00	-3.20	QP	

*:Maximum data x:Over limit !:over margin



No. Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	42.3021	45.11	13.6	28.68	0.82	30.85	40.00	-9.15	QP	
2	138.3873	52.16	7.77	28.56	1.59	32.96	43.50	- 10.54	QP	
3 !	383.9318	50.50	15.6	28.32	2.8	40.58	46.00	-5.42	QP	
4 *	480.5276	50.42	17.12	28.22	3.13	42.45	46.00	-3.55	QP	
5	578.6700	45.26	18.95	28.12	3.5	39.59	46.00	-6.41	QP	
6 !	948.7610	41.37	23.6	27.65	4.61	41.93	46.00	-4.07	QP	

*:Maximum data x:Over limit I: over margin



Mode:TX 2462 Note:

No. Mk	. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBu∀/m	dB	Detector	Comment
1	138.3873	53.07	7.77	28.56	1.59	33.87	43.50	-9.63	QP	
2	212.2692	50.18	10.89	28.49	2.01	34.59	43.50	-8.91	QP	
3 !	334.8586	51.70	14.69	28.37	2.57	40.59	46.00	-5.41	QP	
4	359.1860	50.22	15.01	28.34	2.7	39.59	46.00	-6.41	QP	
5 !	672.8442	46.68	20.03	27.99	3.75	42.47	46.00	-3.53	QP	
6 *	704.2260	46.44	20.53	27.94	3.87	42.90	46.00	-3.10	QP	

*:Maximum data x:Over limit I:over margin

No. Mł	k. Freq.	Reading Level	Ant. Factor	Pre Amp Gain	Cable loss	Measure- ment	Limit	Over		
	MHz	dBu∨	dB/m	dB	dB	dBuV/m	dBu∨/m	dB	Detector	Comment
1	42.3021	45.61	13.6	28.68	0.82	31.35	40.00	-8.65	QP	
2	138.3873	55.66	7.77	28.56	1.59	36.46	43.50	-7.04	QP	
3	212.2693	48.13	10.89	28.49	2.01	32.54	43.50	- 10.96	QP	
4 !	383.9318	50.00	15.6	28.32	2.8	40.08	46.00	-5.92	QP	
5	578.6700	44.26	18.95	28.12	3.5	38.59	46.00	-7.41	QP	
6 *	948.7610	41.87	23.6	27.65	4.61	42.43	46.00	-3.57	QP	

*:Maximum data x:Over limit I:over margin

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

Conducted Emission Limit	
Quasi-peak	Average
66-56	56-46
56	46
60	50
	Quasi-peak 66-56 56

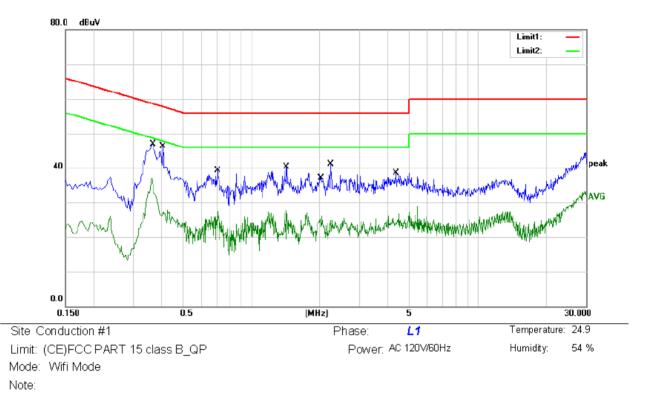
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3conducted emission test setup

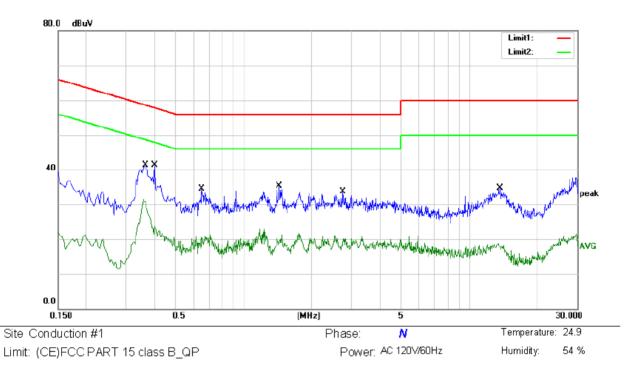
8.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

8.6.5 Test Results

Pass

All modes (2.4G 802.11b/g/n) and all voltages(120V, 240V) have been tested, and the worst result recorded was report as below:


No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBuV	dBu∨	dB	Detector	Comment
1	0.3660	37.30	9.66	46.96	58.59	- 11.63	QP	
2	0.3660	27.39	9.66	37.05	48.59	-11.54	AVG	
3 *	0.4060	36.70	9.67	46.37	57.73	-11.36	QP	
4	0.4060	18.16	9.67	27.83	47.73	- 19.90	AVG	
5	0.7060	29.59	9.70	39.29	56.00	-16.71	QP	
6	0.7060	17.80	9.70	27.50	46.00	- 18.50	AVG	
7	1.4260	30.59	9.74	40.33	56.00	- 15.67	QP	
8	1.4260	18.05	9.74	27.79	46.00	- 18.21	AVG	
9	2.0460	16.40	9.80	26.20	46.00	- 19.80	AVG	
10	2.2460	31.38	9.80	41.18	56.00	- 14.82	QP	
11	4.3420	28.69	9.80	38.49	56.00	- 17.51	QP	
12	4.3420	17.39	9.80	27.19	46.00	- 18.81	AVG	

margin Com

Comment: Factor build in receiver.

Operator: csl

Mode: Wifi Mode Note:

MHz dBuV dB dBuV dBuV dB Detector Comment 1 0.3660 31.56 9.66 41.22 58.59 -17.37 QP 2 0.3660 21.79 9.66 31.45 48.59 -17.14 AVG 3 * 0.4020 31.71 9.67 41.38 57.81 -16.43 QP 4 0.4020 16.47 9.67 26.14 47.81 -21.67 AVG 5 0.6540 24.81 9.70 34.51 56.00 -21.49 QP 6 0.6540 11.64 9.70 21.34 46.00 -24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 -20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 -23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 -22.36 QP 10 2.7580 11.15	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
2 0.3660 21.79 9.66 31.45 48.59 - 17.14 AVG 3 * 0.4020 31.71 9.67 41.38 57.81 - 16.43 QP 4 0.4020 16.47 9.67 26.14 47.81 - 21.67 AVG 5 0.6540 24.81 9.70 34.51 56.00 - 21.49 QP 6 0.6540 11.64 9.70 21.34 46.00 - 24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 - 20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP		MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
3 * 0.4020 31.71 9.67 41.38 57.81 - 16.43 QP 4 0.4020 16.47 9.67 26.14 47.81 - 21.67 AVG 5 0.6540 24.81 9.70 34.51 56.00 - 21.49 QP 6 0.6540 11.64 9.70 21.34 46.00 - 24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 - 20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	1	0.3660	31.56	9.66	41.22	58.59	-17.37	QP	
4 0.4020 16.47 9.67 26.14 47.81 - 21.67 AVG 5 0.6540 24.81 9.70 34.51 56.00 - 21.49 QP 6 0.6540 11.64 9.70 21.34 46.00 - 24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 - 20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	2	0.3660	21.79	9.66	31.45	48.59	-17.14	AVG	
5 0.6540 24.81 9.70 34.51 56.00 - 21.49 QP 6 0.6540 11.64 9.70 21.34 46.00 - 24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 - 20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	3 *	0.4020	31.71	9.67	41.38	57.81	- 16.43	QP	
6 0.6540 11.64 9.70 21.34 46.00 - 24.66 AVG 7 1.4380 25.51 9.74 35.25 56.00 - 20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	4	0.4020	16.47	9.67	26.14	47.81	-21.67	AVG	
7 1.4380 25.51 9.74 35.25 56.00 -20.75 QP 8 1.4380 13.08 9.74 22.82 46.00 -23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 -22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 -25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 -25.40 QP	5	0.6540	24.81	9.70	34.51	56.00	-21.49	QP	
8 1.4380 13.08 9.74 22.82 46.00 - 23.18 AVG 9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	6	0.6540	11.64	9.70	21.34	46.00	-24.66	AVG	
9 2.7580 23.84 9.80 33.64 56.00 - 22.36 QP 10 2.7580 11.15 9.80 20.95 46.00 - 25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 - 25.40 QP	7	1.4380	25.51	9.74	35.25	56.00	-20.75	QP	
10 2.7580 11.15 9.80 20.95 46.00 -25.05 AVG 11 13.6260 24.48 10.12 34.60 60.00 -25.40 QP	8	1.4380	13.08	9.74	22.82	46.00	-23.18	AVG	
11 13.6260 24.48 10.12 34.60 60.00 -25.40 QP	9	2.7580	23.84	9.80	33.64	56.00	-22.36	QP	
	10	2.7580	11.15	9.80	20.95	46.00	-25.05	AVG	
12 13.6260 8.52 10.12 18.64 50.00 -31.36 AVG	11	13.6260	24.48	10.12	34.60	60.00	-25.40	QP	
	12	13.6260	8.52	10.12	18.64	50.00	-31.36	AVG	

*:Maximum data x:Over limit !:over margin

Comment: Factor build in receiver.

Operator: csl

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

The EUT'S antenna is FPC antenna. The antenna's gain is 0 dBi, and the antenna can't be replaced by the userwhich in accordance to section 15.203, please refer to the photos.