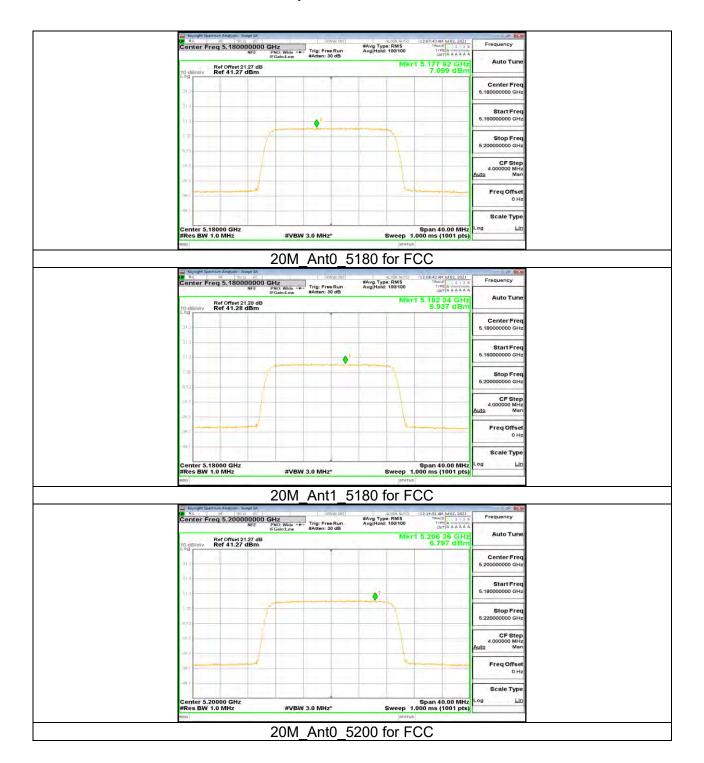
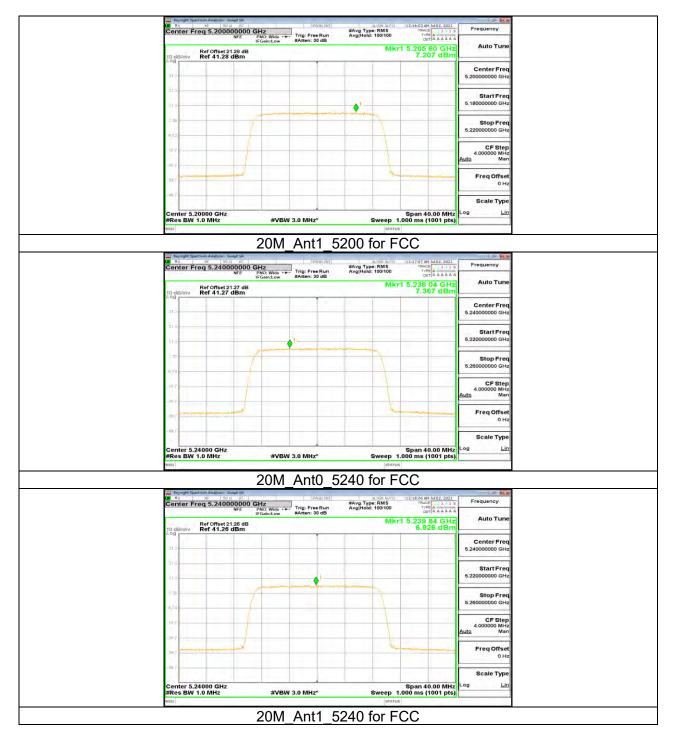


|             | Ant0  | 5270    | 4.28   | <=11    | PASS |
|-------------|-------|---------|--------|---------|------|
| -           | Ant1  | 5270    | 4.51   | <=11    | PASS |
|             | total | 5270    | 7.41   | <=11    | PASS |
|             | Ant0  | 5310    | 3.93   | <=11    | PASS |
|             | Ant1  | 5310    | 3.72   | <=11    | PASS |
|             | total | 5310    | 6.84   | <=11    | PASS |
|             | Ant0  | 5510    | 3.72   | <=11    | PASS |
|             | Ant1  | 5510    | 4.12   | <=11    | PASS |
|             | total | 5510    | 6.93   | <=11    | PASS |
|             | Ant0  | 5590    | 4.21   | <=11    | PASS |
|             | Ant1  | 5590    | 6.97   | <=11    | PASS |
| 40M         | total | 5590    | 8.82   | <=11    | PASS |
| 40101       | Ant0  | 5670    | 3.55   | <=11    | PASS |
|             | Ant1  | 5670    | 4.11   | <=11    | PASS |
|             | total | 5670    | 6.85   | <=11    | PASS |
|             | Ant0  | 5745.5  | 1.12   | <=29.99 | PASS |
|             | Ant1  | 5745.5  | 1.17   | <=29.99 | PASS |
|             | total | 5745.5  | 4.16   | <=29.99 | PASS |
|             | Ant0  | 5786.5  | 0.98   | <=29.99 | PASS |
|             | Ant1  | 5786.5  | 0.29   | <=29.99 | PASS |
|             | total | 5786.5  | 3.66   | <=29.99 | PASS |
|             | Ant0  | 5829.5  | 1.51   | <=29.99 | PASS |
|             | Ant1  | 5829.5  | 0.07   | <=29.99 | PASS |
|             | total | 5829.5  | 3.86   | <=29.99 | PASS |
| <u>-</u>    | Ant0  | 5730.5  | 11.71  | <=29.99 | PASS |
|             | Ant1  | 5730.5  | 11.01  | <=29.99 | PASS |
| -           | total | 5730.5  | 14.38  | <=29.99 | PASS |
|             | Ant0  | 5786.5  | 11.32  | <=29.99 | PASS |
| 10M         | Ant1  | 5786.5  | 10.81  | <=29.99 | PASS |
| _           | total | 5786.5  | 14.08  | <=29.99 | PASS |
| _           | Ant0  | 5844.5  | 11.83  | <=29.99 | PASS |
| _           | Ant1  | 5844.5  | 10.16  | <=29.99 | PASS |
|             | total | 5844.5  | 14.09  | <=29.99 | PASS |
| _           | Ant0  | 5726.5  | 9.61   | <=29.99 | PASS |
| _           | Ant1  | 5726.5  | 8.73   | <=29.99 | PASS |
| _           | total | 5726.5  | 12.203 | <=29.99 | PASS |
| _           | Ant0  | 5786.5  | 8.982  | <=29.99 | PASS |
| 1.4M        | Ant1  | 5786.5  | 8.382  | <=29.99 | PASS |
| _           | total | 5786.5  | 11.703 | <=29.99 | PASS |
| _           | Ant0  | 5846.5  | 8.79   | <=29.99 | PASS |
| -           | Ant1  | 5846.5  | 8.372  | <=29.99 | PASS |
|             | total | 5846.5  | 11.596 | <=29.99 | PASS |
| -           | Ant0  | 5728.12 | 10.183 | <=29.99 | PASS |
| <u> </u>    | Ant1  | 5728.12 | 7.691  | <=29.99 | PASS |
| <u> </u>    | total | 5728.12 | 12.124 | <=29.99 | PASS |
| 1.4.M       | Ant0  | 5788.12 | 8.809  | <=29.99 | PASS |
| CA          | Ant1  | 5788.12 | 8.683  | <=29.99 | PASS |
| <i>J,</i> . | total | 5788.12 | 11.757 | <=29.99 | PASS |
| <u> </u>    | Ant0  | 5848.12 | 9.134  | <=29.99 | PASS |
| <u> </u>    | Ant1  | 5848.12 | 7.865  | <=29.99 | PASS |
|             | total | 5848.12 | 11.556 | <=29.99 | PASS |
| <u> </u>    | Ant0  | 5727.5  | 8.127  | <=29.99 | PASS |
| <u> </u>    | Ant1  | 5727.5  | 7.409  | <=29.99 | PASS |
|             | total | 5727.5  | 10.793 | <=29.99 | PASS |
| 3M          | Ant0  | 5787.5  | 6.814  | <=29.99 | PASS |
| OIVI        | Ant1  | 5787.5  | 8.606  | <=29.99 | PASS |
|             | total | 5787.5  | 10.812 | <=29.99 | PASS |
|             | Ant0  | 5844.5  | 7.628  | <=29.99 | PASS |
|             | Ant1  | 5844.5  | 5.031  | <=29.99 | PASS |




REPORT NO.: 4789980498.1-3-7 Page 224 of 259

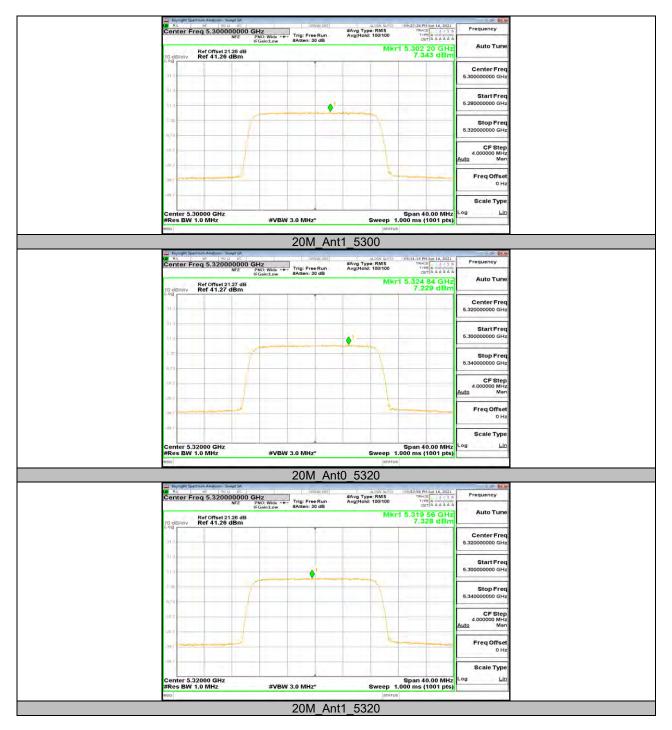
|    | total | 5844.5 | 9.531 | <=29.99 | PASS |
|----|-------|--------|-------|---------|------|
|    | Ant0  | 5730.2 | 7.642 | <=29.99 | PASS |
|    | Ant1  | 5730.2 | 5.709 | <=29.99 | PASS |
|    | total | 5730.2 | 9.792 | <=29.99 | PASS |
| 3M | Ant0  | 5790.2 | 6.743 | <=29.99 | PASS |
| CA | Ant1  | 5790.2 | 5.163 | <=29.99 | PASS |
| CA | total | 5790.2 | 9.035 | <=29.99 | PASS |
|    | Ant0  | 5847.2 | 7.374 | <=29.99 | PASS |
|    | Ant1  | 5847.2 | 4.431 | <=29.99 | PASS |
|    | total | 5847.2 | 9.157 | <=29.99 | PASS |


Note: 1.The Result and Limit Unit is dBm/500 kHz in the band 5.725–5.85 GHz. 2.The Duty Cycle Factor and RBW Factor is compensated in the graph.

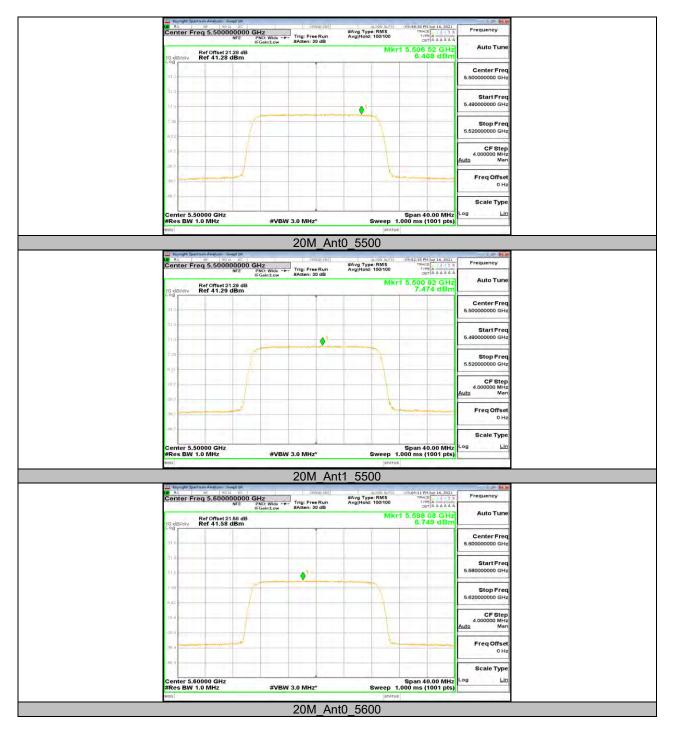


### 12.5.2. Test Graphs







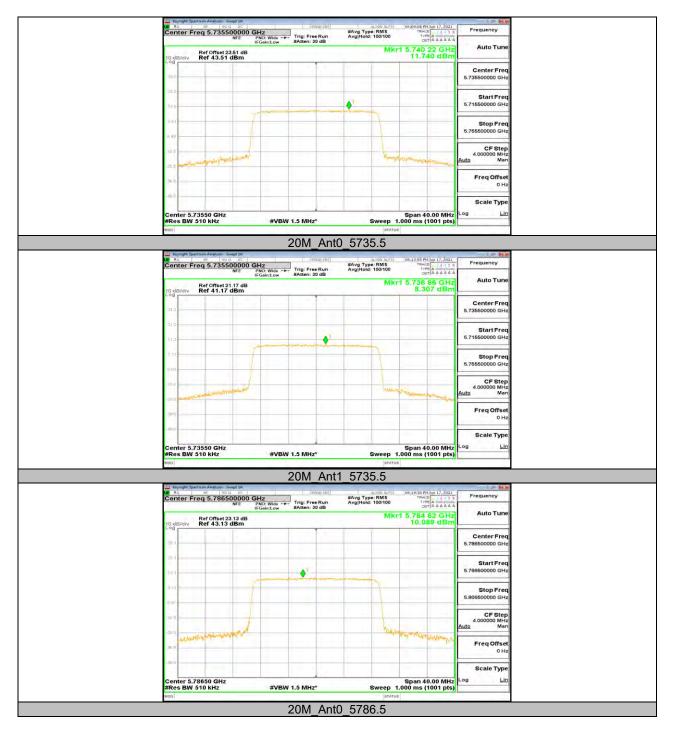





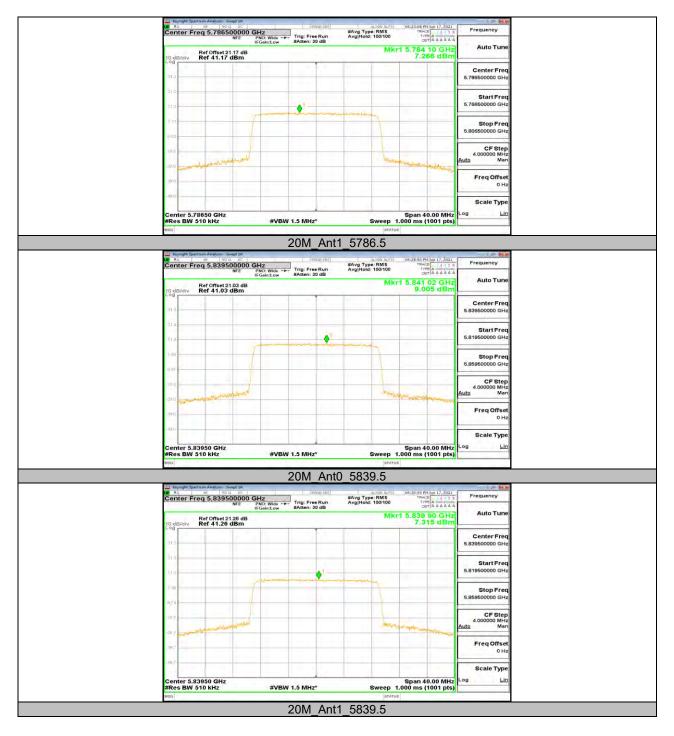








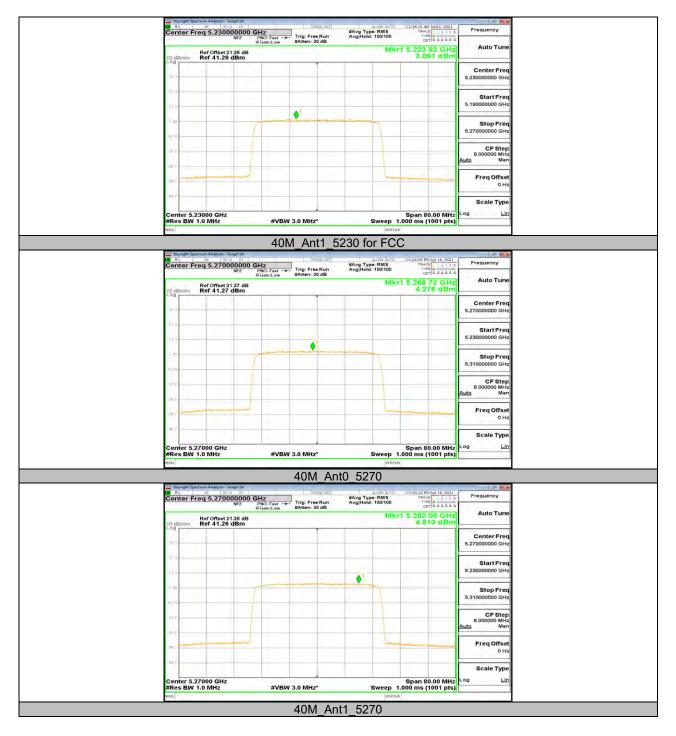


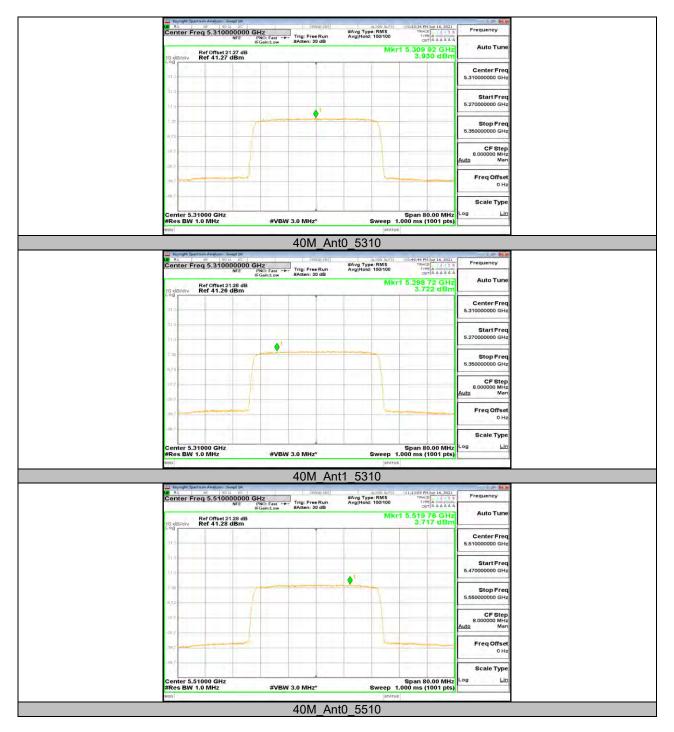




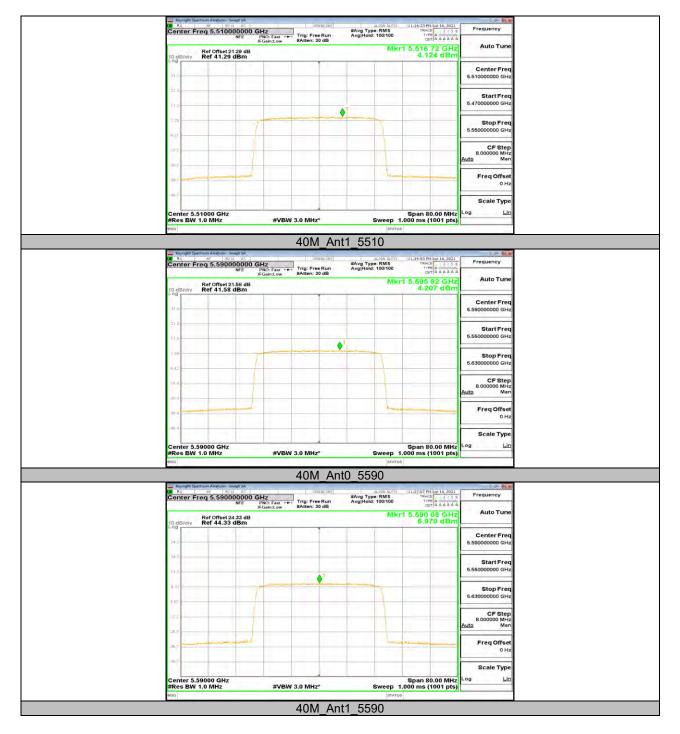


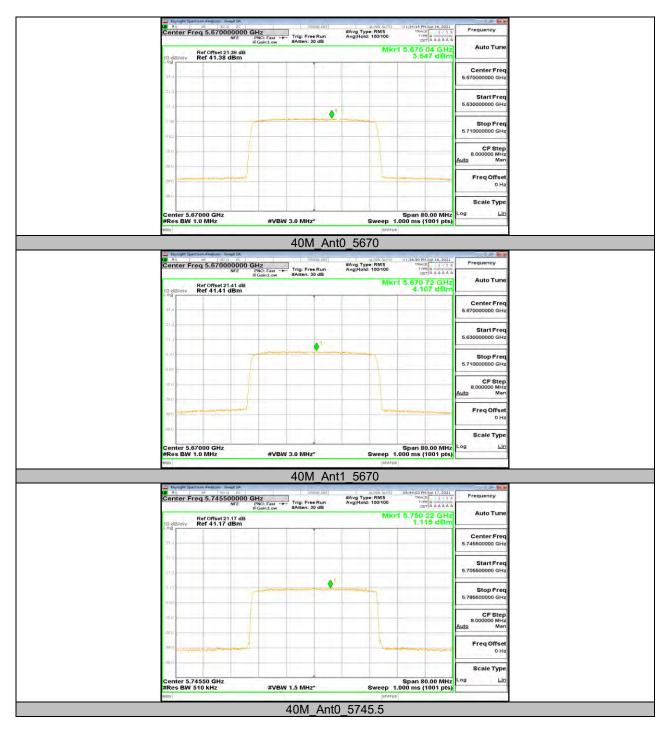


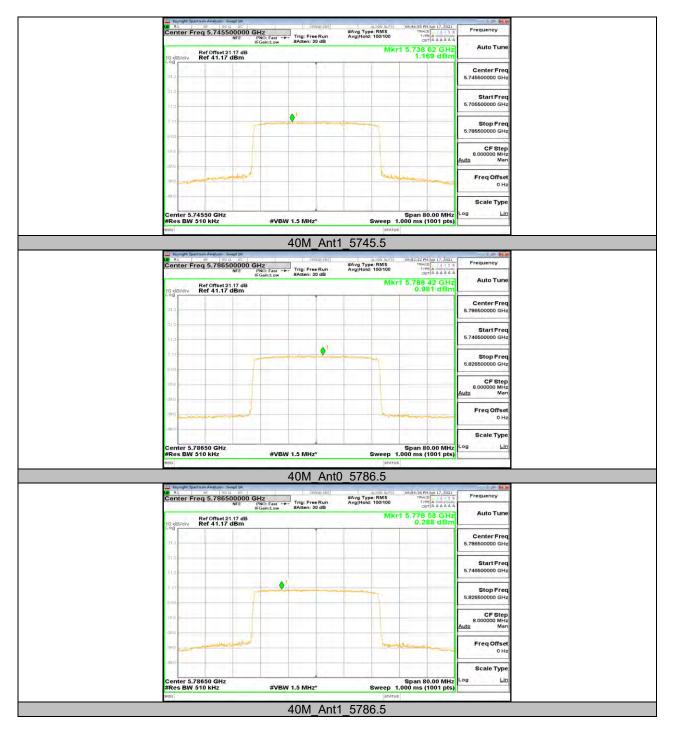








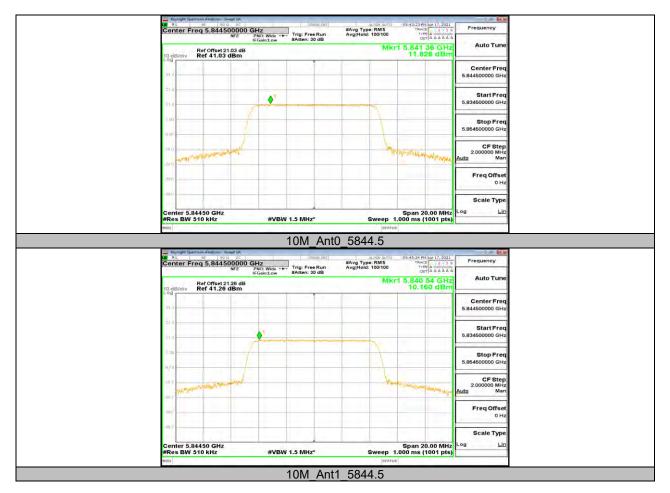
















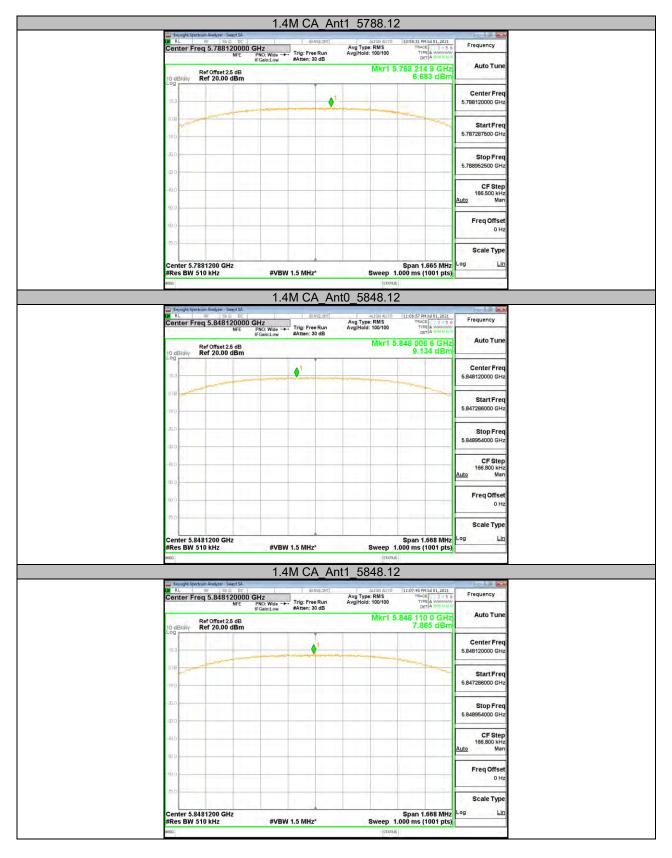




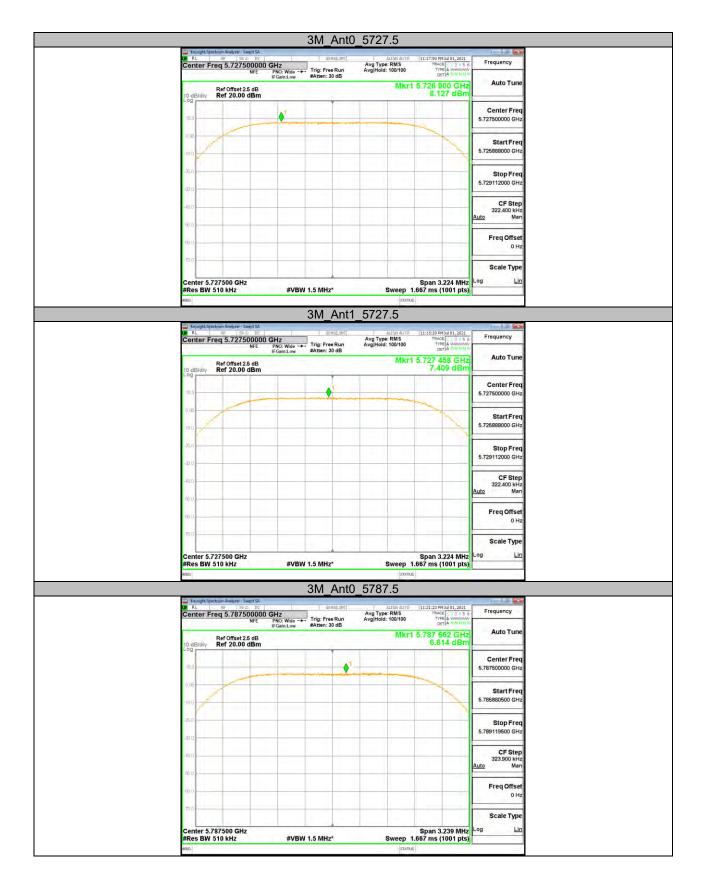




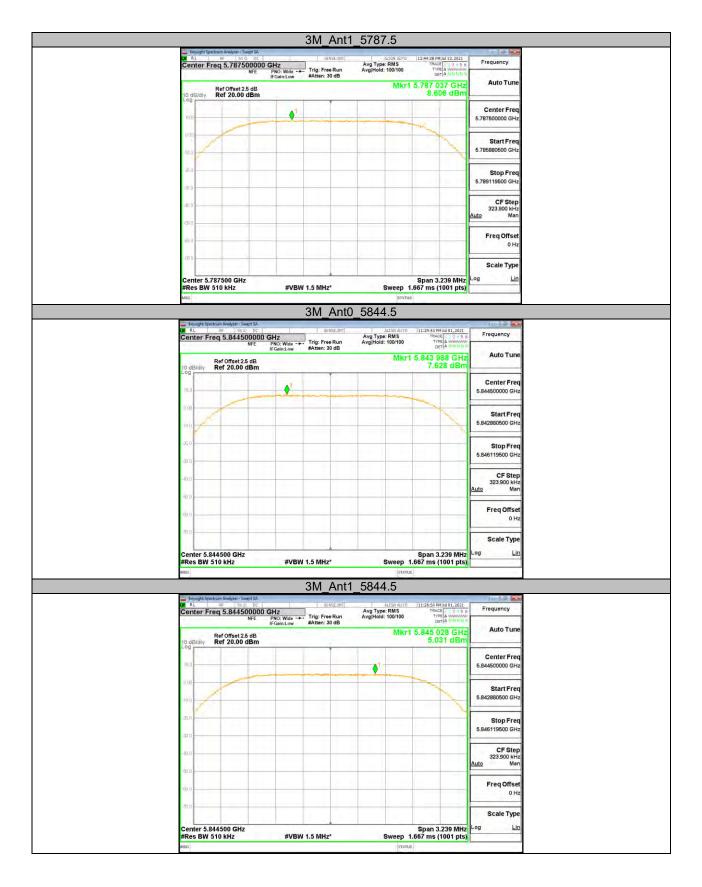


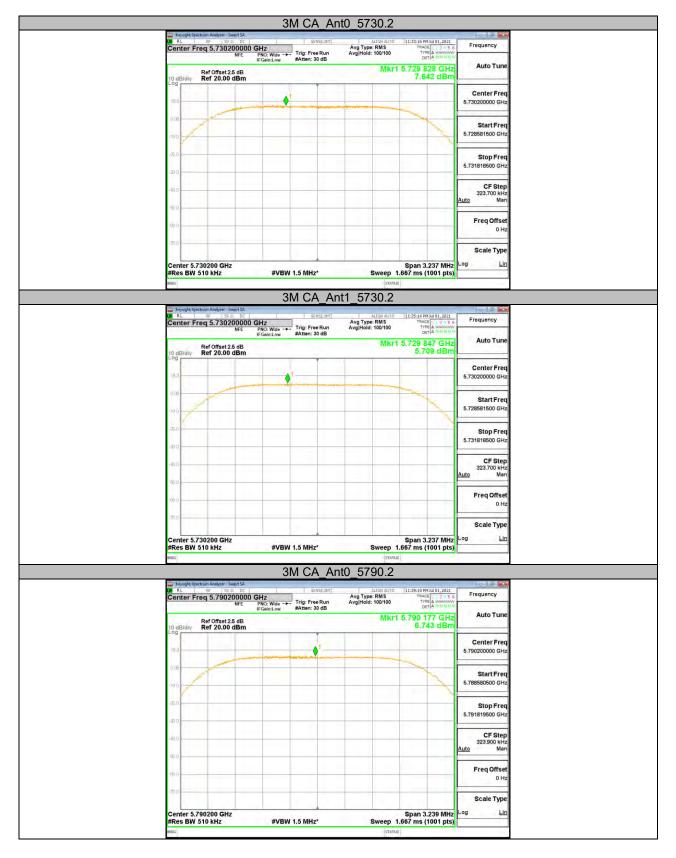


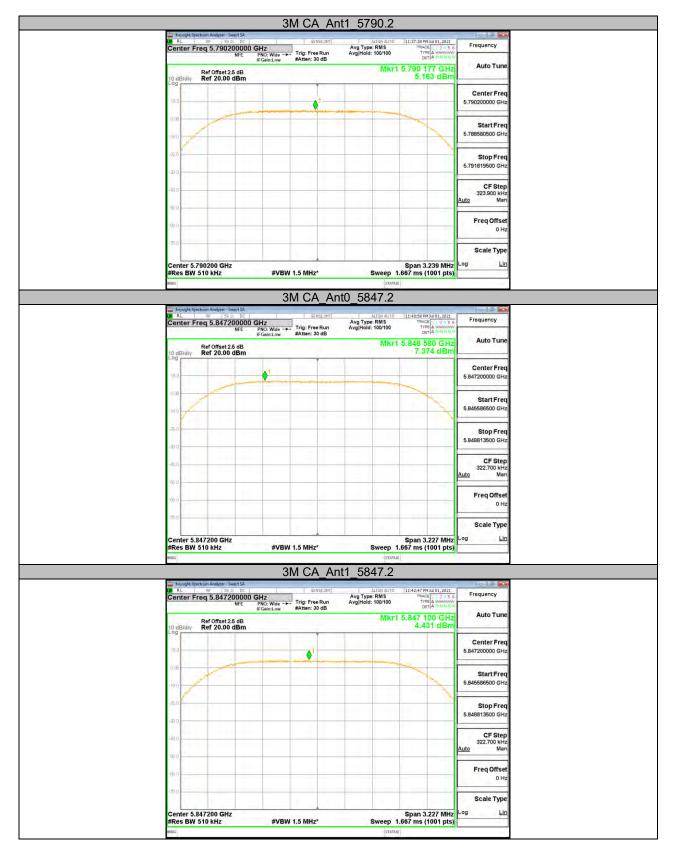
















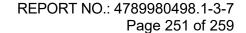



REPORT NO.: 4789980498.1-3-7 Page 250 of 259

## 12.6. Appendix D: Duty Cycle 12.6.1. Test Result

| Mode       | On Time (msec) | Period<br>(msec) | Duty<br>Cycle<br>x<br>(Linear) | Duty<br>Cycle<br>(%) | Duty Cycle<br>Correction<br>Factor<br>(dB) | 1/T<br>Minimum<br>VBW<br>(kHz) | Final<br>setting<br>For VBW<br>(kHz) |
|------------|----------------|------------------|--------------------------------|----------------------|--------------------------------------------|--------------------------------|--------------------------------------|
| 20M        | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 40M        | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 10M        | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 1.4M       | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 1.4M<br>CA | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 3M         | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |
| 3M<br>CA   | 1              | 1                | 1.0000                         | 100.00               | 0.00                                       | 1.00                           | 0.01                                 |

Note:


Duty Cycle Correction Factor=10log (1/x).

Where: x is Duty Cycle (Linear)

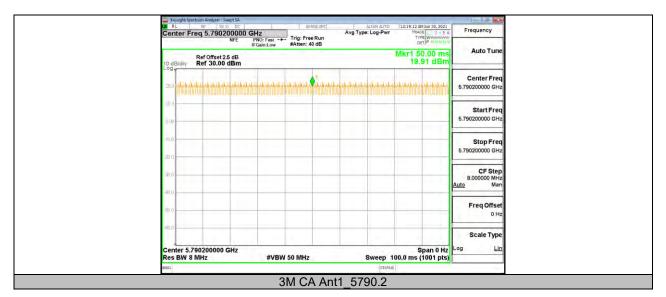
Where: T is On Time

If that calculated VBW is not available on the analyzer then the next higher value should be

used.






## 12.6.2. Test Graphs

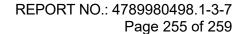











Note: All the modes have been tested, only the worst data was recorded in the report.



# 12.7. Appendix E: Frequency Stability

## 12.7.1. Test Result

|                | Frequency Error vs. Voltage |                     |                    |                     |                    |                     |                 |                     |                 |
|----------------|-----------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|-----------------|---------------------|-----------------|
|                |                             |                     |                    | SRD                 | 20M:5200MH         | łz                  |                 |                     |                 |
|                |                             | 0 Min               | ute                | 2 Min               | ute                | 5 Min               | ute             | 10 Mii              | nute            |
| Temp.          | Volt.                       | Freq.Error<br>(MHz) | Tolerance (ppm)    | Freq.Error<br>(MHz) | Tolerance (ppm)    | Freq.Error<br>(MHz) | Tolerance (ppm) | Freq.Error<br>(MHz) | Tolerance (ppm) |
| $T_N$          | $V_L$                       | 5199. 9992          | -0.16              | 5200.0172           | 3.31               | 5200.0157           | 3.02            | 5200.0215           | 4.14            |
| T <sub>N</sub> | V <sub>N</sub>              | 5200.0089           | 1.72               | 5199.9914           | -1.66              | 5199.9915           | -1.63           | 5199. 9831          | -3.25           |
| T <sub>N</sub> | V <sub>H</sub>              | 5200.0001           | 0.02               | 5199. 9758          | -4.66              | 5200.0028           | 0.54            | 5200.0196           | 3.76            |
|                |                             |                     |                    | Frequency E         | Error vs. Tem      | perature            |                 |                     |                 |
|                |                             |                     |                    | SRD 2               | 20M: 5200 M        | Hz                  |                 |                     |                 |
|                |                             | 0 Minute            |                    | 2 Minute            |                    | 5 Minute            |                 | 10 Minute           |                 |
| Temp.          | Volt.                       | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance (ppm) | Freq.Error<br>(MHz) | Tolerance (ppm) |
| 45             | V <sub>N</sub>              | 5199. 9863          | -2.63              | 5199. 9933          | -1.30              | 5200.0211           | 4.06            | 5199. 9848          | -2.93           |
| 40             | Vn                          | 5200.0132           | 2.53               | 5200.0184           | 3.54               | 5200.0172           | 3.30            | 5199. 9893          | -2.06           |
| 30             | V <sub>N</sub>              | 5200. 0207          | 3.99               | 5199. 9974          | -0.50              | 5200.0103           | 1.98            | 5199. 9923          | -1.48           |
| 20             | V <sub>N</sub>              | 5200. 0187          | 3.60               | 5200.0101           | 1.94               | 5199. 9847          | -2.95           | 5200. 0177          | 3.40            |
| 10             | V <sub>N</sub>              | 5200.0065           | 1.25               | 5200. 0172          | 3.32               | 5199. 9832          | -3.22           | 5200. 0181          | 3.49            |
|                |                             |                     |                    |                     |                    | =000 0040           | 0.70            | F100 0707           | 0.04            |
| 0              | $V_N$                       | 5199. 9834          | -3.19              | 5199. 9944          | -1.08              | 5200.0040           | 0.76            | 5199. 9797          | -3.91           |





|                | Frequency Error vs. Voltage     |                     |                    |                     |                    |                     |                    |                     |                    |
|----------------|---------------------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|
|                |                                 |                     |                    | SRD 20              | M: 5839.5 N        | 1Hz                 |                    |                     |                    |
|                |                                 | 0 Min               | ute                | 2 Min               | ute                | 5 Min               | ute                | 10 Mir              | nute               |
| Temp.          | Volt.                           | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance (ppm)    | Freq.Error<br>(MHz) | Tolerance (ppm)    |
| T <sub>N</sub> | $V_{L}$                         | 5839. 4965          | -0.60              | 5839. 5218          | 3.73               | 5839. 5046          | 0.80               | 5839. 5054          | 0.92               |
| T <sub>N</sub> | V <sub>N</sub>                  | 5839. 5047          | 0.81               | 5839. 4857          | -2.45              | 5839. 4954          | -0.78              | 5839. 4990          | -0.17              |
| T <sub>N</sub> | V <sub>H</sub>                  | 5839. 4761          | -4.10              | 5839. 4795          | -3.52              | 5839. 4767          | -3.98              | 5839. 5203          | 3.47               |
|                | Frequency Error vs. Temperature |                     |                    |                     |                    |                     |                    |                     |                    |
|                | SRD 20M: 5839.5 MHz             |                     |                    |                     |                    |                     |                    |                     |                    |
|                | Volt.                           | 0 Minute            |                    | 2 Minute            |                    | 5 Minute            |                    | 10 Minute           |                    |
| Temp.          |                                 | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance<br>(ppm) | Freq.Error<br>(MHz) | Tolerance<br>(ppm) |
| 45             | V <sub>N</sub>                  | 5839. 5104          | 1.77               | 5839. 4932          | -1.16              | 5839. 5063          | 1.08               | 5839. 5157          | 2.68               |
| 40             | V <sub>N</sub>                  | 5839. 4919          | -1.39              | 5839. 5055          | 0.94               | 5839. 5243          | 4.17               | 5839. 5023          | 0.39               |
| 30             | V <sub>N</sub>                  | 5839. 4922          | -1.34              | 5839. 5201          | 3.44               | 5839. 5108          | 1.86               | 5839. 4958          | -0.73              |
| 20             | V <sub>N</sub>                  | 5839. 5163          | 2.79               | 5839. 4800          | -3.42              | 5839. 5025          | 0.43               | 5839. 5021          | 0.36               |
| 10             | V <sub>N</sub>                  | 5839. 4996          | -0.07              | 5839. 4862          | -2.36              | 5839. 4801          | -3.40              | 5839. 5010          | 0.18               |
| 0              | V <sub>N</sub>                  | 5839. 4926          | -1.26              | 5839. 5079          | 1.36               | 5839. 5118          | 2.02               | 5839. 5126          | 2.16               |
| -10            | V <sub>N</sub>                  | 5839. 4932          | -1.16              | 5839. 4760          | -4.12              | 5839. 5153          | 2.62               | 5839. 5189          | 3.24               |

Note: All the modes have been tested, only the worst data was recorded in the report.



### 12.8. Appendix F: Dynamic Frequency Selection

#### 12.8.1. Test Result

## DFS In-Service Monitoring (5510 MHz; 40 MHz)

Test according to FCC title 47 part 15 §15.407(h), KDB 905462 D02 U-NII DFS Compliance Procedures New Rules v02

Note: The master-client pair communicate with the master device transmitting on a non-DFS channel while performing DFS CAC and in service monitoring on the DFS channel. The client device (EUT) downlink channel in the non-DFS band is used to listen to the master device and only transmits on the uplink DFS channel after receiving confirmation from the master that the DFS uplink channel is available following the master device CAC. Once the DFS band uplink channel is available the client device continues to monitor the downlink channel for information to clear the channel whenever the master device detects radar on the uplink channel. For the purposes of testing the master-client downlink was established on ISM frequency band (narrowband signal frequency band in 2403.5MHz-2471.12MHz or 5726.5MHz-5848.12MHz) and the client-master uplink was established on the DFS channel to be tested (5510 MHz). Radar was applied to the master device on the uplink channel (5510 MHz) and time for the client to clear the channel was measured. Testing was done as required by KDB 905462 with the client operating on the widest available channel bandwidth (40MHz).

**Measurement Summary** 

| DUT Frequency<br>(MHz) | Radar Type<br>No. | Type of Measurement value         | Overall<br>Result |
|------------------------|-------------------|-----------------------------------|-------------------|
| 5510.000000            | 0                 | Channel Move Time                 | PASS              |
| 5510.000000            | 0                 | Channel Closing Transmission Time | PASS              |
| 5510.000000            | 0                 | Non-occupancy period              | PASS              |

(continuation of the "Measurement Summary" table from column 4 ...)

#### **Channel Move Time Detailed Results**

| DUT Frequency<br>(MHz) | Radar Type<br>No. | CMT Tx<br>Time<br>(s) | CMT Limit<br>(s) | CMT Result |
|------------------------|-------------------|-----------------------|------------------|------------|
| 5510.000000            | 0                 | 0.000                 | 10.000           | PASS       |

(continuation of the "Channel Move Time Detailed Results" table from column 5 ...)

| DUT Frequency<br>(MHz) | CMT Comment                                                         |
|------------------------|---------------------------------------------------------------------|
| 5510.000000            | Tx Time value is last trailing edge found within sweep. See Note 1. |

**Channel Closing Transmission Time Detailed Results** 

| DUT Frequency<br>(MHz) | Radar Type<br>No. | CCTT Type of Value              | CCTT No. of<br>Pulses found | CCTT Tx<br>Time<br>(ms) |
|------------------------|-------------------|---------------------------------|-----------------------------|-------------------------|
| 5510.000000            | 0                 | first 200 ms                    | 0                           | 0.000                   |
| 5510.000000            | 0                 | remaining 10.0 second(s) period | 0                           | 0.000                   |

(continuation of the "Channel Closing Transmission Time Detailed Results" table from column 5 ...)

| DUT Frequency<br>(MHz) | CCTT Tx<br>Time Limit<br>(ms) | CCTT Result | CCTT Comment |
|------------------------|-------------------------------|-------------|--------------|
| 5510.000000            | 200.000                       | PASS        | See Note 1.  |
| 5510.000000            | 60.000                        | PASS        | See Note 1.  |



REPORT NO.: 4789980498.1-3-7 Page 257 of 259

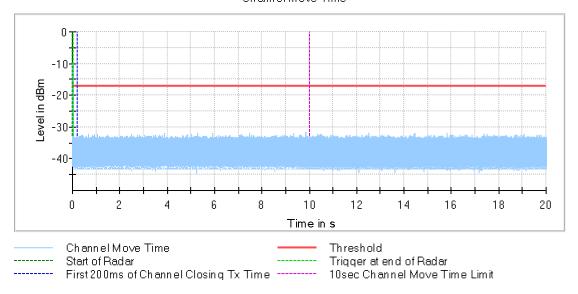
Non-occupancy period Detailed Results

| DUT Frequency<br>(MHz) | Radar Type<br>No. | NOP No. of Pulses found | NOP No. of<br>Pulses Limit | NOP Tx<br>Time<br>(s) | NOP Tx<br>Time Limit<br>(s) |
|------------------------|-------------------|-------------------------|----------------------------|-----------------------|-----------------------------|
| 5510.000000            | 0                 | 0                       | 0                          | 0.000                 | 0.000                       |

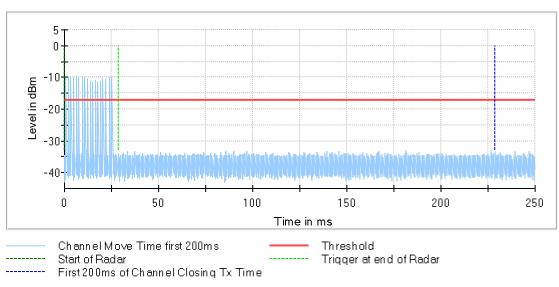
(continuation of the "Non-occupancy period Detailed Results" table from column 6...)

| DUT Frequency<br>(MHz) | NOP Result |
|------------------------|------------|
| 5510.000000            | PASS       |

#### Radar level verification

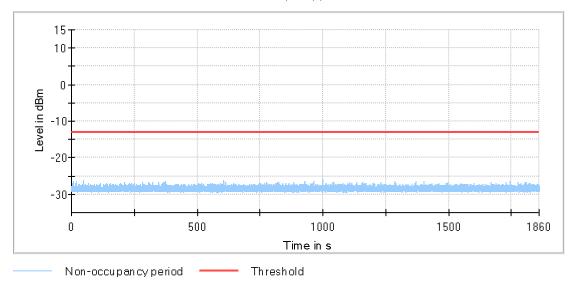

| Description / Formula                                                                                                                                                                                                                                                              | Value                                                             | Unit    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------|
| IF(( {DFS Mode(0/1/2)}=0)or( {DFS Mode(0/1/2)}=1), IF((dBm2W( {Nominal Power[dBm]})>0.2), -64, IF(( {Configured PSD[dBm]}<10), -62, -64))+ {Attenuation Vector Generator to Master Device [dB]}, -50+ {Attenuation Vector Generator to COMP[dB]})+ {Radar Signal Level Offset[dB]} | Given setting / formula<br>to calculate<br>Vector Generator level |         |
| Configured Master Device EIRP:                                                                                                                                                                                                                                                     | NA                                                                | mW      |
| Configured Master Device PSD:                                                                                                                                                                                                                                                      | NA                                                                | dBm/MHz |
| Requirement of the Detection threshold value for this given values acc. to FCC clause 5.2 / Table 3                                                                                                                                                                                | -62                                                               | dBm     |
| Vector Generator level setting                                                                                                                                                                                                                                                     | -0.91                                                             | dBm     |
| Configured overall pathloss from Vector Generator RF out to Master Device connector of ' Master Device to OSP'-                                                                                                                                                                    | 60.09                                                             | dB      |
| Given additional level added to the amplitude of the waveform to account for variations in measurement equipment acc. to FCC clause 5.2 / Table 3 / Note 2                                                                                                                         | 1.00                                                              | dB      |
| This results in the following radar signal level at the Master Device                                                                                                                                                                                                              | -61.00                                                            | dBm     |

## **Additional Information**


| Note    | Description                                                                                                                                                                                                |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Note 1: | Because of the radar pulse event at the beginning, the investigation of the trace begins with an offset of 28.7 ms conforming to the end of the Radar burst.                                               |
| Note 2: | Channel move time (CMT) / channel closing transmission time (CCTT) measurement was made with hi resolution video sweep using OSP DAQ channel                                                               |
| Note 3: | Because of the substantially higher sampling rate of the video signal the results for CCTT and CMT are more accurate than in the graphics visible. Reached timing accuracy of the video trace: approx 4 µs |
| Note 4: | The Non-Occupancy Period trace starts at the end of the Channel move time trace (20.000 secs.) Labeling of the x-axis (time) is relative to its beginning (0 secs.)                                        |




#### Channel Move Time




#### Channel Move Time first 200ms









Note: All the modes have been tested, only the worst data was recorded in the report.

**END OF REPORT**